

Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown Policy</u> and <u>contact the service</u> immediately

PERF	ORMANCE	OF	COOLING	TOWERS

by

ABBAS HAMID SULAYMON.

A thesis submitted to the University of Aston in Birmingham for the degree of Doctor of Philosophy.

THESIS 600.455 506

23.NOV TO 156503

Department of Chemical Engineering, The University of Aston in Birmingham.

BEST COPY

AVAILABLE

Poor text in the original thesis.

I wish to dedicate this Thesis to my wife

.

Mary Sulaymon.

•

•

.

*

ACKNOWLFDGEMENTS.

The author wishes to express his sincere thanks to the following:

Professor G.V.Jeffreys, for his help and encouragement.

Mr.A.R.Cooper, for his advice, help, encouragement and supervision.

SUMMARY.

The work reported is concerned with the performance of polystyrene spheres used as a packing for an air-water cooling tower operating as either a fixed or fluidized bed.

A critical review of the literature pertaining to Merkel's theory, the development of this theory for the analysis of cooling towers, and the operation of the turbulent bed contactor is made. The amount of reliable information is shown to be limited and no work has been reported on the use of polystyrene spheres as packing in cooling tower. A general review of the physical characteristics of conventional packings including maldistribution, pressure drop, water hold-up, minimum fluidization velocity, and loading and flooding velocities is presented. The corresponding literature for the three phase fluidized bed shows that little work has been done.

A mechanical induced draft counter-flow cooling tower, of 1 ft. by 1 ft. section and $8\frac{1}{2}$ ft. height was constructed. The packing has been studied theoretically and experimentally both as a fixed and fluidized bed. In the studies, polystyrene spheres of 3, 2 and 1.5 in. diameter were used with different packing heights of 6, 4.5, 3 and 1.5 ft. Air flowrates of 700 to 3000 lb./h.ft². were used in conjunction with water flowrates of 1000 to 6000 lb./h.ft².

The fluidized bed is used to avoid the flooding which occurs in the fixed bed, and to allow high air and water flowrates, thereby increasing the overall volumetric mass transfer coefficient. Several statistical correlations of the experimental results of K_ga are presented.

The pressure drop across the packing, minimum fluidization velocity, loading and flooding velocities, water film thickness over a sphere and free surface velocity were considered in detail and experimental values correlated; the results are shown to agree well with predictions.

A theoretical model of the static hold-up between two touching spheres and an analytical development of the velocity and temperature profiles within the water film over a sphere are made. TABLE OF CONTENTS.

.

.

Page No.

•

1)	Intro	troduction			l
2)	Liter	ature Su	rvey		2
	2.1)	Histori	cal Survey		2
	2.2)	Turbule	nt Bed Con	tactor	4
	2.3)	Theory		nd Development of the for the Analysis of	6
		2.3.1)		ass and Heat Transfer fficients	7
		2.3.2)		ns made in the Development f the Theory	9
		2.3.3)		sed to evaluate the 1 Equation	12
			2.3.3.1)	Graphical Integration by Planimeter or by Rectangular Count	12
			2.3.3.2)	Use of Performance Curves already developed by Graphical Integration.	15
			2.3.3.3)	Simplication of the Merkel Integral by substituting a Log Mean Enthalpy Potential.	16
			2.3.3.4)	Use of a Nomograph	18
			2.3.3.5)	Graphical Integration	19
•			•	Modification of the Integral by use of Polynomial Series to approximate the Saturation Line.	22
			2.3.3.7)	Numerical Integration	24
		2.3.4)	in Water	al Heat Transfer Coefficient Phase and Heat or Mass Transfer ents of Air Phase.	24
		2.3.5)		used to evaluate the Heat Coefficient in Water Phase.	25
		•	2.3.5.1)	Adiabatic and Adiabatic Isothermal Water Runs	25
			2.3.5.2)	Trial and Error	27
			2.3.5.3)	Overall Enthalpy Transfer	29

	2.4)	Theory of the Psychrometer	31
		2.4.1) Factors Producing Error in the Wet Bulb Temperature Reading.	33
		2.4.1.1) Radiation	34
		2.4.1.2) Water Reservoir	35
,		2.4.1.3) Deviation from Atmospheric Pressure	37
		2.4.2) Psychrometric Chart	37
		2.4.3) Humidity Measurement	38
	2.5)	The effect of Maldistribution on the Performance of Packed Tower	39
	2.6)	The Wetted Area of Packing	42
	2.7)	Pressure Drop	45
		2.7.1) Two Phase Fixed Bed	45
		2.7.2) Two Phase Fluidized Bed	48
		2.7.3) Three Phase Fixed Bed	49
		2.7.4) Three Phase Fluidized Bed	51
	2.8)	Minimum Fluidization Velocity	52
	2.9)	Loading and Flooding	54
	2.10)	The Liquid Hold-up in Random Packings	56
	2.11)	Flow Past a Sphere	58
		2.11.1) Velocity Profiles	58
		2.11.2) Temperature Profiles	63
	2.12)	Summary of the Literature Survey	64
3)	Desig	n of Experiments	66
	3.1)	Purposes of Investigation	66
	3.2)	Selection of Cooling Tower	66
	3.3)	Description of Equipment	66
		3.3.1) Cooling Tower	66
		3.3.2) Hold-up Apparatus	70
	3.4)	Design and Calibration of the Orifice Plate with d_{+} and $d_{+}/2$ Tappings.	71

	3.5)	Design of the Steam Shell and Tube Heat Exchanger	72
	3.6)	Equipment for Measuring the Film Thickness	72
		3.6.1) Microscope	72
		3.6.2) Conductivity Probes	72
	3.7)	Photographic Techniques	73
		3.7.1) Still Photography	73
		3.7.2) Cine Photography	72
4)	Exper	imental Procedures and Results	74
	4:1)	Cooling Tower	74
	•	4.1.1) Three Phase Fixed Bed	74
		4.1.2) Three Phase Fluidized Bed	75
		4.1.3) Temperature Measurement	76
		4.1.4) Pressure Drop Measurement	78
		4.1.5) Loading and Flooding Phenomena	78
	4.2)	Hold-up Measurement	79
		4.2.1) Photographic Method	79
		4.2.2) Weighing Method	82
		4.2.3) Film Thickness Measurement	83
		4.2.3.1) Conductivity Probes	83
		4.2.3.2) Microscope	83
	4.3)	The Nature of the Water Film Flow over a column or a row of Spheres.	84
	4.4)	Free Surface Velocity	85
5)	Exper	imental Results and Discussion	86
	5.1)	Calculation Methods	86
	5.2)	K a for Three Phase Fixed Bed	86
		5.2.1) Quadratic and Linear Correlations with the Dependent Variable $\Delta T / \Delta H_m$	87
		5.2.1.1) Normality of the Residual Errors for the Correlations.	91

		5.2.1.2)	Packing Height in the Quadratic and Linear Correlations	93
		5.2.1.3)	Packing Height and Sphere Diameter in the Quadratic and Linear Correlations	95
		5.2.1.4)	95% Confidence Intervals and errors for the Correlations.	96
	5.2.2)	K a Correla	ations	96
	5.2.3)	Effect of H	Packed Height	99
5.3)	K _g a for	Three Phase	e Fluidized Bed	100
	5.3.1)	Correlation Varia	ns including the Dependent able $\Delta T / \Delta H_m$	101
			Normality of the Residual errors for the Correlations	105
		5.3.1.2) (Correlations including Packing Height	106
			Correlations including Packing Height and Sphere Diameter	107
		•	95% Confidence Intervals and errors for the Correlations	108
	5.3.2)	K a Correla	ations	108
		5.3.2.1) H	K a Based on the Fixed Bed B Packing Height	108
		5.3.2.2)	Effect of Packing Height	109
5.4)	Kga Com	parison for and	the Three Phase Fluidized Fixed Bed	110
	5.4.1)	K a Based o	on the Fluidized Bed Packing Height	111
	5.4.2)	K a with a	Factor $(1 + \epsilon_1 - \epsilon_0)$	111
	5•4•3)	Ka with a g Free	Factor (1 + Effective e Board)	113
	5.4.4)	K a Compar: of	ison for Different Types Packing	115
5 . 5)	Pressur	e Drop		117
	5.5.1)		n for the Pressure Drop Empty Tower	118
	5.5.2)		n for the Pressure Drop Dry Packing	118

	•	5.5.3)	Correlation for the Pressure Drop across the Three Phase Fixed Bed	121
			5.5.3.1) Correlation for the Pressure Drop across the Three Phase Fixed Bed in the Loading Region.	123
			5.5.3.2) Pressure Drop across the Three Phase fixed Bed in the Flooding Region	124
		5•5•4)	Correlation for the Pressure Drop Across the Three Phase Fluidized Bed	125
		5.5.5)	Pressure Drop comparison for different types of Packing	126
	•	5.5.6)	Loading and Flooding Phenomena	127
	5.6)	Water H	Iold-up	128
		5.6.1)	Film Thickness and Free Surface Velocity	131
•	5.7)	Determi	nation of Minimum Fluidization Velocity	
	ž	5.7.1)	Minimum Fluidization Velocity for Two Phase System	134
		5.7.2)	Minimum Fluidization Velocity for Three Phase System	136
	5.8)	Economi	c Aspect of Polystyrene Spheres Packing	141
6)	Water	Film Fl	ow over a Sphere	143
	6.1)	Velocit	y Profiles	143
	6.2)	Tempera	ature Profiles	148
7)	Cond	usion an	nd suggestions for further work	153
	7.1)	Conclus	sion	153
	7.2)	Suggest	tions for furtherwork.	167

APPENDICES.

Page No.

Appendix (A)					
Air C	alibrati	on Chart for the Orifice Plat	е	159	
Appendix (B)					
B.1)	Calcula	tion of Mass and Heat Balance		1.60	
	B.1.1)	Computer Program for Calcula the Mass and Heat Balance	tion of	161	
B.2)	Calcula	tion of the overall Volumetri Transfer Coefficient	c Mass	165	
	B.2.1)	Computer Program for Calcula K a without the value of (F)	tion of	166	
	B.2.2)	Computer Program for calcula K a with the value of (F)	tion of	169	
B .3)	Calcula	tion of the effectiveness and of the cooling tower.	l efficiency	170	
Appendix	(C)				
C.1)	Statist	ical Analysis Computer Progra	ım	171	
	C.1.1)	Methods of getting the Anov the Computer Printout and it Calculation.		174	
	C.1.2)	Correlations in Log-Log Data	1.	175	
		C.1.2.1) Three inch Sphere Packing	Diameter	175	
		C.1.2.2) Two Inch Sphere D: Packing	iameter .	177	
		C.1.2.3) One and a half ind Diameter Packin		179	
	C.1.3)	Correlations in Semi-Log Da	ta	181	
		C.l.3.l) Three inch sphere packing	diameter	181	
		C.1.3.2) Two inch sphere d packing	iameter	183	
		C.1.3.3) One and a half in diameter packi	-	185	
	C.l.4)	Correlations in Raw-Data		187	

.

C.1.4.1)	Three inch sphere diameter packing	187
C.1.4.2)	Two inch sphere diameter packing	189
C.1.4.3)	One and a half inch sphere diameter packing.	191
C.1.5) Correlati	ons including packing height	193
C.1.5.1)	Log-Log Data	193
C.1.5.2)	Semi-Log Data	195
C.1.5.3)	Raw-Data	197
	ons including packing height and phere diameter	198
C.1.6.1)	Log-Log Data	198
C.1.6.2)	Semi-Log Data	199
	on of the Coefficient of	200
	confidence Interval for the prrelations	201
C.1.8.1)	Quadratic Correlations in Log- Log Data	202
C.1.8.2)	Linear Correlations in Log-Log Data	202
C.1.8.3)	Quadratic Correlations in Log- Log Data which include Packing Height	. 203
C.1.8.4)	Linear Correlations in Log-Log Data which include Packing . Height	203
C.1.8.5)	Quadratic and Linear Correlations in Log-Log Data which include packing height and sphere diameter.	203
C.1.8.6)	Quadratic Correlations in Semi-Log Data	204
C.1.8.7)	Linear Correlations in Semi-Log Data	204
C.1.8.8)	Quadratic Correlations in Semi- Log Data which including packing height	205
C.1.8.9)	Linear Correlations in Semi-Log Data which including packing height.	205

.

•

	C.1.8.10)	Quadratic and Linear Correlations in Semi-Log Data which include packing height, and sphere diameter.	205
		to compare the Quadratic and the ns in Log-Log Data.	206
Appendix (D)			
D.1) Analy	ysis of Varia Correla	nce for different types of ation	208
D.1.	1) Log-Log D	ata Correlations	208
	D.1.1.1)	Three inch sphere diameter packing	208
	D.1.1.2)	Two inch sphere diameter packing	210
	D.1.1.3)	One and a half inch sphere diameter packing	212
D.1.	2) Semi-Log	Data Correlations	214
	D.1.2.1)	Three inch sphere diameter packing	214
	D.1.2.2)	Two inch sphere diameter packing	216
•	D.1.2.3)	One and a half inch sphere diameter packing	218
D.1.	3) Raw-Data	Correlations	220
	D.1.3.1)	Three inch sphere diameter packing	. 220
	D.1.3.2)	Two inch sphere diameter packing	222
·	D.1.3.3)	One and a half inch sphere diameter packing	224
D.1.	.4) Correlati	ons including packing height.	226
	D.1.4.1)	Log-Log Data Correlations	. 226
	D.1.4.2)	Semi-Log Data Correlations	228
D.1.		ions including packing height and sphere diameter	230
	D.1.5.1)	Log-Log Data Correlations	230
	D.1.5.2)	Semi-Log Data Correlations	231
D_2) The	95% Confiden	ce Interval for the Correlations	232

	,	Page No.
D.2.1)	Quadratic Correlations in Log-Log Data	232
D.2.2).	Linear Correlations in Log-Log Data	232
D.2.3)	Quadratic Correlatiin in Log-Log Data which include packing height	232
D.2.4)	Linear Correlation in Log-Log Data which include packing height.	233
D.2.5)	Quadratic and Linear Correlations in Log-Log Data which include packing height and sphere diameter	233
D.2.6)	Quadratic Correlations in Semi-Log Data	233
D.2.7)	Linear Correlations in Semi-Log Data	2 <i>3</i> 4
D.2.8)	Quadratic Correlations in Semi-Log Data which including packing height	234
D.2.9)	Linear Correlations in Semi-Log Data which include packing height	234
D.2.10)	Quadratic and Linear Correlations in Semi-Log Data which include packing height and sphere diameter.	235
D.2.11)	Correlations with the Factor $\left(1 + \frac{Z_0 - Z}{Z_0}\right)$	235

Appendix (E)

E.l) Experimental Data and Results		236
E.1.1)	One and a half inch sphere diameter	236
E.1.2)	Two inch sphere diameter	260
Ĕ.1.3)	Three inch sphere diameter	293
Appendix (F) Fi	nite-Difference Approximation to Derivatives	326
Nomenclature		327
References.		332

1. INTRODUCTION.

In many industrial processes the need arises to discard large quantities of surplus heat. Although it would seem better to transfer this waste heat directly to the atmosphere, it is usually more economical to employ cooling water, even though the water has to be cooled for re-use by direct contact with air. A direct contact method is preferred as the heat transfer coefficients for metal surface to air are very much smaller than those from a metal surface to a turbulent water stream. The primary heat transfer surface is consequently much smaller if water is used instead of air. The saving is usually more than enough to offset the cost of the subsequent cooling of water by air in relatively inexpensive equipment, where advantage may be taken of the rapid self-cooling of the water by partial evaporation.

Water cooling towers generally consist of large chambers loosely filled with trays or decks of wooden boards or slats, and recently with plastic plates. The water to be cooled is pumped to the top of the tower, where it is distributed through sprays or troughs to the top of the packing. It then falls down through the packing, either as a film wetting the slats, or as droplets splashing from deck to deck, according to the design of the tower.

Air is allowed to pass horizontally through the tower as in a cross flow cooling tower, or is passed vertically upward countercurrent to the water flow. In the case of counter-current towers the air motion may be due to the natural chimney effect of the warm moist air in the tower, or may be caused by fans at the bottom (forced draught) or at the top (induced draught) of the tower.

The aim of this research is to establish the performance of fluidized and fixed beds of polystyrene spheres used as packing in water cooling towers and to obtain the transfer and hydrodynamic characteristics of the system which can be utilised in their systematic design.

LITERATURE SURVEY.

2.1. HISTORICAL SURVEY.

Water has been used as an industrial coolant for many years, but it is only in the last 100 years that any attempt has been made to use and re-use water in a closed system incorporating some form of water cooler. During the Industrial Revolution and growth of the Factory System, new factories sprang up on the traditional riverside sites, which, in consequence, soon became overcrowded. This overcrowding resulted in legislation to reduce river pollution by works effluent including in 1890⁽¹⁾ discharge of cooling water at a temperature of more than 110°F into any river or stream. However, it was slightly before this time that attention was first paid to recirculating systems in which only small quantities of fresh water were added to make up losses.

It was realised as early as 1836, when Gossage⁽²⁾ introduced the coke packed tower for hydrochloric acid absorption, that, for maximum efficiency, the liquid and gas phases should be split up into as many streams as possible in order to present the maximum possible surface for contact between them. Although there is a considerable volume of literature relating to the use of random packed towers in the gas and allied industries, there is little evidence for supposing that such towers were used for water cooling.

The 1868 edition of "Treatise on the manufacture of Coal Gas" by Clegg⁽³⁾ describes many types of tower, but there is still, as yet, no reference to a grid packed tower of any sort. In 1869, however, Pass⁽⁴⁾ patented what is now known as the cross flue packing. This consisted of a series of frames laid one upon the other, the slats in each frame being set at right angles to the next. This apparatus was not designed as a water cooler and does' not appear to have ever been used as such.

A patent taken out by Cunningham⁽⁵⁾ in 1875 states that

the current practice was to use a chamber filled with stacks of tree branches. Cunningham suggested the use of a wooden lath packing with the laths laid flat side upwards and spaced so that laths in the next layer took up places under the spaces in the adjacent one. Apparently industry did not utilize Cunningham's invention as in 1887, Hart⁽⁶⁾ suggested replacing the "commonly used furze packed towers" by a "gallows like erection" consisting of two upright pillars upon which a trough was placed.Water pumped into this trough, passed through small perforations in the underside and then flowed down into a pond across 7 in. by $\frac{3}{4}$ in. boards nailed to the supports, alternate boards being nailed to opposite sides. In a book by Herring⁽⁷⁾ written in 1895, it is recorded that a grid packing was introduced in the gas industry by George Livesey in 1866, which was found by trial and error to be most efficient when successive frames were placed at right angles. Unfortunately, reference to Livesey's original works was destroyed in the war, and so it is left to conjecture as to whether the real inventor of the cross flue packing was Livesey or Pass.

The first use of wooden cross flue grids for water cooling is credited to Klein⁽⁹⁾ who took out a patent for a forced draught tower in 1890, and extended this to a natural draught tower in 1895⁽⁹⁾. In 1891 Capitaine⁽¹⁰⁾ introduced a grid packed induced draught water cooler. It is not known how successful these towers were, but in 1897, Klein⁽¹¹⁾ took out another patent, for a water cooling tower, packed this time with wired bundles of brushwood.

It was well established by this time that wood was a satisfactory material for the construction of both shell and packing of a water cooling tower, and apart from various patents for modifications in tower construction, it appears that no further major advance was made until the design and erection in 1917 of the first ferroconcrete "hyperbolic" natural draught tower by Professor von Iterson⁽¹²⁾

in collaboration with the Chief Engineer of the City of Amsterdam. The first tower was erected in this country in 1925 at the Lister Drive Power Station of the Liverpool Corporation. Since then, however, over 600 such units have been constructed in this country.

2.2. TURBULENT BED CONTACTOR.

In a recently developed gas liquid contactor the gas and liquid flow counter currently through a bed of low density solids. Hollow polyethylene or polypropylene spheres have been found to be satisfactory for many applications. Because of the low density of the packing, the solid phase is easily fluidized by the upward flow of the gas phase, the ease of fluidization being aided by the downflow of the liquid phase.

A floating bed wet scrubber, which is based on this process has been described⁽¹³⁾.

Douglas, Snider and Tomlinson⁽¹⁴⁾ designed a turbulent contact absorber with a relatively large distance allowed between the grids, which was 5 ft. for 1-2 ft. of static depth of $1\frac{1}{2}$ in. diameter hollow polyethylene spheres packing. Pilot studies with this type of operation had been carried out, and the overall volume mass transfer coefficient (\overline{K}_{g} a lb.mole CO₂/h.ft³.atm.) for absorption of CO₂ in an alkaline process was found to be over 70 times that of the coke packed mill tower for given conditions. This type of turbulent contactor has been used to condense steam by contacting with cold water, and the overall heat transfer coefficient varied between 1000-100000 B.T.U./h.ft².deg F. for water and gas flowrates ranging from 6000-40000 lb./h.ft². and 100-10000 lb./h.ft³. respectively. This equipment is essentially non-clogging and can be useful when solids are present or are formed by reaction of the

contacting fluids. The high gas velocities contribute to an extremely high turbulence in which liquid droplets in the tower, rather than falling as in a normal spray, are like spheres in very active motion in all directions with a net downward flow. Absorption takes place not only on the wetted surface of the spheres but also throughout the whole active zone. The high rate of intimate mixing tends to minimize any effect of the relatively slow diffusion rates normally encountered in packed towers. This equipment has optimum capacity and efficiency when operating at gas and liquid rates approaching the flooding point but because of the inherent plugging problems it is normal to design to about 60% of the flooding velocity. The authors calculated the mass and heat transfer coefficients based on the static volume of the packing rather than the active volume.

Douglas⁽¹⁵⁾ claimed that many of the more recent commercial installations of the new contactor have been used as absorbers, in a few cases combined also with particle collection. Gas liquid contacting is sometimes required in order to accomplish simultaneous heat and mass transfer, such as in the cooling and dehumidification of saturated gases. A floating bed contactor is also an obvious choice for this application. There is a great deal of data available on conventional two phase fluidization (solid-liquid or solid-gas). However, no data at all exist for this new type of contacting, which may be viewed logically as three phase fluidization. The author carried out a test on a one foot square tower. The height of the tower was such that static bed depths up to 33 in. could be used. The packing consisted of hollow polyethylene spheres, $l_2^{\frac{1}{2}}$ in. diameter, each weighing 0.0099 lb. This tower has been used for absorption of ammonium into 2% to 4% boric acid solution. \overline{K}_{g} a varied from 48 to 126 as the liquid and gas flowrates ranged from 2460-14950 lb./h.ft². and 1040-1985 lb./h.ft². respectively. This tower was also used for simultaneous heat and mass transfer

experiments, using cold water and saturated hot air, and the number of transfer units varied between 1.0-4.5. The height of a transfer unit and \overline{K}_{g} a were calculated using the static, not the actual bed height. In order to get the height of a transfer unit based on the actual bed height it should be multiplied by the factor (l + effective free board). Effective free board is a term defined as the total height occupied by the bed minus the static bed height, divided by static bed height.

Chen and Douglas⁽¹⁶⁾ stated that there are two possible reasons for the increased rate of transfer in the turbulent contractor.

(a) The movement of the packing produces turbulence in the liquid phase.

(b) The unusually high gas flowrate may cause an increase in the liquid hold-up which in turn increases the gas-liquid interfacial area for a given velocity.

No work has been reported on the use of this turbulent bed contactor as a water cooler.

2.3. INTRODUCTION TO AND DEVELOPMENT OF THE THEORY AVAILABLE FOR THE ANALYSIS OF COOLING TOWERS.

In general it can be stated that no major advance has been made in the field of cooling tower practice in the last 40 years, although a considerable volume of work has been carried out by a large number of workers (approximately 140 references exist) on tower construction, packing arrangement, materials for packings, wood preservation, water treatment, spray elimination and many other importanct aspects of tower operation.

The most important results obtained in those years have been of a more fundamental nature, the development of a working theory for analysis of performance, and the application of this theory to the testing and subsequent design of an efficient tower, whose performance conforms to a predetermined specification.

It is of interest to trace from their earliest beginnings,

0

the various methods now accepted for analysing cooling tower per-

In 1925 Merkel⁽¹⁷⁾ proposed "enthalpy potential theory stating that all of the heat transfer taking place at any position in the cooling tower is proportional to the difference between the total heat of the air at that point in the tower, and the total heat of air saturated at the temperature of the water at that point in the tower", and also developed the differential equation for a cooling tower which forms the basis of analysis of cooling tower performance.

2.3.1. OVERALL MASS AND HEAT TRANSFER COEFFICIENTS.

With reference to the literature, and particularly to Nottage⁽¹⁸⁾, in which Merkel's equation is redeveloped, a summary of Merkel's reasoning is as follows:

Considering a counter flow tower of one foot square ground area, the amount of heat passing through a surface element a dV of water surface is:

$$dq_{c} = U_{c}(T-t) a dV$$
 (1)

and this is gained by air and raises its temperature by

$$dt = \frac{dq_{C}}{GC_{D}}$$
(2)

The same surface element transfers an amount of water which is

$$dL = U_D(X_W - X) a dV$$
(3)

and this corresponds to an amount of heat of evaporation

$$dq_{\rm D} = \lambda \, dL = \lambda \, G \, dX \tag{4}$$

The total heat released by the water is

$$dq = dq_{c} + dq_{D}$$
 (5)

and its temperature is reduced by dT so that

$$dq = LC_{L}dT = GC_{P} dt + \lambda G dX$$
 (6)

$$LC_{L}dT = [U_{C}(T-t) + \lambda U_{D}(X_{W}-X)]a dV$$
(7)

Equations (6) and (7) determine water temperature and condition of air in the tower.

For an air-water vapour mixture containing X lb. water vapour per lb. dry air and at a temperature of t^oF, the enthalpy may be calculated from the expression:

$$H_{a} = 0.24(t-t_{0}) + X[\lambda + 0.45(t-t_{0})]$$
(8)

Substituting $C_p = 0.24 + 0.45X$ where $C_p =$ humid heat and neglecting the term 0.45 tX in comparison with λX , the equation simplifies to:

$$H_{a} = C_{p}t + \lambda X$$
 (9)

It has been shown by Lewis^(19,20) that the ratio $\frac{U_C}{U_D}$ is equal to the humid heat of air, C_p .

fituitité fiéate de arr, p.

By using equation (9) and the Lewis relationship, equation (7) can be simplified to

$$LC_{L}dT = U_{D}\left[\frac{U_{C}}{U_{D}}(T-t) + \lambda(X_{W}-X)\right] = dV$$
$$= U_{D}\left[(C_{P}T + \lambda X_{W}) - (C_{P}T + \lambda X)\right] = dV$$
$$= U_{D}(H_{W} - H_{a}) = dV$$
(10)

which is Merkel's basic cooling tower equation with enthalpy difference (H_W-H_a) as potential and U_D the coefficient of vapour exchange, based upon a vapour content potential. Arranging equation (10) so as to make each side dimensionless and integrable

.8.

$$\int_{T_{a}}^{T_{a}} \frac{dT}{H_{W} - H_{a}} = \frac{U_{D} aV}{LC_{L}} \qquad (11a)$$

$$\int_{T_{a}}^{T_{a}} \frac{dT}{H_{W} - H_{a}} = \frac{U_{C} aV}{LC_{P}} \qquad (11b)$$

$$\int_{H_{a_{2}}}^{H_{a_{4}}} \frac{dH_{a}}{H_{W} - H_{a}} = \frac{U_{D} aV}{G} \qquad (11c)$$

or

or

The interfacial area "a" between the phases is unknown since the total area of the packing is not equal to the wetted surface.

Calling the integral on the left hand side of equation (11) the number N_a of transfer units, and designating the term $\frac{G}{U_D a}$ the height Z_p of transfer unit, equation (11) becomes

$$N_{a} = \frac{Z}{Z_{a}}$$
(12)

The left hand side of equation (11) contains only the thermodynamic conditions for the cooling process. It is determined wholly by the initial and end temperature of the water and by the initial and end conditions of the air flowing through the tower. The right hand side of equation (11) is independent of the thermodynamic conditions in the tower and is determined by the characteristic of the tower design U_D aV or U_C aV and the water flow L or air flow G.

2.3.2. ASSUMPTIONS MADE IN THE DEVELOPMENT OF THE THEORY.

The following basic assumptions have been made in the development of this theory.

- (1) The tower is mechanical draught, counter flow and has a constant cross section.
- (2) The enthalpy of the air-water vapour mixture is given by equation(9).

9•

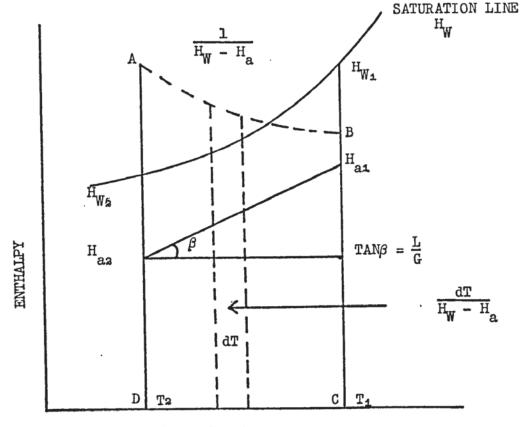
- (3) The enthalpy of the liquid is negligible compared with that of the vapour. The superheat in the vapour is also neglected.
- (4) Evaporation of water is negligible,
- (5) Variation in humid heat may be ignored.
- (6) The Lewis relationship is valid and $\frac{U_{C}}{U_{D}C_{P}} = 1$.
- (7) The area of water surface available for heat transfer is equal to that available for mass transfer and therefore $a_{H} = a_{M}$.

It is of considerable interest to discuss further, several of these assumptions. Numbers 1, 2 and 3 need no further comment, and assumption number 4 is generally made in cooling tower work, and is justifiable because the water loss by evaporation is approximately 1% of the circulating water par 10 deg.F. cooling range.

Assumptions 5 and 6 may conveniently be considered together. It is obvious that the humid heat of the air will change as it passes through the tower, but, as the coefficients are quoted for the tower as a whole, a value of the humid heat must be quoted which is representative of all conditions in the tower. This variation is ignored and an arithmetic average value used for the calculation.

There has been a great deal of work carried out on the relationship between the air film heat and mass transfer coefficients. The existence of such a relationship was first mentioned by Grosvenor⁽²¹⁾ and Carrier⁽²²⁾, though the first analytical study was carried out by Lewis^(19,20) by working on the relationship between the adiabatic saturation temperature and the wet bulb temperature and discovered that for the air-water system the ratio $\frac{U_{\rm C}}{U_{\rm D}}$ is fortuitously equal to 0.26, which is the value of the humid heat C_p. Robinson⁽²³⁾ and Geibel⁽²⁴⁾ concluded from tests on

various cooling towers, that a value of 0.3 should be used for the ratio in tower design. This is the result of work on a commercial unit where errors could well have influenced the value, and therefore not too much importance should be attached to it. Hensel and Treybal⁽²⁵⁾ state that the relationship is neither constant nor equal to the humid heat of the main air stream, but rather it varies from 0.23 to 0.58 depending on flowrates and packing height. Koch⁽²⁶⁾ comes to the conclusion that $\frac{U_{C}}{U_{D}C_{D}} = 0.9$ is more correct.


London, Mason and Boelter⁽²⁷⁾ show that the ratio is substantially correct, and find that athigh air rate, C_p was about 40% high. To account for this the authors suggested that small droplets formed by splashing are maintained in the air stream and suffer complete vaporisation. This conclusion was also reached by Niederman et al.⁽³⁸⁾ working with spray cooling towerswhere such a phenomenon is more likely to occur.

Under all circumstances the error cannot be great because C_p pertains only to sensible heat which is usually less than 20% of the total heat, and the question is difficult to decide because of the impossibility of making cooling tower tests with precision⁽²⁹⁾. The relationship will therefore be used in the present work.

Number 7. The majority of workers assume that the area available for heat transfer is equal to that available for mass transfer. The main criterion for the two areas to be equal is that the whole packing surface should be thoroughly wetted. A great deal of work has been done on the wetting of the packing which will be discussed later on.

2.3.3.1. GRAPHICAL INTEGRATION BY PLANIMETER OR BY RECTANGULAR COUNT.

The integration required on the left hand side of equation (11) can be graphically accomplished as shown in Fig.(1) and is represented by area ABCD, which determines the tower characteristic necessary to cool the water from T_1 to T_2 with inlet air enthalpy of H_{a_2} and a given mass ratio of liquid to gas $\frac{L}{G}$.

WATER TEMPERATURE

.FIGURE (1) GRAPHICAL PRESENTATION OF THE MERKEL EQUATION.

This method gives good accuracy, and has been used by many investigators^(30,31).

Hutchinson and Spivey^(32,33) tabulate the results of 12 tests in an experimental slat packed cooling tower, and also give other data, in the form of curves. The tower was 4 ft. 2 in. square internally, packed to a depth of 11.5 ft. with wooden slats each 5 in. high, with alternate tiers at right angles. Unfortunately the authors do not give the thickness of the slats or the pitch of the parallel slats in each tier. The bottom edge of each board was serrated at a pitch equal to that of the boards in the tier. The water flowrate ranged between $860-1250 \text{ lb./h.ft}^2$. and was distributed over the top tier as 400 separate streams, using a multipoint trough distributor.

In calculation of values of $\frac{U_D aV}{L}$ it was necessary to integrate graphically since the approach to the wet bulb was as low as 2°F. The air flowrates used were between 800-2000 lb./h.ft²., and no correlation has been reported.

Boelter and Hori⁽³⁴⁾ obtained data for water cooling using an empty tower 2 ft. by 3 ft. cross section, operated with sprays only. Two types of spray nozzle were employed: type A passed 650 lb./h. per nozzle at 10 lb./in²., while type B, much finer, gave only 72 lb./h. per nozzle at 10 lb./in²., being designed for higher pressure operation. The water cooling data were for nearly constant conditions of water inlet temperature, air inlet conditions, and air rate, the principal variables were water rate, number and type of sprays, and height of spray section. It is evident that the high pressure spray gives overall mass transfer coefficients nearly twice as great as are obtained with half the number of low pressure sprays. Most designers, however, would probably choose the low pressure for water pumping at the cost of the greater tower volume.

When the spray nozzles were lowered so as to reduce the active tower height from 7.0 to 3.85 ft., the performance $\frac{U_D}{L}$ avelaw was not changed, but $\frac{U_D}{L}$ increased about 40 per cent. The indication is that the air water contacting in the region near the nozzles is more effective than in the lower part of the empty tower, where drop agglomeration has occurred and a good portion of the water is running down the tower walls.

The interesting conclusion is that spray towers are

±2•

competitive with some types of slat packed towers on the basis of tower volume required for a specified duty.

Spurlock⁽³⁵⁾ used a forced draft cooling tower with a working height of 16 ft. and measuring 4×4 ft. on the inside. The packing consisted of a number of trays or rows arranged as supports provided within the centre section of the tower. Each tray contained 38 redwood slats $2\frac{3}{4} \times \frac{3}{8}$ in. The number of rows of packing varied from 0 to 15, and the packing fins were inclined at 22.5 and 45 degrees with the vertical. Water and air flowrate each varied over the range 1800-25000 lb./h.ft². The overall performance factor $\frac{U_D}{L}$ varied between 0.702 and 2.15, within the accuracy of the heat balance over $\pm 10\%$.

Kelly and Swenson⁽³⁶⁾ found the characteristics of a splash grid type of forced draft cooling tower. The packing consisted of decks constructed of rough wood for different geometrical shape and different vertical space between the decks. The tower characteristic $\frac{U_D}{L}$ was found to decrease with an increase of water temperature, and water to air ratio, but it increased as the packing height increased. The deck geometry is another factor influencing $\frac{U_D}{L}$ aV.

The end effects for the tower characteristic were found to be of small order of magnitude averaging approximately 0.07 for a given type of deck. The overall tower characteristic can be expressed as the sum of the values of $\frac{U_D}{L}$ for the end effects and for the packed section.

$$\left(\frac{U_{D} \ aV}{L}\right) \text{Total} = \left(\frac{U_{D} \ aV}{L}\right) \text{ ends } + \left(\frac{U_{D} \ aV}{L}\right) \text{ packing}$$
(13)

The performance of all decks can be expressed as follows:

$$\frac{U_{\rm D} \, {\rm aV}}{L} = 0.07 + {\rm AN} \left(\left(\frac{L}{G} \right)^{-n} \right)$$
 (14)

where A and n are constant, and varied between 0.06 to 0.135, and 0.46 to 0.62 respectively.

Pigford and Pyle⁽³⁷⁾ investigated a spray tower 31.5 in. diameter and 52 in. high with six solid cone spray nozzles for water cooling and dehumidification with air-water. The overall N.T.U. varied between 0.32-1.93 for water and air-flowrates ranging between 300-800 and 200-750 lb./h.ft². respectively. The N.T.U's have been correlated⁽³⁸⁾ as:

$$N.T.U. = \frac{0.0526 L}{G^{0.58}}$$
(15)

with + 16% error in the heat balance.

2.3.3.2. USE_OF PERFORMANCE CURVES ALREADY DEVELOPED BY GRAPHICAL INTEGRATION.

Lichtenstein⁽³⁹⁾ suggested that the graphic method of integration is somewhat cumbersome for daily routine work. More unsatisfactory, however, is the problem of determining the performance of a given tower with a known characteristic under varying wet bulb conditions. It would require assuming the temperature range, integrating to determine the tower characteristic and, if different from the actual tower characteristic, repeating the process by trial and error until equality is reached and is obviously too tedious a method to be of practical value.

By analogy with heat exchange, it is logical to introduce a Log mean potential. The Log mean enthalpy potential would be mathematically correct if the enthalpy potential $(H_W - H_a)$ were a straight line function of T. Obviously this is true only if the saturation line is straight, and so it follows that the Log mean potential can give good results only for very small ranges over

which the saturation line could be considered as approximately straight. Sufficient accuracy is obtained when the cooling range is 15 deg F. or less. As the range increases, the curvature of the saturation line causes an increased error. The use of the approximate method leads to an underestimate of the required tower characteristic by 18%. For practical cooling towers the use of a Log mean potential is therefore not adequate. The only solution is to integrate graphically so that any possible dection problem which might arise would be subject to immediate solution, and to coordinate these results in curves.

These cuves have not been published because of commercial considerations but would consist of drawing the dimensionless groups $\frac{U_D}{L} \frac{aV}{a}$ against $\frac{L}{G}$ for the approach to the web bulb as parameter with the range kept constant for each performance curve. These performance curves are calculated for ranges between 8 deg F. and 50 deg F., wet bulb from 35°F. to 80°F. The range of $\frac{L}{G}$ is from 0 to 3 and the problem is to find the corresponding tower which fulfils these conditions and has a characteristic equal to $\frac{U_D}{L} \frac{aV}{aV}$. These curves were evaluated from experiments carried out in 6 ft². forced draft tower with 11 ft. 3 in. packed height, using wooden slats $\frac{3}{8} \times 2$ in., spaced parallel, 15 in.

The following correlation was obtained for water flowrate ranging 350-3000 lb./h.ft². and air flowrate 664-1680 lb./h.ft².

$$U_{\rm D} \ {\rm aV} = 0.197 \ {\rm L}^{0.4} \ {\rm G}^{0.5} \tag{16}$$

2.3.3.3. SIMPLIFICATION OF THE MERKEL INTEGRAL BY SUBSTITUTING A LOG ME AN ENTHALPY POTENTIAL.

The use of a Log mean of the terminal driving forces will be correct if the saturation curve is straight.

Simpson and Sherwood⁽³⁹⁾ have shown that the Log mean

is 11% high in the unsafe direction from the design viewpoint. In most cooling towers the lines (operating line, and saturation curve) are farther apart, and the Log mean is usually sufficiently accurate but its use should be avoided if the water temperature approaches within 5degEof the air wet bulb or if the ratio of the two extreme values of (H_W-H_a) is greater than 2. Where the Log mean is permissible equation (11) becomes

$$L(T_1-T_2) = U_{D} aV (H_W - H_a) lm$$
(17)

The authors reported data on six induced draft cooling tower designs. The principal difference between the several towers was the nature of the internal packing over which the water was distributed: galvanized hardware cloth, redwood slats with bottom edge serrated and parallel vertical Masonite sheets. The dimensions of the towers and of the packings were given for different packing arrangements. For a given water flowrate 1170 lb./h.ft²., and air flowrate 1200 lb./h.ft²., $U_{\rm D}$ a for redwood slats, Masonite sheets and galvanized hardware cloth were 500, 320 and 75 B.T.U./h.ft³. B.T.U./lb. respectively. The results were not correlated, and showed large heat balance errors which were within 15%.

Surosky and Dodge⁽⁴⁰⁾ investigated an eight inch diameter forced draft tower, packed with one inch Raschig rings. Air was used to cool the liquids: water, methanol, benzene, and ethyl butyrate. The authors used humidity potential in terms of lb.mole of water per lb.mole of dry air $(\bar{X})^{(41,42)}$, and therefore equation (11) becomes

$$\overline{K}_{g} a = \frac{G(\overline{X}_{W} - \overline{X}_{a})}{M_{a} PAZ (\Delta \overline{X}) lm}$$
(18)

The results were correlated for water flowrate between 400-5000 lb./h.ft²., and air flowrate between 100-500 lb./h.ft². as follows:

$$\overline{K}_{g} = 0.486 D^{0.15} G^{0.72}$$
 (19)

where \overline{K}_g = overall mass transfer coefficient lb.mole/h.ft². atm. It has been calculated that \overline{K}_g a is independent of water flowrate above a water rate of about 1000 lb./h.ft².

London, Mason and Boelter⁽²⁷⁾ estimated the surface area of the packing (aV) which was used in an induced draft cooling tower having a cross section of 7.6 ft². The packing height was 5 ft. 9 in., and consisted of parallel ovate slats. Each slat was $\frac{7}{8}$ in. wide at the thickest section with the round edge down and the top, cut off horizontally at a point where the width was $\frac{15}{52}$ in. The height of each slat was $2\frac{3}{4}$ in. and the clearance between tiers or decks was about $\frac{1}{2}$ in. The pitch of the slats in each tier was not reported. Since the authors assumed that the surface area of the packing was equal to the effective transfer area, U_C and U_D were evaluated and ranged between 2.2-5.2 B.T.U./h.ft².°F. and 9.3-22.2 lb./h.ft². lb./lb. respectively. Water flowrate used between 3600-12530 lb./h.ft²., and air flowrate 3000-10050 lb./h.ft².

2.3.3.4. USE OF A NOMOGRAPH.

In 1926 Merkel⁽⁴³⁾ constructed the first nomograph for cooling towers. The derivation and use of the diagram is as follows. In equation (11) replace H_W by its mean value H_{Wm} over the cooling range. H_{Wm} is a function of cooling range (T_1-T_2) and recooled temperature T_2 . Also replace H_a by its mean value $\frac{1}{2} \frac{L}{G}(T_1-T_2) + H_{a_2}$. Then an approximate integration of equation (11) is

$$\frac{U_{C} aV}{LC_{p}} = \frac{T_{1} - T_{2}}{H_{Wm} - \frac{1}{2} \frac{L}{C} (T_{1} - T_{2}) + H_{a_{2}}}$$
(20)

The Merkel diagram is plotted in oblique (135°) coordinates. The grid is a graph of H_{Wm} on a base of cooling range (T_1-T_2) for different values (2°F.-22°F.) and T_2 (50°F.-100°F.). The scale marked

wet bulb is a scale of H_{a_2} , but graduated in corresponding values of wet bulb temperature (35°F.-90°F.). Thus a line joining any point in the grid defined by recooled temperature and range to a point representing atmospheric wet bulb on the wet bulb scale has a slope $\frac{LC_P}{U_C aV} + \frac{1}{2} \frac{L}{G}$. Scales of $\frac{L}{G}$ (0-3.0) and $\frac{U_C aV}{LC_P}$ (0.5-4) are provided and so graduated that any parallel line intersects corresponding pairs of these variables. The Merkel diagram has only a scale of slopes and this gave the combined quantity $\frac{LC_P}{U_C aV} + \frac{1}{2} \frac{L}{G}$.

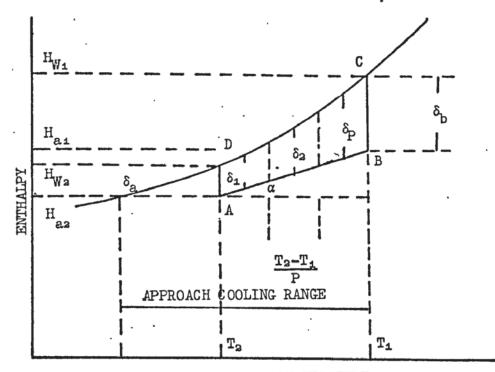
It is evidently better to consider the effect of

 U_{C} aV and $\frac{L}{G}$ separately and for convenience in doing this the modified diagram was evolved by Wood and Betts⁽⁴⁴⁾. The approximation in Merkel's method consists of assuming that an

integral of $\int \frac{dT}{H_W - H_a}$ can be replaced by $\frac{T_1 - T_2}{\text{mean of }(H_W - H_a)}$ whereas it should be replaced by $(T_1 - T_2) \times \text{mean of } \frac{1}{H_W - H_a}$. Obviously, therefore, the method breaks down if the approach $(H_W - H_a)$ is close at either end or in the middle.

The danger is clear from consideration of the limiting values of harmonic and arithmetic means. The arithmetic mean of any two numbers p and q is $\frac{1}{2}(p+q)$ and the harmonic mean is $\frac{2pq}{p+q}$. If p = q these are identical, but when q is small compared with p the arithmetic mean approaches the value of $\frac{1}{2}p$, whereas the harmonic mean approaches zero. The error of Merkel's method will be small when the saturation line and the operating line are roughly parallel and the cooling range is small.

2.3.3.5. GRAPHICAL INTEGRATION.


The method has been developed and explained by Agnon and Spurlock⁽⁴⁵⁾. By considering the area ABCD in Fig.(2), and dividing it into P vertical strips of equal width, the integral in equation (11) may be replaced by the term

$$N_{a} = \frac{(T_{1}-T_{2})\tan\alpha}{\delta_{m}}$$
(21)

where

$$\frac{1}{\delta_{\rm m}} = \frac{1}{\rm P} \left(\frac{1}{\delta_{\rm 1}} + \frac{1}{\delta_{\rm 2}} + \dots + \frac{1}{\delta_{\rm P}} \right) = \frac{1}{\rm P} \sum_{\rm 1}^{\rm P} \frac{1}{\delta}$$
(22)

If the cooling range is not too great, δ_{m} can be expressed as the Log mean between the driving force δ_{a} and δ_{b} , by doing so N_a will be 7% less.

DRY BULB, WET BULB AND WATER TEMPERATURE.

FIG. (2) CALCULATION OF TOWER PERFORMANCE.

This method is seen to be elaborate and cumbersome. The authors discussed in detail the graphical method to find the conditioning and enthalpy progress curves by using the psychrometric chart. Equation (21) has been used to construct a nomograph which is similar to the Merkel nomograph, but it differs by including the tower efficiency.

To integrate equation (11) the mean driving force obtained at each end of Fig.(2) and also at the midpoint where the

water temperature $\frac{T_1 + T_2}{2}$ was used $({}^{46}, {}^{47}, {}^{48}, {}^{49})$. A parabola may be drawn through the three fixed points and will represent the real curve with sufficient accuracy. On this assumption the chart devised by Stevens $({}^{46})$ gives the mean driving force from the values δ_a , δ_b and δ_m , used in the following equation:

$$G(H_{a_1}-H_{a_2}) = \frac{1}{0.623} K_g \phi F(H_{Wm}-H_{am})P$$
 (23)

The effective transfer area (ϕ) is a difficult quantity to measure. It will not be equal to the surface area of the packing unless there is complete wetting, absence of splash and droplet formation. It is therefore convenient to replace the term (ϕ) by introducing the concept of the effective transfer area per unit volume of the packing. Equation (23) then becomes

$$K_{ga} = \frac{0.623G(H_{a_{1}} - H_{a_{2}})}{AZ f(H_{Wm} - H_{am})}$$
(24)

where

K a = overall volumetric mass transfer coefficient B./h.ft³.atm.

Equation (24) can be used in the design of cooling towers with a fairly high order of accuracy when pressures are in the range 0.5-5 atmosphere and was therefore used in the present work. Ghgg

Smith and Williamson⁽⁵⁰⁾ describe the development of a mechanical induced draught cooling tower, packed with serrated timber laths down which the water flow is filmwise to avoid splash formation. For water flowrates 1310-1720 lb./h.ft². and air flowrates 1700-1900 lb./h.ft²., K_ga varies between 170 and 260, and it was found that K_ga is proportional to $G^{0.75}$ within \pm 10% error in the heat balance. The water carried over from the non-splash water distributors was found to range from 0-0.15 lb./h.ft². (0.01%-0.04% of the water circulation), for a water flowrate 100-400 lb./h.ft². and air flow 6-8 ft./sec.

. 21.

2.3.3.6. MODIFICATION OF THE INTEGRAL BY USE OF POLYNOMIAL SERIES TO APPROXIMATE THE SATURATION LINE.

The equilibrium air enthalpy is a non-linear function of water temperature. This relation can be expressed empirically and with suitable accuracy over large ranges⁽⁵¹⁾.

$$H_{w} = A + BT + C \exp(DT)$$
 (25)

where A, B, C and D are constants.

Equation (25) can hold an accuracy better than 0.1% in the range of water temperatures ($60^{\circ}F.-90^{\circ}F.$), if A = -10.0, B = 0, C = exp(1.954) and D = 0.02352. A good fit over a larger range can be obtained if B is chosen to be non-zero,

$$N_{a} = \int_{H_{a_{2}}}^{H_{a_{1}}} \frac{dH_{a}}{H_{W} - H_{a}} = \int_{H_{a_{0}}}^{H_{a_{1}}} \frac{dH_{a}}{H_{W} - H_{a}} - \int_{H_{a_{0}}}^{H_{a_{2}}} \frac{dH_{a}}{H_{W} - H_{a}}$$
(26)

$$I = \int_{H_{ao}}^{H_{a}} \frac{dH}{H_{W} - H_{a}} = -\frac{P}{R} \int_{0}^{\theta} \frac{d\theta}{\exp(\theta) - H_{00} - \theta}$$
(27)

where P = R + B $R = \frac{L}{C}$

 $\frac{R}{P}$ I can be represented as a family of curves against θ with Hoo as a parameter. To use the curves an equation for θ with Hoo is required.

$$\theta = DT - \ln \left(- \frac{R}{CD} \right)$$
 (28)

$$H_{00} = - \frac{D}{R}(H_0 - A - BT) - \theta \qquad (29)$$

This method is elaborate and cumbersome.

Sherwood and Reed⁽⁵²⁾ correlate the saturated humidity (75°F.-90°F.) as follows:

$$X_{\rm w} = AT - B \tag{30}$$

where A = 0.000827 and B = 0.0432.

The authors represented the cooling tower simultaneous differential equations and equation (30) in the form of a matrix

$$\begin{bmatrix} -\frac{U_D}{G} & 0 & \frac{U_D}{G} \mathbf{A} \\ 0 & -\frac{U_C}{GC_P} & \frac{U_C}{GC_P} \\ \frac{\lambda U_D}{L} & -\frac{U_C}{L} & \frac{U_C}{L} + \frac{\lambda U_D}{L} \mathbf{A} \end{bmatrix}$$

which has rank two since the third row is a linear combination of the first two rows. This matrix is singular and it will not be possible to find the particular solution of the nonhomogeneous equations since the inverse of the coefficient matrix does not exist. The following two equations with two unknowns are in a form suitable for solution.

$$\frac{\mathrm{dX}}{\mathrm{dZ}} = \frac{\mathrm{U}_{\mathrm{D}}}{\mathrm{G}} \left(\frac{\mathrm{A}\lambda\mathrm{G}}{\mathrm{L}} - 1 \right) \mathrm{H}_{\mathrm{a}} + \frac{\mathrm{U}_{\mathrm{D}}\mathrm{At}}{\mathrm{L}} - \frac{\mathrm{B}\mathrm{U}_{\mathrm{D}}}{\mathrm{G}} + \frac{\mathrm{U}_{\mathrm{D}}\mathrm{AD}}{\mathrm{G}} \quad (31)$$

$$\frac{dZ}{dt} = \frac{U_{C}\lambda}{LC_{P}} H_{a} + \frac{U_{C}}{GC_{P}} \left(\frac{GC_{P}}{L} - 1\right) t + \frac{U_{C}D}{GC_{P}}$$
(32)

where $D = T_2 - \lambda \frac{G H_{a_2}}{L} - \frac{G C_P}{L} t_2$.

A mathematical expression relating saturation air enthalpy with temperature was determined by Butcher⁽⁵³⁾

$$H_{W} = e^{1 \cdot 77 + 0 \cdot 025T}$$
(33)

and compared with (45)

$$H_{W} = e^{1 \cdot 75 + 0 \cdot 025T}$$
 (34)

These equations hold for temperatures between 40°F. and 130°F. At temperatures outside this range, the accuracy of the equation falls off rapidly.

2.3.3.7. NUMERICAL INTEGRATION.

The trapezoidal rule is straight forward from a computation standpoint but somewhat lacking in accuracy. The Cotes rule and Gauss method are somewhat more accurate than Simpson's rule but not quite as simple in form. Therefore, Simpson's rule was selected by many investigators^(44,54,55) for evaluating the Merkel integral because it combined the simplicity of form with adequate accuracy.

Fuller⁽⁵⁶⁾ substitutes equation (33) into the Merkel. equation, and the following integral is obtained:

$$\frac{U_{\rm D} \, \mathrm{aV}}{L} = \int_{\mathbf{T}_2} \frac{\mathrm{dT}}{\mathrm{e}^{1 \cdot 77^+ 0 \cdot 025 \mathrm{T}} - \left(\frac{\mathrm{L}}{\mathrm{G}}\right) \mathrm{T} + \mathrm{C}}$$
(35)

where $C = \left(\frac{L}{G}\right) T_2 - e^{1 \cdot 77 + 0 \cdot 025} W_2$.

Using digital computers, it is possible to solve Simpson's rule by as many increments as is needed, but ten increments are sufficient to evaluate $\frac{U_D}{L}aV$. The author found that for $\frac{L}{G} = 3.0$, $T_1 = 110^{\circ}F.$, $T_2 = 90^{\circ}F.$ and $t_{W_2} = 60^{\circ}F.$, $\frac{U_D}{L}aV$ deviated from the machine method (Simpson's rule using 10 intervals)

as follows:

Log mean enthalpy potential - 12.1%,

Wood and Betts nomograph -23.4% and graphical integration 2.2%.

2.3.4. INDIVIDUAL HEAT TRANSFER COEFFICIENT IN WATER PHASE AND HEAT OR MASS TRANSFER COEFFICIENTS IN AIR PHASE.

The Merkel equation has been redeveloped⁽⁵⁷⁾, and the five basic relations presented as follows:

$$dL = G dX$$
(36)

Heat balance, neglecting unimportant terms (17):

$$GG_{dt} + G\lambda \, dX = L \, dT \tag{37}$$

Heat transfer, from bulk of water to interface:

$$L C_L dT = h_L a dZ (T-t_i)$$
 (38)

Heat transfer, from interface to bulk of air:

$$G C_{P} dt = h_{g} a_{H} dZ(t_{i} - t)$$
(39)

Mass transfer, from interface to bulk of air:

$$G dX = R_g a_M dZ(X_i - X)$$
(40)

From equation (9), (39), (40) and the Lewis relationship

$\frac{h_{g}}{R_{z}} = C_{p}$, the following equation can be obtained:

$$\int_{H_{a_2}}^{H_{a_1}} \frac{dH_a}{H_{a_1} - H_a} = \int_{0}^{Z} dZ$$

$$\frac{dZ}{R_g a_M}$$
(41)

The effective surface area for the heat transfer and mass transfer were assumed to be equal.

2.3.5. METHODS USED TO EVALUATE THE HEAT TRANSFER COEFFICIENT IN WATER PHASE.

2.3.5.1. ADIABATIC AND ADIABATIC ISOTHERMAL WATER RUNS.

McAdams et.al.⁽⁵⁸⁾ designed a packed tower suitable for measuring the individual coefficients, h_L , h_g and R_g , and measuring whether or not the enthalpy transfer resistance, $\frac{1}{h_L a}$ for the water phase is negligible compared with that of the air phase $\frac{1}{R_g} \frac{1}{a_M}$, as often assumed in the literature. The adiabatic isothermal water run can be achieved by heating the injet air to a certain temperature which allows the inlet and outlet water temperatures to be the same, and by doing so the coefficients of heat and mass transfer across the air film can be calculated from equations (39) and (40). Then by operating the tower as a water cooler (adiabatic) the value of the integral in equation (41) is calculated. By trial and error,

the slope of the tie line equation (42), is adjusted until the value for the integral as obtained from a graphical integration is equal to $\frac{R_g a_M^Z}{G}$. The coefficient h_L^a is then determined from the slope of the final tie line.

$$\frac{H_{a_{\underline{i}}} - H_{a}}{t\underline{i} - T} = - \frac{h_{\underline{L}} a}{R_{g} a_{\underline{M}}}$$
(42)

The authors used a 4 in. diameter forced draft cooling tower with packed depth of 6, 9 and 12 in., the packing consisted of one inch carbon Raschig rings. For water and air flowrates 500-2600 lb./h.ft²., and 350-1000 lb./h.ft²., the following correlations (corrected for end effects) were obtained.

$$h_{L}^{a} = 0.82 \ G^{0.7} \ L^{0.5}$$

$$(h_{e}^{a}_{H}) t_{f}^{c} = 1.78 \ G^{0.7} \ L^{0.07} \ e^{0.0023} t_{f}^{c} \qquad (44)$$

The resistance of the water film to enthalpy transfer was 27-46% of the total resistance of both the air and water films. The tieline slopes, usually assumed infinite, ranged from 1.2 to 2.7. It was concluded that the use of an overall coefficient of enthalpy transfer should be used with caution.

Yoshida and Tanaka⁽⁵⁹⁾ carried out research on a forced draft cooling tower packed with ceramic Raschig rings. Water and air flowrates ranged from 200-4160 lb./h.ft². and 170-590 lb./h.ft². respectively. The authors used the same method which has been adopted⁽⁵⁸⁾ to evaluate h_La , and correlate the results as follows:

$$h_a = 0.117 G L^{0.2}$$
 (45)

 $R_{a} = 0.45 G L^{0.2}$ (46)

$$h_{ra} = 8.0 L^{0.8}$$
 (47)

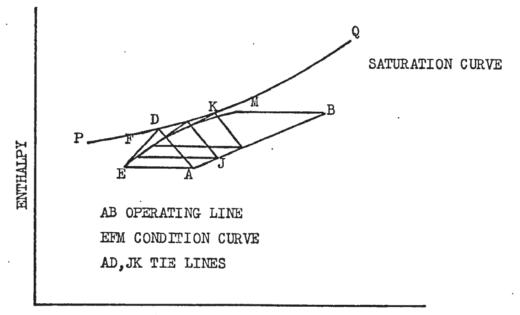
It was found that the ratio $\frac{h_g a}{R_g a}$ varied between 0.249 and 0.274, which agreed with McAdams results⁽⁵⁸⁾.

Jackson⁽⁶⁰⁾ discussed the existence or otherwise of a liquid film resistance to heat transfer in water cooling in the light of recent Soviet publications. The authors of these latter publications claimed that there is theoretical and experimental evidence for assuming the water film resistance to be negligible, and criticise the work of McAdams et al. on the following assumptions.

(a) The difference between the mass transfer coefficients for the two processes (including or eliminating the water phase resistance) where the only common factor was that the flowrates L and G were the same, can be explained entirely by the water phase resistance, this is notjustified.

(b) The empirical correlation for mass transfer coefficient obtained from the second series of experiments can be extrapolated to apply to the conditions of the first. This is invalid because it leads to uncertain errors.

(c) The assumption that h_La is a constant is unjustified. Even with pure streamline flow of water, without mixing, in the initial stages of the process there will be no difference between the interfacial and bulk temperatures of the water. Consequently, h_La must initially have a value of infinity though it will, of course, eventually attain a finite value.


2.3.5.2. TRIAL AND ERROR.

To explain the Mickley⁽⁶¹⁾ method, consider Fig.(3). The line AD is the tie line resulting from equation (42). Point D represents the air water interface at the bottom of the tower. Point E represents the entering bulk air temperature and its enthalpy. Consequently, the vertical distance between point D and the horizontal line EA is the enthalpy driving force $(H_{ai}-H_{a})$ at the bottom of the tower. The enthalpy driving forces at other sections of the tower

are obtained in a similar manner. The enthalpy differences obtained in this fashion are used in the integration of equation (41), which may be carried out graphically. The slope of the line ED is

$$\frac{dH_{a}}{dt} = \frac{H_{ai} - H_{a}}{t_{i} - t}$$
(48)

Point M represents the bulk temperature and enthalpy of the air leaving the tower, and line EFM is the locus of the corresponding bulk air temperature and enthalpy throughout the tower. If the final tie line which is parallel to AD does not pass through point M, another tie line with different slope should be drawn through point A and the process repeated.

TEMPERATURE

FIG.(3) ENTHALPY DIAGRAM WITH AIR CONDITION CURVE EM.

The Mickley method is the best available method for analysis of mass and heat transfer processes in cooling towers. It suffers from the serious disadvantage that it can only be applied to a limited range of operating variables where the air becomes just saturated at the top of the tower, or when the air leaves in an unsaturated state. The overall enthalpy transfer coefficient as defined in equation (11) would be exact if the water film heat transfer coefficient were infinitely large, or if the saturation curve were linear.

Thomas and Houston^(62,63) carried out research on a 6 ft. high forced draft cooling tower packed with wooden slats. Water and air flowrates varied between 1000 and 2000 lb./h.ft². Using Mickley's method, the following correlations were obtained:

$$\bar{h}_{L}a = 0.0004 L^{0.65} G^{1.41}$$
(49)

$$\bar{R}_{ga} = 0.02 L^{0.36} G^{0.72}$$
 (50)

where \bar{h}_L and \bar{R}_g are air phase heat and mass transfer coefficients lb.mole/h.ft³.atm. The authors conclude that the heat transfer resistance in the water phase cannot be neglected.

2.3.5.3. OVERALL ENTHALPY TRANSFER.

The relation between the overall enthalpy transfer coefficient R_{G} and individual film coefficients h_{L} and R_{g} can be expressed as follows:

$$\frac{1}{R_{c}} = \frac{1}{R_{g}} + \frac{\overline{m}}{h_{L}}$$
(51)

where

$$\overline{m} = \int \frac{m \, dH_a}{H_W - H_a} \div \int \frac{d \, H_a}{H_W - H_a}$$

and

$$n = \frac{H_W - H_{ai}}{T - t_i}$$

It will be observed from equation (51) that if R_g is assumed to be constant, R_G can only be constant if m is constant or h_L is infinite⁽⁶⁴⁾. Cribb⁽⁶⁵⁾ found out that as m is the slope of the chord on the saturation line, m can only be constant if the tower is operating over the same temperature range. In order to obtain

different values of \overline{m} , the tower was operated at different inlet water temperatures when the wet bulk temperature remained reasonably constant. If the effect of water film resistance was great, then for a given $\frac{L}{G}$ it should be possible to observe variations in the overall mass transfer coefficient with inlet water temperature.

It has been reported that the upper and lower inlet water temperatures were approximately 110°F. and '80°F. respectively and R_c values at the higher inlet water temperature were about 10% below those at the lower temperature, but there is an opposing error due to the use of humidity as the driving force for mass transfer. The true potential for mass transfer is αX where α is given by $\left(\ln \frac{P}{P - P_{G}}\right) \div \left(\frac{P_{g}}{P - P_{G}}\right)$ and α varies from 0.991 to 60°F, to 0.895 at 140°F.⁽⁵⁴⁾. It is estimated, however, that the error is about 3% for high temperature runs and 2% for low temperature runs, so the decrease in R_G from this source is about 1%. If it is assumed that the remainder of the variation in R_{C} is due to water film resistance, values of the tie line slope may be determined. At 110°F. the difference in m is only 10% whether (T-t;) be 10 deg.F. or ldg F. As an approximation, therefore, values of m corresponding to a ldegFchord on the saturation line may be employed and values of m calculated.

The reciprocal of R_{g} is plotted against \overline{m} , and the form of equation (51) is such that the slope of the line is $\frac{1}{h_{L}}$ and the intercept $\frac{1}{R_{g}}$. The outstanding feature of these results is the very high velocity exponent for R_{g} and h_{L} , the value being about 1.5 in each case. Although there is evidence of a resistance to heat transfer in the water phase in cooling towers, for practical design purposes it may be ignored.

2.4. THEORY OF THE PSYCHROMETER.

August⁽⁶⁷⁾ assumed the existence of a quiescent film of fully saturated air around the wet bulb, which interacted with the surrounding partly saturated air by a process of convection.

Directly opposed to the convection theory is the diffusion theory proposed by Maxwell⁽⁶⁸⁾, which postulated that the rates of evaporation and heat transfer were limited by the slowness of diffusion and thermal conduction through the film around the bulb, and neglected the convection processes outside the film.

It is now recognised however, that neither hypothesis is entirely correct; the film is not fully saturated, nor can the effect of the convection be neglected.

Arnold^(69,70) developed the theory in which both convection and conduction (diffusion) are considered. The theory was confirmed by experiments using a wet bulb thermometer, exposed to a moving stream of air. The boundary layer problem was solved by the author assuming a distinct laminar sub layer and a distinct turbulent layer. Velocity, temperature and humidity are assumed to vary linearly within the laminar sublayer. It is assumed that the air and air plus associated water vapour properties are constant. In the steady state, heat and mass transfer rates would be constant and could be related as follows:

$$\frac{h_{g}\ell}{k} = \frac{\frac{C_{Pa}\mu}{k}}{\frac{C_{Pa}\mu}{k} \frac{1-r}{r}}$$
(52)

$$\frac{\frac{R_{c} \ell}{D \rho_{a}}}{r = \frac{U_{1}}{\frac{\mu}{D} \rho} \frac{1-r}{r}}$$

$$r = \frac{U_{1}}{\overline{U}}$$
(53)

where

From equations (52) and (53), the Lewis number (19,20) can be obtained.

$$Le = \frac{\frac{\alpha}{D}Pr + \frac{1-r}{r}}{Pr + \frac{1-r}{r}} = \frac{h_g}{R_g C_p} .$$
 (54)

The variation of Lewis number with $\frac{\alpha}{D}$ and gas velocity has been discussed. Now if the velocity U approaches zero $U_i = U$, r would approach unity and Le = $\frac{\alpha}{D}$. If the velocity U approaches infinity, r will approach zero and Le will approach unity independently of $\frac{\alpha}{D}$. At intermediate velocities, Le will have some value between unity and $\frac{\alpha}{D}$. The condition for the identity is the thermal diffusivity being equal to the vapour diffusivity. The importance of this special case arises from the fact that it is very nearly true for the system water-air at ordinary temperatures.

Awbery and Griffiths⁽⁷¹⁾ found that the observation of dry and wet bulb thermometers immersed in a stream of air and water vapour at temperatures ranging up to 212°F., meets adequately the requirements of tables from which humidities can be deduced from thermometer readings. The authors say nothing of the theoretical aspects of the observation. Examination of the observation leads to the conclusion that, within the order of accuracy of the investigation, the formula originally proposed by August⁽⁶⁷⁾ and in general used for computing humidity at ordinary atmospheric temperatures is valid at high temperatures. Short tables of humidities computed by this formula and by a slightly modified formula have been prepared. These tables may be compared with the final table⁽⁷²⁾. The differences between the tables are of no practical importance.

A notable result of the investigation is that at high temperature, very good ventilation of the wet bulb is not essential. August's hypothesis is obviously artificial. In reality the air current cannot be divided sharply into two streams, one of which

becomes saturated whilst the other is unaffected by the presence of the wet bulb.

A more complicated theory proposed by Taylor⁽⁷³⁾, is based upon the hypothesis that, whilst the air flow is generally turbulent, there is a film of non-turbulent air passing slowly over the wet bulb. The diffusion of heat and of moisture are of different character in the turbulent layer and in the nonturbulent film. Whipple⁽⁷⁴⁾ found out that experiments with water on the wet bulb in the ordinary atmosphere would not discriminate between August's theory and Taylor's. By the use of other liquids and gases it has been demonstrated that Taylor's is the more satisfactory. The author used the classical wet and dry bulb theory first postulated by August and elaborated by many later workers, leading to an equation of the form

$$P_{W} - P_{g} = AP(t - t_{Wb})$$
(55)

where A = psychrometer constant.

It was found that for t_{Wb} between 70°F. and 170°F, the mean value of A was 6.6×10^{-4} with individual values ranging from 2 to 9×10^{-4} but showing no systematic variation with temperature. In the same temperature range, A calculated from the equation has been developed by the author

$$A = \frac{C_{Pa}\rho_{a}}{\lambda_{0} \rho_{T}} \left(1 - \frac{P_{W}}{P}\right)$$
(56)

and found to vary from 6.38 to 4.79×10^{-4} . On this evidence it seemed possible to neglect the term $\frac{P}{P}W$ which is principally responsible for the temperature dependence of A. Arnold^(60,70) found that A is equal to 7.3×10^{-4} .

2.4.1. FACTORS PRODUCING ERRORS IN THE WET BULB TEMPERATURE READING.

There are two types of wet bulb temperature, the

JJ•

thermodynamic wet bulb temperature and ordinary wet bulb temperature which can be read from a thermometer, and there is a distinct difference between them. It must be emphasised that the thermodynamic wet bulb temperature is a hypothetical temperature which, strictly speaking can only be approached in a limiting case, and cannot be measured directly⁽⁷⁵⁾.

The wet bulb temperature as read from a thermometer is influenced by heat and masstransfer rates and is therefore not a sole function of the air state to which the thermometer is exposed. Thus in the psychrometric equations and psychrometric charts where wet bulb temperature appears, it is always the thermodynamic wet bulb temperature which is considered. At infinite air velocity the wet bulb temperature is equal to the thermodynamic wet bulb temperature for shielded or unshielded thermometers and also the Lewis number would approach unity and $\frac{h}{h_p}$ would approach zero⁽⁷⁶⁾.

2.4.1.1. RADIATION.

The deviation of the actual wet bulb temperature from the temperature of adiabatic saturation has been investigated by many workers^(70,77,78,69). At low air velocities the deviations due to radiation are great. At velocities of 1250 f.p.m. and higher the deviations are negative while at velocities of 1000 f.p.m. and less then deviations are positive. The exact location of the transition point is 1025 f.p.m. air velocity over the wet bulb. At this velocity the actual wet bulb temperature is equal to the temperature of adiabatic saturation. These deviations vary between -0.14 to 0.1 according to the air velocity. These authors reported that the ratio $\frac{h_g}{R_g}$ is less than the humid heat, because of the radiation effect. The radiation coefficient can be calculated as follows:

$$h_{\rm R} = 0.173 \ \epsilon_{\rm Wb} \left[\frac{\left(\frac{T_{\rm S}}{100}\right)^4 - \left(\frac{T_{\rm Wb}}{100}\right)^4}{(t_{\rm S} - t_{\rm Wb})} \right]$$
(57)

The heat transfer coefficient may be calculated from equations given by McAdams⁽⁸⁰⁾

$$\frac{h_{g}^{d}}{k_{f}} = 0.615 \left(\frac{dU \rho_{f}}{\mu_{f}}\right)^{0.466} 40 < Re < 4000$$
(58)

$$\frac{h_{g}^{d}}{k_{f}^{d}} = 0.174 \left(\frac{dU \rho_{f}}{\mu_{f}}\right)^{0.618} \quad 4000 < Re < 40000 \quad (59)$$

Carrier et al.⁽⁸¹⁾ and Threlkeld⁽⁷⁶⁾ plotted the ratio $\frac{h_{Rt}}{h_g}$ which varies between 0-0.2 against air velocities (0-2400 ft./min.) for given bulb diameters (0.1 in.-0.3 in.), dry bulb temperatures (0-120°F.) and wet bulb temperatures (-2°F.-100°F.). These graphs show that $\frac{h_{Rt}}{h_g}$ decreases with decrease of both dry and wet bulb temperatures, and increases rapidly with decrease of air velocity; the optimum air velocity of 1025 ft./min. is used in the present work to determine the dry and wet bulb temperatures.

2.4.1.2. WATER RESERVOIR.

The influence of the water supply reservoir has rarely been discussed except in experimental work of Brooks and Allen⁽⁸²⁾. The authors recognised that an error in the wet bulb temperature could be caused by a large temperature difference between the supply water reservoir and the wet bulb element. The reservoir wall was cooled with a wet wick, to minimise the error.

Most of the investigators used distilled water for wetting the wet bulb at approximately the wet bulb temperature or slightly cooler. The obvious reason for this is to avoid the ----

reservoir heat flow effect. This method has been used for the present work. Wexler and Ruskin^(es) studied the temperature profile along a thin hygroscopic element, which is exposed to the ambient air, and attached to the water supply reservoir at one end. A mathematical model for such a system has been derived, and the following assumptions are made:

(a) the plate is homogeneously porous and so thin that no transverse temperature gradients exist, i.e. the heat conduction is only along the longitudinal axis.

(b) The reservoir feeds water to the element at a rate such that the capillary pores over the entire length of the plate are filled with liquid water and that the plate surface is completely covered by a liquid water film, and no water leaves the plate surface except by surface evaporation to the surrounding medium. This assumption is usually satisfied by hygroscopic and porous materials.

(c) Heat conduction due to the presence of a temperature sensing element in the system is not considered.

From the heat and mass balance the following simultaneous differential equations are written:

$$\frac{d^{2}t_{a}}{dy^{2}} + MV \quad \frac{dt_{a}}{dy} = (t_{a}-t) + M\left(\frac{\lambda}{C_{L}} - t_{a}\right)\left(x_{a} - x\right)$$
(60)

$$\frac{\mathrm{d}V}{\mathrm{d}\gamma} = X_{\mathrm{a}} - X \tag{61}$$

$$X_{a} = J(t_{a})$$
(62)

where $\gamma = \Upsilon \frac{\boxed{RU_C}}{\sqrt{kA}}$ $V = \frac{L}{U_D} \sqrt{\frac{U_C}{kRA}}$ $M = \frac{C_L U_D}{U_C}$

Graphs of surface temperature were plotted against yo and illustrate that the tip temperature rapidly decreases with increase in plate length. The plate temperature remains very nearly ----

constant over 50% of the length from the tip. It is apparent from the graphs that serious error can be avoided if the surface temperature is measured at a distance away from the reservoir, corresponding to $\gamma_{\lambda} \ge 4$. This method is adopted in the present research.

2.4.1.3. DEVIATION FROM ATMOSPHERIC PRESSURE.

The variation of wet bulb temperature (30°F.-150°F.) with the pressure deviation from atmospheric pressure (25 in.Hg.- 30 in.Hg) has been measured by Carrier et al.^(77,81). These variations are reported in the form of tables. In the present work these tables are used to correct the wet bulb temperatures.

2.4.2. PSYCHROMETRIC CHART,

The psychrometric charts are constructed accurately from Carrier's data⁽⁸⁴⁾. One of these charts exhibits all psychrometric relationships, between the temperatures of 20°F. and 350°F., and the saturation temperature up to 143°F. The other chart gives the same values between temperatures 20°F. and 110°F., and saturation temperatures up to 95°F. These charts permit the reading of both the wet and dry bulb temperatures to an accuracy of 0.1°F. and of the moisture weight per pound of dry air to 0.2 grains. All calculations have been made with accuracy to five significant figures.

The psychrometric charts are plotted on oblique coordinates of enthalpy and humidity ratio; this method of plotting was originated by Mollier^(85,86,87) and has been followed by Goodman⁽⁸⁸⁾. This chart covers temperature O-125°F., and is based upon the thermodynamic data at atmospheric pressure. Three psychrometric charts of Mollier type have been constructed^(89,90) and their most important feature is that complete psychrometric solutions are possible, with one chart for any barometric pressure 10 P.s.i.a.-14.696 p.s.i.a. The first chart is for low temperatures covering the range

-60°F.-20°F., the second chart is for the normal range of temperatures 32-120°F., and the third chart covers the temperature range 90°F. - 250°F. Carrier Corporation⁽⁷²⁾ constructed two Mollier type psychrometric charts for atmospheric pressure. The first chart covers the temperature range 20°F.-110°F., and the second one the temperature range 60°F.-250°F. These two charts are used in the present research.

2.4.3. HUMIDITY MEASUREMENT.

Besides the psychrometer, many other techniques are available for measurement of air humidity. Most of these devices are much more complicated than the psychrometer and unfortunately, many of them are less reliable.

A dew point indicator allows direct determination of the dew point temperature. Although measurement of the dew point may appear to be a fundamental method, completely reliable results are somewhat difficult to obtain. It is difficult to measure the temperature of the mirror surface, and the exact point of incipient condensation is uncertain.

Human hair is hygroscopic, and its length varies with relative humidity. Unfortunately temperature also affects the elongation of the hair element. Hair hygrometers may be reliable within about \pm 3% relative humidity⁽⁹¹⁾.

Electrical, spectroscopic, diffusion, and chemical techniques are available for measurement of humidity properties. The gravimetric method is considered to be a primary standard. The electrical conductivity and mechanical methods suffer from the disadvantage that the accuracy and the response decrease and hysteresis increases at high humidities. Microwave refraction techniques are unsuited to humidity measurements in the boundary layer. An extensive discussion of humidity measurements is given⁽⁸³⁾. A comparison between thermocouples (nichrome and constantan) and mercury thermometers, has been discussed^(92,93). It was found that α for ventilated (still air) conditions and for wind speeds of 25 and 100 in./sec. are 0.8, 0.95 and 0.99 for mercury thermometers, 0.97, 0.99 and 1.0 for thermocouples.

$\alpha = \frac{\text{still depression}}{\text{maximum depression}} =$

dry bulb temperature - observed wet bulb temperature dry bulb temperature - fully ventilated wet bulb temperature

These results show that the thermocouple reaches its equilibrium temperature in a few seconds, whereas the wet thermometer takes several minutes. It is found that α is proportional to the square root of the diameter of the wire, and decreases in an approximately linear manner with increase in cotton thickness. The influence of the length of the cotton covering on the wet bulb depression has been studied and it is found to need at least 2.5 in. to ensure the maximum values of α (i.e. $\alpha = 1$). One advantage which the thermocouple psychrometer possesses over hygrometers of other types is that its small size permits local variation in the humidity to be studied, and the disadvantage is that the wick covering the thermocouple dries quickly.

Doe⁽⁹⁴⁾ constructed a small peltier junction of bismuth, bismuth tin wires of about 0.001 in. diameter for the purpose of exploring humidity gradients close to an evaporating surface. In the present research a wet bulb thermometer has been used.

2.5. THE EFFECT OF MALDISTRIBUTION ON THE PERFORMANCE OF PACKED TOWERS.

The distribution of water over random packings, and water flow at the tower wall have been the subject of a number of investigations (approximately 120 references exist).

For a packed tower to operate efficiently it is essential that the distribution of both liquid and gas should be as uniform as possible throughout the packing. One of the biggest factors contributing to poor performance is the maldistribution of liquid. Good liquid distribution in a packing would be expected if an efficient liquid distributor is installed. However, this often fails to achieve the desired result in random packings, such as spheres, rings etc., the liquid which is initially distributed uniformly spreads to the walls and remains in this region until it leaves the bottom of the tower. The packing in the centre of the tower becomes liquid deficient and a poor performance is almost certain.

All investigators are agreed that the liquid distribution depends on the ratios of the tower diameter to packing size and of tower height to diameter. Precautionary measures to minimise wall flow can be taken, such as that the tower to packing diameter ratio is 10:1 and preferably 12:1^(95,96).

Norman⁽⁹⁷⁾ showed that the relation between air film coefficient and the air velocity is modified to a considerable extent when maldistribution occurs. Experiments on a 6 in². water cooling tower using a carbon grid packing, with water and air flowrates ranging from 930 to 3280 lb./h.ft². and looo to 3000 lb./h.ft². respectively, showed that with good liquid distribution \overline{K}_g could be represented by the equation

$$\overline{K}_{g} = \beta \ G^{\circ \cdot \vartheta} \tag{63}$$

whereas with poor distribution the relation was

$$\overline{K}_{g} = \overline{\beta} \ G^{0.56} \tag{64}$$

where β and $\overline{\beta}$ are dimensional constants depending on the water rate. It was concluded that the effect of maldistribution depends on the ratio of $\frac{L}{G}$. At high $\frac{L}{G}$ ratio there was a close approach to equilibrium between the gas and liquid at the top of the tower, and maldistribution had little effect on the coefficient. However at an \underline{L} ratio of the

order of unity the two phases approached equilibrium at the bottom of the tower, and maldistribution caused a decrease in the coefficient by about 30%.

A further investigation of the effect of maldistribution was carried out by Mullin⁽⁹⁸⁾. The experiments were carried out with an 18 in. square tower, packed to a height of $2\frac{3}{4}$ ft. with wooden grids. Water was distributed over the packing from four troughs and the feed to each trough was controlled and measured separately. The water draining off the bottom of the packing was collected in troughs immediately below the lowest grid.

In the first series of experiments the water was divided evenly between the four troughs. The flow was then changed so that the pair of troughs on one side received twice as much water as the other pair, and finally three times as much. Water and air flowrates ranged from 1240-1420 lb./h.ft². and 600-3000 lb./h.ft². respectively. The results for the three different distribution methods were correlated by the following equations:

ĸg	=	0.002	G°∙°	(uniform	distribution)	(65)

 $\overline{K}_{g} = 0.0041 \ G^{0.79} \quad (\text{maldistribution 2}) \quad (66)$

 $\overline{K}_g = 0.0076 \ G^{0.69}$ (maldistribution 3) (67)

where \overline{K}_g is the overall mass transfer coefficient lb.moles/h.ft².atm.

The theory suggests that the effect of maldistribution should be more pronounced as the height of the packing is increased, and when the relation between \overline{K}_g and the gas rate is expressed by an equation

$$\overline{K}_g = constant G^n$$

The power n should be a function of both the distribution and the packed height.

Any attempt to derive a mathematical analysis of the effect of maldistribution is complicated by the changes in distribution which occur as the liquid flows down the packing and by the unknown effects of gas and liquid mixing in the tower.

2.6. THE WETTED AREA OF A PACKING.

Several methods have been proposed to measure wetted area of tower packings and are described in the literature, Mayo et al. (99) employed $\frac{1}{2}$ and 1 in. paper Raschig rings and dissolved in the water. It has been found that the wetted area was unaffected by the gas flowrates up to 67 lb./h.ft². unless flooding was reached. Over the range of liquid rate 2800-9400 lb./h.ft²., wetted area was proportional to $L^{0.45}$ and $Z^{0.25}$ for $\frac{Z}{d_p}$ ranging from 12-60. The fraction of non-wetted area followed the Gaussian distribution that nearest to the wall being least. The maximum wetting found, just before flooding, was 75% with $\frac{1}{2}$ in. rings and 56% with 1 in. rings. The effectiveness of the interfacial area is not uniform. It has been estimated that for 0.75 in. spherical packing the effective gas liquid interface is 10% less than the wetted packing surface and this is owing to the formation of stagnant liquid pools due to capillary retention at the points of contact between packing elements. The liquid distribution and wetted areas would approach a constant state when the tower height exceeds ten times its diameter.

Grimley⁽¹⁰⁰⁾ measured wetted area of $\frac{3}{8}$ in. stoneware ring packing by assuming uniform vertical laminar flow of liquid and measuring its electrical resistance. The percentage of wetted area is 11% for liquid flow from 22-300 lb./h.ft²., and increases in proportion to L^{0.63} for L from 300-1500 lb./h.ft²., and thereafter remains constant.

Several attempts have been made to estimate the wetted areas in packed towers from experimental determinations of mass transfer coefficients.

.Weisman and Bonilla (101) calculated wetted areas of

-

solid glass and brass spheres of diameter 0.5 in. and ring packing from a comparison of the mass transfer coefficients determined in air humidification experiments with the irrigated packings and with fully wetted porous materials. It has been found that the effective area for mass transfer ranged from 4-25% of the total area, and for the heat transfer from 13-42%. For spherical packing the following equations were obtained:

$$\frac{a_{\rm M}}{a} = 0.00067 \left(\frac{d_{\rm P}}{\mu}\right)^{0.31} L^{0.5}$$
(68)

$$\frac{a}{a}H = 0.0140 \left(\frac{d_{P}}{\mu}\right)^{0.16} L^{0.3}$$
(69)

equations (68) and (69) cannot safely be applied much outside the range 340-970 for gas stream Reynolds number, water flowrates 85-2000 lb./h.ft²., and at room temperature. For one inch carbon rings the following equations can be used:

$$\frac{a_{M}}{a} = 0.044 \ G^{0.31} \ L^{0.07}$$
 (70)

$$\frac{a}{a}H = 0.217 G^{0.11} L^{0.07}$$
(71)

The fractional effective area for rings is larger than for spheres at the same liquid and gas flowrates. This may be attributed to the smaller fraction and size of voids in the spherical packing, which would be expected to decrease the ratio of gas liquid interface to packing surface compared to the rings. Shulman and Degoff⁽¹⁰²⁾ measured the rates of vaporisation of one inch Raschig rings made of pure naphthalene and then repeated the experiment with water flowing over the packing. The reduction in the rate of vaporisation when the water was flowing was assumed to be proportional to the fraction of the area covered by the water film.

Shulman et al.⁽¹⁰³⁾ utilised this technique to determine the wetted areas for $\frac{1}{2}$ to $1\frac{1}{2}$ in. rings and $\frac{1}{2}$ to 1.0 in. Berl saddles.

The mass transfer coefficients were determined by measuring the rates of vaporisation of naphthalene packing, and then the experiments were repeated with water flowing over thepacking, and the fraction of dry area of the packing was calculated. The wetted area increases with increasing liquid rate, and decreases with increasing gas rate until the loading point is approached. The following equations were obtained:

$$\frac{a_{M}}{a} = 0.24 \left(\frac{L}{G}\right)^{0.25} \qquad \text{Raschig rings} \qquad (72)$$
$$\frac{a_{M}}{a} = 0.35 \left(\frac{L}{G}\right)^{0.2} \qquad \text{Berl saddles} \qquad (73)$$

There is a large difference between the total wetted areas determined from the naphthalene packing experiment and the effective areas calculated from the ammonia absorption data. The reason for this difference is the liquid trapped in pockets surrounding the packing. London et al.⁽²⁷⁾ estimated the wetted areas from experimental determination of mass transfer coefficients and effectiveness which have been correlated as follows:

$$e_{h} = 1-1.4 e$$
(74)

where Y equals the fraction of the packing covered by water, and varies between 1.0-0.71 according to the water flow. Pratt⁽¹⁰⁴⁾, Williamson⁽¹⁰⁵⁾ and Norman⁽⁹⁷⁾ give excellent discussion of the results that have been obtained and give values of mineffective liquid rate (M.E:L.R.) for various types of packing.

In order to avoid liquid drop formation most of the investigators tried to find the wetted area using a film packing. In most of the packed cooling towers water tends to break up into numerous small droplets, which will increase the wetted area and consequently increase the mass and heat transfer coefficients.

Very little information concerning this phenomena is published. Dynamic and thermal behaviour of water drops in evaporative cooling processes are given in Nottage et al. report⁽¹⁰⁶⁾.

2.7. PRESSURE DROP.

2.7.1. TWO PHASE FIXED BED.

Extensive experimental data has been published for conventional packings, but the agreement is often poor because of differences in the method of dumping the packing, which affects both their orientation and the free space in the bed. Vibration causes them to pack more closely and some settling may occur during operation of the tower.

The linear relation between the pressure drop and velocity is analogous to Poiseuille's equation for streamline flow in a pipe

$$\Delta P = \frac{32 \ \mu \ \ell \ U}{g \ d_{P^2}} \tag{75}$$

A modified form of this equation leads to Kozeny's equation

$$\Delta P = \frac{k \mu Z U a^2}{g \epsilon^3}$$
(76)

where k is a constant which must be determined experimentally; for smooth regular solid particles $k = 5.0^{(107)}$

Carman⁽¹⁰⁸⁾ found that the Kozeny equation for streamline flow was in good agreement with the experimental data for Reynold's numbers less than 2.0. For fully turbulent flow the pressure drop was proportional to the velocity raised to a power between 1.8 and 2.0. The experimental data for Reynolds numbers ranging from 0.01-10000 were represented by a single equation

$$\frac{\Delta P g \epsilon^{3}}{Z \rho U^{2} a} = 5 \left(\frac{U \rho}{\mu a} \right)^{-1} + 0.4 \left(\frac{U \rho}{\mu a} \right)^{-0.1}$$
(77)

where the second term is negligible in the stream line region and

the first in the turbulent region.

Equation (77) represented the data for beds of spherical or non-spherical particles. The fractional voidage for beds of spheres ranged from 0.3-0.45 depending on the method of packing, whereas the voidage was 0.69-0.79 for the Berl saddles and 0.9 for the wire spirals. Coulson⁽¹⁰⁹⁾ showed that the pressure drop in beds of regular particles such as cubes, prisms, plates and spheres varies according to the orientation of the particles, with the constant K ranging from 3.3-5.8. Furnas and Bellinger⁽¹¹⁰⁾ represented the pressure drop for water flowing in beds of ceramic packing by the following equation

$$\frac{\Delta P}{Z} = K U^n \tag{78}$$

The value of n lies between 1.8 and 2.0.

Chilton and Colburn⁽¹¹¹⁾ concluded that only a small part of the pressure drop about 10% was due to skin friction, and that the bulk of the pressure drop was due to the incessant change of velocity. Both these authors represented the pressure drop on various solid packings (granules, spheres, etc.) by the equation

$$\frac{\Delta P}{Z} = \frac{2fG^2 A_0 A_W}{\rho g d_D}$$
(79)

i.e. in a form similar to Fanning's formula, which is used for flow in conduits, but provided with some additional coefficients. The coefficient A_0 is a correction factor for a hollow packing, while A_W is the wall effect factor. The friction factor f has been plotted as a function of the modified Reynolds number. Sherwood and Pigford⁽¹¹²⁾ showed the values of A_0 and A_W in graphical form for various types of packing. A better method of approach has been used by Hobler⁽¹¹³⁾ to determine ΔP , and to eliminate the unreliable coefficient A_0 , and introduces the porosity into the basic formula with $A_W = 1$.

$$\frac{\Delta P}{Z} = \frac{2f}{\epsilon^2} \frac{G^2}{\rho g d_P}$$
(80)

For laminar flow Re < 50

$$\mathbf{f} = \frac{100}{\mathrm{Re}} \tag{81}$$

For turbulent flow 50 < Re < 7000

$$f = \frac{3.8}{\text{Re}^{0.2}} \qquad \text{dumped packing} \qquad (82)$$

$$f = \frac{C}{Re^{0.375}} \quad \text{stacked packing} \quad (83)$$

where C is a constant, which depends on the dimensions of the packing.

Leva⁽¹¹⁴⁾ derived an equation relating pressure drop through packed towers with the physical properties of the fluid, and the dimensions of the tower.

$$\frac{\Delta P}{Z} = \frac{0.0243 \ G^{1 \cdot 9} \ \mu^{0 \cdot 1} \ A_0^{1 \cdot 1} \ (1-\epsilon)}{d_p^{1 \cdot 1} \ g \ \rho \ \epsilon^3}$$
(84)

The average deviation between observed values of pressure drop and values calculated by equation (84) was \pm 8%. Experimental data which were used to substantiate the equation were obtained with homogeneous and non-homogeneous spherical particles, cylinders of various ratio of height to diameter, and with metal rings. These particles were tested in pipes ranging in diameter from 0.824 in. to 3.068 in., and the ratio obtained for $\frac{d_P}{d_t}$ varied between 0.074 and 0.615. All particles tested had smooth surfaces. For this reason the equation does not apply to particles with rough surfaces.Ao can be calculated as follows:

$$A_0 = 0.205 \frac{a_P}{v_P^{\frac{2}{3}}}$$
 (85)

Chand⁽¹¹⁵⁾ proposes a method founded upon the drag force concept for a single particle, and can be extended to particles of other shapes.

Ergun⁽¹¹⁶⁾ found that pressure losses are caused by simultaneous kinetic and viscous energy losses, and that the following com-

$$\frac{\Delta P}{Z} g = 150 \frac{(1-\epsilon)^2 \mu U}{\epsilon^3 d_p^2} + 1.75 \frac{(1-\epsilon) GU}{\epsilon^3 d_p}$$
(86)

The equation has been examined from the point of view of its dependence upon flowrate, properties of fluids, orientation, size, shape, and surface of the granular solids. The Blake type friction factor has the following form⁽¹¹⁷⁾

$$fK = 1.75 + 150 \frac{1-\epsilon}{Re}$$
 (87)

2.7.2. TWO PHASE FLUIDIZED BED.

For the relatively low flowrates in packed beds the pressure drop is proportional to the gas velocity^(118,119), usually reaching a maximum value slightly higher than the static pressure drop through the bed. With a further increase in gas velocity, the packed bed suddenly expands i.e. the voidage increases resulting in a decrease in pressure drop to the static pressure drop of the bed, which can be represented by the following equation: Drag force by upward moving gas = weight of particles

$$\frac{\Delta P}{Z_{mf}} = (1 - \epsilon_{mf}) (\rho_{S} - \rho)g \qquad (88)$$

With gas velocities beyond minimum fluidization the bed expands and gas bubbles are seen to rise with resulting non-homogeneity in the bed⁽¹²⁰⁾.

Despite this rise in the gas flow, the pressure drop remains practically unchanged. To explain this constancy in pressure drop, note that the dense gas solid phase is well aerated and can deform easily without appreciable resistance. The observed pressure drop data may deviate slightly from the value calculated from equation (88). This can be attributed to the energy loss by collision and friction among particles as well as between particles and the surface of the container. It has been noticed that large pressure fluctuations occur when the bed is in a slugging state. The pressure drop equation is presented for ideally fluidized beds consisting of spheres of uniform size⁽¹²¹⁾. The equation differs from the Ergun⁽¹¹⁶⁾ equation by a tortuosity factor q_A , a cross-section factor Z_A , both of which are void fraction dependent, and an inertial drag coefficient C_i , dependent only on particle Reynolds number. The equation is written:

$$\frac{\Delta P}{Z} = 36Z_A q_A^2 \frac{(1-\epsilon)^2 \mu U}{\epsilon^3 d_P^2} + 6C_i q_A^3 \frac{(1-\epsilon)\rho U^2}{\epsilon^3 d_P}$$
(89)

It is found that

$$\mathbf{q}_{\mathbf{A}} = 1.71 \left(\frac{1-\epsilon}{\epsilon}\right)^{0.15} \qquad 0.4 \le \epsilon \le 0.94 \qquad (90)$$

$$n_{\rm A} = \epsilon^{-2} \qquad 0.92 \le \epsilon \le 1 \qquad (91)$$

$$C_{i} = \frac{1}{8} \left(C_{D} - \frac{24}{Re} \right)$$
(92)

where C_{D} = standard drag coefficient for a single sphere.

The relationship for the cross-section factor is obtained preferably from the relation found by Hawksley⁽¹²²⁾:-

$$Z_{A} q_{A}^{2} = \frac{\epsilon}{2(1-\epsilon)} \quad EXP \left[\frac{2.5 (1-\epsilon)}{1-\frac{39}{64} (1-\epsilon)} \right]$$
(93)

The drag coefficient has been measured by many investigators, and among the values for spheres are those reported by Rowe⁽¹²³⁾.

2.7.3. THREE PHASE FIXED BED.

Much theoretical and experimental work has been reported, a high proportion being either empirical or based on dimensional

analysis.

The pressure drop is increased when a liquid is flowing down the tower. The effect of liquid on the pressure drop appears to arise principally from the reduction in free space available to the gas.

Furnas and Belling⁽¹¹⁰⁾ represented the pressure drop for different packings by equation (78), in which n = 1.9 and the which constant K was given by empirical equations included water flowrate. When the water flowrate exceeds 15000 lb./h.ft². a simple correlation of this type fails to represent the data and it is found that the exponent n varies with the liquid flowrate.

The extensive data of Tillson foravariety of packing materials are reproduced by Perry⁽¹²⁴⁾ and a chart expressing the pressure drop in terms of the number of gas velocity heads lost per foot of packing is presented by Morris and Jackson⁽¹²⁵⁾. The pressure drop for serrated packing is reported by Jackson⁽⁴⁸⁾.

Leva⁽¹²⁶⁾ correlated pressure drop data for ring and saddle packings in a 2 ft.diameter tower by the equation

$$\frac{\Delta P}{Z} = \alpha \rho U^2 \left(10^{\beta L} \right)$$
(94)

where α and β are constants characteristic of the packing. The term $10^{\beta L}$ allows for the reduction in the free space due to the liquid hold up, and the equation is valid up to the point where loading commences. Johnstone and Singh⁽¹²⁷⁾ expressed pressure drop measurements for wood grid packings by the equation

$$\Delta P = f_0 G^{1 \cdot 8}$$
 (95)

The constant fo varied between 18.9×10^{-8} and 0.63×10^{-8} according to the packing height which ranged from 1-12 in., and the clearance of the grids which varied between 0.625 and 2.25 in. The pressure drop measurements for stoneware grid packing are reported by Molstad et.al.⁽¹²⁸⁾ and Norman⁽¹²⁹⁾ and it is represented

. 50.

$$\frac{\Delta P}{Z} = \gamma G^{1 \cdot 8}$$
 (96)

The constant y varied between 3.36×10^{-7} and 4.4×10^{-7} .

Kelly and Swenson⁽³⁶⁾ correlated the pressure drop for a splash grid packing by the following equation:

$$\frac{\Delta P}{N} = BG^2 \left(\frac{0.0675}{\rho} \right) + C \sqrt{S_F} L G^2 \left(\frac{0.0675}{\rho} \right)$$
(97)

where B and C are constant, and differ for different deck geometry and deck spacing. The authors^(30,31,130) compared different packing materials used in cooling towers, by plotting the overall mass transfer coefficient against pressure drop.

2.7.4. THREE PHASE FLUIDIZED BED.

Very little work has been reported on a three phase fluidized bed (air, water and solid). Douglas et al.⁽¹⁴⁾ measured the pressure drop of l_2^1 in. hollow polyethylene spheres used as packing. The pressure drop varied between 2-10 in.H₂O according to the water flow 200-450 lb./min., and air velocity 400-2000 ft./min.

Levsh et al.⁽¹³¹⁾ consider a three phase fluidized bed consisting of water, air and rings made from a polymeric material with density equal to 67.7 lb./ft³. The experimental data show that the gas velocity has a powerful effect on the bed height, which is proportional to the square of G, while change of water flow has relatively little effect on this parameter. The height of three phasefluidized beds Z_{mf} can be given by the equation

$$Z = A Z_{mf} L^{n} G^{2}$$
(98)

where A is constant and n is a function of water flow. The countercurrent motion of the gas and liquid is arranged so that the fluidization of the packing is produced only by the gas stream. Based on this information, the three phasefluidized bed in an absorber of this type can be regarded as a combination of fluidization of the packing in the gas stream and bubbling of the gas through a layer of liquid held up on the packing and supporting screen. The pressure drop of this bed can be represented in the form

$$\Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3 + \Delta P_4 \tag{99}$$

where ΔP_3 is the resistance at the interface, and

$$\Delta P_1 = \frac{Packing weight}{Tower cross-section area}$$

The liquid properties are constant, and the quantity ΔP_2 , is determined from the functional relationship

$$\Delta P_2 = \phi(1-\epsilon, L, G, \theta, d_D, A)$$
(100)

where θ is the intensity of mixing of the packing.

ΔP₄ is pressure drop across packing support.

2.8. MINIMUM FLUIDIZATION VELOCITY.

Measurements of minimum fluidization velocity for conventional two phase fluidization are facilitated by the existence of a well defined relationship between the pressure drop across the bed and the flowrate of gas or liquid fluidizing stream. Such a relation is possible only when the solid particles exhibit good fluidization characteristics^(118,119,132,133).

Chen et al.⁽¹⁶⁾ found that in turbulent contactors the packings used are $\frac{1}{2}$, 1 and $l_2^{\frac{1}{2}}$ in. polystyrene spheres, which are frequently 100 times larger than those normally found in conventional fluidized beds, and hence no smooth fluidization can be expected. For this reason, the conventional method of determining U_{mf} is not suitable for this type of contactor. The definition of U_{mf} is the maximum gas velocity at which the packed bed maintains its static height. It has been found that the bed height of a turbulent contactor varies linearly with the gas flow for any particular set of packing diameter and liquid flow. The linear plot of Z_{mf} against G can be extrapolated to the point at which bed height equals the static bed height; the abscissa of this point, according to the definition of U_{mf} is the minimum fluidization velocity for the experimental conditions used. The authors related the minimum fluidization velocity as follows:

$$G_{\rm mf} = 1229 \, d_{\rm P}^{1.15} \, 10^{\rm yL}$$
 (101)

where $y = -5.17 \times 10^{-5}$.

When there is no water flow, G_{mf} will be proportional to $d_p^{1\cdot15}$ and this relation could be compared with G_{mf} proportional to d_p^n where n varies between 1.2 and 2.0 for conventional gassolid fluidization. The similarity between these two relations tends to indicate that despite the presence of the additional liquid phase, the minimum fluidization velocity in a turbulent contactor is still affected by packing diameter in much the same way as is the case for gas solid fluidization. The method used to find the minimum fluidization velocity has been utilised in the present research.

For the conventional gas-solid fluidization^(118,119,132,133), the minimum fluidization velocity can be represented by the equation:

$$U_{mf} = (0.0007 \text{ Re}_{mf}^{-0.063}) g d_{P}^{2} \left(\frac{\rho_{S} - \rho}{\mu}\right)$$
 (102)

 $\operatorname{Re_{mf}}$ ranges from 10^{-2} to 10^{2} for most fluidized systems, and therefore $\operatorname{Re_{mf}}^{-0.063}$ is of the order unity. A very similar result has been published by $\operatorname{Rowe}^{(123)}$ and it was found that the drag force on a single sphere held fixed within an array of spheres was 68.5 times the force on an isolated sphere at the same superficial velocity.

When the Reynolds number is low

 $68.5 \times 18\pi \ \mu \ U_{mf} \ d_p = (\rho_S - \rho)\pi \ d_p^3 \ g$ (103) At higher Reynolds number, when the Stokes law no longer applies, the factor 68.5 still gives a reasonably accurate prediction of U_{mf} .

2.9. LOADING AND FLOODING.

The pressure drop relation^(110,113,134) at any constant liquid rate is represented by three straight lines; at the lowest gas velocities the pressure drop is approximately proportional to the square of the gas velocity, but above a certain critical point the slope changes and the pressure drop is proportional approximately to the cube of the velocity, up to the second critical point where the line becomes almost vertical. The first critical point is called the loading point and the second is the flooding point.

Bertetti⁽¹³⁵⁾ advanced a theory that flooding occurred when the combined frictional loss in head of gas and liquid equalled the height of the packed section. However Bain and Hougen(136) have shown that the equations derived on this basis fail to represent the flooding velocities for a variety of packings. Lerner and Grove⁽¹³⁷⁾ considered that flooding occurs due to wave formation in the liquid film; investigations on two phase flow in pipes have shown that the friction at the gas liquid surface sets up waves which increase in amplitude until waves occupy the full cross-section of the pipe, and from this analogy it was postulated that flooding occurs when the liquid waves fill the voids in the packing. The authors calculated the gas velocity in the voids at flooding for $\frac{1}{2}$ and 1 in. rings and saddles, using the hold-up measurements of Jesser and Elgin⁽¹³⁸⁾ to determine the proportion of the voids occupied by the liquid, and showed that flooding occurs when the gas velocity in the free space exceeds a critical value ranging from 6 to 8.5 ft./sec. However, this calculation ignores the fact that Jesser and Elgin measured the liquid hold-up with no gas flow in the packing and there is a considerable increase in the hold-up as the flooding point is approached.

Experimental determinations of the loading point in packed towers have produced somewhat conflicting results since the

first critical point in the pressure drop relation is not always well defined; it has been shown by $\text{Zenz}^{(139)}$ that in many cases the data in the loading region can be represented equally well by continuous curves. Sarchet⁽¹³⁴⁾ found that the gas velocity at the visual flooding point for 1 in. rings was 15-20% below the graphical flooding point, but for 1 in. ribbed rings and $\frac{1}{2}$ in. rings the visual and graphical points coincided. The graphical flooding point is usually adopted as the most constant characteristic of the packing. In the present research the graphical method has been used to find the loading and flooding points.

Douglas et al.⁽¹⁴⁾ found that the flooding occurred in the turbulent contact absorber with $l_2^{\frac{1}{2}}$ in. polyethylene spheres at air velocity 1800 ft./min., and it is independent of water flowrate.

Sherwood et al.⁽¹⁴⁰⁾ developed an empirical correlation of the flooding velocities in random and stacked ring packings, based on the experimental data of White⁽¹⁴¹⁾, Baker et al.⁽¹⁴²⁾ and Uchida and Fujita⁽¹⁴³⁾. This correlation was expressed as a graphical relation between two groups

$$\frac{U_{\rm F}^{3} \ a}{g \ \epsilon^{3}} \left(\frac{\rho}{\rho_{\rm L}} \right) \mu_{\rm L}^{\circ \cdot 2} \underbrace{\frac{L}{G}}_{G} \sqrt{\frac{\rho}{\rho_{\rm L}}}$$

Garner et al.⁽¹⁴⁴⁾ correlated the loading velocities of random packings in terms of dimensionless groups $\frac{U_L^2}{g\epsilon}$ and $\frac{L}{G}$. This correlation was based on experimental data for the air-water system.

A correlation of loading and flooding data advanced by Lerner and Grove⁽¹³⁷⁾ considered that the effect of the liquid flow should be related to the liquid hold-up in the packing. The empirical equations produced were derived from the experimental measurements of the loading and flooding velocities for the air water system.

Howkins and Davidson⁽¹⁴⁵⁾ demonstrated that the wave theory proposed by Lerner and Grove⁽¹³⁷⁾ affords an adequate ex.55.

planation of the mechanism of loading in a column packed with a single vertical row of spheres. It was shown that the criterion of loading is an equation of the form

$$\frac{1}{A}\left(\frac{G^2a}{\rho\rho_{\rm L}^2g}\right) = 1 - B\left(\frac{La^2\mu}{\rho_{\rm L}^2g}\right)$$
(104)

where A and B are constants which must be determined experimentally for each packing.

Leva et al.⁽¹⁴⁶⁾ have shown that flat support plates with perforations amounting to 20 to 45% of the area of the plate cause a high pressure drop and reduced the flooding velocity; a considerable improvement was effected by using wire screen supports or weir plates provided with separate passages for liquid and gas.

2.10. THE LIQUID HOLD-UP IN RANDOM PACKINGS.

The liquid hold-up is an important characteristic of packing owing to its relation to the wetted area, pressure drop and flooding characteristics. Three different types of liquid hold-up have been discussed in the literature. The total hold-up is defined as the total liquid in the packing under running conditions. The static hold-up is defined as the liquid in the packing which does not drain from the packing when the feed to the tower is shut off. The operating hold-up is defined as the difference between the total liquid hold-up under running conditions and the static hold-up.

There are many different methods used to evaluate the hold-up. Furnas and Bellinger⁽¹¹⁰⁾ and Fenske et al.⁽¹⁴⁷⁾ measured the hold-up as the amount of liquid draining from the tower during a period of three minutes after the feed has been shut off, and showed that this varied as the 0.54 to 0.74 power of the liquid rate. Jesser and Elgin⁽¹³⁸⁾ found a similar dependence of the hold-up on

the liquid rate for a variety of packings. Shulamn et al.⁽¹⁴⁸⁾ measured the total hold-up by weighing the column and packing while the liquid flow was maintained. The static hold-up was measured as the weight of the liquid retained when the column had drained to a constant weight; this was deduced from the total hold-up to obtain the operating hold-up. The total hold-up was found to be an exponential function of the liquid rate and to be independent of the gas rate until the loading point was approached. The authors carried out experiments for ceramic Berl saddles and Raschig rings with air flow rates from 100-1000 lb./h.ft²., and water flowrates from 1000-10000 lb./h.ft². The following correlations were obtained:

$$h_{\rm S} = \partial \, d_{\rm P}^{-\lambda} \tag{105}$$

$$h_{t} = \alpha L^{\beta} d_{p}^{-2}$$
 (106)

$$\beta = \gamma \, d_{\rm P}^{\theta} \tag{107}$$

The constants ∂, α and θ are given and it is dependent on the type of packings.

Fallah et al.⁽¹⁴⁹⁾ derived an equation to find out the film thickness of liquid in a falling film column, and this equation has been modified by Lynn et al.^(150,151,152) to find the film thickness for liquid flow over spheres in a laminar film

$$m = \sqrt[3]{\frac{3 \,\mu_{\rm L} \phi_0}{\sqrt{2\pi r g \,\rho_{\rm L} \sin^2 \theta}}} \tag{108}$$

Davidson et al.⁽¹⁵³⁾, Davidson and Cullen⁽¹⁵⁴⁾ and Davidson⁽¹⁵⁵⁾ used equation (108) to find the hold-up for a vertical string of touching table tennis balls each 1.49 in. diameter. The meniscus between two vertical spheres (static hold-up), is assumed to have a volume independent of flowrate. The liquid between the angles 28° and 152° is a dynamic hold-up in that it varies with

liquid rate. The static hold-up determined by weighing the packing was equal to 0.4 gm. and agreed approximately with the value calculated from photographs of the meniscus. At flowrates up to 1 ml./sec., the agreement between the theory and experiment is good, but there is considerable divergence at 6 ml./sec. Malcor⁽¹⁵⁶⁾ worked out the theory of the maximum amount of liquid that can be retained between two touching spheres. Satterfield et al. (157) discussed the static and dynamic hold-up for different liquid (water, Butanol and Methanol) and hydrogen for a vertical column of glass spheres. The dynamic hold-up can be obtained between angles 33° to 147° for butanol and it is assumed to be the same for methanol and water. These angles were estimated from photographs of the meniscus. Turner and Hewitt⁽¹⁵⁸⁾ obtained an empirical expression which relates the amount of liquid retained at the point of contact of two spheres (glass and steel) to their diameter. the angle of elevation of their common axis, and the physical properties of the liquid.

Chen and Douglas⁽¹⁶⁾ determined the total hold-up for turbulent contactors with $l_2^{\frac{1}{2}}$, 1.0 and $\frac{1}{2}$ in. polystyrene spheres, and the following correlation was found

 $h_t = 2.83 \times 10^{-4} L^{0.6} d_p^{-0.5} + 0.02$ (109)

2.11. FLOW PAST A SPHERE.

2.11.1. VELOCITY PROFILES.

It seems to be generally believed that the motion of a real fluid can be completely described by the Navier-Stokes equations of motion for a viscous fluid; at least the laminar flow past any obstacle will be predicted if the Navier-Stokes equations can be integrated under suitable boundary conditions. The Navier-Stokes equations have been derived and discussed by Bird et.al.⁽¹⁵⁹⁾, and can be represented in spherical coordinates (r, θ, ϕ) as follows:

r - velocity component

$$\rho_{\rm L} \left(\frac{\partial U_{\rm r}}{\partial t_{\rm m}} + U_{\rm r} - \frac{\partial U_{\rm r}}{\partial r} + \frac{U_{\theta}}{r} - \frac{\partial U_{\rm r}}{\partial \theta} + \frac{U_{\phi}}{r \sin \theta} \cdot \frac{\partial U_{\rm r}}{\partial \phi} \right)$$

$$- \frac{U_{\theta}^{2} - U_{\phi}^{2}}{r} = -\frac{\partial P}{\partial r} + \mu_{\rm L} \left(\nabla^{2} U_{\rm r} - \frac{2}{r^{2}} U_{\rm r} - \frac{2}{r^{2}} \frac{\partial U_{\theta}}{\partial \theta} - \frac{2}{r^{2}} \frac{\partial U_{\theta}}{\partial \theta} \right)$$

$$- \frac{2}{r^{2}} U_{\theta} \cot \theta - \frac{2}{r^{2} \sin \theta} \frac{\partial U_{\phi}}{\partial \phi} + \rho_{\rm L} g_{\rm r} \quad (110)$$

 θ - velocity component

$$\rho_{\rm L} \left(\frac{\partial U}{\partial t_{\rm m}}^{\theta} + U_{\rm r} \frac{\partial U}{\partial r}^{\theta} + \frac{U}{r} \theta \frac{\partial U}{\partial \theta}^{\theta} + \frac{U}{r} \frac{\partial U}{\sin \theta} \frac{\partial U}{\partial \phi}^{\theta} + \frac{U}{r} \frac{U}{r} \frac{\partial}{\partial \phi}^{\theta} - \frac{U_{\rm r}^{\,2}}{r^{2}} \frac{\partial U}{\partial \theta}^{r} + \frac{U}{r} \frac{\partial}{\partial \theta}^{\rho} + \mu_{\rm L} \left(\nabla^{2} U_{\theta}^{\,2} + \frac{2}{r^{2}} \frac{\partial U}{\partial \theta}^{r} - \frac{U_{\theta}^{\,2}}{r^{2} \sin^{2} \theta} - \frac{2 \cos \theta}{r^{2} \sin^{2} \theta} \frac{\partial U}{\partial \phi} \right) + \rho_{\rm L} \varepsilon_{\theta}$$
(111)

 ϕ - velocity component

$$\rho_{\rm L} \left(\frac{\partial U_{\phi}}{\partial t_{\rm m}} + U_{\rm r} \frac{\partial U}{\partial r} \phi + \frac{U}{r} \theta - \frac{\partial U}{\partial \theta} \phi + \frac{U_{\phi}}{r \sin \theta} \frac{\partial U_{\phi}}{\partial \phi} + \frac{U_{\phi}}{r} \frac{U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{\partial U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{\partial U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{\partial U_{\phi}}{r} + \frac{U_{\phi}}{r} \frac{\partial U_{\phi}}{r} + \frac{2}{r^{2} \sin^{2} \theta} \frac{\partial U_{\phi}}{\partial \phi} + \rho_{\rm L} g_{\phi} \quad (112)$$

where

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right)$$

The continuity equation is:

$$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 U_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(U_\theta \sin \theta \right) + \frac{1}{r \sin \phi} \frac{\partial U}{\partial \phi} = 0 \quad (113)$$

Equations (110,111,112,113) can be represented in the form of stream function and vorticity.

The Navier-Stokes equation being non-linear has so far proved insoluble for the problem of axi-symmetric flow round spheres,

except by methods which first made a linearized approximation to the equations. The first solutions were due to Stokes⁽¹⁶⁰⁾ who ignored the inertia terms, and Oseen⁽¹⁶¹⁾ who assumed that the sphere caused a small perturbation in the unform parallel flow and neglected second-order perturbation velocities, thus taking the inertia terms into account to a limited extent. The idea behind the Oseen technique for obtaining a uniform approximation to the disturbance of the stream is to take inertia forces into account in the region where they are comparable with viscous forces, but neglect them in the Stokes region of the flow. Thus, since the flow is nearly a uniform stream in the former region, the appropriate equation is

U.grad U = - grad P + V $\nabla^2 U$ (114)where the vector U represents the uniform stream. The left-hand side of equation (114) is, of course, negligible throughout the region in which Stokes' approximation is valid. It may be noted that equation (114) is formally the same as the equation which would be obtained if the velocity distribution were written in the form U+u and the Navier-Stokes equation were linearized in the disturbance velocity u. However, this interpretation is conceptually wrong and can lead to erroneous or misleading conclusions such as Lamb's statement(162,163) that Oseen's theory is less accurate than Stokes' in the neighbourhood of the sphere (where the boundary condition u = -U would make nonsense of such a linearization). The inertia terms, and the difference between Oseen's and Stokes' theory in the neighbourhood of the sphere is of small order which neither theory is able to handle (164). Oseen's solution which linearized . the equation, has been improved by Goldstein⁽¹⁶⁵⁾, Tomotika and Aoi⁽¹⁶⁶⁾ and Pearcey and McHugh(167). These solutions are limited by the linearizing approximations and prove to be inadequate above Reynolds : number 2.

Two independent solutions have been obtained, one by Kawaguti^(168,169,170) who assumed a special form for the solution and satisfied an integrated form of the Navier-Stokes equation for the first-order and second-order terms when expanded by Legendres Polynomials, and the other by Proudman and Pearson⁽¹⁶⁴⁾ who linearized the Navier-Stokes equation by two approximations, one valid at a distance from the sphere, and the other valid near the sphere surface.

Kawaguti obtained two solutions, one for the range 0 < Re < 10 and the other for the range 10 < Re < 70, whereas Proudman and Pearson found that their solution converged more slowly with increasing Reynolds number and is not accurate above Re = 5.

The original method of deriving the boundary-layer equations, due to Prandtl⁽¹⁷¹⁾ and Blasius⁽¹⁷²⁾, is based on a consideration of approximate orders of magnitude. The boundarylayer theory approximations are not justified in the region considered, and give no information about the flow at the rear of the sphere at any Reynold's number^(173,174,175,176).

A finite difference method was used by $\text{Thom}^{(177)}$ to solve the Navier-Stokes equation for flow round cylinders at Re = 10, and this method has been used by Kawaguti⁽¹⁶⁹⁾ for flow round spheres at Re = 20, and cylinders at Re = 40. This method is extremely laborious but has been developed into relaxation methods by $\text{Fox}^{(178,179,180)}$, Fox and Southwell⁽¹⁸¹⁾ and Allen and Dennis⁽¹⁸²⁾. The problem of flow round cylinders was solved by Allen and Southwell⁽¹⁸³⁾ for Re = 0, 1, 10, 100, 1000 with satisfactory results, and Lister⁽¹⁸⁴⁾ has used a modification of their method for spheres at Re = 0, 1, 10, 20. Jenson⁽¹⁸⁵⁾ calculated the velocity profiles round a sphere at low ReynoldS number (Re = 5, 10, 10, 20, 40). The Navier-Stokes equation was

split into two simultaneous second-order equations by using the stream function ψ and introducing the vorticity ζ . In spherical polar coordinates, the equations are:

$$E^2 \psi = \zeta r \sin\theta \tag{115}$$

$$\frac{\operatorname{Re}}{2} \left[\frac{\partial \psi}{\partial r} \frac{\partial}{\partial \theta} \left(\frac{\zeta}{r \sin \theta} \right) - \frac{\partial \psi}{\partial \theta} \frac{\partial}{\partial r} \left(\frac{\zeta}{r \sin \theta} \right) \right] \sin \theta = \operatorname{E}^2(\zeta r \sin \theta) \quad (116)$$

where

$$E^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{\sin\theta}{r^{2}} \quad \frac{\partial}{\partial \theta} \left(\frac{1}{\sin\theta} \quad \frac{\partial}{\partial \theta} \right)$$
$$U_{r} = \frac{-1}{r^{2} \sin\theta} \quad \frac{\partial \psi}{\partial \theta}$$
$$U_{\theta} = \frac{1}{r \sin\theta} \quad \frac{\partial \psi}{\partial r}$$

All quantities have been made dimensionless. It was assumed that the sphere was situated on the axis of a cylindrical pipe of diameter six times the sphere diameter, and at the nearest lattice points to the pipe surface it was further assumed that the flow was undisturbed and parallel. The reason for these assumptions was to complete the boundary conditions. The author concluded that the relaxation methods appear to give accurate solutions to the problems of flow round spheres at low Reynolds number, whereas other methods which were tried failed. The critical Reynolds number at which separation first occurs was found to be 17.

Brailovskaya et al.⁽¹⁸⁶⁾ discussed the different methods of solving the Navier-Stokes equations by reviewing 72 literature references. The authors of these references studied the application of the Navier-Stokes equations to find the velocity, stream function and vorticity profiles for steady, unsteady, compressible and incompressible fluid past any obstacle other than a sphere (e.g. cylinders, disc, flat plate etc.). Kuskova⁽¹⁸⁷⁾ discussed in detail the various techniques for deriving the approximate boundary conditions

. 62.

for the vorticity. These techniques could be useful in solving the (ζ, ψ) system difficulties which are associated with the determination of the boundary conditions for vorticity. As a rule, these conditions may be obtained only approximately, with the aid of approximate values found for the stream function.

The majority of workers use the Navier-Stokes equations to find the velocity, stream function and vorticity profiles for a fluid past any obstacle. It is assumed that the obstacle is situated on the axis of the container. The reason for this assumption is obvious for the completion of the boundary conditions. Very little work has been carried out to find the profiles of fluid flow over a sphere as a film. The Navier-Stokes equations have been used in the present work to predict the velocity profiles of water flow over a sphere.

2.11.2. TEMPERATURE PROFILES,

Considerable information concerning heat transfer or mass transfer or simultaneous mass and heat transfer in flow of gases through granular packings (approximately 150 references) has been presented in the literature. These studies have been conducted primarily to obtain experimental data for establishing mass - and heat transfer factors.

The majority of workers use a thermocouple probe to find the temperature profiles in packed or fluidized beds. This probe either moves at a given interval height or is imbedded in porous spheres^(188,189,190,191,192,193,etc.)

The equation of energy in terms of the transport properties has been derived and is discussed in detail by Bird et al.⁽¹⁵⁹⁾. The equation of energy can be represented in spherical coordinates (r, θ, ϕ) as follows:

$$\rho_{\rm L} C_{\rm L} \left(\frac{\partial \Gamma}{\partial t_{\rm m}} + U_{\rm r} \frac{\partial \Gamma}{\partial r} + \frac{U_{\theta}}{r} \frac{\partial \Gamma}{\partial \theta} + \frac{U_{\phi}}{r \sin \theta} \frac{\partial \Gamma}{\partial \phi} \right) = k \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Gamma}{\partial r} \right) \right] \\ + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Gamma}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right] + 2 \mu \left[\left(\frac{\partial U_{\rm r}}{\partial r} \right)^2 \right] \\ + \left(\frac{1}{r} \frac{\partial U_{\theta}}{\partial \theta} + \frac{U_{\rm r}}{r} \right)^2 + \left(\frac{1}{r \sin \theta} \frac{\partial U_{\phi}}{\partial \phi} + \frac{U_{\rm r}}{r} + \frac{U_{\theta} \cot \theta}{r} \right)^2 \right] \\ + \mu \left[\left[r \frac{\partial}{\partial r} \left(\frac{U_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial U_{\rm r}}{\partial \theta} \right]^2 + \left[\frac{1}{r \sin \theta} \frac{\partial U_{\rho}}{\partial \phi} \right]^2 \right]$$

$$+ \left[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{U_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial U_{\theta}}{\partial \phi} \right]^2 \right]$$

$$(117)$$

The terms contained in braces { } are associated with viscous dissipation and may usually be neglected, except for systems with large velocity gradients.

Goldstein et al.⁽¹⁹⁴⁾ determined the velocity and temperature profiles of the condensed liquid from liquid-gas flow over a cooled circular cylinder. Brian and Hales⁽¹⁹⁵⁾ used the partial differential equation describing the transport of mass from a sphere. Mass transfer to spheres suspended in an agitated liquid had been studied both experimentally and theoretically. Finite - difference solutions were obtained for mass transfer from a sphere to a fluid flowing past it in steady viscous flow.

Very little work had been carried out to find the temperature profiles of water flowing over a sphere but equation (117) has been used in the present work for this purpose.

2.12. SUMMARY OF THE LITERATURE SURVEY.

A considerable volume of work had been carried out by a large number of workers on tower construction, packing arrangement, materials for packings, wood preservation, water treatment, spray elimination and many other important aspects of tower operation.

The majority of investigators ignore the resistance to

the heat transfer in the water phase, and consider the overall mass transfer coefficient.

Extensive experimental data (maldistribution, pressure drop, loading and flooding velocities, hold-up etc.,) had been published for conventional packings. However no work had been reported on the use of polystyrene spheres as packing in air - water cooling towers. In particular very little work had been carried out on the following items:

(a) Pressure drop, minimum fluidization velocity,
 loading and flooding velocities and hold-up for three phase
 fluidized beds.

(b) Velocity and temperature profiles of water film flow over a sphere.

(c) The nature of the water flow over a column or row of spheres.

(d) Increasing the heat and mass transfer rate.

DESIGN OF EXPERIMENTS.

3.1. PURPOSES OF INVESTIGATION.

In the literature there were no existing data on the use of polystyrene spheres as packing in water cooling towers. The purpose of this investigation therefore, was to obtain the transfer and hydrodynamic characteristics of fluidized and fixed beds of polystyrene spheres of various diameters (3, 2 and 1.5 in.). with the aim of assessing the practical limitations of the designs and design methods.

3.2. SELECTION OF COOLING TOWER.

A mechanical induced draft counter-flow cooling tower was selected, and the reasons for its choice were as follows:

(a) It provides vertical air movement across the packing, which achieves uniform fluidization.

(b) The coldest water contacts the driest air and the warmest water contacts the most humid air.

(c) There is no recirculation of the hot humid exhaust air vaprous into the air intakes.

(d) The ground area in which it can be maintained is small.

(e) Maximum performance is thus obtained.

3.3. DESCRIPTION OF EQUIPMENT.

3.3.1. COOLING TOWER.

A flow diagram of the equipment is shown in Fig.(4). The general arrangement was as shown in Fig.(5); this was designed to provide maximum accessibility to the tower section for observation, photography and maintenance without restricting the operation of control valves or switches, or the observation of instruments mounted on the control panel. The equipment and instruments were arranged

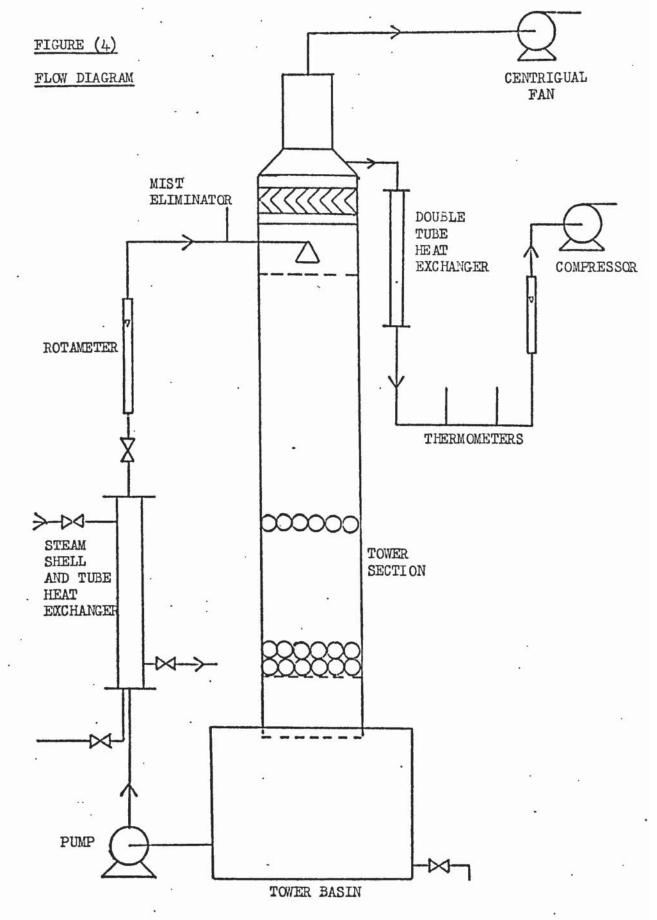
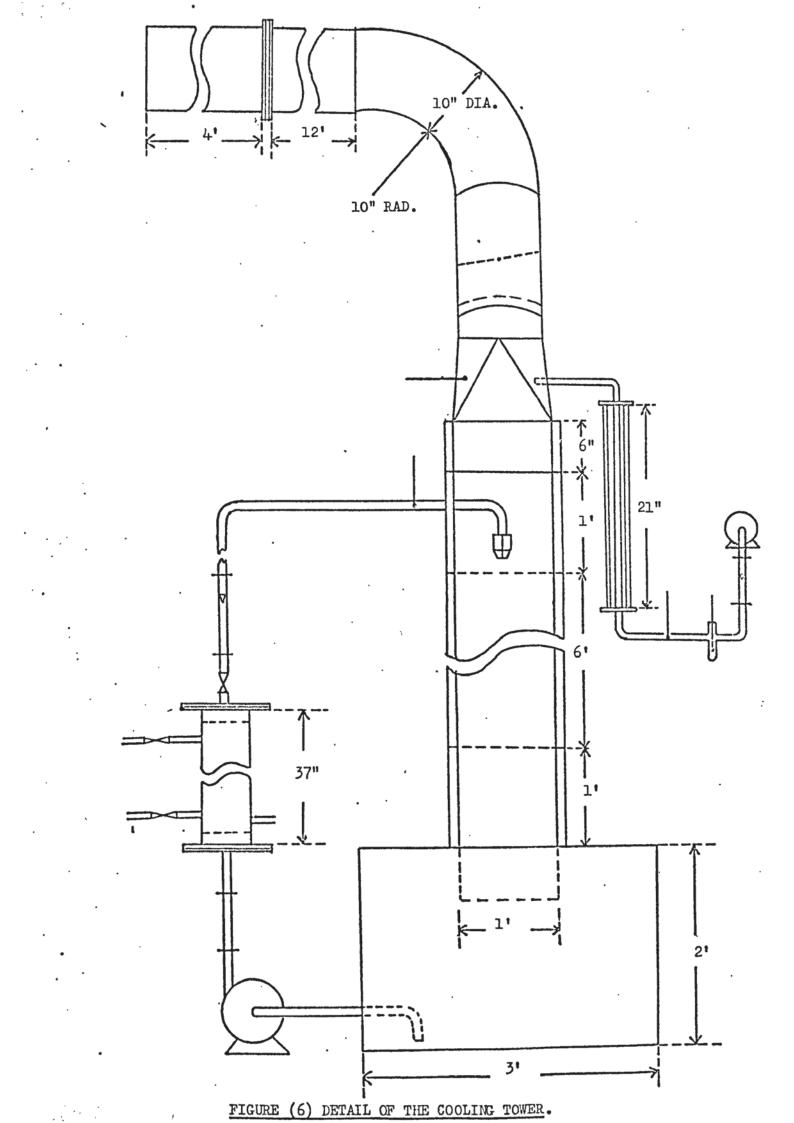
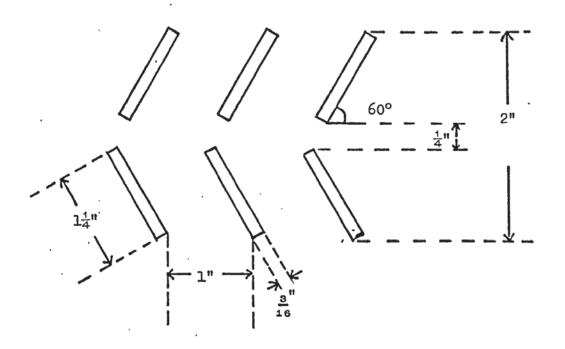


FIGURE (5) GENERAL ARRANGEMENT OF EQUIPMENT.

so that the overall material and energy balances could be readily accomplished.


Water circulation during a run was maintained in a closed system. The water from the tower basin $2 \times 3 \times 2$ ft. was pumped by means of a Stuart Turner No.22 centrifugal pump capable of pumping 850/2000 g.p.h. against45/ 5 ft. head of water. The water passes through a steam shell and tube heat exchanger, and then to the tower distributing main.

A Lechler nozzle with $\frac{1}{4}$ in. orifice diameter was used for water distribution, and the spray angle was adjusted by a rubber tube placed round the nozzle.


Water flowrates were measured by means of an independently calibrated Type 35S rotameter with stainless steel float.

All interconnecting piping consisted of 1 in. bore mild steel tubing. A diaphragm valve was used to control the amount of water fed to the tower. Two Bailey reducing valves were connected in series with a pressure gauge, the first one reduced the pressure from 120 (main supply) to 60 p.s.i. and the second one from 60 to 5 p.s.i. These valves were used to adjust the rate of steam to the shell of the heat exchanger.

The tower is detailed in Fig.(6) and illustrated in Fig.(5). The tower is 1 ft. by 1 ft. in cross-section and $8\frac{1}{2}$ ft. in height. The section available for the packing is 6 ft. in height, which lies between the air distributor and a galvanised steel welded mesh $\frac{1}{4} \times \frac{1}{4}$ in. (16 W.G.) retaining grid. Two sides of the tower were constructed of 18 gauge (0.048 inch thick) galvanised steel. The other two sides were $\frac{1}{4}$ in. thick perspex which were bolted to the galvanised steel sides. This design was used to give more flexibility of opening the tower and observing the water and packing movement. A mist eliminator made out of wood and detailed in Fig.(7) was placed

on the top of the water distributor chamber.

FIG. (7). DETAIL OF MIST ELIMINATOR.

The air distributor is $\frac{1}{2}$ in. thick perspex with 49 holes. These holes of 1 in. diameter are arranged on l_4^1 in. square pitch (free area 28%). One pressure tapping is placed below the air distributor and another one above the retaining grid. These tappings are connected to two U-tube manometers to measure the pressure drop in the tower and the pressure at the top of the tower. A tray of 1 ft.² cross-sectional area and $\frac{1}{2}$ in. in height was placed l_2^1 ft. under the air distributor, to measure the outlet water temperature.

The tower packing consisted of 3, 2 and 1.5 in. smooth non-porous polystyrene spheres. These spheres were placed in a net basket of galvanised welded mesh $\frac{1}{4} \times \frac{1}{4}$ in. (16 W.G.). The reason for using the basket is to change the packing easily.

The top of the tower was connected to a 10 in. I.D. galvanised steel duct. A brass orifice meter with 6 in. orifice diameter was situated in the line so that the straight duct upstream was 12 ft. long, and the straight duct downstream was 5 ft. long. The pressure tappings were located in the upper side of the duct such that the upstream tapping was 10 in. away from the orifice plate, and the downstream tapping was 5 in. The reason for placing the pressure tappings in the upper side of the duct was to prevent them from plugging with the condensed vapour. The condensed vapour was drained by two copper pipes of $\frac{1}{4}$ in. I.D. located at a distance each side of the orifice plate. These specifications were adopted according to B.S.1042⁽¹⁹⁶⁾. The pressure across the orifice plate was measured by an inclined manometer.

· · · ,

A Keith Blackman centrifugal fan supplying air through the tower was mounted on the roof of the laboratory. The air flow was controlled by a butterfly valve located in the 10 in. diameter duct, and 3 ft. away from the mist eliminator.

Temperatures were measured by means of calibrated mercury in glass thermometers^(197,198) and these were

(a) Water temperature into the tower.

(b) Water temperature in the tower tray, by means of two thermometers, one located on each side of the tray.

(c) Wet bulb temperature of the air out of the tower, by means of two wet bulb thermometers, one mounted on each side of the tower, and above the mist eliminator.

(d) Dry bulb temperature of the air out of the tower was measured by an indirect method. This method consisted of drawing a sample of moist air from the tower through $\frac{1}{2}$ in. I.D.electrically heated double pipe glass heat exchanger (the element resistance is 10 ohms). The voltage across the element was controlled by means of a Variac voltage regulator to give the desired temperature for heating up the air. Dry and wet bulb thermometers were placed in the line after the heat exchanger. The air sample was drawn from the tower by means of a Martin Dale Type MK3 air compressor ($\frac{1}{2}$ H.P.). The speed of the compressor was controlled by means of a Variac voltage regulator. The air flowrates were measured by means of a calibrated Type 7A

rotameter with Aluminium float. All interconnecting piping consisted of $\frac{1}{4}$ in. bore glass tubing. These tubes were lagged to minimise the heat losses and radiation effect. The general arrangement of the equipment is shown in Fig.(8).

3.3.2. HOLD-UP APPARATUS.

Two touching spheres were supported vertically or horizontally on a $\frac{1}{8}$ in. rod passing through the centre of spheres. These are illustrated in Figs.(9,10,11).

A 2 x 2 matrix of touching spheres was supported by means of two parallel $\frac{1}{8}$ in. rods passing through the centre of the spheres. This arrangement is illustrated in Fig.(12).

To simulate the fluidized bed movement, two touching spheres were supported horizontally on a $\frac{1}{8}$ in. rod. The rod was rigidly coupled to a $\frac{1}{8}$ H.P., 3000 r.p.m. electric motor The rod speed was controlled by means of a Variac voltage regulator. This is illustrated in Fig.(13).

The water flowrates running over the spheres were measured by means of a calibrated Type 14S rotameter with a stainless steel float.

The feed vessel was comprised of a 20 litre glass aspirator. Transfer of water from the feed vessel to the water distributor was by means of a Stuart Turner No.10 centrifugal pump capabile of pumping 40/120 g.p.h. against 5/20 ft.head of water.

Methyl blue was used to establish whether the water film over the sphere, and the meniscus between the spheres was in turbulent or laminar motion.

Two methods were used to introduce the dye into the water stream:

(a) By injecting the dye into the water stream using a hypodermic syringe.

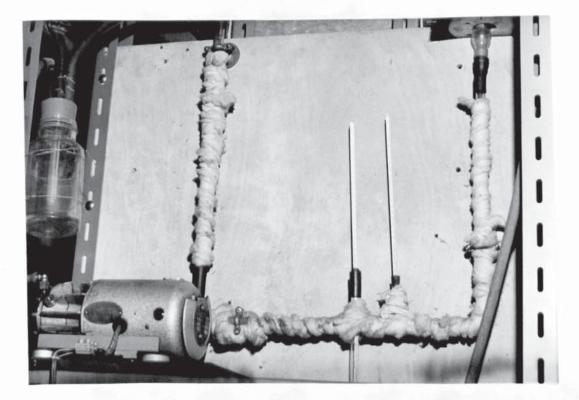


FIGURE (8) GENERAL ARRANGEMENT OF EQUIPMENT FOR MEASURING THE DRY BULB TEMPERATURE.

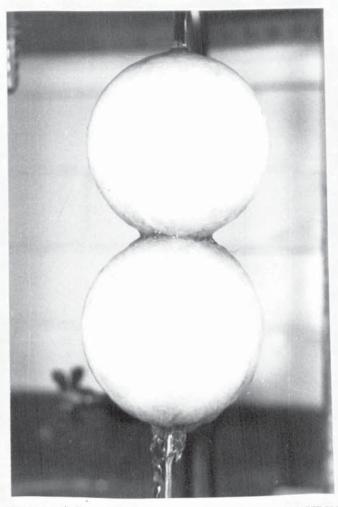


FIGURE (9) ILLUSTRATION COLUMN OF SPHERES.

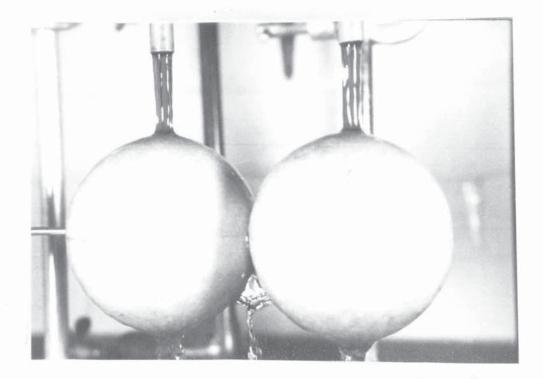


FIGURE (10) ILLUSTRATION ROW OF SPHERES.

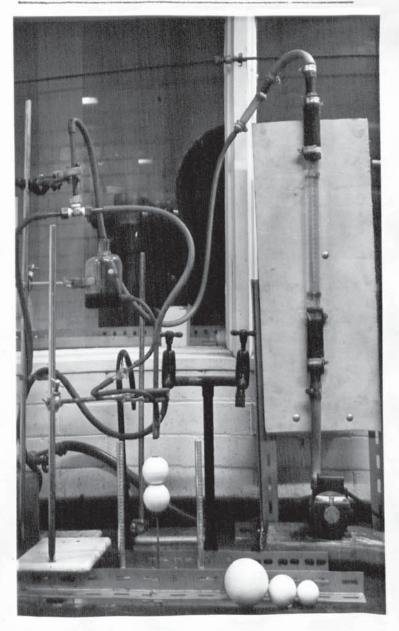


FIGURE (11) GENERAL ARRANGEMENT OF EQUIPMENT.

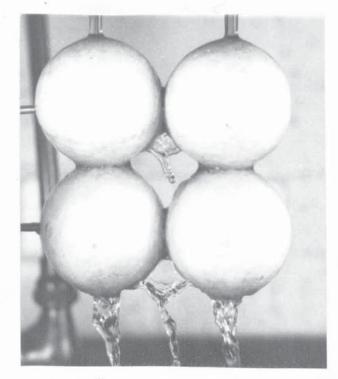
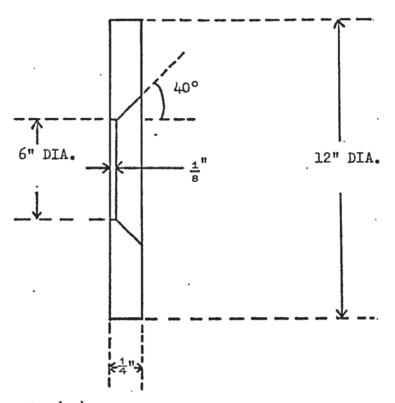


FIGURE (12) ILLUSTRATION MATRIX OF SPHERES.


FIGURE (13) GENERAL ARRANGEMENT OF EQUIPMENT.

(b) By continuously dropping dye over the water

film.

3.4. DESIGN AND CALIBRATION OF THE ORIFICE PLATE WITH d_{+} AND $d_{+}/2$ TAPPINGS.

The design of an orifice plate and calculations of the air flowrates have been carried out as recommended in B.S.1042⁽¹⁹⁶⁾. The brass orifice plate is detailed in Fig.(14). The calculated air flowrates ft^3 ./sec. at S.T.P. against pressure drop I.W.G. were plotted in Fig.(1), Appendix (A).

FIG. (14) DETAILS OF THE ORIFICE PLATE.

To check the accuracy of the orifice plate, a hemisspherical head pitot tube with $\frac{1}{8}$ in.I.D. and with unity coefficient of discharge was used. The method described in B.S.1042⁽¹⁹⁶⁾ for using the pitot tube to find the pressure drop and air flowrate was adopted. For a given air flowrate, the pressure drop across the pitot tube at different distances from the wall of the duct was measured. At the same time the pressure drop across the orifice plate was measured. This procedure was repeated for different air

7].

flowrates. For comparison the pitot tube and the orifice plate results were plotted in Fig.(1), Appendix (A). These results showed excellent agreement between the two devices.

3.5. DESIGN OF THE STEAM SHELL AND TUBE HEAT EXCHANGER.

A single pass shell and tube heat exchanger was constructed as shown in Fig.(6). The shell and tube heat exchanger was designed according to B.S.1500⁽¹⁹⁹⁾ and Kern⁽²⁰⁰⁾ recommendation. The shell dimensions were 38 in. long, 6 in. I.D. and 6.6 in.O.D. The number of tubes was 25, and measured 30 in. long, $\frac{9}{16}$ in. I.D. and $\frac{11}{16}$ in. O.D. These tubes were arranged on a triangular pitch with $\frac{5}{16}$ in. centre to centre. The flange diameter was 11 in., and $\frac{1}{2}$ in. thick. The heat exchanger was capable of heating 12000 lb./h. water passing through the tubes from 70°F. to 140°F., with saturated steam condensing in the shell at 120 p.s.i. (340°F.).

3.6. EQUIPMENT FOR ME ASURING THE FILM THICKNESS.

3.6.1. MICROSCOPE.

A Griffin co-ordinate vernier microscope type El8 was used. The magnification power was equal to 30. The micrometer eye-piece graticule range was 5 m.m. with 100 divisions. This was calibrated against a stage micrometer, and gave each division as 0.00238 cm.

Lighting was provided by one 100 Watt lamp positioned at the rear of the sphere.

3.6.2. CONDUCTIVITY PROBES.

Two brass probes were connected to the A.V.O meter. These probes were designed in such a way that a vertical and horizontal movement on a calibrated scale could be obtained.

3.7. PHOTOGRAPHIC TECHNIQUES.

3.7.1. STILL PHOTOGRAPHY.

An Ashi-Pentax camera with a 200 m.m. f 4.5 telephoto lens was used. Extension tubes were fitted as necessary. Lighting was provided by two or three 500 Watt photoflood lamps positioned at the rear and the right hand side of the touching spheres.

The camera was focused on the meniscus; photographs were taken at suitable intervals of each condition to be recorded. These showed excellent reproducibility.

Kodak Tri-X, 400 A.S.A. film was used.

3.7.2. CINE PHOTOGRAPHY.

A Beaulieu type R.16 camera fitted with telephoto lens P.Angenieux f 17, 68 m.m., 1:2.2 was used for Cine photography. This had a framing range of 2-64 frames per second. Kodak Tri-X reversal black and white film, A.S.A. 160 was used throughout.

Lighting was provided by two 500 Watt photoflood lamps. The arrangement of these was selected by trial and error to give good contrast.

The film speed was checked by filming the Nero stop watch, which could measure 0.01 sec.

4. EXPERIMENTAL PROCEDURES AND RESULTS.

4.1. COOLING TOWER.

Three different sphere diameters 3, 2 and 1.5 in. of smooth non-porous partially wetted polystyrene were used. These spheres were counted before being dumped into the tower basket, and the voidage was obtained. Precaution was taken to obtain a uniform packing distribution by shaking the tower basket. The packing heights were set at 6, 4.5, 3 and 1.5 ft. for each sphere size .

In the present research water and air flowrates ranged between 1000 and 6000 lb./h.ft². and 700 and 3000 lb./h.ft². respectively.

4.1.1. THREE PHASE FIXED BED.

Precaution was taken to be sure that the spray water covered the top packing and not the tower walls, and this was achieved by adjusting the length of the rubber tube over the nozzle. For a given water flowrate, the air flowrate was varied by varying the position of the butterfly valve. The pressure drop across the orifice plate was measured by means of an inclined manometer. The average of the maximum and minimum readings of the manometer were taken. (The difference between the two extremes was not great). For a given air flowrate, the water flowrate was changed by means of a diaphragm value. This procedure was repeated for different packing heights and sphere sizes.

During the experiments, it was observed that water maldistribution occurred at different packing heights, sphere sizes, water and air flowrates. This phenomenon was found to be more pronounced as the height of the packing was increased, and the sphere diameter decreased. It was also found that the maldistribution was reduced at an $\frac{L}{G}$ ratio of the order of unity. These observations were in good agreement with the work of other investigators^(95,96,97,98).

4.1.2. THREE PHASE FLUIDIZED BED.

For a given packing height, sphere diameter and water flowrate, the air flowrate was increased gradually until the bed started to expand, and this air flowrate was recorded. The air flowrate was increased above the minimum fluidizion velocity by changing the position of the butterfly valve.

The same procedure used for the fixed bed was adopted for the fluidized bed.

The packing heights were measued by averaging the maximum and minimum heights.

To study the movement of the spheres and the whole packing, different coloured and lined spheres were introduced into the bed. By observing the movement of these spheres it seemed that a stagnant layer of one or two spheres height stayed at the base of the tower. Bubbles occupied the whole cross-section of the tower and divided the bed into several layers, slugs, which were carried upwards. During the upward motion spheres separated from the bottom of the slugs and fell back, until finally the slugs collapsed, while in the lower part of the fluidized bed new slugs were forming. The water flow enhanced the downward movement of the spheres. The frequency of forming of the layers in the bed depended on the packing heights. sphere diameter, air and water flowrates. It was found that the frequency of forming the layers increased as the packing height and sphere diameter decreased. It was observed that the movement of the spheres in the layers and especially the top layer established a parabolic velocity profile. It was also observed that each sphere rotated round its axis, while the bed ascended. The movement of the dry and wet packing are illustrated in Figs. (15 and 16) respectively.

The vigorous movement of the spheres reduced the water maldistribution compared with the three phase fixed bed. It was

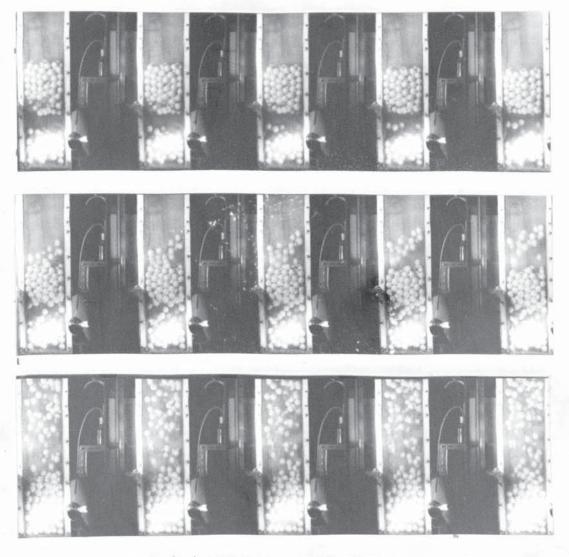


FIGURE (15) ILLUSTRATION MOVEMENT OF THE DRY PACKING.

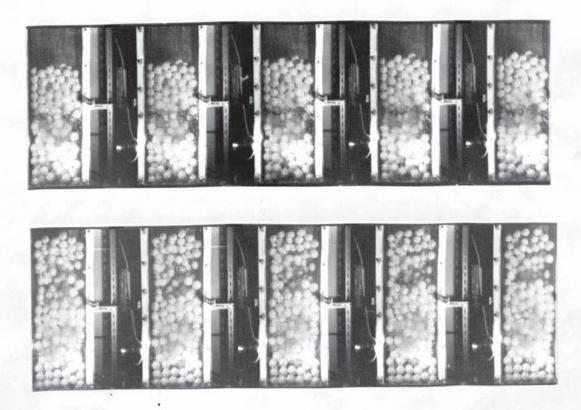


FIGURE (16) ILLUSTRATION MOVEMENT OF THE WET PACKING. found that the water could be distributed without the water distributor because of the turbulent movement of the spheres.

4.1.3. TEMPERATURE MEASUREMENT.

The amount of steam fed to the shell and tube heat exchanger was adjusted by means of two reducing valves to heat up the water to the desired temperature. The water temperature was measured at a point before the water entered the tower. The water temperature leaving the tower was measured by two thermometers, one placed on each side of the tower tray.

The wet and dry bulb temperatures of the air entering the tower were measured by means of a sling hygrometer which was swung at about 120 r.p.m. to maintain an air velocity of 10 ft./sec.^(70,77,78,79). This procedure was carried out at different places near the basin of the tower. The readings were taken when the thermometers gave constant low readings.

The wet bulb temperature of the exit air was measured by means of two wet bulb thermometers, one placed on each side of the tower. The temperatures were recorded when the thermometers gave constant readings. The wet bulb thermometers were checked from time to time to confirm that they were wet; this was usually so because the exit air was either saturated or near to saturation.

To find the dry bulb temperature, a continuous stream of air was drawn from the tower. The air was heated up by means of the electrical double tube heat exchanger; both the dry and wet bulb temperatures were thus raised at fixed humidity. The air flowrate was measured and maintained at 15 ft./sec. to reduce the effect of radiation on the thermometers. The values of dry and wet bulb temperatures were recorded when the equilibrium state was reached (i.e. constant readings). This method took a long time to reach the equilibrium state, and the wick needed continuous attention to prevent

it from drying. This indirect procedure allowed the dry bulb temperature to be found as shown in Fig.(17).

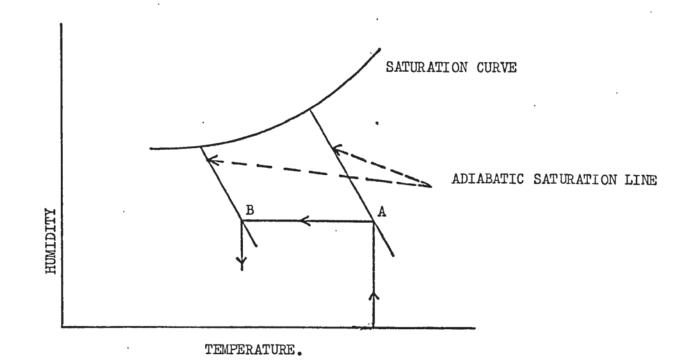


FIG.(17). METHOD OF FINDING THE DRY BULB TEMPERATURE.

By locating the point (A) which represented the air state after heating on the psychrometric chart, a straight line could be drawn (constant humidity) from (A) and produced until it met the wet bulb temperature of the air before heating at point (B). The dry bulb temperature could be obtained from the intercept of the perpendicular line drawn from point (B) and the temperature axis. This method of finding the dry bulb temperature gave an accurate result, but a lot of care was required as follows:

(a) Prevention of any droplet being carried out with the air sample. This could be achieved by filling the tube inside the tower with glass wool.

(b) The wet bulb thermometer reservoir was filled with distilled water at a temperature near or equal to the wet bulb temperature. This method avoided the effect of water reservoir heat capacity on the wet bulb temperature^(82,83).

(c) The tube carrying the air sample between the

tower and the electrical double tube heat exchanger was heated; otherwise condensation could occur.

The equipment used to measure the dry bulb temperature was lagged, to avoid the heat losses and radiation effect^(70,77,78,79).

The cooling tower run required about 20 min. to establish steady state.

4.1.4. PRESSURE DROP MEASUREMENT.

The pressure drop across the packing and the pressure at the top of the tower were measured by means of U-tube manometers. Precaution was taken to ensure that no water from the tower plugged the pressure tappings. This was achieved by connection of the U manometer and the pressure tapping to a knockout drum. Rubber tubes were used for connecting the pressure tapping and the knock-out drum. These rubber tubes were squeezed many times to get rid of the water held in the pressure tapping before taking the pressure drop readings.

The turbulent motions of the bed gave rise to difficulties in measurement of the pressure drop, and this was due to a large fluctuation in the manometers compared with the fixed bed. Averaging the maximum and minimum of the manometer readings was practiced.

The reason for measuring the pressure at the top of the tower and at atmospheric pressure was to correct the wet bulb temperature readings^(77,81).

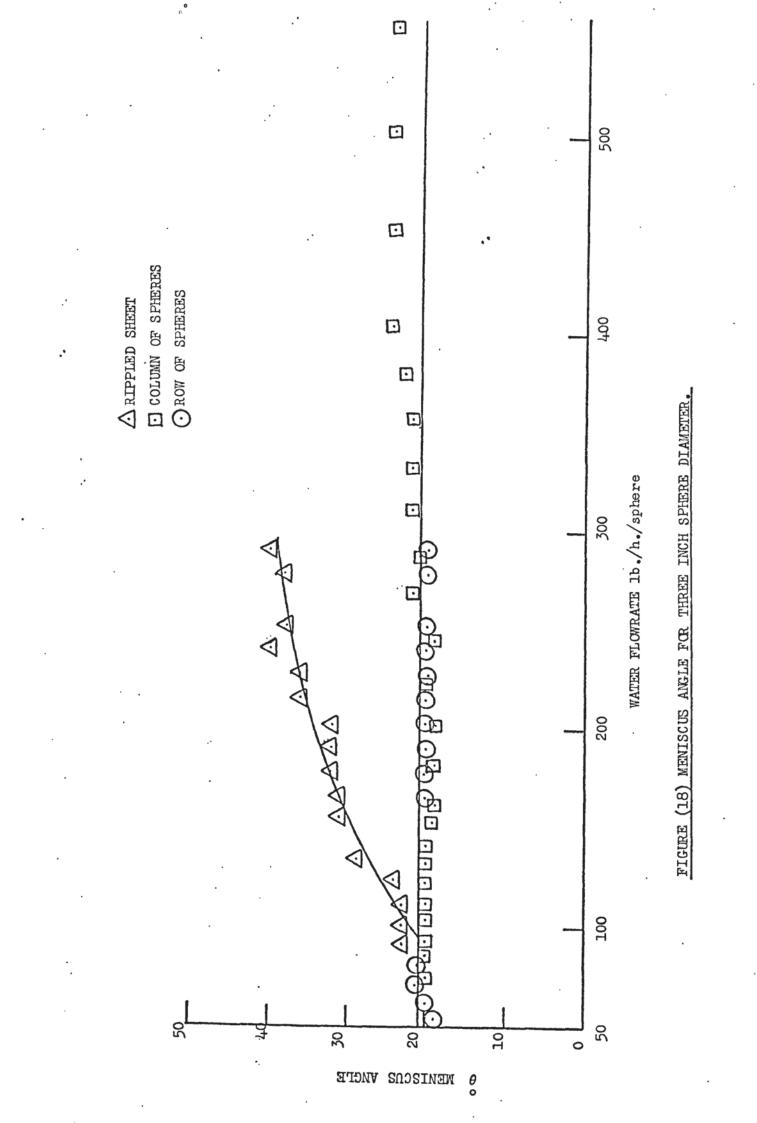
4.1.5. LOADING AND FLOODING PHENOMENA.

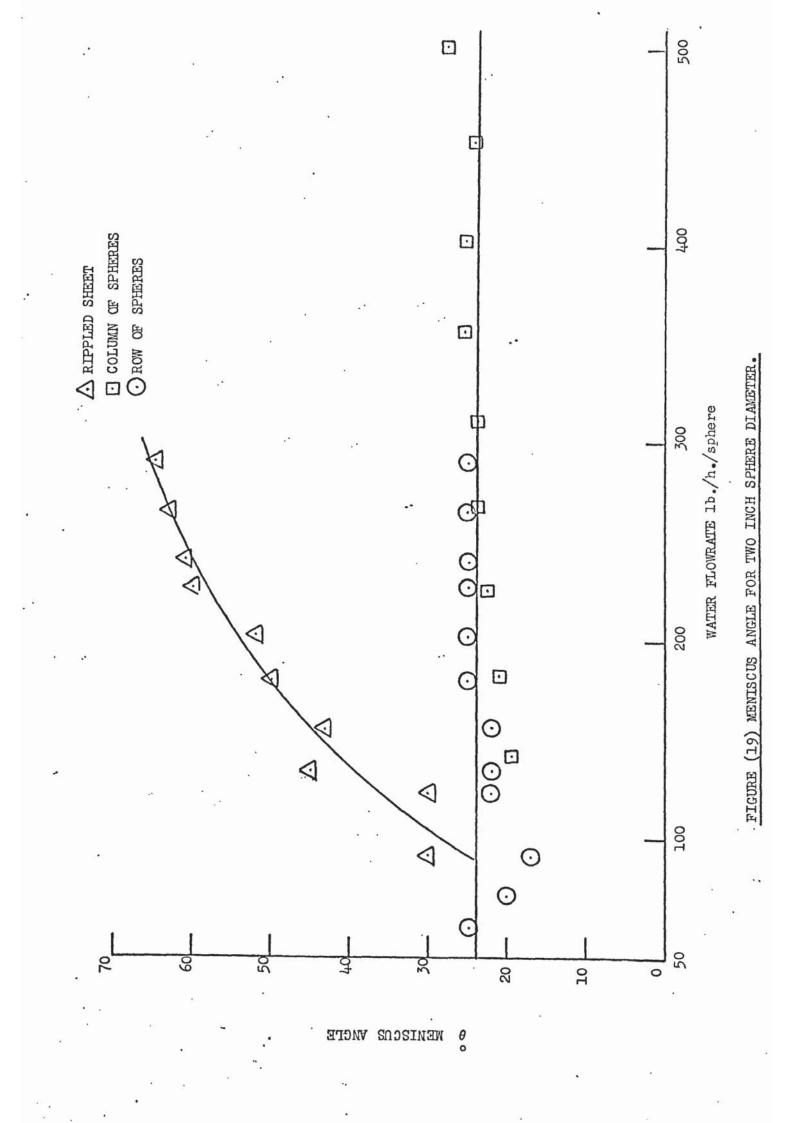
The loading and flooding rates were obtained for different sphere diameters and packing heights. For packing heights of 4.5, 3, and 1.5 ft. a retaining grid was placed on the top of

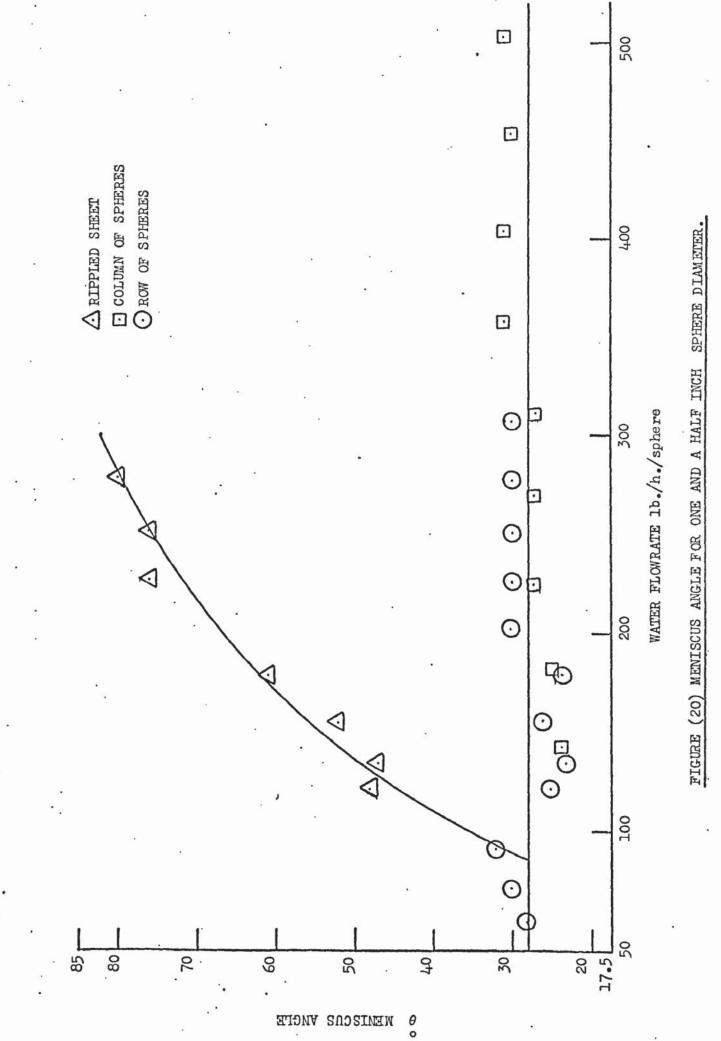
the packing.

It was observed that the loading and flooding occurred in the fixed bed when the air flowrate exceeded the minimum fluidization velocity. The indication of the onset of the loading region was a high pressure drop across the packing. Towards the end of the loading region the water hold-up increased to a point where a layer of water collected on the top of the packing. This point was known as the visual flooding point.

It was found that the three phase fluidized bed allowed a higher air and water flowrate than the three phase fixed bed without flooding occurring. The air and water flowrates for the three phase fluidized bed should not exceed these flowrates used in the present research; otherwise the spheres would be carried by the air stream and accumulated at the retaining grid and cause flooding.

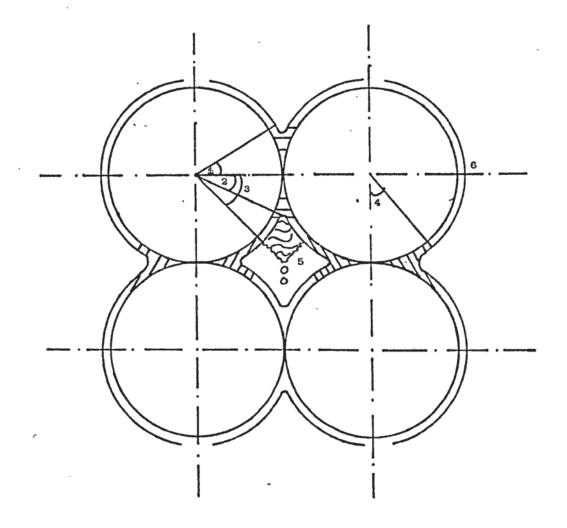

4.2. HOLD- UP MEASUREMENT.


4.2.1. PHOTOGRAPHIC METHOD.


The meniscus angle between two touching vertical spheres was measured for different water flowrates and sphere diameters. The meniscus angle was found to be independent of water flowrates, and dependent on sphere diameters.

Plotting the meniscus angles against water flowrates Figs.(18,19 and 20) showed that the angle for 3, 2 and 1.5 in. sphere diameters were 21°, 24°, and 28° respectively. The meniscus angle of 1.5 in. sphere diameter was in excellent agreement with the meniscus angle of al.49 in. table tennis ball 28° measured by Davidson et al.⁽¹⁵⁵⁾ and 27°50' measured by Malcor⁽¹⁵⁶⁾.

The same procedure was carried out with two touching horizontal spheres. It was found that the upper meniscus angles for 3, 2 and 1.5 in. sphere diameter were 14°, 18°, and 20.5° respectively.



These meniscus angles were also found to be independent of water flowrates. The lower meniscus angle consisted of two regions:

(a) A continuation of the upper meniscus angle, which was found to be independent of water flowrates. This angle had the same value as the meniscus angle for two touching vertical spheres for a given sphere diameter.

(b) A rippled sheet with approximately 2 m.m. thickness joined to the lower meniscus angle. This was shown in Fig.(21), and illustrated in Fig.(12). The angle of the lower meniscus plus the rippled sheet was found to be dependent on the water flowrates. In Figs.(18,19 and 20) the angles of the lower meniscus plus the rippled sheet for different sphere diameters were plotted against water flowrates. Figs.(18,19 and 20) showed that the rippled sheet started to form at water flowrates above 100 lb./h./sphere for different sphere diameters.

The rippled sheet acted as a secondary water distributor. The water from the secondary distributor for different sphere diameters was collected and found to be linearly proportional to the water flowrates over the sphere.

- (1) Upper meniscus angle.
- (2) Lower meniscus angle.
- (3) The angle of rippled sheet plus lower meniscus.
- (4) Meniscus angle for vertical two touching spheres.
- (5) Rippled sheet (secondary distirbutor).
- (6) Water film over the sphere.

FIG.(21) WATER FLOW OVER SPHERES.

For a given water flowrate and sphere diameter the meniscus angle of two touching spheres vertically or horizontally was the same if they were alone or in a 2×2 matrix.

To simulate the fluidized bed two touching horizontal spheres were rotated at different speeds which were varied between 80-120 r.p.m. This procedure was carried out for different water flowrates and sphere diameters and it was found that the meniscus angles were the same as if the spheres were stationary. The

difference between the rotating and fixed spheres was that for rotating spheres, the rippled sheet had a small area and a horizontal direction. These differences were due to centrifugal force.

4.2.2. WEIGHING METHOD.

The photographic method was used to find the meniscus angle while the water was running over the spheres. When the water flow was shut off, most of the continuous water film drained except a certain amount which remained between the two touching spheres. Two methods were used to transfer the water remaining between the two touching spheres and these were as follows:

(a) Using a filter paper to absorb the water.

(b) Using a hypodermic syringe to suck the water. For a given sphere diameter it was found that the weights of the transferred water (static hold-up) by the filter paper and by the hypodermic syringe were in excellent agreement. It was also found that the static hold-up was independent of water flowrate. The static hold-up for two touching vertical spheres of 3, 2 and 1.5 in. diameter was found to be equal to 0.578, 0.451 and 0.278 gm. respectively. The static hold-up for 1.5 in. sphere diameter was in good agreement with the result of Davidson et.al.^(153,154,155) which was 0.4 gm. It is also in good agreement with Malcor's dimensionless groups; the static hold-up in the present case would be 0.25 gm. Davidson et al.^{((153,154,155)} claimed that 0.4 gm. is not a true static hold-up since the film thickness is substantial at angles of 28° and 152°.

4.2.3. FILM THICKNESS MEASUREMENT.

Fig.(21) showed an outline, to scale, of the free surface of the film. For the theoretical calculations, the film was divided into two parts. The meniscus, shown shaded, was found to have a volume independent of flowrate which would be referred to as the static hold-up. The water between the angles 28° and 152° for 1.5 in. sphere diameter for example was a dynamic hold-up, in that it varied with water flowrate, and the volume could be estimated from equations given by Lynn et al.^(150,151,152), and also by Davidson et al.^(153,154,155).

4.2.3.1. CONDUCTIVITY PROBES.

Initially conductivity probes were designed for measuring the film thickness. Each one of the probes was placed at the opposite side of the sphere and at the same level. These probes were allowed to touch the surface of the sphere, and then the water was permitted to run over the sphere. The probe was moved slowly until the A.V.O. meter showed there was no electrical circuit connecting the probes. The film thickness could be read from the scale attached to the probe. This method was adopted with the other probe. It was found that the conductivity probes gave wrong and irreproducible film thickness measurements, and therefore this method was rejected for the following reasons.

(a) The probe pulled part of the water film when it was moved away from the film. This was due to surface tension and wettability of the probes.

(b) It was very difficult to measure the distance which the probe moved from the surface of the sphere,

because of rotating shaft flexibility.

4.2.3.2. MICROSCOPE.

The microscope eye-piece graticule was set tangential

.83.

to the surface of the sphere, then the water allowed to run over the sphere. The film thickness could be read from the microscope. This method was repeated for different parts of the sphere. It was found that the film thickness was dependent on the water flowrates and the sphere diameters. It was also found that for a given water flowrate and sphere diameter, the film thickness round the sphere remained approximately constant. The water film thickness found by using the microscope method gave very good agreement with the results estimated from the equation given by Lynn et.al.^(150,151,152) and Davidson et al.^(153,154,155).

4.3. THE NATURE OF THE WATER FILM FLOW OVER A COLUMN OR A ROW OF SPHERES.

Methyl blue was used to establish whether the water film over the sphere, and the meniscus between the spheres were in turbulent or laminar motion. The dye was continuously dropped into the water film from its distributor which was placed next to the water distributor. It was found that the dye stream moved parallel to the water stream. This proved that the water stream was in laminar state, i.e. there was no mixing. The dye stream in the meniscus was in turbulent motion which proved that there was complete mixing. The dye could be injected by means of a hypodermic syringe, but precautions should be taken as follows:

(a) The needle of the hypodermic syringe should
 be placed parallel to the water stream in the water distributor.
 By doing so the disturbance in the water stream could be avoided.

(b) If the water stream in the water distributor was in turbulent motion, any dye injection would colour the whole water.

Cine films were taken to illustrate the laminar and turbulent motion of the water flow over a column and row of spheres. It was found that for different sphere diameters and water flowrates

as were used in the present research, the water film over the spheres was in laminar motion while the meniscus was in turbulent motion.

The dye was used to establish the movement of water flow over two rotating touching horizontal spheres, which simulated the fluidized bed. The dye motion showed that there was complete mixing in the meniscus between the spheres. The dye showed also that the water film over the hemisphere which rotated in the same direction as the water flow was in laminar motion. There were ripples on the other hemisphere which rotated in the opposite direction to the water flow. These phenomena were observed for different water flowrates and sphere diameters, and could be illustrated by the cine films which were taken.

4.4. FREE SURFACE VELOCITY.

By knowing the cine film speed, the free surface velocities of the water film over the sphere could be obtained. The free surface velocity for different water flowrates and sphere diameters were obtained from the cine films which were taken to establish the water film movement.

The free surface velocities were plotted against water flowrates for a given sphere diameter, and are shown in Fig.(22). The free surface velocities were in very good agreement with the results estimated from the equation given by Lynn et al.^(150,151,152), and Davidson et al.^(153,154,155).

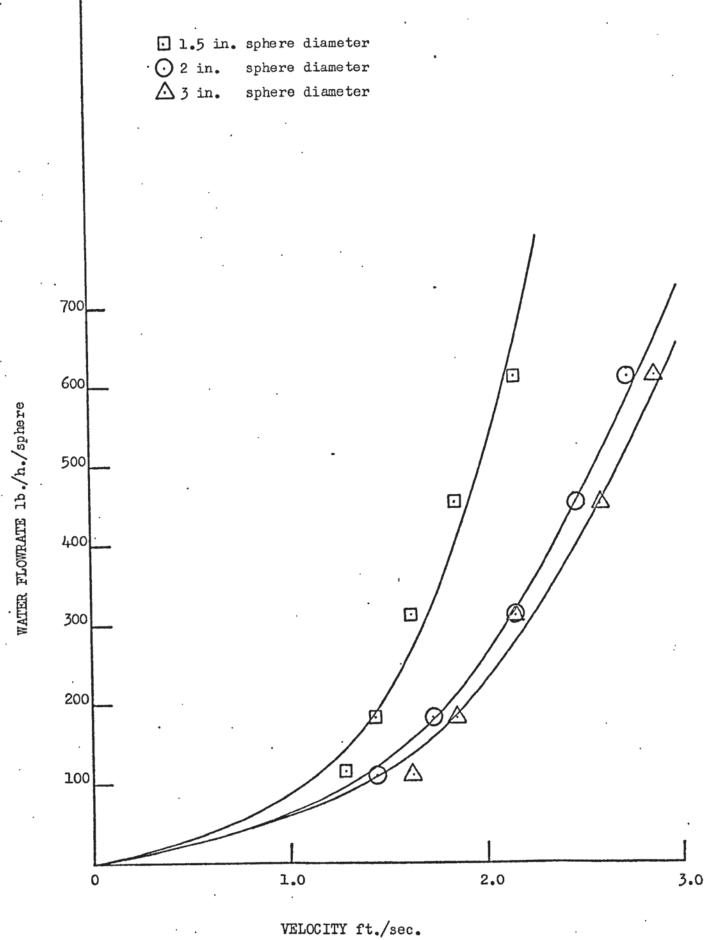


FIGURE (22) FREE SURFACE VELOCITY.

5. EXPERIMENTAL RESULTS AND DISCUSSION

5.1. CALCULATI ON METHODS.

The pressure drop across the packing, water and air temperatures were recorded and listed in Appendix (E). The water flowrates, air flowrates, overall volumetric mass transfer coefficient, effectiveness, efficiency, mass and heat balance were calculated as shown in Appendix (B). These results were also listed in Appendix(E).

The heat balance was calculated and was found to vary between -2.8% and 9.6%. These accuracies were in very good agreement with those reported by other workers^(27,28,35,50,58) and much better than the results obtained by some investigators^(29,37).

It might be seen from Appendix(E) that when the effectiveness (Appendix B.2) of the tower as an energy exchanger was low, the tower performance efficiency (Appendix B.2) as a water cooler was high and vice-versa, and as a rough approximation:

efficiency + effectiveness $\simeq 1$ (118) These results were in good agreement with the results obtained by London et al.⁽²⁷⁾.

5.2. K a FOR THREE PHASE FIXED BED.

The overall volumetric mass transfer coefficient was calculated according to equation (24). To find a relation between K_g a, sphere diameter, water and air flowrates a correlation which represented the experimental results within a specified accuracy had to be found.

Rowe⁽²⁰²⁾ discussed in detail some pitfalls which should be avoided when using dimensionless groups to express experimental results. The author came to a conclusion which agreed with Engel^(203,204) that the dimensionless groups must be used with caution to represent experimental data. Rowe⁽²⁰²⁾ and Engel^(203,204) suggested that the dimensionless groups which are derived from the fundamental equations of dynamics should be used to correlate the experimental data. It was further concluded that statistical methods were preferable to correlate the experimental data. These methods made the maximum possible use of the data, and gave the error involved in using the correlation^(205,206).

Kga was plotted against air flowrate for given water flowrate, height and sphere diameter; for each packing height and sphere diameter there were thirteen graphs of Kga against air flowrate, each consisting of between eight and ten points. They appeared to have a rather complex non-linear relation which improved in linearity with Log-Log and semi-Log transformation of the scales.

5.2.1. QUADRATIC AND LINEAR CORRELATIONS WITH THE DEPENDENT VARIABLE $\Delta T / \Delta H_m$.

A more comprehensive analysis involving water and air flowrate simultaneously for given packing height and sphere diameter was made. To avoid confusion when looking for the relation to sphere diameter, packing height, water and air flowrate consider $(\Delta T/\Delta H_m)$ from equation (24) as the dependent variable. Including the independent variables in the quantity under investigation might well lead to deducing spurious correlations and would certainly alter the error structure.

Fitting a quadratic surface using raw-data, the correlation would be

 $y = a_0 + a_1 X_1 + a_2 X_2 + a_{11} X_1^2 + a_{22} X_2^2 + a_{12} X_1 X_2$ (119)

Fitting a semi-Log data correlation

Log $y = a_0 + a_1 X_1 + a_2 X_2 + a_{11} X_1^2 + a_{22} X_2^2 + a_{12} X_1 X_2$ (120) and fitting a Log-Log data correlation:

 $Log y = a_0 + a_1 Log X_1 + a_2 Log X_2 + a_{11} (Log X_1)^2 + a_{22} (Log X_2)^2 + a_{12} (Log X_1) (Log X_2) (121)$

The method of least squares Appendix (C.1. and C.1.1.) was used to correlate the experimental data. The quadratic surface was thought to be the most complex required to fit the data and it was hoped that, in fact, a linear correlation would suffice. The linear correlation would appear in the forms of raw, semi-Log and Log-Log data as follows:

$$y = a_0 + a_1 X_1 + a_2 X_2 \tag{122}$$

$$Log y = a_0 + a_1 X_1 + a_2 X_2 \tag{123}$$

$$Log y = a_0 + a_1 Log X_1 + a_2 Log X_2$$
(124)

where

У	:	AT/AH m
X1	11	air flowrate
X2	=	water flowrate
ao	=	Intercept term (ANOVA tables)
81	11	Regression coefficient for the air flowrate (ANOVA tables)
82	11	Regression coefficient for water flowrate (ANOVA tables)
81:	1=	Regression coefficient for air flowrate squared (ANOVA tables)
82	a =	Regression coefficient for water flowrate squared (ANOVA tables)

a12= Regression coefficient for product of air and water flowrates (ANOVA tables)

These possibilities were investigated by decomposing the analysis of variance into parts due to the quadratic correlation and the linear correlation, and comparing the lack of fit in the two cases. It was possible to test for any significant loss in accuracy of prediction caused by dropping the quadratic terms.

For a given packing height and sphere diameter the analysis of variance (ANOVA NO.1 to 12) in terms of Log-Log data is listed in Appendix (C.1.2). ANOVA NO.(13 to 24) in terms of semi-Log data and ANOVA NO.(25 to 36) in terms of

raw-data are represented in Appendices (C.1.3 and C.1.4) re-

There were two aspects of interest to investigate in the analysis of variance as follows:

(a) The error variance (error mean square) from ANOVA NO. (25 to 36) for the raw-data correlations were as follows:

TABLE (1) ERROR MEAN SQUARE OF THE QUADRATIC CORRELATIONS

I	Sphere			
1.5	3	4.5	6	diameter in.
18.6 × 10 ⁻³	33.2 × 10 ⁻³	48.3 × 10 ⁻³	431.0 × 10 ^{-,3}	3
12.4 × 10 ⁻³	19.6 × 10 ⁻³	19.9 × 10 ⁻³	10.3 × 10 ⁻³	2
15.4 × 10 ⁻³	27.9×10^{-3}	44.0 × 10 ⁻³	48.6 × 10 ⁻³	1.5

From ANOVA NO. (13 to 24) for the semi-Log data correlations

TABLE (2) ERROR MEAN SQUARE OF THE QUADRATIC CORRELATIONS

Pa	 Sphere			
1.5	. 3	4.5	6	 diameter in.
6.1 × 10 ^{°3}	2.3×10^{-3}	2.8 × 10 ⁻³	2.8 × 10 ⁻³	3
1.3 × 10 ⁻³	4.6 × 10 ⁻³	4.3×10^{-3}	1.5 × 10 ⁻³	2
2.8 × 10 ⁻³	1.7 × 10 ⁻³	4.3×10^{-3}	2.1×10^{-3}	1.5

and from ANOVA NO.(1 to 12) for the Log-Log data correlations

TABLE (3)	ERROR	MEAN	SQUARE	OF	THE	QUADRATIC	CORRELATIONS
-----------	-------	------	--------	----	-----	-----------	--------------

Packing height ft.						
1.5	3	4.5	6	diameter in		
5.0×10^{-3}	1.9 × 10 ⁻³	2.5 × 10 ⁻³	2.2×10^{-3}	3		
1.2 × 10 ⁻³	4.9 × 10 ³	4.1 × 10 ⁻³	1.8 × 10 ⁻³	2		
2.6×10^{-3}	1.2×10^{-3}	4.9×10^{-3}	1.8 × 10 ⁻³	1.5		

Examining tables (1, 2 and 3) it could be seen that there was a distinct increasing trend in the error mean squares with the packing

height in Table (1). This increase in the error mean squares made the raw-data correlations invalid and caused difficulty in obtaining a combined correlation which included packing height as a concommitant variable; therefore the raw-data correlations were rejected. There was no such trend in Tables (2) and (3). A statistical test (Bartlett's test) could be used for testing the differences amongst each pair of sets within a table, but the results were so obvious that it was not considered worthwhile. Furthermore the test ignored any systematic differences between the variances thatoccurred in Table (1), and it was sensitive to nonnormality of the data.

The analysis of variance technique was also justified on the assumption of a specific distribution (S.D.) of the experimental errors, namely the normal distribution. These errors are investigated later on (Section 5.2.1.1.).

From Tables (2) and (3) the best estimated errors were 0.0031925 and 0.0029897 respectively. These errors were the weighted average (weighted with the degree of freedom of each estimate) and were based on the assumption that they all had the same variance. Thus there was a slight reduction in the error variance (less than 1% in the standard error) if the Log-Log transformation was used as opposed to the semi-Log transformation. Although this was a small reduction, the Log-Log data correlation was adopted for simplicity of interpretation.

(b) Only in the following cases was the linear correlation found to be adequate: ANOVA NO. 7,10 and 32 (Log-Log and semi-Log correlations), and therefore the linear correlation of raw data was rejected. The effect of using the linear correlation could be measured by the increase in the error of variance. The error mean squares for the linear correlations taken from ANOVA NO.(1 to 12) for the Log-Log data were as follows:

TABLE (4) ERROR MEAN SQUARE OF THE LINEAR CORRELATIONS.

Packing height ft.						
1.5	3	4.5	6	diameter in.		
6.6 × 10 ⁻³	2.7 × 10 ⁻³	3.3 × 10 ⁻³	2.7 × 10 ⁻³	3		
1.6 × 10 ⁻³	5.2 × 10 ⁻³	4.9×10^{-3}	2.9 × 10 ⁻³	2		
5.3 × 10 ⁻³	1.6 × 10 ⁻³	5.1 × 10 ⁻³	3.0×10^{-3}	1.5		

Table (4) gave an error 0.00382 compared with the quadratic error which was 0.0029897. The standard error would be 0.0547 for quadratic in Log-Log and 0.0618 for linear in Log-Log. Thus the error for prediction would be increased by 13% by using the linear correlation.

5.2.1.1. NORMALITY OF THE RESIDUAL ERRORS FOR THE CORRELATIONS.

As mentioned earlier it was necessary to check the normality of errors for the correlations. The coefficient of skewness was taken as a convenient measure of whether the correlation errors were normally distributed or not. The coefficient of skewness was calculated for the quadratic and linear correlation in Log-Log, semi-Log and raw-data. These coefficients are listed in Table (5) and the calculation of the coefficient of skewness is shown in Appendix (C.1.7.).

 TABLE (5)
 COEFFICIENT OF SKEWNESS (PACKING HEIGHT 1.5, 3, 4.5

 AND 6 ft.

		r
Coefficient of skewness.	Sphere diameter in.	Type of correlations
- 0.2	3	quadratic in Log-Log data
0.0418	2	quadratic in Log-Log data
0.1882	1.5	quadratic in Log-Log data
0.2955	3	quadratic in semi-Log data
- 0.2198	2	quadratic in semi-Log data
0.3246	1.5	quadratic in semi-Log data
7.785	3	quadratic in raw-data
- 0.0733	2	quadratic in raw-data
- 1.62	1.5	quadratic in raw-data
- 0.175	3	Linear in Log-Log data
0.106	2	Linear in Log-Log data
0.4305	1.5	Linear in Log-Log data
0.473	3	Linear in semi-Log data
0.00732	2	Linear in semi-Log data
0.824	1.5	Linear in semi-Log data
	1	l

From Table (5) the residual error which was examined by the coefficient of skewness showed approximately normal distribution for the quadratic and linear correlations in Log-Log and semi-Log, but not in the rawdata. Therefore, the correlation in the raw-data was rejected for its non-normal residual error distribution.

The ANOVA and the Histograms showed that the quadratic and the linear correlations were far the best to correlate the dependent variable $\Delta T/\Delta H_m$ with the two independent variables, air and water flowrates in the forms of Log-Log or semi-Log. The correlations in Log-Log had been adopted for the reasons mentioned earlier. Looking at the quadratic correlation, it was rather complex and was difficult to use for a fast calculation, and therefore a graphical method was used. This method consisted of plotting water flowrate against air flowrate for a given $\Delta T/\Delta H_m$, packing height and sphere diameter. Also included in this graph was the linear correlation, from which the

difference between this correlation and the quadratic correlation could be seen.

A 1900 ICL computer program was operated to plot the quadratic and the linear correlation graph. These are discussed in Appendix (C.2) and shown in Figs.(23, 24 and 25). The experimental results of $\Delta T/\Delta H_m$ for different water and air flowrates are shown in Fig.(25) to judge the agreement between the experimental data and the correlations.

5.2.1.2. PACKING HEIGHT IN THE QUADRATIC AND LINEAR CORRELATIONS.

Up to now the quadratic and linear correlations have contained only the two independent variables, air and water flowrate. A further attempt was made to include a further independent variable, the packing height. The analysis of variance for the quadratic and linear correlations in Log-Log, semi-Log and raw-data were performed in ANOVA NO.(37 to 39) Appendix (C.1.5.1.), ANOVA NO. (40 to 42) Appendix (C.1.5.2.) and ANOVA NO. (43 and 44) Appendix (C.1.5.3.) respectively. Table (6) shows the error mean square for different types of correlation which include packing height.

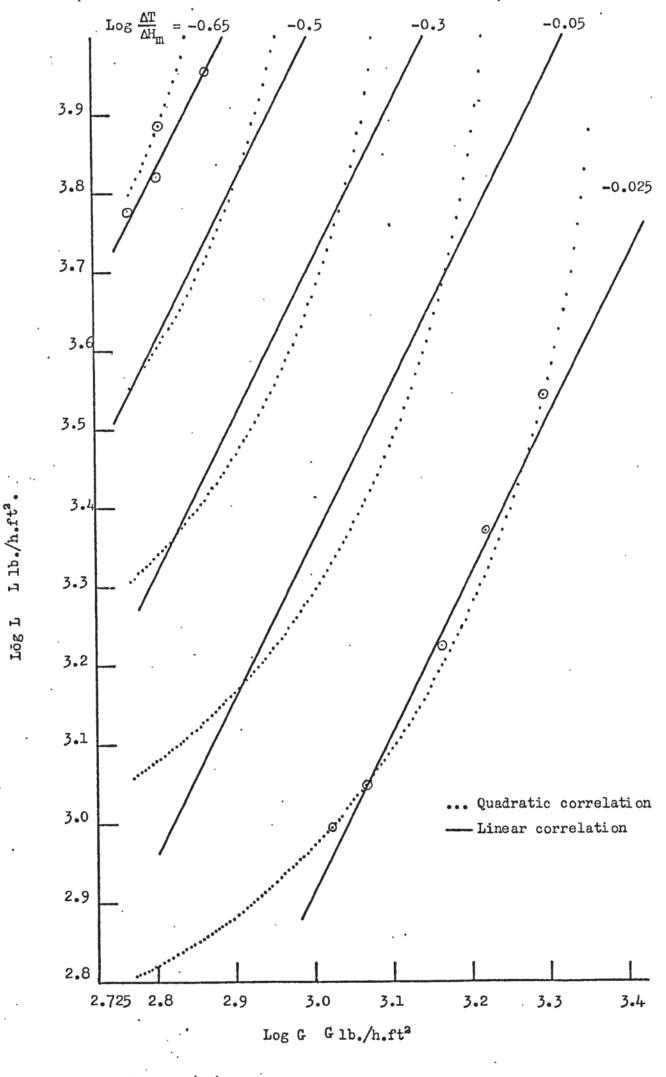
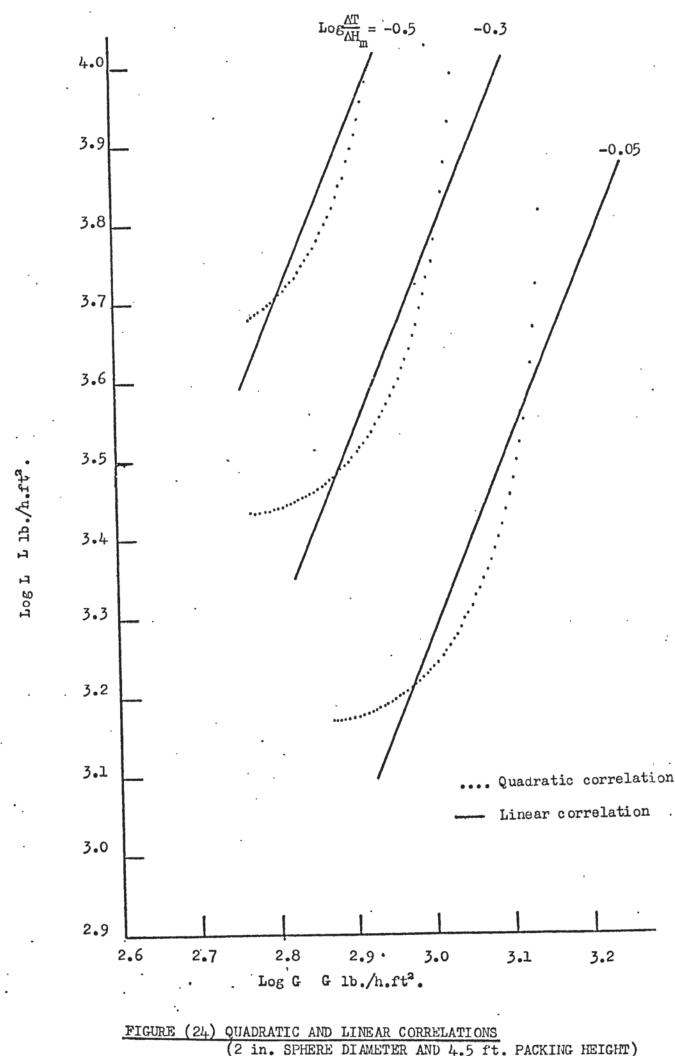
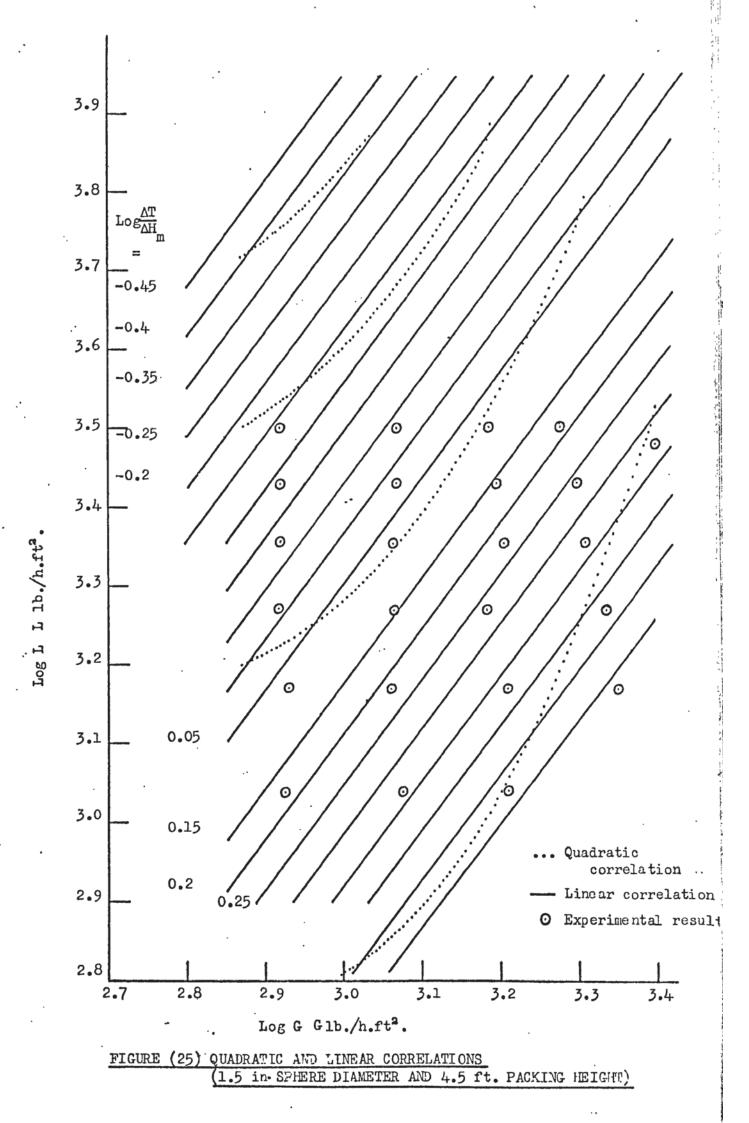




FIGURE (23) QUADRATIC AND LINEAR CORRELATIONS (3 in. SPHERE DIAMETER AND 4.5 ft. PACKING HEIGHT)

SPHERE DIAMETER AND 4.5

Error mean square.	Sphere diameter in.	ANOVA NO.	Appendix
3.4 × 10 ⁻³	3	37	C.1.5.1.
5.0×10^{-3}	2	38	
9.2 × 10 ³	1.5	39	
4.4 × 10 ⁻³	3	40	C.1.5.2.
5.5 × 10 ^{°3}	2	41	
7.2 × 10 ⁻³	1.5	42	
274 × 10 ^{-,3}	3	43	C.1.5.3.
98.9 × 10 ³	1.5	44	
4.0 × 10 ⁻³	3	37	C.1.5.1.
5.0 × 10 ⁻³	2	38	
9.3 × 10 [°] , ³	1.5	39	
7.1 × 10 ⁻³	3	40	C.1.5.2.
6.4 × 10 ⁻³	2	41	
8.0 × 10 ⁻³	1.5	42	
559 × 10 ⁻³	3	43	C.1.5.3.
· 153 × 10 ⁻³	. 1.5	44	

TABLE (6) ERROR MEAN SQUARE FOR DIFFERENT TYPES OF CORRELATION.

It was found that in the analysis of variance Appendix (C.1.5.) the regression coefficient for the packing height (a₃) was the same in the quadratic and linear representations for each type of correlation.

The error mean square in Table (6) for the quadratic in Log-Log was 0.0058451 and in semi-Log was 0.0071237 compared with the one which did not contain packing height in Log-Log which was 0.0029897 and in semi-Log which was 0.0031925. Therefore there was an increase in the error mean square of 48.8% and 55.2% respectively.

For the linear correlations in Log-Log and semi-Log, the error mean squares in Table (6) were 0.005869 and 0.007153 compared with the one not containing packing height in the same type of correlations which were 0.00382 and 0.0053363. Therefore there was an increase in error mean square of 34.9% and 25.4% respectively. From this analysis it was concluded that the packing height did not fit well into the correlations, within the range of experimental results for the water and air flowrates. Accepting the percentage error mentioned above, the packing height fitted the linear correlations much better than the quadratic correlations.

The raw-data correlations were rejected for the obvious reasons mentioned earlier.

5.2.1.3. PACKING HEIGHT AND SPHERE DIAMETER IN THE QUADRATIC AND LINEAR CORRELATIONS.

Further attempts were made to include another independent variable, which was the sphere diameter. The analysis of variance for the quadratic and linear correlations in Log-Log and semi-Log were performed in ANOVA NO.45 Appendix (C.1.6.1.) and ANOVA NO.46 Appendix (C.1.6.2.) respectively.

Error of mean square.	ANOVA NO.	Appendix.
6.0×10^{-3}	45	C.1.6.1.
6.0×10^{-3}	46	C.1.6.2.
6.2×10^{-3}	45	°.1.6.1.
7.5 × 10 ⁻³	46	C.1.6.2.

TABLE (7) ERROR MEAN SQUARE FOR DIFFERENT TYPES OF CORRELATION WHICH INCLUDE PACKING HEIGHT AND SPHERE DIAMETER.

Comparing Table (7) with Table (6) the error mean square was increased for the quadratic correlation in Log-Log by 2.7% and decreased in the semi-Log by 16%. For the linear correlation in Log-Log and semi-Log there was an increase by 5% and 4.5% respectively. The sphere diameter did not show a great deal of error on comparing Tables (7) and (6), but it showed on comparing Tables (7), (3) and (4). Therefore the sphere diameter did not fit into the correlations.

t

·95.

5.2.14. 95% CONFIDENCE INTERVALS AND ERRORS FOR THE CORRELATIONS.

The 95% confidence intervals and errors for the correlations were calculated as shown in Appendix (C.1.8.). These results are listed in Tables (1-10) Appendices (C.1.8.1.-C.1.8.10.) for the quadratic and linear correlations in Log-Log data and semi-Log data, only.others both some of these correlations in containing packing height. sphere diameter and packing height.

5.2.2. Kga CORRELATIONS.

It is reported in the literature that the majority of the investigators in the cooling tower field have correlated K_{ga} with the air and water flowrate as follows:

$$K_{ga} = C (G)^{a} (L)^{b}$$
 (125)

where C is a constant.

Most of the investigators did not give the percentage error involved using this correlation with the exception of a few of them⁽⁶³⁾.

For reasons of comparison an analysis of variance was performed to find the correlation between the dependent variable K a as defined in equation (24), and the two independent variables air and water flowrate.

It should be realised that the independent variable was involved partially with the dependent variable, which was the water or air flowrate and lead to uncertain error, as had been discussed earlier in this section.

The analysis of variance was performed as before and consisted of transformation into a Log-Log data correlation.

Error mean square.	Packing height ft.	Sphere diameter in.
2.7 × 10 ⁻³	6	3
3.3 × 10 ⁻³	4.5	3
2.7×10^{-3}	3	3
6.6×10^{-3}	1.5	3
2.9 × 10 ⁻³	6	2
4.9×10^{-3}	4.5	2
5.2 × 10 ⁻³	3	2
1.6 × 10 ⁻³	1.5	2
3.0 × 10 ⁻³	6	1.5
5.1 × 10 ⁻³	4.5	1.5
1.6 × 10 ⁻³	3	1.5
5.3 × 10 ⁻³	1.5	1.5

Examining Table (8) it can be seen that there is not an increasing trend with the packing height and sphere diameter. The error mean square for all packing heights and sphere diameters is 0.003819.

The residual errors for these correlations are approximately normally distributed. Comparing these correlations with the linear correlations in Log-Log data section (5.2.1.), it can be seen that the error mean squares are the same, because if the independent variables were arranged in the right form, and included the packing height they would give the same correlations as were obtained here. This agreement showed that the experimental results had very good accuracy and a double check for these correlations is represented as follows:

For three inch sphere diameter

Kga	=	0.000833	G ^{1 • 5 1}	L0.28	<u>+</u> 26.8%	(126)
0		0.00223			<u>+</u> 29.7%	(127)
		0.00811			<u>+</u> 26.2%	(128)
		0.0167			<u>+</u> 44.2%	(129)

For two inch sphere diameter

K a	=	0.00000232	G ^{1 • 95}	L ^{0•61}	÷	27.9%	(130)
Kga	=	0.00123	G ^{1 •33}	L ^{0•5}	±	37.1%	(131)
Kga	=	0.00955	G ^{1 • 1 7}	r_{o*31}	±	38.7%	(132)
Kga	=	0.000782	G ^{1 • 3 7}	L ^{0 •49}	<u>+</u>	19.7%	(133)

and For one and a half inch sphere diameter

Kga	=	.0.00020	G ^{1 • 70}	L ^{0•31}	<u>+</u>	27.9%	(134)
Kga	=	0.0490	G ^{0•98}	L ^{0 •25}	÷	38.4%	(135)
Kga	=	0.00347	G ^{1 • 35}	F0.56	<u>+</u>	19.9%	(136)
Kga	=	0.00288	G ^{1 • 2 4}	L ^{0 •46}	<u>+</u>	39.0%	(137)

The average percentage error for these correlations was 31.2 and its accuracy was in good agreement with Houston⁽⁶³⁾.

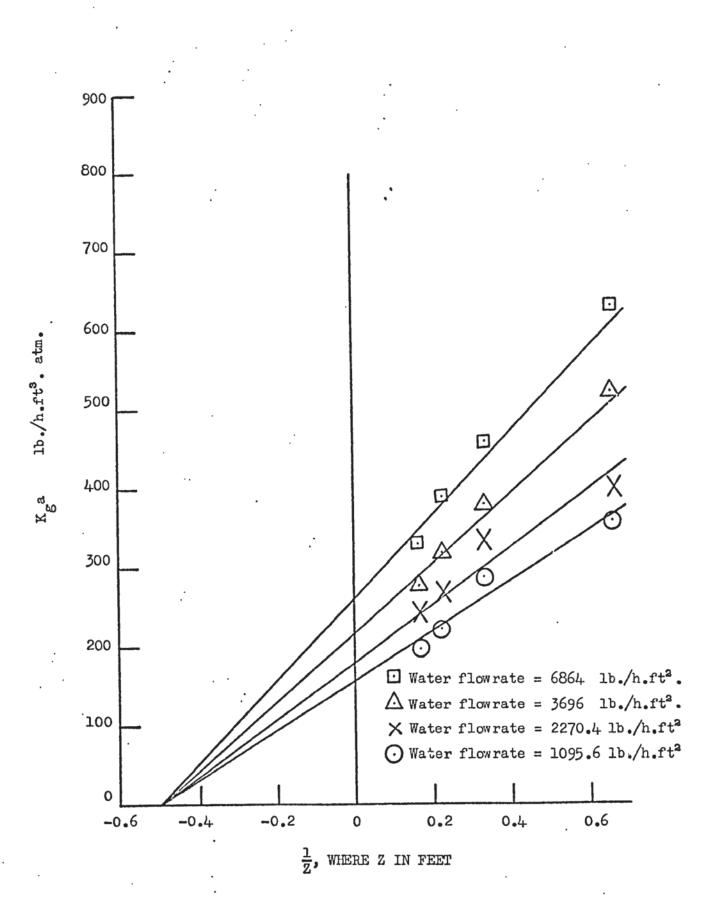
The 3 in. sphere diameter equations (126, 127, 128 and 129) were represented for packing heights 6 ft., 4.5 ft., 3 ft., and 1.5 ft. This was the same for equations (130,131,132 and 133) for the 2 in. sphere diameter and also the same for equations (134,135, 136 and 137) for the 1.5 in. sphere diameter.

Examining equations (126-129), equations (130-133) and equations (134-137) it can be seen that for a given sphere diameter the regression coefficient for air and water flowrates varied with packing height. The reasons for these variations was the end effect and the effect of maldistribution.

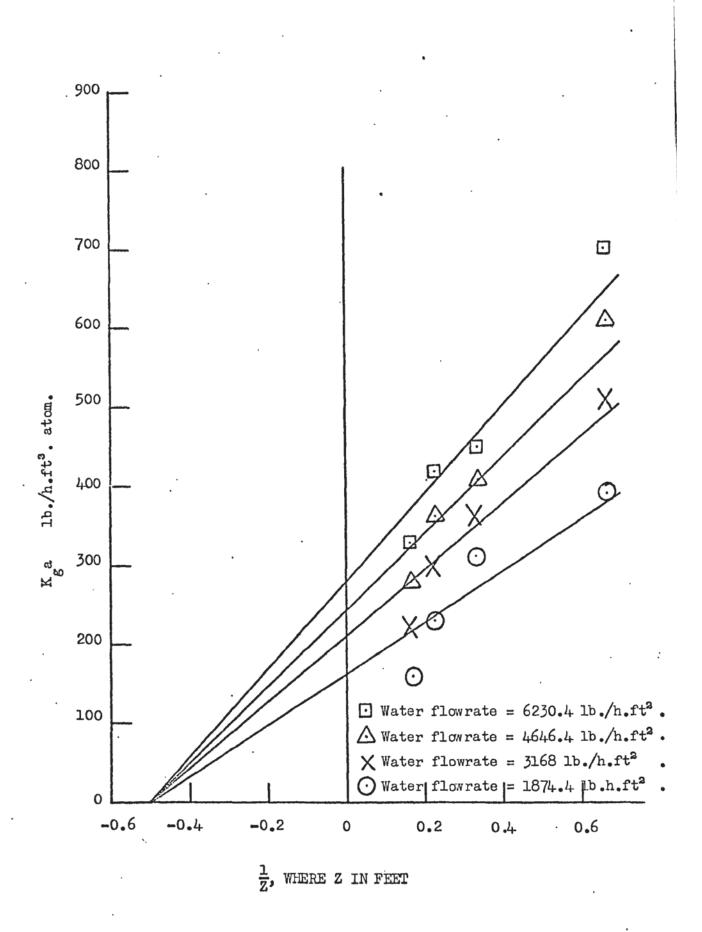
It was concluded that from equations (126-137) for a given sphere diameter, water and air flowrates, K_g a increased as the packing height decreased. It was also concluded that for a given packing height, water and air flowrates, K_g a varied only slightly with sphere diameter. The reason for the variation of K_g a with packing height was mentioned earlier and with sphere diameter was mainly the effect of maldistribution and specific surface area. The specific surface area increased as the sphere diameter decreased and so in-

creased the K a values. These conclusions were confirmed by those of other investigations^(97,98), who worked on different types of packing in cooling towers, and were in very good agreement,

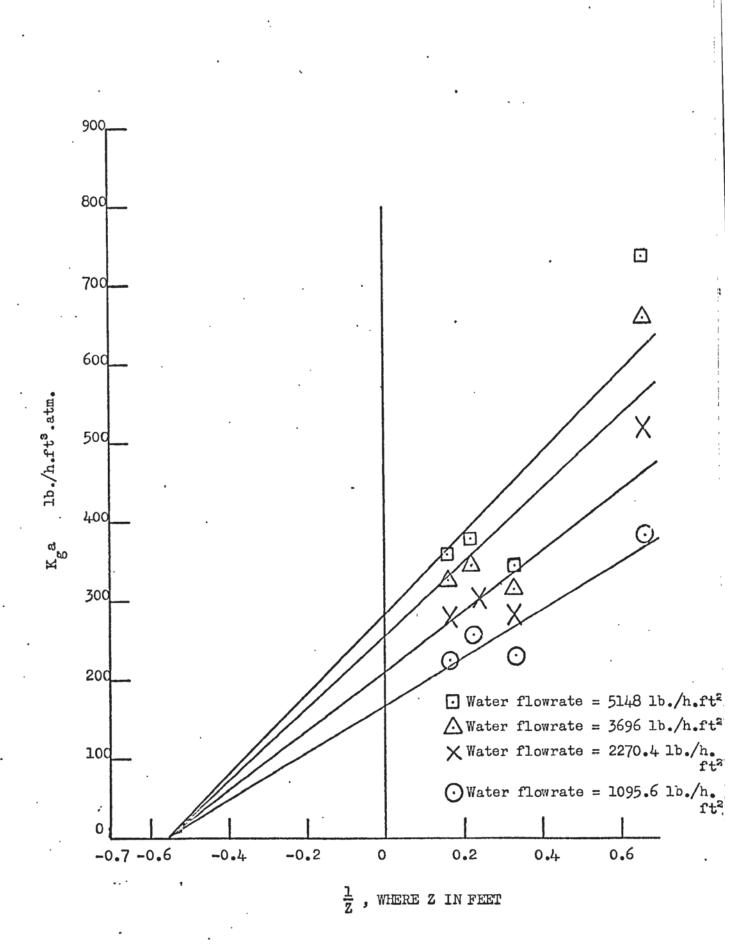
The 95% confidence intervals and errors for the correlations are listed in Table (2) Appendix (C.1.8.2.).


5.2.3. EFFECT OF PACKED HEIGHT.

The overall volumetric mass transfer coefficients which are represented in equations (126-137) have not been corrected for the end effects.


Let \overline{Z} be the fictive height of the packing equivalent to the end effects, while Z is the actual depth of the packing: the total equivalent depth is then $Z + \overline{Z}$. The following relation applies

$$(K_{g}a)_{apparent} = (K_{g}a)_{true} \left(1 + \frac{\overline{Z}}{\overline{Z}}\right)$$
 (138)


Hence a plot of the apparent K_g as ordinate versus the reciprocal $\frac{1}{Z}$ of the packed height as abscissa, gives an intercept on the vertical axis equal to the true K_g for the packing itself, while the intercept on the horizontal axis corresponds to the negative of $\frac{1}{Z}$. Figs.(26,27 and 28) are for the 3, 2 and 1.5 in. sphere diameter packing respectively. It is a fact that in each graph the extensions of the lines best representing the data, all intersect at a common point (at $\frac{1}{Z} = \frac{1}{Z}$ of 0.5 for 3 and 2 in. sphere diameter packing and 0.55 for 1.5 in. sphere diameter packing $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1$

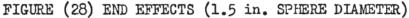


FIGURE (26) END EFFECTS (3 in.SPHERE DIAMETER)

· FIGURE (27) END EFFECTS (2in.SPHERE DIAMETER)

sump as drops or spray; the predominant portion flowed to the periphery of the packing support and then down the wall to the sump. Such an action would have the tendency to give a substantially constant interfacial area below the packing and this provide a constant value of the intercept, $-\frac{1}{Z}$, on the horizontal axis. This end effect also allowed for the space between the water distributor and the top of the packing.

To obtain the true value of K_{ga} from equations (126-137) it must be divided by the factor $\left(1 + \frac{\overline{Z}}{\overline{Z}}\right)$. This correction factor was used to find the true values of K_{ga} from equations (126-137). For a given sphere diameter, water and air flowrates the true values of K_{ga} were compared for different packing height and found that K_{ga} increased slightly as the packing height decreased. The reason for the variation of the true K_{ga} with packing height was the effect of maldistribution. The reasons for the variation of the true K_{ga} are the same as for K_{ga} section (5.2.2.).

The majority of the investigators in the cooling tower field did not correct the K_{g} a for the end effect with the exception of a few of them^(58,59). The end effect results were in good agreement with the investigators^(58,59), who worked on different types of packing in cooling towers.

5.3. Kga FOR THREE PHASE FLUIDIZED BED

A Statistical Analysis Appendix (C.1.) was used to find a relation between the overall volumetric mass transfer coefficient equation (24) and the sphere diameter, water and air flowrates. This correlation must be found to represent the experimental data to within a specified accuracy.

Plots were made of K_g based on the fixed packing height against air flowrate for a given water flowrate, packing height and sphere diameter. For each packing height and sphere diameter there

were thirteen graphs of K_g against air flowrate each consisting of between five and eight points. They appeared to have a rather complex non-linear relation which improved in linearity with Log-Log data and semi-Log data transformation of the scales. These relations were different from the one for the three phase fixed bed section (5.2.)

5.3.1. CORRELATIONS INCLUDING THE DEPENDENT VARIABLE $\Delta T / \Delta H_m$

To avoid confusion and error the dependent variable $\Delta T/\Delta H_m$ was correlated with air and water flowrates. These correlations had quadratic and linear forms in Log-Log data, semi-Log data and raw-date as shown in Section (5.2.1.). The only difference between the quadratic correlations in the different types of scale for the three phase fluidized and fixed beds was that the air flowrate squared term $(a_{11} X_1^2)$ was eliminated from the former correlations. The reason for this was that the air flow-rate increment was small compared with the three phase fixed bed. Therefore the air flowrate squared magnitude would dominate the air flowrate in the regression analysis. This can be seen in the computer printout for the analysis of variance.

To investigate the possibilities, decomposition of the analysis of variance (Appendix C.l.l.) into the parts due to the quadratic and linear correlations was effected followed by comparisons with the lack of fit in the two cases. It is possible to test for any significant loss in the accuracy of prediction terms.

The analysis of variance was carried out by the same procedure as for the three phase fixed bed. There were three aspects of interest in the ANOVA to discuss.

(a) The error variances (error mean square). For the quadratic correlations in raw-data ANOVA NO.(65-73) Appendix (D.1.3.)

Packi	ng height ft.	•	Sphere
1.5	3	4.5	diameter in.
17.8×10^{-3}	53.9 × 10 ⁻³	118.59 × 10 ⁻³	3

TABLE (9) ERROR MEAN SQUARE FOR THE QUADRATIC CORRELATIONS

For the quadratic correlations in semi-Log data ANOVA NO.(56-64) Appendix (D.1.2.).

 11.8×10^{-3} 33.6×10^{-3} 12.7×10^{-3} 41.5×10^{-3} 16.1×10^{-3} 307.1×10^{-3}

TABLE (10) ERROR MEAN SQUARE FOR THE QUADRATIC CORRELATIONS

Packir	Sphere		
1.5	3	4•5	diameter in.
1.24 × 10 ⁻³	0.65 × 10 ⁻³	3.25 × 10 ⁻³	3
1.11 × 10 ⁻³	1.72×10^{-3}	0.63×10^{-3}	2
2.81 × 10 ⁻³	2.24 × 10 ⁻³	5.11 × 10 ⁻³	1.5

and For the quadratic correlations in Log-Log data ANOVA NO.(47-55) Appendix (D.1.1.)

_	Packin		Sphere	
_	1.5	3	4•5	diameter in
	1.06 × 10 ⁻³	0.297 × 10 ⁻³	3.49 × 10 ⁻³	3
	0.81 × 10 ⁻³	1.73 × 10 ⁻³	0.704× 10 ⁻³	2
	0.20 × 10 ⁻³	1.84 × 10 ⁻³	0.297× 10 ⁻³	1.5

TABLE (11) ERROR MEAN SQUARE FOR THE QUADRATIC COPRELATIONS

Examining Tables (9), (10) and (11) it can be seen that there was a distinct increasing trend with height in Table (9) which made the correlations invalid and it was difficult to obtain a combined correlation including packing height. There was no such trend in Table (10) and Table (11). Bartlett's test could be used for testing the differences amongst each set within the table, but the results were so obvious that it was not considered worthwhile.

The analysis of variance technique was also justified on the assumption of a specific distribution of the experimental errors, namely the normal distribution. These errors are investigated later on (Section 5.3.1.1.).

The best estimate of the error was the weighted average i.e. adding up all the error mean square values for each correlation for different packing heights and sphere diameters and then dividing by the total number of degrees of freedom. These were 0.057, 0.0018 and 0.0015 from Tables (9), (10) and (11). Thus there was a slight reduction in the error variance (less than 1% in the standard error) if the Log-Log data transformation was used as opposed to the semi-Log data transformation. Although this was a small reduction, the Log-Log data correlations were adopted for simplicity of interpretation. The raw-data correlations showed a large error mean square compared with the Log-Log data and semi-Log data correlations, and therefore they were rejected.

(b) Only in the following cases were the quadratic correlations in Log-Log data found to be inadequate ANOVA NO.47, 50, 52 and 54 (i.e. in favour of the linear correlations). The reason for this was that the mean square ratio (M.S.R.) was greater than that (5% F level) which determined that X_2^2 and X_1X_2 should not be included in the correlations. Thus ignoring these results it was accepted that the quadratic correlation should be adopted in all cases.

(c) The effect of using the linear correlations could be measured by the increase in the error of variances. The error mean square for the raw-data correlations was taken from ANOVA NO. (65-73) Appendix (D.1.3.).

TABLE (12) ERROR MEAN SQUARE FOR THE LINE AR CORRELATIONS

Pack	Square		
1.5	3	4.5	diameter in.
46.8 × 10 ⁻³	213.5 × 10 ⁻³	306.7 × 10 ⁻³	3
39.5×10^{-3}	86.8 × 10 ⁻³	23.2×10^{-3}	2
86.7 × 10 ⁻³	. 58.0 × 10 ⁻³	$.78.9 \times 10^{-3}$	1.5

For the linear correlations in semi-Log data from ANOVA NO.(56-64) Appendix (D.1.2.).

TABLE (13) ERROR MEAN SQUARE FOR THE LINEAR CORRELATIONS

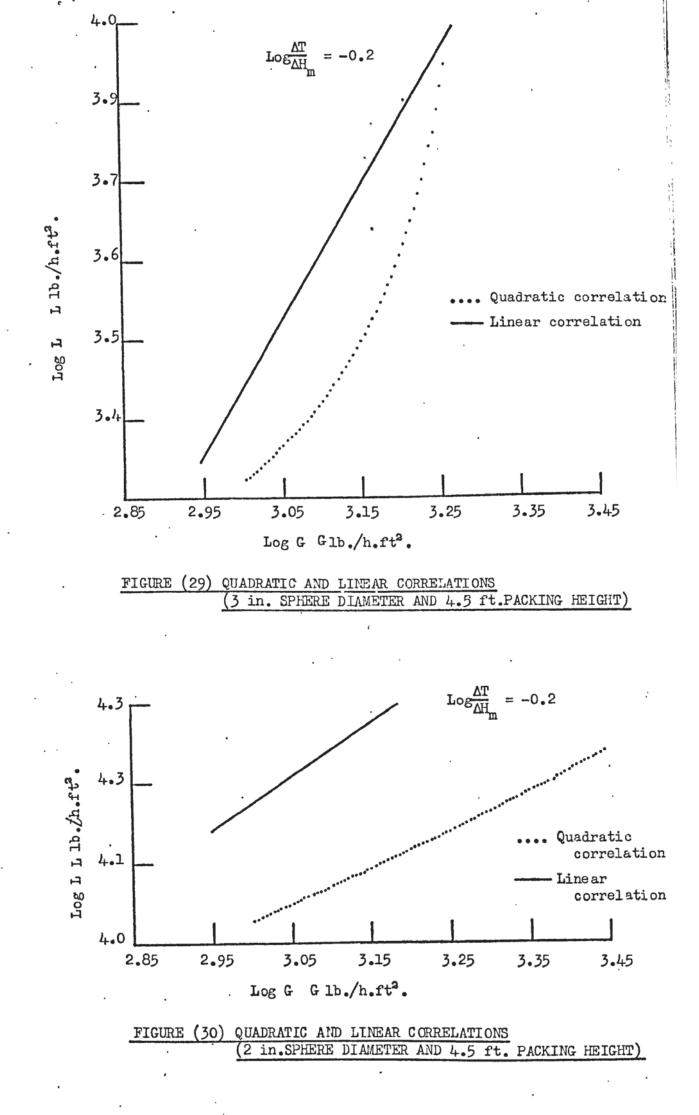
Packi	Square		
1.5	3	4.5	diameter in.
3.20×10^{-3}	4.40 × 10 ⁻³	6.20 × 10 ⁻³	3
1.80 × 10 ⁻³	1.90 × 10 ⁻³	0.93 × 10 ⁻³	2
6.20 × 10 ⁻³	6.80 × 10 ⁻³	8.90 × 10 ⁻³	1.5

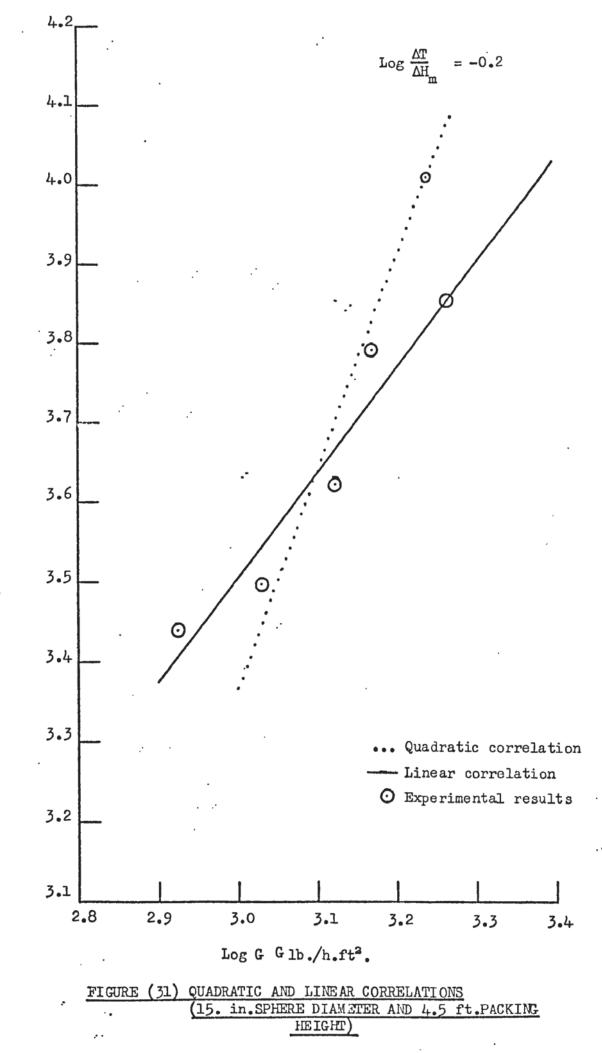
and For the linear correlations in Log-Log data from ANOVA NO.(47-55) Appendix (D.1.1.).

TABLE	14)	ERROR	MEAN	SQUARE	FOR	$\mathbf{T}\mathbf{H}\mathbf{E}$	LINEAR	CORRELATIONS

Packir	Square		
1.5	. 3	4.5	diameter in.
1.62 × 10 ⁻³	0.61 × 10 ⁻³	3.93 × 10 ^{° 3}	3
0.88 × 10 ⁻³	2.40×10^{-3}	0.76×10^{-3}	2
0.39×10^{-3}	2.10×10^{-3}	0.38×10^{-3}	1.5

Table (12) shows a large error mean square compared with Tables (13 and 14) and therefore the linear correlations in semi-Log data were accepted but not adopted for the same reasons mentioned earlier for the quadratic correlations. Table (14) gives an error of 0.002072 compared with the quadratic correlation error which was 0.0015. Thus the error for prediction would be increased by 27.5% by using the linear correlations. The linear correlations of the Log-Log data were accepted and adopted for giving the least error compared with the other types of correlations.


The quadratic correlation appeared to be rather complex and difficult to use for fast calculation; therefore the graphical method Appendix (C.2.) was used. Figs.(29, 30 and 31) consisted of plotting air flowrate against water flowrate for a given $\Delta T/\Delta H_m$, sphere diameter and packing height. These graphs contain also the linear correlation from which the difference between this correlation and the quadratic correlation can be seen.


5.3.1.1. NORMALITY OF THE RESIDUAL ERRORS FOR THE CORRELATIONS.

As mentioned earlier it was necessary to check the normality of residual errors for the correlations. Therefore the coefficient of skewness was taken as a convenient measure of whether the errors were normally distributed or not. This coefficient was calculated as shown in Appendix (C.1.7.) for different types of correlations.

Coefficient of skewness	Sphere diameter in.	Type of correlations
0.16	3	quadratic in Log-Log data
0.28	2	quadratic in Log-Log data
- 0.74	1.5	quadratic in Log-Log data
0.14	. 3	quadratic in semi-Log data
0.94	2	quadratic in semi-Log data
0.93	1.5	quadratic in semi-Log data
0.11	3	quadratic in raw-data
2.20	2	quadratic in raw-data
1.20	1.5	quadratic in raw-data
0.18	3	Linear in Log-Log data
0.79	2	Linear in Log-Log data
- 0.76	1.5	Linear in Log-Log data
0.56	3	Linear in semi-Log data
0.53	2	Linear in semi-Log data
0.47	1.5	Linear in semi-Log data
5.60	3	Linear in raw-data
1.70	2	Linear in raw-data
1.70	1.5	Linear in raw-data

TABLE (15) COEFFICIENT OF SKEWNESS FOR DIFFERENT TYPES OF CORRELATION (PACKING HEIGHT 4.5, 3 and 1.5 ft.)

Log L L lb. /h.ft3.

The coefficients of skewness in Table (15) show that the residual errors are approximately normally distributed for the quadratic and linear correlations in Log-Log data end semi-Log data, but it is not in the raw-data. Therefore the quadratic and the linear correlations in raw-data were rejected.

All the regression coefficients for different types of correlations are given in Appendix (D.1.).

5.3.1.2. CORRELATIONS INCLUDING PACKING HEIGHT.

The quadratic and linear correlations which have been discussed only contain two independent variables: air and water flowrates. A further attempt was made to include packing height as another independent variable.

Error mean square	Sphere diameter in.	ANOVA NO.	Appendix
1.59 × 10 ⁻³	3	74	D.1.4.1.
3.21 × 10 ⁻³	2	75	D.1.4.1.
4.73 × 10 ⁻³	1.5	76	D.1.4.1.
2.22×10^{-3}	3	77	D.1.4.2.
5.61 × 10 ⁻³	2	78	D.1.4.2.
7.23 × 10 ⁻³	1.5	79	D.1.4.2.
2.04×10^{-3}	3	74	D.1.4.1.
3.51 × 10 ⁻³	2	75	D.1.4.1.
8.10 × 10 ⁻³	·1.5	76	D.1.4.1.
4.77 × 10 ⁻³	3	77	D.1.4.2.
6.22×10^{-3}	2	78	D.1.4.2.
13.79 × 10 ⁻³	1.5	79	D.1.4.2.

TABLE (16) ERROR MEAN SQUARE FOR DIFFERENT TYPES OF CORRELATIONS.

. Examining Table (16) it can be seen that the error mean square for the quadratic and linear correlations in Log-Log data and semi-Log data are increased by 50%, 61.5%, 49.8% and 50.8% respectively compared with the correlations which did not contain the packing height. Therefore it is concluded that the packing height does not fit well

into the correlations within the range of the experimental results for the air and water flowrates. Accepting the percentage error mentioned above, the packing height fits the linear correlation better than the quadratic correlation. It was found that the regression coefficient for the packing height (a_3) was the same in the quadratic and linear correlation for a given sphere diameter and type of correlation.

5.3.1.3. CORRELATIONS INCLUDING PACKING HEIGHT AND SPHERE DIAMETER.

Further attempts were made to include another independent variable viz. the sphere diameter. The error mean squares are presented in Table (17).

Error mean square	ANOVA NO .	Appendix
6.0 × 10 ⁻³	80	D.1.5.1.
6.0×10^{-3}	. 81	D.1.5.2.
6.2 × 10 ⁻³	80	D.1.5.1.
7.5×10^{-3}	81.	D.1.5.2.

Comparing Table (17) with Table (16) the error mean square has been increased for the quadratic correlation in Log-Log data by 30.1% and in semi-Log data by 20.1%. For the linear correlation in Log-Log data and semi-Log data there are increases by 12.2% and 9.2% respectively. The sphere diameter does not show a great deal of error on comparing Tables (17) and (16) but it shows on comparing Tables (17), (11) and (14). Therefore the sphere diameter does not fit well into the correlations.

The analysis of variance and the coefficient of skewness showed that the quadratic and the linear correlations were far the best to correlate the dependent variable $\Delta T / \Delta H_m$ with the two independent variables air and water flowrates in the form of Log-Log data were adopted for the reasons mentioned earlier.

5.3.1.4. 95% CONFIDENCE INTERVALS AND ERRORS FOR THE CORRELATIONS.

The 95% confidence intervals and errors for the correlations were calculated as shown in Appendix (C.1.8.). These results are listed in Tables (11-20) Appendices (D.2.1.-D.2.10.).

5.3.2. Kga CORRELATIONS

5.3.2.1. K a BASED ON THE FIXED BED PACKING HEIGHT

The analysis of variance Appendix (C.l.) was used to correlate the dependent variable, the overall volumetric mass transfer coefficient as represented in equation (24) with the independent variables air and water flowrates for a given sphere diameter.

The error mean squares were the same as for the linear correlations in Log-Log data without the packing height Table (14) Section (5.3.1.).

The correlation of $K_{\mathcal{B}}$ a with the water and air flow rates for a given sphere diameter can be represented in the form of equation (125) as follows:

For three inch sphere diameter

Kga	=	0.00678	G ^{1 •25}	ro •36	<u>+</u>	31.2%	(139)
Kga	=	32.14	G ^{0 •28}	L ^{0 • 15}	<u>+</u>	11.6%	(140)
Kga	=	1.63	G ^{0 •51}	L ^{o.33}	+	19.7%	(141)

For two inch sphere diameter

К _g a	11	1.07	G ^{o •33}	L ^{0.50}	<u>+</u>	12.7%	(142)
Kga		0.47	G ^{0 • 8 7}	L ^{0 • 14}	±	24.2%	(143)
Kga	=	0.0036	G ^{1 •34}	r _{o•30}	<u>+</u>	14.0%	(144)

and For one and a half inch sphere diameter

$$K_{g^{a}} = 0.046 \qquad G^{1 \cdot 17} \qquad L^{0 \cdot 10} \qquad \pm 31.5\% \qquad (145)$$

$$K_{g^{a}} = 0.0028, \qquad G^{1 \cdot 68} \qquad L^{0 \cdot 02} \qquad \pm 21.6\% \qquad (146)$$

$$K_{g^{a}} = 56.49 \qquad G^{0 \cdot 12} \qquad L^{0 \cdot 27} \qquad \pm 32.4\% \qquad (147)$$

Examining equations (139-141), equations (142-144) and equations (145-147) it can be seen that for a given sphere diameter the regression coefficient for air and water flowrates varied with packing height. The reasons for these variations was the end effect and the effect of maldistribution.

It was concluded that from equations (139-147) for a given sphere diameter, water and air flowrates, K_{g} a increased as the packing height decreased. It was also concluded that for a given packing height, water and air flowrates, K_{g} a fluctuated with sphere diameter because of the maldistribution effect and specific surface area. The specific surface area increased as the sphere diameter decreased and so increased the K_{g} a values. These conclusions were confirmed by those of other investigators (97,98), who worked on different types of packing in cooling towers, and were in very good agreement.

The average error involved in using equations (139-147) is 22.5%. This is less than the error involved in using the corresponding equations for the three phase fixed bed section (5.2.2.) and it is in good agreement with another investigator⁽⁶³⁾.

Comparing equations (139-147) for the three phase fluidized bed with equations (126-137) for the three phase fixed bed section (5.2.2.) the weight average for the former is 0.0021 and for the latter is 0.0042. Therefore there is a decrease in the error mean square of about 102.4% for the fluidized bed correlations i.e. the correlations fit the fluidized bed results better than the fixed bed results.

The 95% confidence intervals and errors for the correlations are listed in Table (12) Appendix (D.2.2.).

5.3.2.2. EFFECT OF PACKED HEIGHT.

The overall volumetric mass transfer coefficients which are represented in equations (139-147) have not been corrected for the end effects. The same procedure which was discussed in Section (5.2.3.) is used to find the true values of K a.. A plot of the apparent K a as ordinate versus the reciprocal of the fluidized packing height as abscissa, gives an intercept on the vertical axis equal to the true K for the packing itself, while the intercept on the horizontal axis corresponds to the negative of $\frac{1}{\overline{Z}}$. It is a fact that in each graph the extensions of the lines best representing the data, all intersect at a common point $\left(\text{at } \frac{1}{\overline{Z}} = \frac{1}{\overline{Z}} \right)$ of 0.5 for 3, 2 and 1.5. in sphere diameter packing. The corresponding value of \overline{Z} , 2.0 ft. is seen to be independent of sphere diameter, water and air flowrates.

To find the true value of K_g a from equations (139-147) it must be divided by the factor $\left(1 + \frac{\overline{Z}}{\overline{Z}}\right)$. This correction factor was used to find the true values of K_g a from equations (139-147). For a given sphere diameter, water and air flowrates the true values of itwas K_g a were compared for different packing heights and found that K_g a fluctuated with packing height. It was also found that for a given packing height, water and air flowrates K_g a fluctuated with sphere diameter. The reason for this was the effect of maldistribution and specific surface area.

Comparing the true values of K_g for the three phase fluidized and fixed beds it can be seen that the maldistribution had a greater effect on the values of K_g for the fluidized bed. Therefore it was concluded that the maldistribution predominated in the fluidized bed compared with the fixed bed.

5.4. Kga COMPARISON FOR THE THREE PHASE FLUIDIZED AND FIXED BED.

For the three phase fixed bed Section (5.2.) it was concluded that for a given sphere diameter, packing height and water flowrate, if the air flowrate increased above the minimum fluidizing velocity,

loading and flooding occurred. To avoid the packing becoming flooded and to increase the air and water flowrates the bed was allowed to fluidize.

It was concluded from Sections (5.3.1.) and (5.2.1.) the quadratic and the linear correlations in Log-Log data should be accepted and adopted to correlate the three phase fluidized and fixed bed results. These correlations gave the least error mean square compared with other types of correlations beside the normal distribution of the residual errors. If the linear correlation was arranged in the right way and included the packing height in the correlation the result would be in the form of equations (125) Section (5.2.2.).

The statistical analysis Appendix (C.1.) was used to find a correlation which could unify the three phase fluidized and fixed bed results. This procedure consisted of correlating the three phase fluidized bed results and then comparing these correlations with the corresponding one for the three phase fixed bed Section (5.2.2.).

5.4.1. Kga BASED ON THE FLUIDIZED BED PACKING HEIGHT.

The K_g a represented in equation (24) was modified by including the fluidized bed packing height instead of the fixed bed packing height. The modified K_g a was correlated with water and air flowrates. These correlations gave large error mean square and they were entirely different from the correlation for the three phase fixed bed Section (5.2.2.). Therefore these correlations were rejected.

5.4.2. Kga WITH A FACTOR $(1 + \epsilon_1 - \epsilon_0)$

. The Kga represented in equation (24) was multiplied by

the factor $(1 + \epsilon_1 - \epsilon_0)$ which corresponded to the packing height associated with K_ga and then correlated with air and water flowrates. It was thought that by including the factor $(1 + \epsilon_1 - \epsilon_0)$ in the three phase fluidized correlations it might be possible to obtain the same correlations as for the three phase fixed bed. The definition of ϵ_1 and ϵ_0 are as follows:

$$\epsilon_{1} = \frac{\text{volume of the tower (6 ft^{3}.) - volume of the packing}}{\text{volume of the tower (6 ft^{3}.)}}$$
(148)

 $\epsilon_{o} = \frac{\text{volume occupied by the fixed packing-volume of the packing}}{\text{volume occupied by the fixed packing.}}$ (149)

The voidages ϵ_1 and ϵ_0 are listed in Table (18).

TABLE (18) VOIDAGES

ϵ_{1}	€ _o	Packing height ft.	Sphere diameter in.	No.of spheres	$1 + \epsilon_1 - \epsilon_0$
0.4879	0.4879	6	3	376	1.000
0.6159	0.4879	4.5 .	3	282	1.280
0.7440	0.4879	3	3	188	1.256
0.8720	0.4879	1.5	3	94	1.384
0.4563	0.4563	6	2	1346	1.000
0.5920	0.4563	4.5	2	1010	1.136
0.7281	0.4563	3	2	673	1.272
0.8639	0.4563	1.5	2	337	1.408
0.4618	0.4618	6	1.5	3158	1.000
0.5963	0.4618	4.5	1.5	2369	1.135
0.7307	0.4618	3	1.5	1580	1.269
0.8655	0.4618	1.5	1.5	789	1.404

The correlations which included the factor $(1 + \epsilon_1 - \epsilon_0)$ for the three phase fluidized bed can be represented as follows: For the three inch sphere diameter

Kga	$(1 + \epsilon_1 - \epsilon_0) = 0.0076$	G ^{1 • 25}	ro•36	<u>+</u> 31.4%	(150)
-	$(1 + \epsilon_1 - \epsilon_0) = 40.46$				(151)
Kga	$(1 + \epsilon_1 - \epsilon_0) = 2.27$	G ^{0•51}	L0•33	<u>+</u> 19.8%	(152)

For two inch sphere diameter

$$K_{g}^{a} (l + \epsilon_{1} - \epsilon_{0}) = l.23 \quad G^{0.33} \quad L^{0.50} \quad \pm l2.9\% \quad (153)$$

$$K_{g}^{a} (l + \epsilon_{1} - \epsilon_{0}) = 0.59 \quad G^{0.87} \quad L^{0.14} \quad \pm 24.4\% \quad (154)$$

$$K_{g}^{a} (l + \epsilon_{1} - \epsilon_{0}) = 0.50 \quad G^{1.34} \quad L^{0.30} \quad \pm l4.1\% \quad (155)$$

and For one and a half inch sphere diameter

$$\begin{split} & K_{g^{a}} \left(1 + \epsilon_{1} - \epsilon_{0} \right) = 0.051 \quad G^{1 \cdot 17} \quad L^{0 \cdot 10} \quad \pm 31.6\% \quad (156) \\ & K_{g^{a}} \left(1 + \epsilon_{1} - \epsilon_{0} \right) = 0.0036 \quad G^{1 \cdot 68} \quad L^{0 \cdot 02} \quad \pm 21.8\% \quad (157) \\ & K_{g^{a}} \left(1 + \epsilon_{1} - \epsilon_{0} \right) = 79.43 \quad G^{0 \cdot 12} \quad L^{0 \cdot 27} \quad \pm 32.4\% \quad (158) \end{split}$$

Equations (150,151 and 152) are for the packing heights 4.5 ft., 3 ft., and 1.5 ft., as are equations (153-155) and equations (156-158).

Including the factor $(1 + \epsilon_1 - \epsilon_0)$ in the correlations did not help although it improved the similarity towards the correlations for the three phase fixed bed Section (5.2.2.).

5.4.3. Kga WITH A FACTOR (1 + EFFECTIVE FREE BOARD).

The overall volumetric mass transfer coefficient which was represented in equation (24) was multiplied by the factor (1 + effective free board) and then correlated with the water and air flowrates. The effective free board can be defined as the fluidized packing height minus the fixed packing height and divided by the fixed packing height. The correlations with the factor (1 + effective free board) can be shown as follows:

For three inch sphere diameter

$$K_{g^{a}}\left(1 + \frac{Z_{0}-Z}{Z_{0}}\right) = 0.000013 \text{ G}^{1.95} \text{ L}^{0.37} \pm 36.8\% \quad (159)$$

$$K_{g^{a}}\left(1 + \frac{Z_{0}-Z}{Z_{0}}\right) = 0.0022 \text{ G}^{1.36} \text{ L}^{0.34} \pm 16.1\% \quad (169)$$

$$K_{g^{a}}\left(1+\frac{Z_{0}-Z}{Z_{0}}\right) = 0.0000029 \ G^{2\cdot06} \ L^{0\cdot51} \pm 24.5\%$$
 (161)

For two inch sphere diameter

$$K_{ga}\left(1 + \frac{Z_{0}-Z}{Z_{0}}\right) = 0.49$$
 $G^{0.39} L^{0.57} \pm 38.4\%$ (162)

$$K_{ga}\left(1 + \frac{Z_0 - Z}{Z_0}\right) = 0.000092 \quad G^{1.90} \quad L^{0.28} \quad \pm 31.4\%$$
 (163)

$$K_{ga}\left(1 + \frac{Z_0 - Z}{Z_0}\right) = 0.00000073 G^{2.46} L^{0.34} \pm 32.4\%$$
 (164)

and for one and a half inch sphere diameter

$$K_{ga}\left(1 + \frac{Z_{0}-Z}{Z_{0}}\right) = 0.000067 \quad G^{1 \cdot 85} \quad L^{0 \cdot 31} \quad \pm 21.1\%$$
 (165)

$$K_{ga}\left(1+\frac{Z_{0}-Z}{Z_{0}}\right)=0.0082$$
 $G^{1.41}$ $L^{0.30}$ + 35.2% (166)

$$K_{g}a\left(1+\frac{Z_{0}-Z}{Z_{0}}\right)=0.0029$$
 $G^{1.28}L^{0.43}\pm 15.6\%$ (167)

Equations (159, 160 and 161) represent the packing heights 4.5 ft., 3 ft., and 1.5 ft. respectively as do equations (162, 163 and 164) and equations (165, 166 and 167).

Examining equations (159-167) it can be seen that there is not a great deal of similarity with equations (126-137) for the three phase fixed bed Section (5.2.2.). Although equations (159-167)show changes in the regression coefficients $(a_0, a_1 \text{ and } a_2)$ which are better than equations (150-158) Section (5.4.2.) it is still not the same as for the three phase fixed bed. The reason is that the fluidized packing height is difficult to measure accurately and its definition uncertain. It was concluded that the correlations with

the factor $\left(1 + \frac{Z_0 - Z}{Z_0}\right)$ are more similar to the three phase fixed bed correlations Section (5.2.2.) than the correlations with the factor $(1 + \epsilon_1 - \epsilon_0)$ Section (5.4.2.). This conclusion was in good agreement with Douglas⁽¹⁵⁾, who used a turbulent bed contactor packed with polyethylene spheres as an absorber.

factor
$$\left(1 + \frac{Z_0 - Z}{Z_0}\right)$$
 are listed in Table (19).

Error mean square	Packing height ft.	Sphere diameter in.	
4.8 × 10 ⁻³	4.5	3	
1.1 × 10 ⁻³	· 3	3	
2.3 × 10 ⁻³	1.5	. 3	
1,8 × 10 ⁻³	4.5	2	
4.5 × 10 ⁻³	3	2	
1.05 × 10 ⁻³	1.5	2	
5.2 × 10 ^{7,3}	4.5	1.5	
4.3 × 10 ⁻³	3	1.5	
3.9 × 10 ⁻³	1.5	1.5	

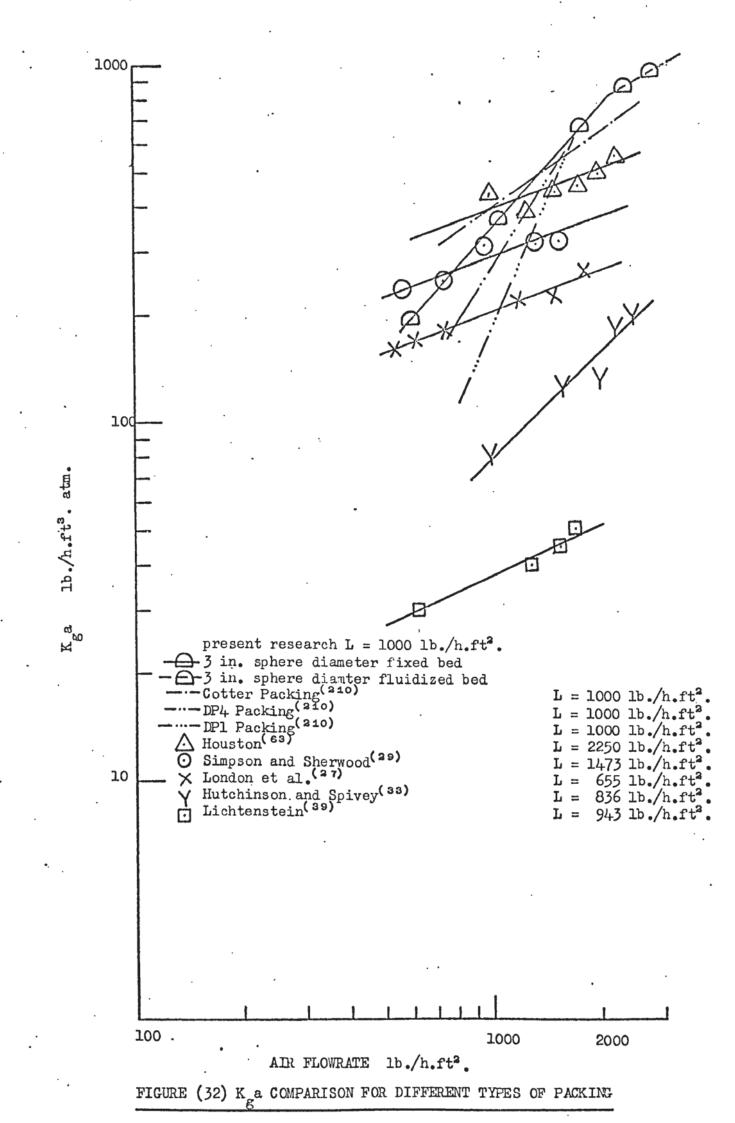
TABLE (19) ERROR MEAN SQUARE

The error mean square was increased slightly compared with the correlation which did not contain the factor $\left(1 + \frac{Z_0 - Z}{Z_0}\right)$

Section (5.3.2.1.).

If the factor $\left(1 + \frac{Z_0 - Z}{Z_0}\right)$ in equations (159-167) was replaced by the factor $\left(1 + \frac{\epsilon_1 - \epsilon_0}{\epsilon_0}\right)$ the correlation would still be the same.

The 95% confidence intervals and errors for the correlations are listed in Table (21) Appendix (D.2.11.).


5.4.4. Kga COMPARISON FOR DIFFERENT TYPES OF PACKING.

To compare the overall volumetric mass transfer coefficient for the three phase fluidized and fixed beds with other types of packing it was more accurate to consider the K_g a based on fixed packing height sections (5.2.2.) and (5.3.2.1.). The fluidized packing height was difficult to measure and uncertain in definition. The choice of the fixed packing height, on the other hand, has the advantage of being accurately known and, when used throughout, constitutes a satisfactory choice of characteristic bed height.

To make the comparison easier therefore the results obtained for different types of packing by different investigators were correlated in the form of equation (125). The results obtained by Simpson and Sherwood⁽²⁹⁾, London et al.⁽²⁷⁾, Houston⁽⁶³⁾, Lichtenstein⁽³⁹⁾, Hutchison and Spivey⁽³²⁾ for three plastic packings (Cotter packing, DP4 packing and DP1 packing) were correlated and represented respectively as follows:

Kga	= 0.545	ǰ∙≈≈	ro•ee	<u>+</u> 35.6%	(168)
Kga	= 5.36	G ^{0•45}	L ^{0.11}	<u>+</u> 27.1%	(169)
Kga	= 0.0773	G ^{0 • 76}	L ^{0 •4 3}	<u>+</u> 25.6%	(170)
	= 0.0465	G ^{0 • 5 8}	L ^{0.38}	<u>+</u> 34.1%	(171)
Kga	= 0.00089	G ^{1 •4}	ro •20	<u>+</u> 28.6%	(172)
Kga	= 0.726	G ^{0 • 71}	ro •3 2	<u>+</u> 30.1%	(173)
Kga	= 0.00016	G ^{1 • 74}	L ^{0.34}	<u>+</u> 36.8%	(174)
Kga	= 0.00014	G ^{1 • 70}	L ^{0 •4}	<u>+</u> 33.1%	(175)

These correlations are plotted together with the three phase fluidized and fixed bed results as shown in Fig.(32). For a given sphere diameter and water flowrate the correlations for the three phase fluidized and fixed beds are shown by two different lines as in Fig.(32). The K_ga values for the three phase fixed bed are in good agreement with those of Simpson and Sherwood⁽²⁹⁾, London et al.⁽²⁷⁾, Houston⁽⁶³⁾, and with Cotter's, DP4 and DP1 packing but it is much higher than the results obtained by Hutchison and Spivey⁽³²⁾ and Lichensten⁽³⁹⁾. For the three phase fluidized bed the K_ga values are the highest among all the results.

5.5. PRESSURE DROP.

It was necessary to find the pressure drop across the fluidized and fixed packing for the following reasons.

(a) To find the loading and flooding rates.

(b) To obtain the minimum fluidization velocity.

(c) To determine whether it is economic to use the polystyrene spheres as packing in a cooling tower compared with the other types of packing.

It is reported in the literature Section (2.7) that the gas and liquid flowing counter-current through a bed of solid particles are forced to follow a series of irregular channels forming the interstices between the particles. The pressure drop depends on the size and the arrangement of the particles as well as the velocity, density and viscosity of the fluids. The principal factors affecting the total pressure drop in packed towers are the size and shape of the packing, the ratio of the tower diameter to the packing diameter and the pressure drop across the packing supports. The pressure drop can be affected by different methods of dumping the packing, which affects both the orientation of the particles and the free space in the bed. Vibration causes the particles to pack more closely and some settling may occur during operation of the tower.

In the present research, air and water were the only fluids used in the cooling tower. Since the density and viscosity of these fluids were not changing much within the range of the temperatures which had been chosen, these two variables were not included in the pressure drop correlations. To relate the dependent variable ($\Delta P/Z$) to the independent variables sphere diameter, air and water flowrates, within a specified accuracy, a Statistical Analysis (Appendix C.1.) was used.

5.5.1. CORRELATION FOR THE PRESSURE DROP ACROSS AN EMPTY TOWER.

Plotting the dependent variable $(\Delta P/Z)$ against the independent variable air flowrate as shown in Fig.(33), a linear relation is obtained and has the same form as equation (78) which can be represented as follows:

$$\frac{\Delta P}{Z} = 4.03 \times 10^{-9} \ G^{1.981} \pm 5.1\%$$
 (176)

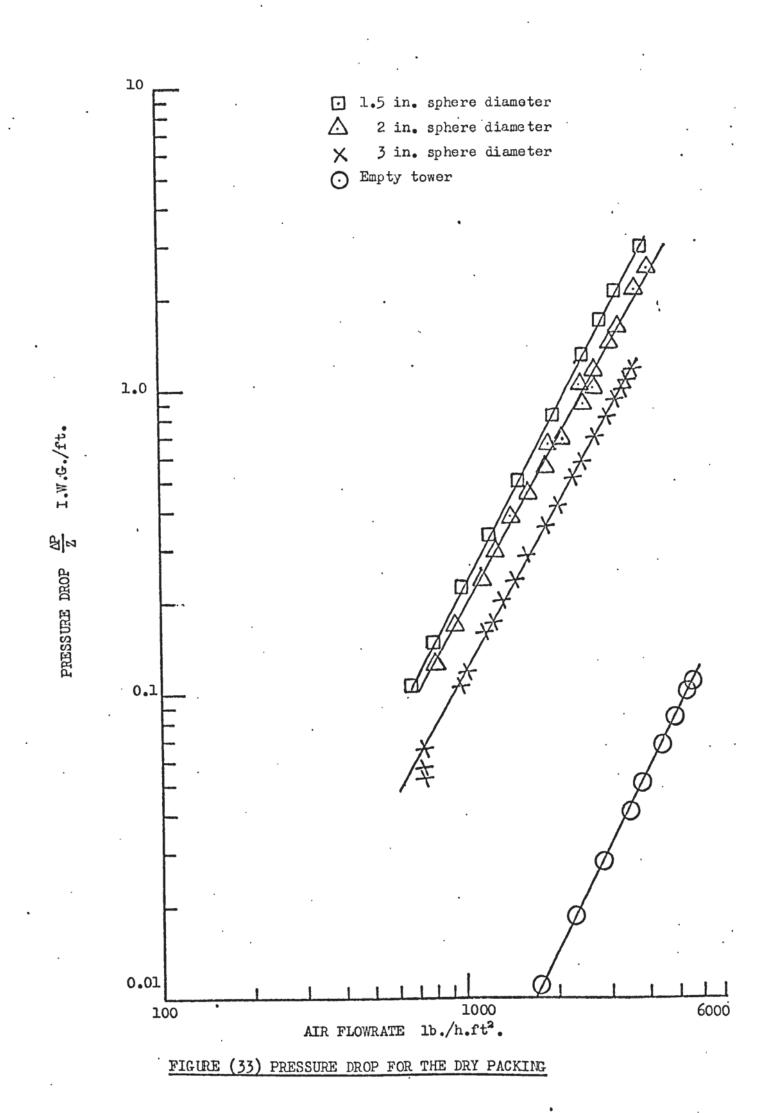
This pressure drop was caused by the air distributor (packing support) and the tower containing the basket which was used to hold the spheres.

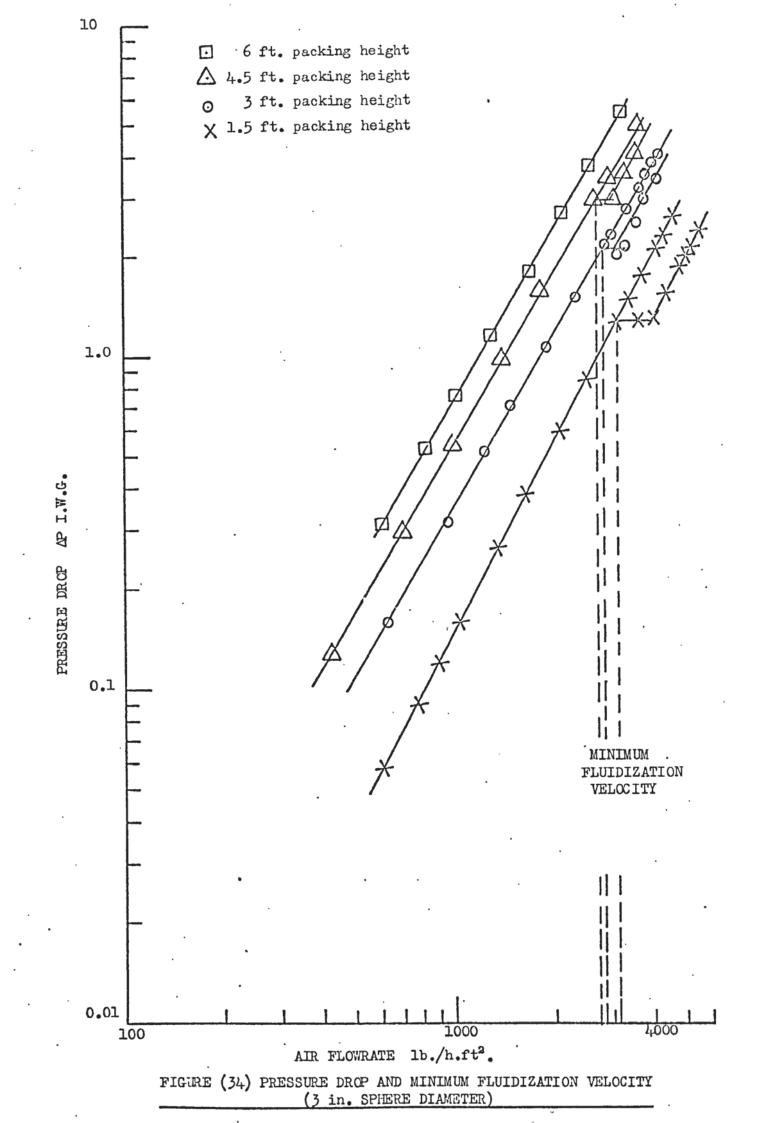
5.5.2. CORRELATION FOR THE PRESSURE DROP ACROSS THE DRY PACKING.

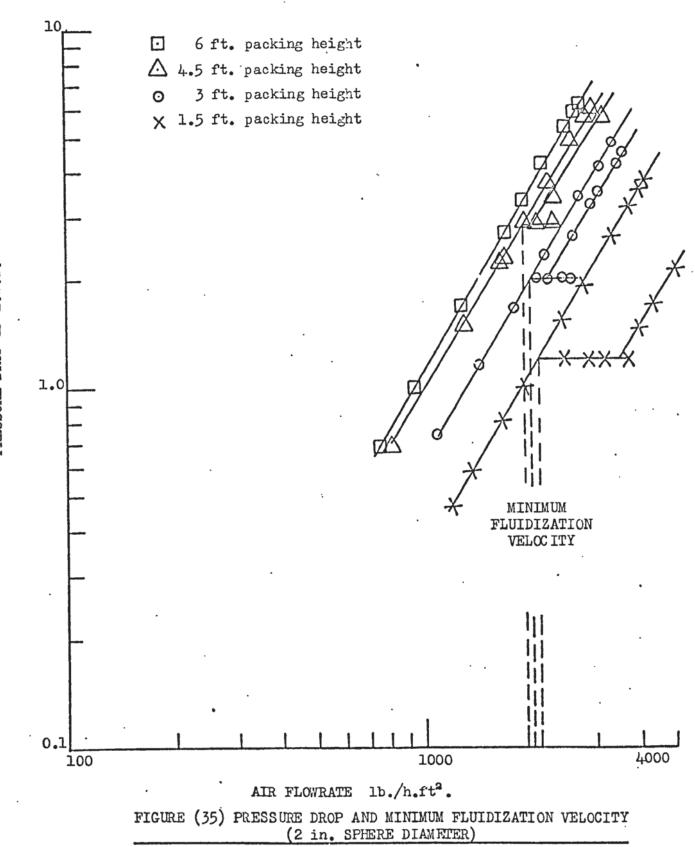
The pressure drop across the two phase fixed and fluidized beds (air and solid) were measured as discussed in Section (4.1.4.). For a given sphere diameter and packing height the dependent variable (ΔP) for the two phase fixed bed is plotted against air flowrate as shown in Figs.(34, 35 and 36). These graphs for the 3, 2 and 1.5 in. sphere diameter show a linear relation between (ΔP) and G which have the form of equation (78) and can be represented as follows:

For three inch diameter sphere

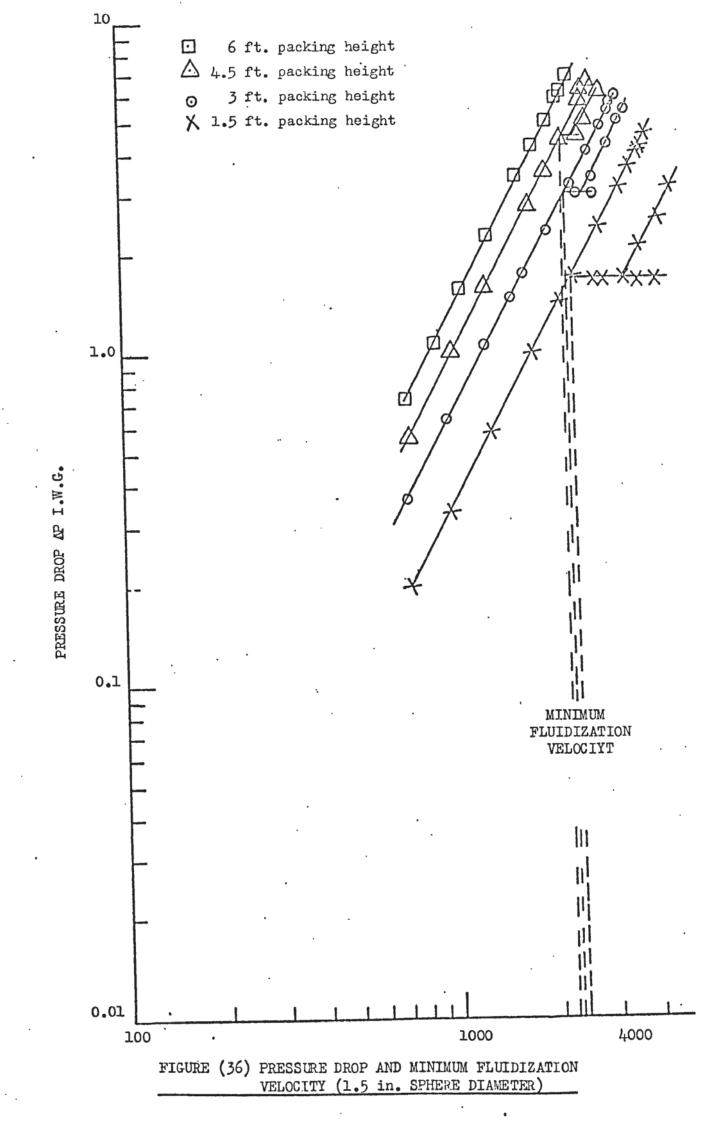
$$\frac{\Delta P}{Z} = 4.21 \times 10^{-7} \ G^{1.807} \pm 13.0\%$$
 (177)


For two inch diameter sphere


$$\frac{\Delta P}{Z} = 10.35 \times 10^{-7} G^{1.757} \pm 15.1\%$$
 (178)


and For one and a half inch diameter sphere

$$\frac{\Delta P}{Z} = 5.61 \times 10^{7} G^{1.868} \pm 6.7\%$$
 (179)


Examining equations (177, 178 and 179) it can be seen that the pressure drop increases as the sphere diameter decreases and can be correlated as follows:

PRESSURE DROP AP I.W.G.

 $\frac{\Delta P}{Z} = \frac{8.43 \times 10^{-8} \text{ G}^{1.819}}{d_{p}^{1.105}} \pm 14.9\%$ (180)

where for this expression d_p sphere diameter must be expressed in ft. The indices in equations (177-180) are in good agreement with the corresponding correlations obtained by other investigators^(127,128,129,130) who worked on different types of packing in cooling towers. For the two phase fixed bed the values of ($\Delta P/Z$) are high compared with other types of packing (wood grid, stoneware grid, carbon grid and plastic plate packing) used in cooling towers^(127,128,129,130). It is in good agreement with the spherical type of packing used by Leva⁽¹³²⁾.

If the air flowrate increased above the minimum fluidization velocity (for a given sphere diameter and packing height) the bed started to fluidize but remained on the support plate. If the air flowrate increased to 1.5 times the minimum fluidization velocity, the spheres would be held on the retaining grid and form a fixed bed at the top of the tower but operating with a considerably higher air velocity than when the operation started. To explain these operations the dependent variable (ΔP) is plotted against the independent variable air flowrate for a given sphere diameter and packing height as shown in Figs. (34, 35 and 36). Each graph consists of three lines, two parallel lines representing the two phased fixed bed at the bottom and the top of the tower and the third horizontal line for the fluidized bed. To avoid accumulation of the spheres at the retaining grid the air flowrate should not exceed the critical flowrates which are listed in Table (20) for different sphere diameter and packing height.

Critical air flowrate lb./h.ft2.	Packing height ft.	Sphere diameter in.	Figure.
2900	4.5	3	34
3050	3	3	
4000	1.5	3	
2050	4.5	· 2	35
2250	3	2	
3600	1.5	2	
2400	4.5	1.5	36
2550	3	1.5	
3300	1.5	1.5	

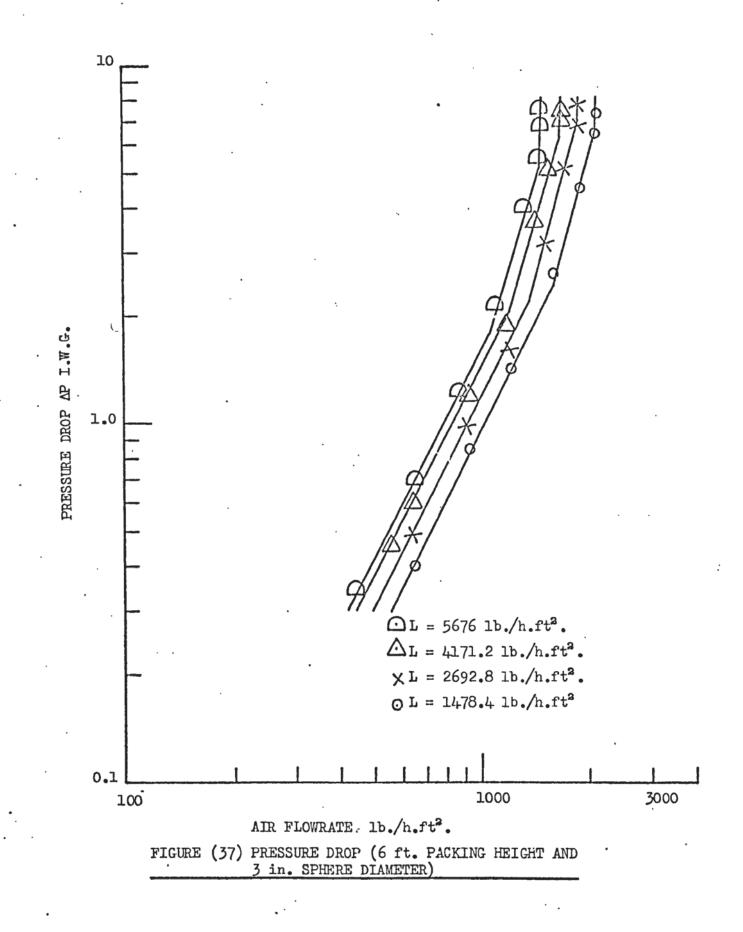
TABLE (20) CRITICAL ATR FLOWRATE.

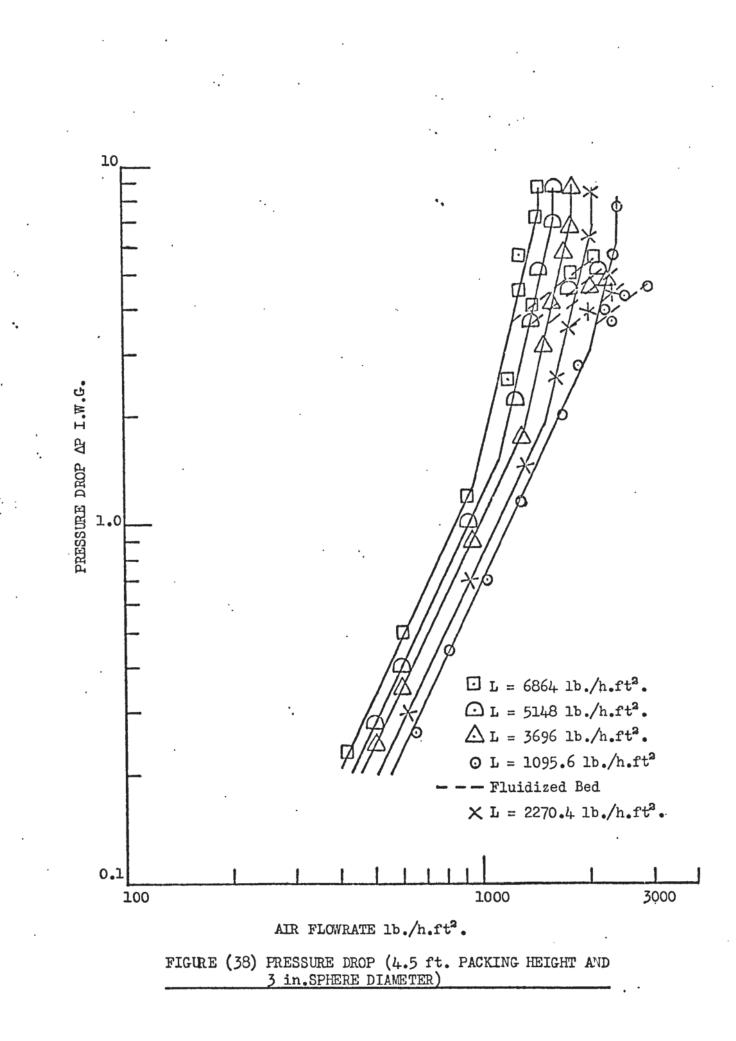
It was concluded that the pressure drop across the fluidized packing was independent of air flowrate and could be correlated as follows:

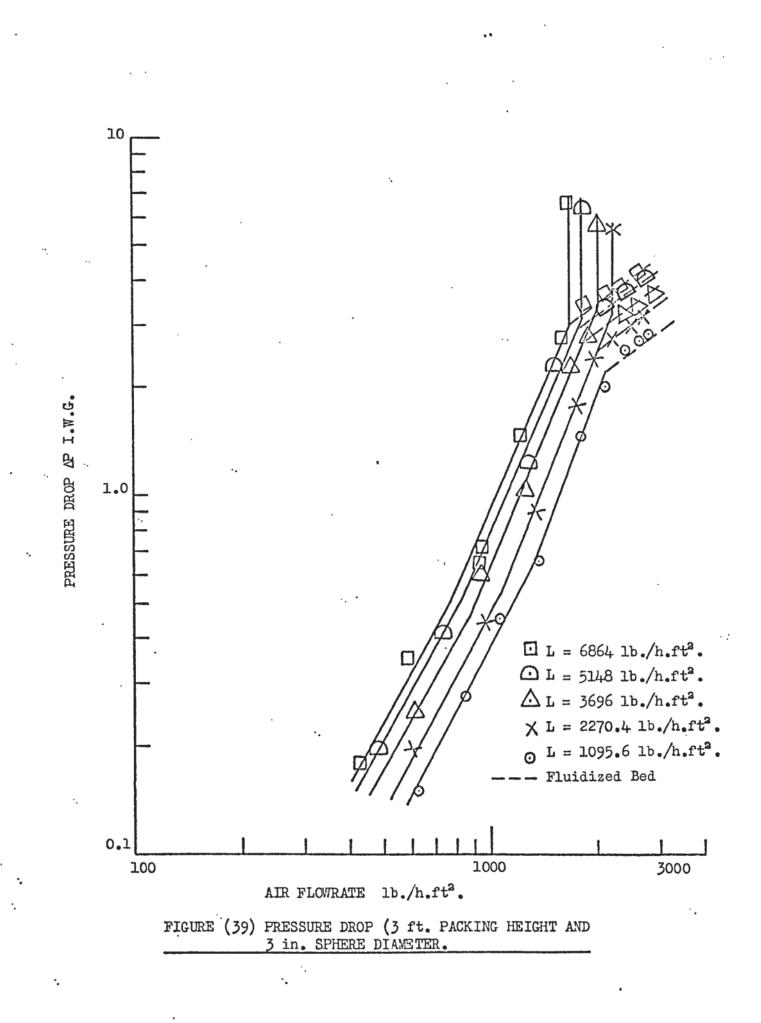
$$\frac{\Delta P}{Z_{\rm mf}} = 0.26(1 - e_{\rm mf})(\rho_{\rm S} - \rho) \pm 6.0\%$$
(181)

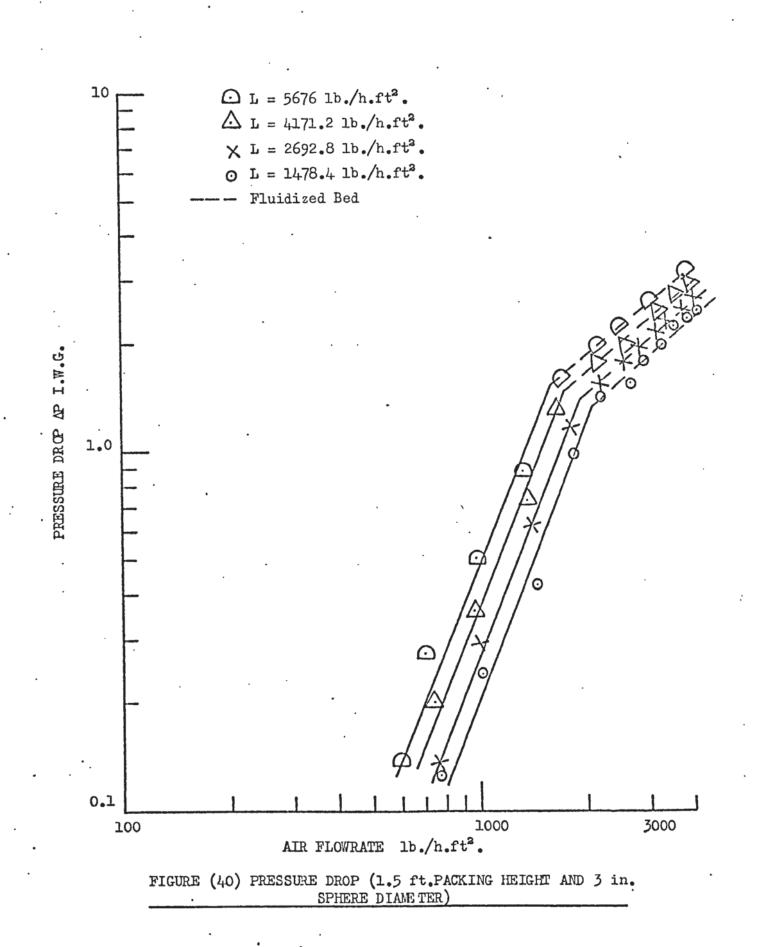
The density of the 3, 2 and 1.5 in. diameter spheres are 5.361, 4.85 and 7.244 lb./ft³. respectively. Equation (181) is in very good agreement with the investigators^(118,119,132,133). These investigators reported (Section 2.7.2.) that the onset of fluidization occurs when

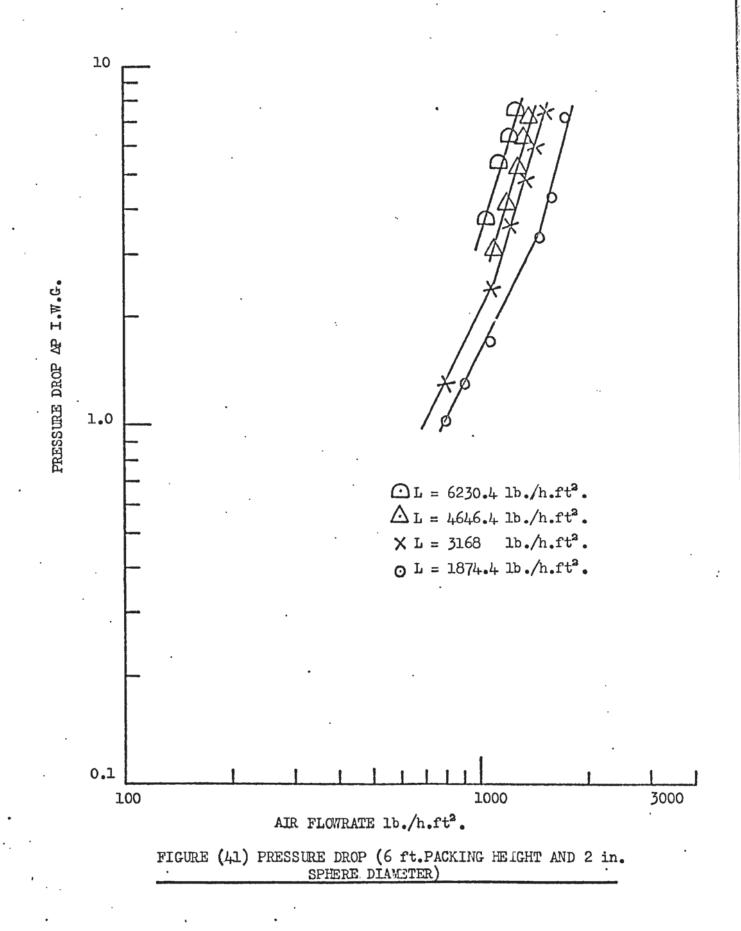
 \mathbf{or}

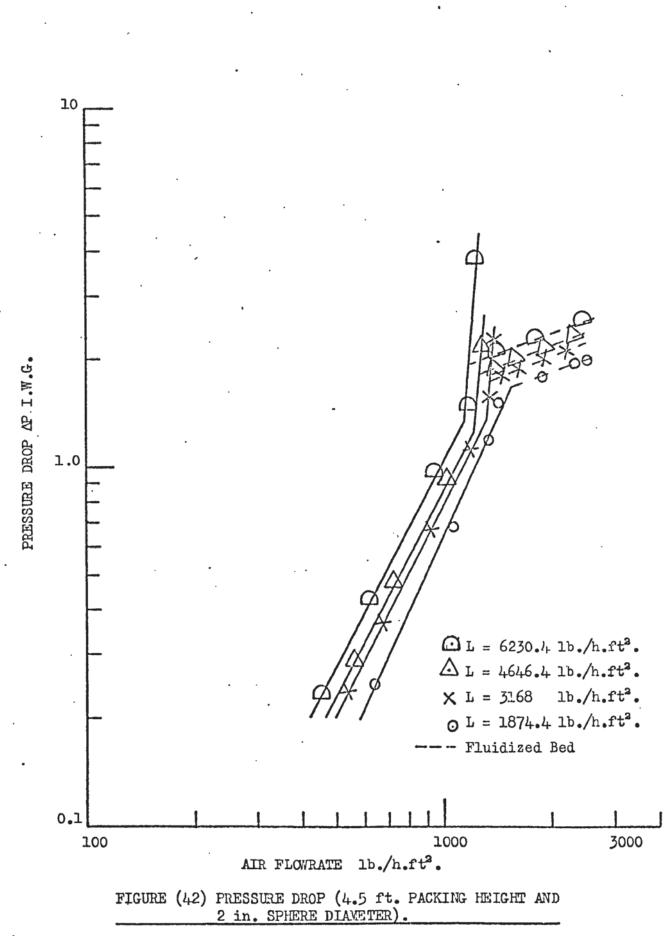

This equation leads to the same form as equation (181) except with a constant equal to 0.192 replacing the 0.26 of equation (181). The reason for this difference is that equation (181) allows for the energy loss by collision and friction among spheres as well as between spheres and the surface of the container.

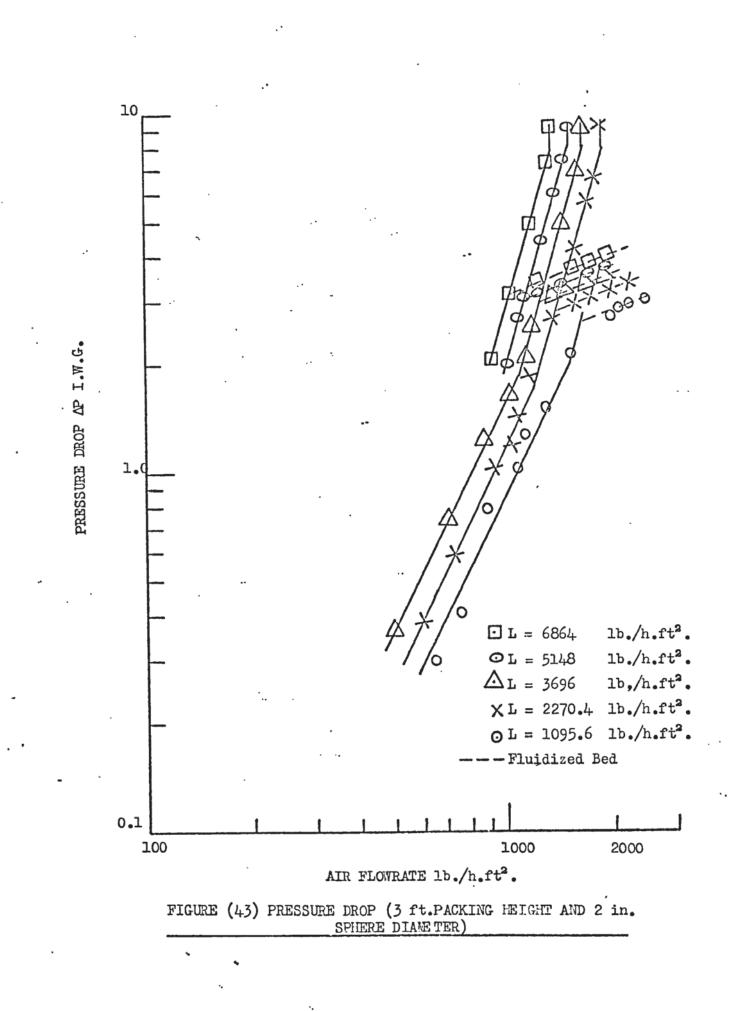

For a given air flowrate and packing height the pressure drop across the two phase fluidized bed for different sphere diameters are high compared with the other types of packing used in cooling towers by different investigators^(127,128,129,130). The main reason for this is the low voidage in the spherical packing.

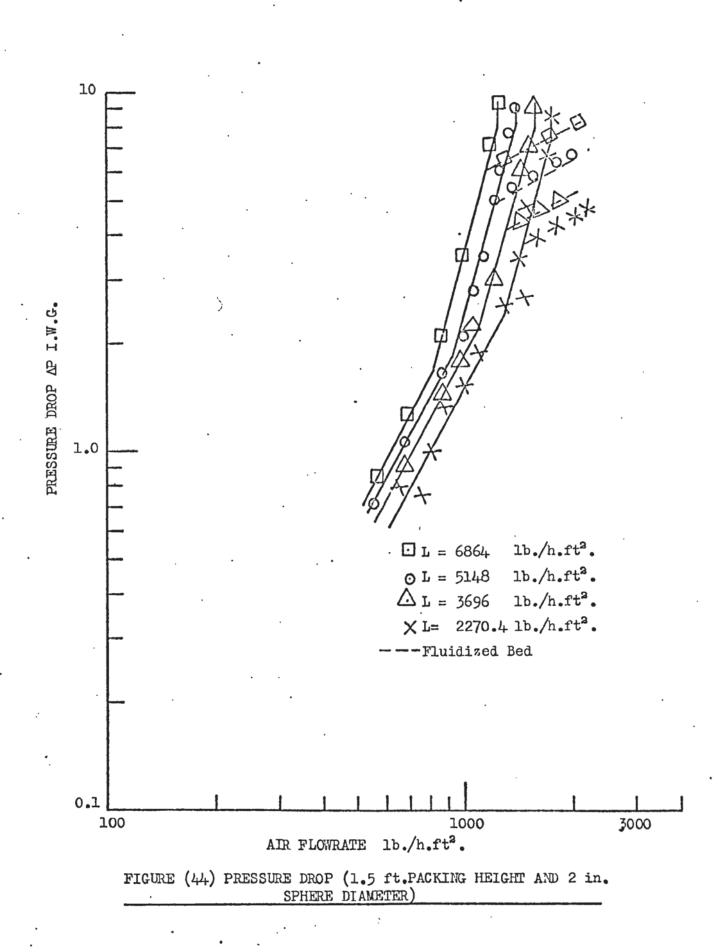

5.5.3. CORRELATION FOR THE PRESSURE DROP ACROSS THE THREE PHASE FIXED BED.

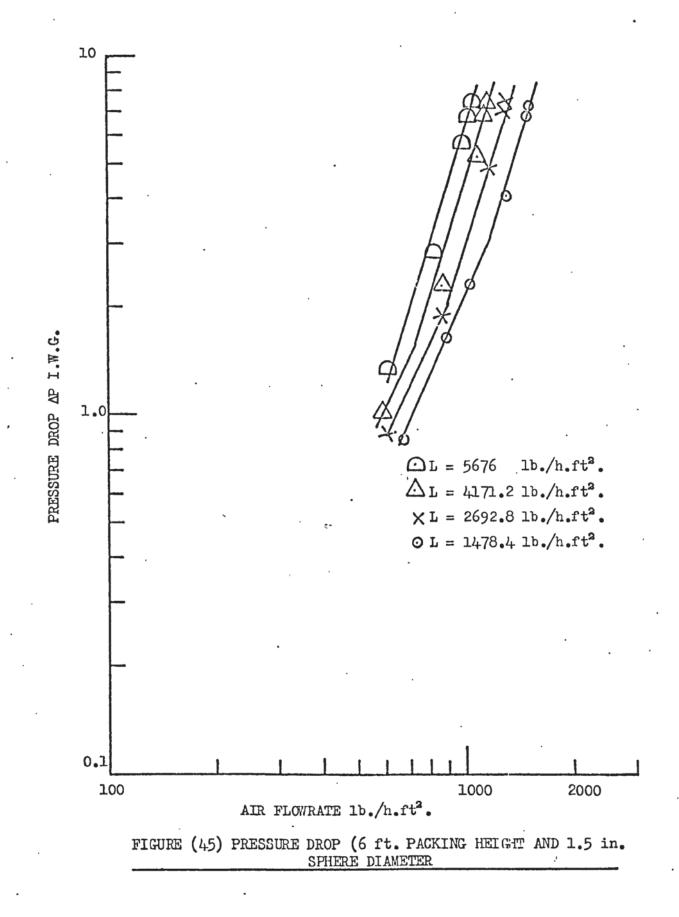

Up to now the pressure drop for two phase fixed and fluidized beds as in Section (5.5.2) has been considered. However when water as the third phase flows down the packing the pressure drop increases principally from the reduction in the free space available to the air flow.

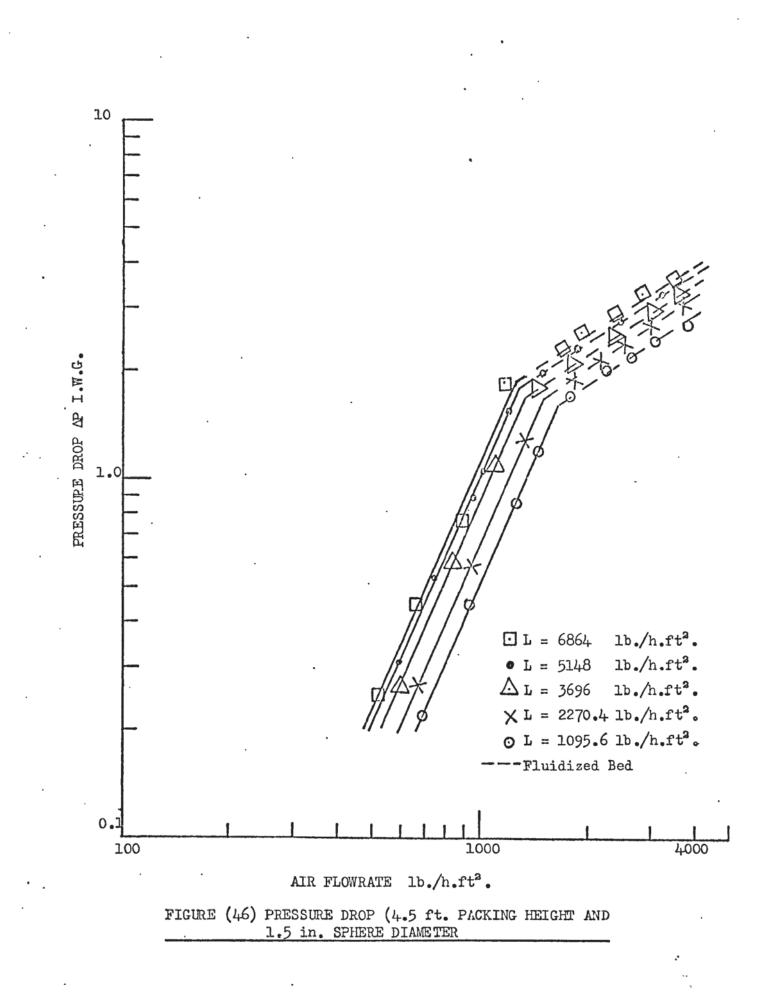

Plotting the dependent variable (ΔP) against the independent variable G for a given sphere diameter, packing height and water flowrate as in Figs.(37-48) shows a linear relation between (ΔP) and G. For three inch diameter spheres Figs.(37, 38, 39 and 40) are for packing heights (6 ft., 4.5 ft., 3 ft. and 1.5 ft.) respectively, while the same heights for two inch and one and a half inch sphere diameters are given in Figs.(41-44) and Figs.(45-48) respectively. There are two breaks in most of these graphs i.e. each graph consists of three lines the first and the lowest represents the pressure drop in the normal region while the second and the third represent the pressure drops in the loading and flooding regions respectively. The pressure drop in the normal region can be correlated as follows:

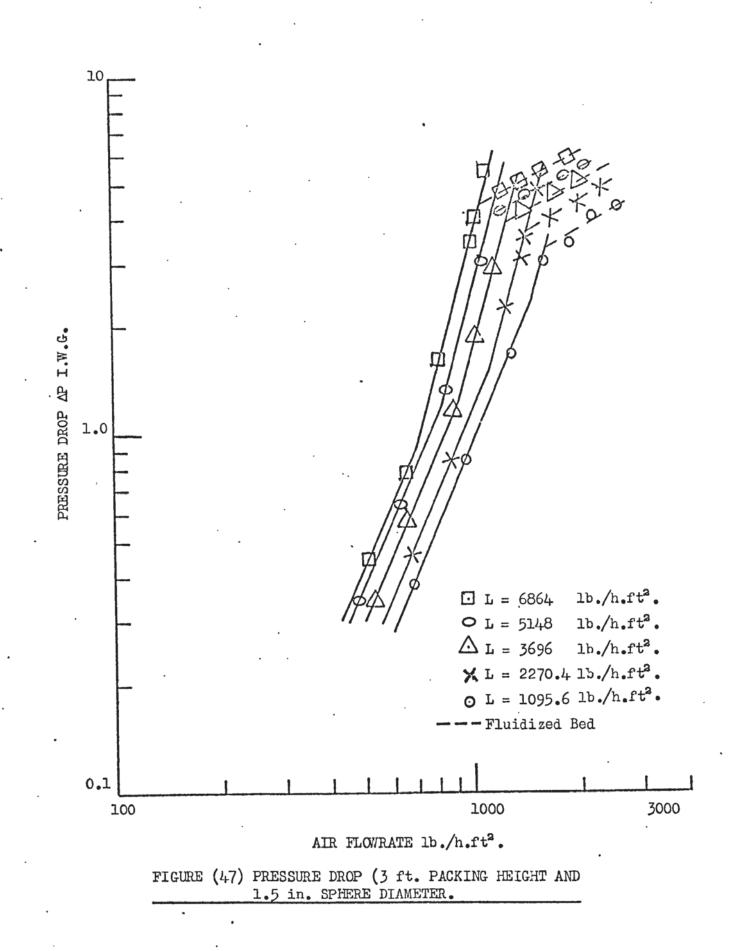


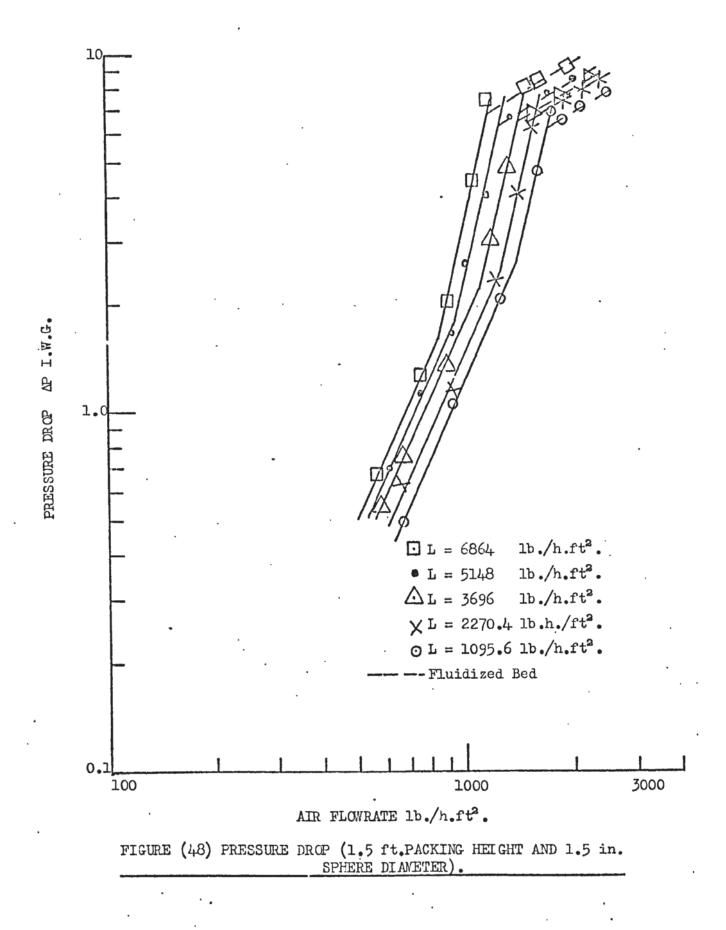












For three inch diameter sphere

$$\frac{\Delta P}{Z} = 1.11^{l_{+}} \times 10^{-7} \ G^{2 \cdot 01} \ 10^{(6 \cdot 65} \times 10^{-5})^{L} \pm 24\%$$
(182)

For two inch diameter sphere

$$\frac{\Delta P}{Z} = 2.606 \times 10^{-7} G^{2 \cdot 0} \quad 10^{(6 \cdot 73} \times 10^{-5})^{L} \pm 30\%$$
(183)

and For one and a half inch diameter sphere

$$\frac{\Lambda P}{Z} = 2.133 \times 10^{-7} G^{2.04} 10^{(4.3 \times 10^{-5})L} \pm 35\%$$
(184)

Examining equations (182, 183 and 184) it can be seen that the pressure drop increases as the sphere diameter decreases for a given water and air flowrate. The reason for this is that the water hold-up decreases the free space available to the air flow, and the water hold-up increases as the sphere diameter decreases. The term $(10^{\beta L})$ in equations (182, 183 and 184) allowed for the reduction in the free space due to the hold-up. For a given water flowrate the term $(10^{\beta L})$ should increase as the sphere diameter decreases as mentioned earlier, but this was not the case with equation (184). This is due to the maldistribution effect discussed in Section (5.4) and confirmed by the visual results. The independent variable, sphere diameter, can be included in the correlations represented as:

$$\frac{\Delta P}{Z} = \frac{1.49 \times 10^{-7} \ G^{2.17} \ 10^{(5.9 \times 10^{-5})L}}{d_{p}^{1.11}} + 55\%$$
(185)

Equation (185) shows large error due to the term $(10^{\beta L})$ for the 1.5 in. sphere diameter which does not follow the increasing trend as for the 3 and 2 in. sphere diameter. If the term $(10^{\beta L})$ which allowed for the reduction in the free space due to the hold-up is dropped from equations (182-185), the result would be the same as predicted from equations (177-180) Section (5.5.2).

The indices for the air flowrate as represented

in equations (182-185) were in very good agreement with the same correlations obtained by the investigators (124,125,126) who worked on different types of packing.

5.5.3.1. CORRELATION FOR THE PRESSURE DROP ACROSS THE THREE PHASE FIXED BED IN THE LOADING REGION.

It was observed that the water hold-up in the packing was independent of air flowrate at the normal region but it was dependent upon air flowrate at the loading region. In the loading region the air friction hindered the downward flow of the water and caused the pressure drop to increase more rapidly. Figs.(37-48) show that at the loading region there is a linear relation between the independent variable (ΔP) and the independent variable G for a given sphere diameter, packing height and water flowrate. Therefore ($\Delta P/Z$) can be correlated as follows: For three inch diameter sphere

$$\frac{\Delta P}{Z} = 7.047 \times 10^{-10} \ G^{2 \cdot 71} \ 10^{(8 \cdot 47 \times 10^{-5})L} \pm 52\%$$
(186)

For two inch diameter sphere

$$\frac{\Delta P}{Z} = 1.585 \times 10^{-12} \ G^{3.62} \ 10^{(12.59} \times 10^{-5}) \ \pm 53\%$$
(187)

and For one and a half inch diameter sphere

$$\frac{\Delta P}{Z} = 4.207 \times 10^{-10} \quad G^{2.91} \quad 10^{(9.58} \times 10^{-5}) \text{L} \pm 51\%$$
(188)

Examining equations (186,187 and 188) it can be seen that the pressure drop increases as the sphere diameter decreases for a given water and air flowrate and the reason for this is the same as was discussed in Section (5.5.3). To include another independent variable, the sphere diameter, the correlation can be represented as follows:

$$\frac{\Delta P}{Z} = \frac{1.36 \times 10^{-9} \ G^{2 \cdot 847} \ 10^{(9 \cdot 47 \times 10^{-5})L}}{d_{P}^{1.57}} \pm 60\%$$
(189)

The error involved in using equations (186, 187, 188 and 189) is large and this is due to the fluctuation in the pressure drop measurements and it is possible that a few of the pressure drop measurements for the flooding region have been included in the correlations.

The indices for the air flowrate in equations (186. 187, 188 and 189) are in very good agreement with the investigators^(134,107) who worked on different types of packing in cooling towers.

If the term $(10^{\beta L})$ which allowed for the reduction in the free space for the packing due to the hold-up was dropped from equation (186-189), the result would be the same as predicted from equation (177-180) Section (5.5.2).

5.5.3.2. PRESSURE DROP ACROSS THE THREE PHASE FIXED BED IN THE FLOODING REGION.

The pressure drop relation at given water flowrate, sphere diameter and packing height were represented in Figs.(37-48) by three straight lines; at the lowest air flowrates the pressure drop was approximately proportional to the square of the air flowrate, but above a certain critical point the slope changed and the pressure drop was proportional approximately to the cube of the air flowrate, up to a second critical point where the line became almost vertical. The first critical point was the loading point and the second was the flooding point.

It was observed that towards the upper end of the loading region the water hold-up increased to a point where a layer of water collected on the top of the packing. This point, which is known as the visual flooding point, coincides approximately with the second critical point in the pressure drop relation, which is

called the graphical flooding point.

5.5.4. CORRELATION FOR THE PRESSURE DROP ACROSS THE THREE PHASE FLUIDIZED BED.

It was observed that when the air flowrate was increased above the minimum fluidization velocity (for a given sphere diameter, packing height and water flowrate), bubbles started to form. With still greater air flowrates the bubbles grew and appeared more frequently, until their diameters were equal to the diameter of the tower. This phenomena is called slugging. During this operation the pressure drop across the packing fluctuated due to the formation of the bubbles which changed the voidage of the packing.

Plotting the dependent variable (ΔP) against the independent variable G for a given sphere diameter, packing height and water flowrate as in Figs.(37-48), a linear relation was obtained. These graphs were represented by broken lines which showed they intersected the pressure drop relations for the three phase fixed bed at the loading region. At the loading region the wetting area increased and therefore the overall volumetric mass transfer coefficient would increase, and the effect of the maldistribution would increase also in this region. These confirm the reasons for the difference between the overall volumetric mass transfer in the fixed and fluidized beds discussed in Section (5.3).

The pressure drop across the three phase fluidized bed can be correlated as follows:

For three inch diameter sphere

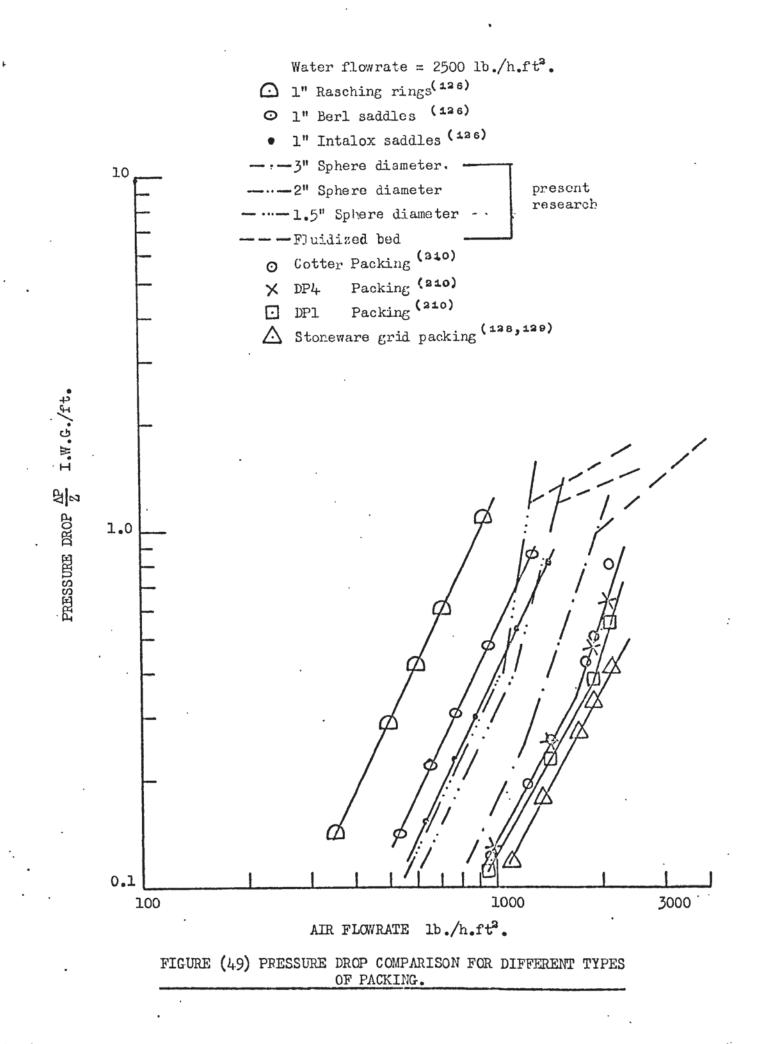
$$\frac{\Delta P}{Z} = 3.581 \times 10^{-4} \ G^{\circ \cdot 998} \ 10^{(3 \cdot 11} \times 10^{-5})^{\rm L} \ \pm 10\%$$
(190)

For two inch diameter sphere

$$\frac{\Delta P}{Z} = 4.477 \times 10^{-3} \ G^{0.71} \ 10^{(2.69 \times 10^{-5})L} \pm 7.5\%$$
(191)

and For one and a half inch diameter sphere

$$\frac{\Delta P}{Z} = 5.781 \times 10^{-2} \ G^{0.41} \ 10^{(2.36 \times 10^{-5})L} \ \pm 9\%$$
(192)


Examining equation (190, 191 and 192) it can be seen that the pressure drop increases as the sphere diameter decreases. To include another independent variable, the sphere diameter, the correlation can be represented as follows:

$$\frac{\Delta P}{Z} = \frac{0.00466 \ G^{0.764} \ 10^{(3.01 \times 10^{-5})L}}{d_{P}^{0.66}} \pm 15\%$$
(193)

It can also be seen that the term $(10^{\beta L})$ which allowed for the reduction in the free space in the packing due to the hold-up for a given water flowrate decreases as the sphere diameter decreases. This confirms the conclusion which had been reached in Section (4.1.2) i.e. that the frequency of formation of the bubbles in the bed increases as the sphere diameter decreases for a given packing height, water and air flowrates, and also shows that the spheres were in turbulent motion.

5.5.5. PRESSURE DROP COMPARISON FOR DIFFERENT TYPES OF PACKING.

It was concluded that the pressure drop $\left(\frac{\Delta P}{Z}\right)$ for the two phase fixed bed was dependent on air flowrate and sphere diameter Section (5.5.2). For the fluidized bed $\left(\frac{\Delta P}{Z_{mf}}\right)$ was independent of air flowrate Section (5.5.2). It was also concluded that the pressure drop (ΔP) for the three phase fixed bed was dependent on packing height, sphere diameter, water and air flowrates. The pressure drop (ΔP) against G could be represented by three straight lines (normal, loading and flooding regions). The term ($10^{\beta L}$) which allowed for the reduction in the free space for the packing due to the bold-up was high in the loading region compared with its value in the normal region for a given water flowrate and sphere diameter. The reason for this is that the water hold-up was dependent on air flowrate

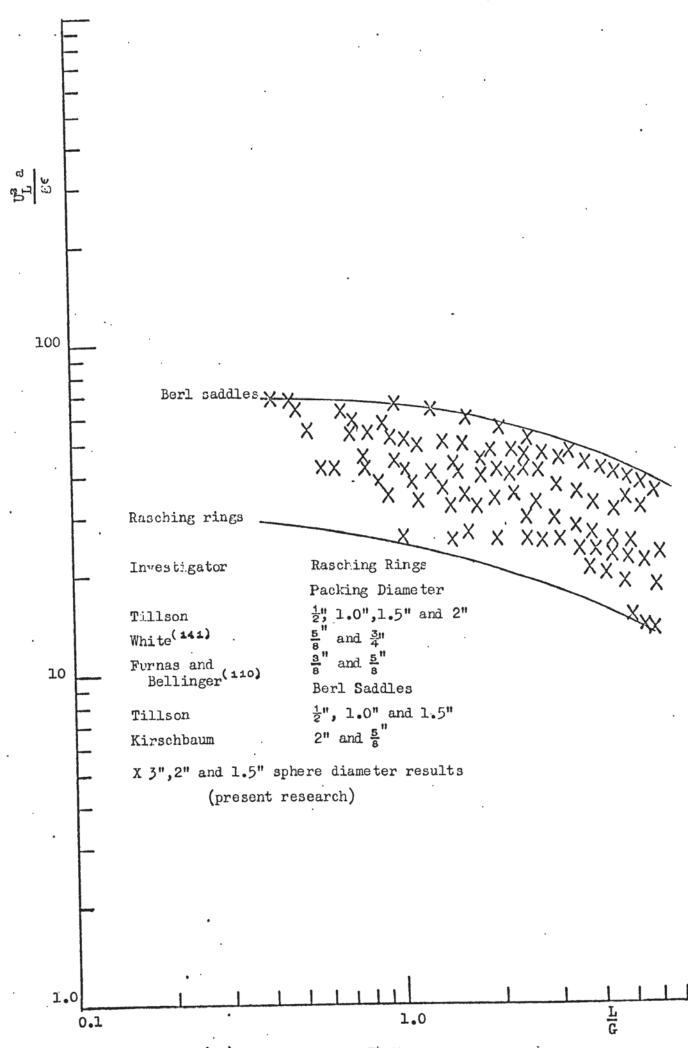
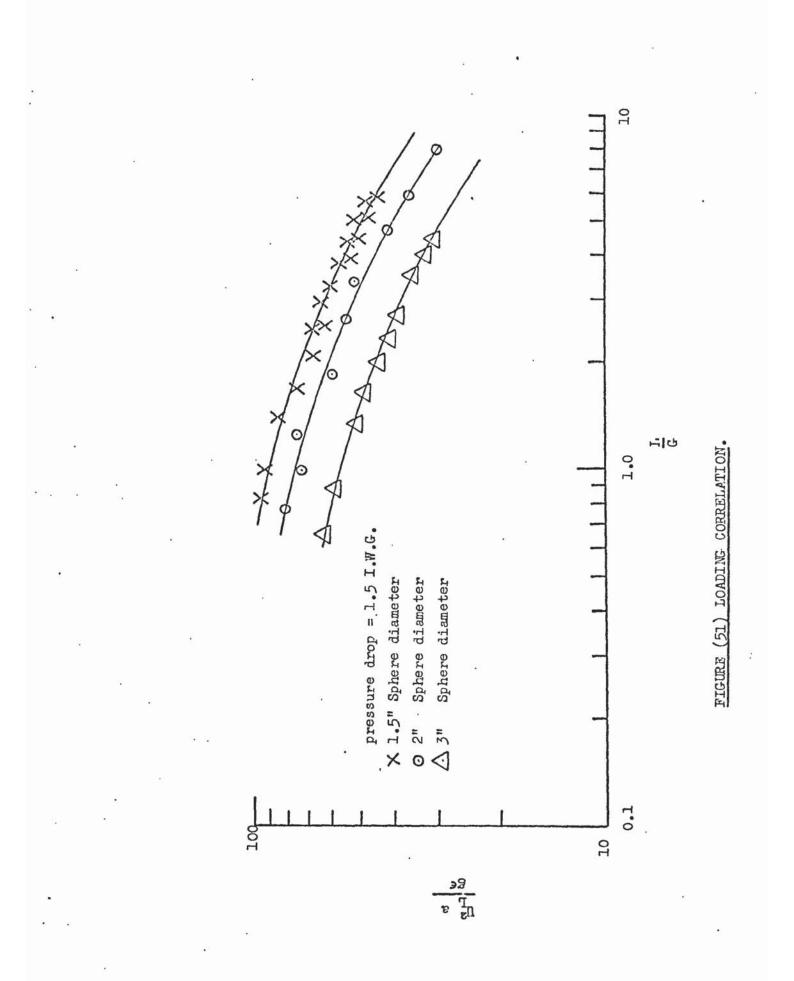



FIGURE (50) LOADING CORRELATION.

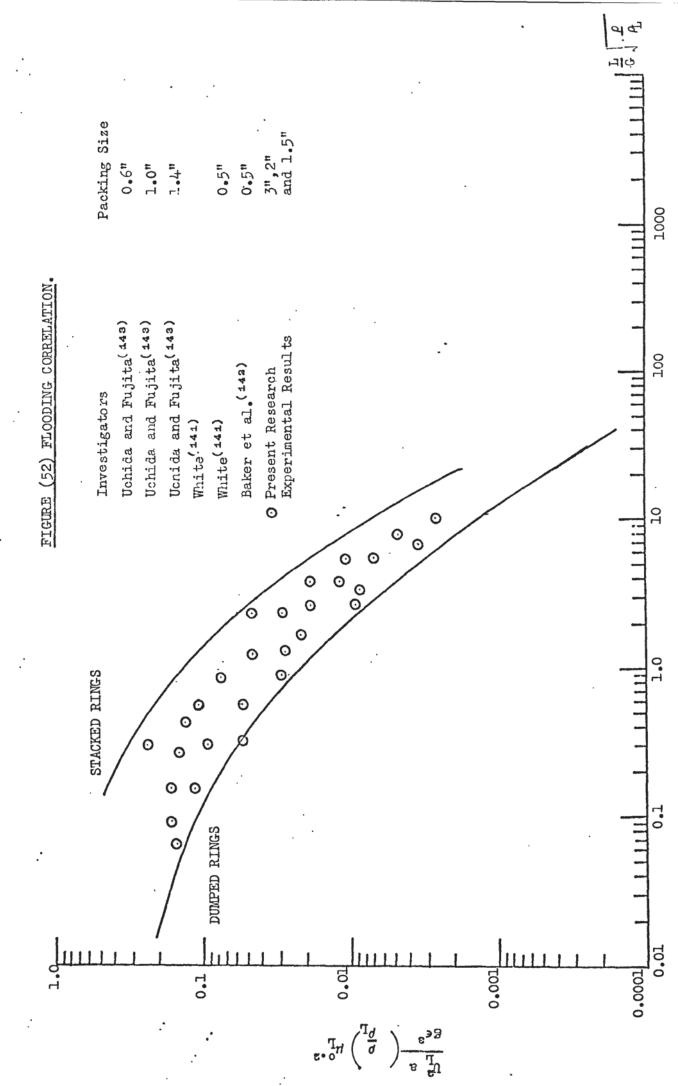
in the loading region, Section (5.5.3). The pressure drop (ΔP) for the three phase fluidized bed was dependent on sphere diameter, packing height, water and air flowrates. The pressure drop relation for the three phase fluidized bed intersects the pressure drop relation for the three phase fixed bed at the loading region.

To compare the pressure drop $\left(\frac{\Delta P}{Z}\right)$ for the spherical polystyrene packing with the other types of packing, a plot of $\frac{\Delta P}{Z}$ against G is presented in Fig.(49) for a given water flowrate. It can be seen in Fig.(49) that the pressure drop for the three phase fixed and fluidized beds for 1.5 in., 2 in. and 3 in. sphere diameter are higher than the three packings, Cotter, DP4 and DP1⁽²¹⁰⁾, and it is also higher than carbon grid packing^(97,128), but is lower than the l in. Raschig rings, Berl saddles and Intalox saddles⁽¹¹⁴⁾ in the normal region.

5.5.6. LOADING AND FLOODING PHENOMENA.

It was concluded in Section (5.5.4) that the pressure drop (ΔP) against G for the three phase fixed bed could be represented by three straight lines (normal, loading and flooding region).

Garner et al.⁽¹⁴⁴⁾ developed a correlation for the loading velocities in random packings in terms of the dimensionless groups $\frac{U_T^2 a}{g\epsilon}$ and $\frac{L}{G}$ where U_L is the air velocity at the loading point, ft./sec. This correlation, which is shown as Fig.(50) was based on experimental data for the air-water system with Raschig rings packing^(110,141) and Berl saddles. The experimental results of the loading velocities for 3 in., 2 in. and 1.5 in.polystyrene sphere diameter are plotted in Fig.(50) and show that all the results lie between those for the Raschig, rings and Berl saddles. It was found that by plotting the dimensionless groups $\frac{U_L^2 a}{g\epsilon}$ and $\frac{L}{G}$ for a given pressure drop (AP) and sphere diameter as Fig.(51) (a is area


of packing, ft^2 ./ ft^3 . tower volume and equal to 12.3, 19.56 and 25.84 for 3, 2 and 1.5 in. sphere diameters respectively) sets of curves similar to Fig(50) were obtained. Therefore the loading velocities for the 3 in., 2 in. and 1.5 in. diameter polystyrene spheres can be correlated by the dimensionless groups which were developed by Garner et al.⁽¹⁴⁴⁾.

Sherwood et al.⁽¹⁴⁰⁾ developed an empirical correlation of the flooding velocities in random and stacked ring packings, based on the experimental data of White⁽¹⁴¹⁾, Baker et al.⁽¹⁴²⁾, Uchida and Fujita⁽¹⁴³⁾. This correlation was expressed as a graphical relation between two groups, $\frac{U_F^2}{g\epsilon^3} \left(\frac{\rho}{\rho_L}\right) \mu_L^{\circ \cdot 2}$ and $\frac{L}{G} \int_{\rho_L}^{\rho}$ where U_F

is air velocity in the empty tower at flooding, ft./sec. and $\mu_{\rm L}$ is the water viscosity in centipoise. The correlation for random and stacked packing is shown in Fig.(52). For comparison the flooding velocities for 3 in., 2 in. and 1.5 in. diameter polystyrene spheres are correlated and plotted in Fig.(52). All these results lie between the stacked and dumped rings. It was found that by plotting the groups $\frac{U_{\rm F}^{\ 2a}}{g\epsilon^3} \left(\frac{\rho}{\rho_{\rm L}} \right) \mu_{\rm L}^{\ 0\cdot2}$ and $\frac{\rm L}{G} \sqrt{\frac{\rho}{\rho_{\rm L}}}$ for a given pressure drop (AP) and sphere diameter, a set of curves similar to Fig.(52) could be obtained. Therefore the flooding velocities for the 3 in., 2 in. and 1.5 in. diameter polystyrene spheres can be correlated by the groups developed by Sherwood et al.⁽¹⁴⁰⁾.

5.6. WATER HOLD-UP.

Methods of measuring the meniscus angle between two touching vertical or horizontal spheres was discussed in Section (4.2). It was concluded from Figs.(18, 19 and 20) that the meniscus angles for the 3 in., 2 in. and 1.5 in. were 21°, 24° and 28° respectively. It was also concluded that for the two touching horizontal spheres, the upper meniscus angles for 3 in., 2 in. and 1.5 in, sphere

diameter were 14°, 18° and 20.5° respectively. It was found that the meniscus angles were independent of water flowrates. The angle of the lower meniscus plus the rippled sheet was found to be dependent on the water flowrate and sphere diameter and can be correlated as follows:

$$\theta = \frac{3}{r} L^{0.657}$$
 (194)

The meniscus angle between two touching vertical spheres can be correlated as follows:

$$\theta = \left(\frac{h_{200}}{r}\right)^{\circ \cdot 42} \tag{195}$$

where (r) is the radius of the sphere in inches.

The weight of the water remaining between the two touching vertical spheres (static hold-up) for the 3 in., 2 in. and 1.5 in. diameter spheres was found to be 0.00127 lb., 0.000993 lb. and 0.000612 lb. respectively, Section (4.2.2). It was found also that the static hold-up was independent of the water flowrate. These quantities are not a true static hold-up since the film thickness is substantial at the angles 28° and 152°, 24° and 156°, 21° and 159° for the 1.5 in., 2 in. and 3 in. diameter spheres respectively.

The water meniscus between two touching spheres has approximately cylindrical shape and therefore

Volume of the water + volume of two segments

of the spheres =
$$2\pi r^3 \sin^2\theta(1-\cos\theta)$$
 (196)

Volume of two segments of the spheres

$$= 2\pi r^{3} \int_{0}^{a} \sin^{3}\theta \, d\theta \tag{197}$$

Therefore volume of the water

$$= 2\pi r^{3} \sin^{2}\theta(1-\cos\theta) - 2\pi r^{3} \int_{0}^{a} \sin^{3}\theta \, d\theta$$

$$= 2\pi r^{3} \sin^{2} a(1 - \cos a) - 2\pi r^{3} \left(-\cos a + \frac{\cos^{3} a}{3} + \frac{2}{3} \right)$$
(198)

where (a) is the meniscus angle.

The weights of the water between two touching vertical spheres predicted by using equation (198) are 0.00109 lb., 0.00178 lb. and 0.00317 lb. for the 1.5 in., 2 in. and 3 in. sphere diameter respectively. It can be seen that the value predicted by equation (198) is approximately twice the experimental value for a given sphere diameter. The reason for this is that when the water flow over a sphere is shut off, the water film round the sphere pulled part of the water between the two touching spheres and then drained. The weight of the water between two touching vertical spheres (static hold-up) for 1.5 in. sphere diameter obtained from equation (198) is in very good agreement with the values given by Davidson et al.⁽¹⁵³⁾ who found the static hold-up for 1.49 in. table tennis balls to be 0.00088 lb.

Davidson et al. (153) used the following equation to find the dynamic hold-up for 1.49 in. sphere diameter.

Dynamic hold-up =
$$\frac{\pi d_{\rm P}^2 \rho_{\rm L}}{2} \left(\frac{3\phi \ \mu_{\rm L}}{\pi g d_{\rm P} \rho_{\rm L}} \right)^{\frac{1}{3}} \int_{28}^{152^{\circ}} \sin^{\frac{1}{3}}\theta \ d\theta \qquad (199)$$

where (ϕ) is the volumetric water flow ft³./sec., (d_P) is the sphere diameter ft. and ($\mu_{\rm L}$) is water viscosity lb./ft.sec.

To find the total hold-up (static hold-up plus dynamic hold-up) for the different diameters of polystyrene sphere, equation (199) was used and modified by including equation (198) represented as follows:

131.

Total hold-up =
$$\frac{\pi \ d_{P}^{2} \rho_{L}}{2} \left(\frac{3\phi \ \mu_{L}}{\pi \ gd_{P} \rho_{L}} \right)^{\frac{1}{3}} \int_{a}^{b} \sin^{\frac{1}{3}} \theta \ d\theta$$
$$+ 2 \left(\frac{d_{P}}{2} \right)^{3} \pi \ \rho_{L} \ \sin^{2} \theta (1 - \cos \theta) - 2 \left(\frac{d_{P}}{2} \right)^{3} \pi \ \rho_{L} \int_{0}^{a} \sin^{3} \theta \ d\theta \qquad (200)$$
where a and b are the meniscus angles.
The values of $\left(\int_{a}^{b} \sin^{\frac{1}{3}} \theta \ d\theta \right)$ found by using Simpson's rule
a

are 2.02, 2.13 and 2.25 for 1.5 in., 2 in. and 3 in. sphere diameter respectively. The total hold-up predicted by equation (200) was in very good agreement with the results of Davidson et al.⁽¹⁵³⁾ for 1.5 in. diameter spheres within the water flowrates used in the present research.

5.6.1. FILM THICKNESS AND FREE SURFACE VELOCITY.

Measurements of the water film thickness at the equator of 3 in., 2 in. and 1.5 in. diameter spheres are listed in Tables (21, 22 and 23).

TABLE (21) WATER FILM THICKNESS OVER 3 in.SPHERE DIAMETER.

Water flowrate lt./h./sphere	Re	Film thickness in.
68.5	350	0.0102
92.4	491	0.0122
117.2	622	0.0132
141.9	720	0.0141
168.3	854	0.0149
198.0	926	0.0158
231.0	1036	0.0166
261.0	1120	0.0172
290.4	1214	0.0179
321.8	1310	0.0185
354.8	1400	0.0191
389.4	1490	0.0197
429.0	1615	0.0204

TABLE (22) WATER FILM THICKNESS OVER 2 in.SPHERE DIAMETER.

Water flowrate lb./h./sphere	Re	Film thickness in.
30.4	171	0.00917
41.1	225	0.0101
52.1	298	0.0109
63.1	362	0.0116
74.8	428	0.0123
88.0	500	0.013
102.7	565	0.0137
115.9	630	0.0142
129.1	686	0.0147
143.0	740	0.0153
157.7	800	0.0157
173.1	855	0.0161
190.7	934	0.0169

TABLE (23) WATER FILM THICKNESS OVER 1.5 in. SPHERE DIAME TER.

t		
Water flowrate lb./h./sphere	Re	Film thickness in.
10 •/ 11 •/ 00 1101 0		
17.1	82.5	0.00886
23.1	114	0.0098
29.2	151	0.0106
35.5	189	0.0113
42.1	226	0.012
49.5	273	0.0126
57.8	330	0.0133
65.2	360	0.0138
72.6	406	0.0144
80.4	440	0.0148
88.7	485	0.0154
97•4	525	0.0158
107.3	567	0.0163
	•	•

Examining Tables (21, 22 and 23) it can be seen that for a given water flowrate, the water film thickness over the sphere increases as the sphere diameter decreases. These values show also that for

a given water flowrate the dynamic hold-up increases as the sphere diameter decreases and this is in very good agreement with Chen and Douglas⁽¹⁶⁾. The water film thickness in Tables (21, 22 and 23) are in excellent agreement with the value predicted by equation (108) Section (2.10). Therefore equation (108) can be used to find the water film thickness over the sphere with high accuracy, but its use should be limited to within the range of water flowrate used in this research, otherwise false results can be obtained because over the present ranges of water flowrate ripples started to form.

The Reynold's numbers
$$\left(\text{Re} = \frac{4\rho_{\text{L}}}{\mu_{\text{L}}} \right)$$
 in

Tables (21, 22 and 23) are less than 1200 except for the 3 in. sphere diameter (water flowrate between 290.4-429.0 lb./h./sphere). These results show that the movement of the water film over the spheres within the ranges of water flowrate used in the present research were in laminar motion. This confirms the conclusion reached in Section (4.3).

The average water free surface velocities for different sphere diameters were shown in Fig.(22). It is concluded that for a given water flowrate the free surface velocity increases as the sphere diameter increases. It is also concluded that the water free surface velocities for different sphere diameters are in excellent agreement with the values predicted by the equation used by Lynn et al.^(150,151,152) and can be represented as follows:

$$V_{i} = \frac{3}{2} \frac{\Gamma}{m}$$
 (201)

where (V_i) is water free surface velocity ft./sec. and (Γ) is water volumetric rate ft³./ft.sec. Equation (201) can be used to predict the water free surface velocity at any given place on the sphere with high accuracy within the water flowrates used in

5.7. DETERMINATION OF MINIMUM FLUIDIZATION VELOCITY.

Measurements of the minimum fluidization velocity for conventional two phase fluidization are facilitated by the existence of a well defined relationship between the pressure drop (ΔP) across the bed and the flowrate of the gas or liquid Such a relation is possible only when the fluidizing stream. solid particles exhibit good fluidization characteristics, Section (2.8). The packings used in this cooling tower are 100 times larger than those normally found in conventional fluidized beds, and hence no smooth fluidization can be expected. For this reason, the conventional methods of determining the minimum fluidization velocity do not give a very accurate result. The minimum fluidization velocity can be defined as the maximum gas velocity at which the packed bed maintains its static height. This definition is consistent with that commonly accepted for conventional fluidization, because the bed height at minimum fluidization may approach the static bed height for large packing, Section (2.8). With the definition of minimum fluidization given, the determination of minimum fluidization velocity can be carried out by the measurement of bed heights; the only trouble with this method is that it is difficult to measure the bed heights very accurately especially when the fluidized bed is in a large tower and is a three phase system (solid, air and water). This can be seen later on (Section 5.7.2).

5.7.1. MINIMUM FLUIDIZATION VELOCITY FOR TWO PHASE SYSTEM.

The relationship between the pressure drop across the bed and the air flowrate for a given sphere diameter has been used to find the minimum fluidization velocity for packing heights of 4.5 ft., 3 ft. and 1.5 ft. and are shown in Figs.(34, 35 and 36) for 3 in., 2 in., and 1.5 in. sphere diameter respectively. These minimum fluidization velocities are listed in Table (24).

	Packi	ing height	t ft.	Average		
Sphere diameter in.			1.5	G _{mf} lb./h.ft ² .	$\frac{G_{\rm mf}}{\rho_{\rm S}}$ ft./h.	
3	2700	2850	3150	2900	51 ₁ 0	
2	1900	2000	2100	2000	412	
1.5	2200	2250	2350	2270	314	

TABLE (24) MINIMUM FLUIDIZATION VELOCITY.

Examining Table (24) it can be seen that the minimum fluidization velocity is independent of the packing height, although there is a small increase among the velocities for a given sphere diameter due to incomplete fluidization of the bel. It was observed that the 1.5 ft. packing height was approximately fully fluidized compared with the 4.5 ft. and 3 ft. packing heights which were not fluidized in the lower part of the packing. To check these minimum fluidization velocities, the method of plotting the packing height against air flowrate for a given sphere diameter was adopted. By extrapolation of the linear relation to the point at which bed height is equal to the static bed height, the abscissa of this point is the minimum fluidization velocity. This can be seen in Fig. (53) for different sphere diameters and 1.5 ft. packing height. The results obtained by this method were approximately the same as the results in Table (24). Therefore the two methods (pressure drcp - air flowrate) and (packing height air flowrate) relations are in good agreement and either of these methods can be used to find the minimum fluidization velocity.

Referring to Table (24), it can be seen that the minimum fluidization velocity is independent of packing height

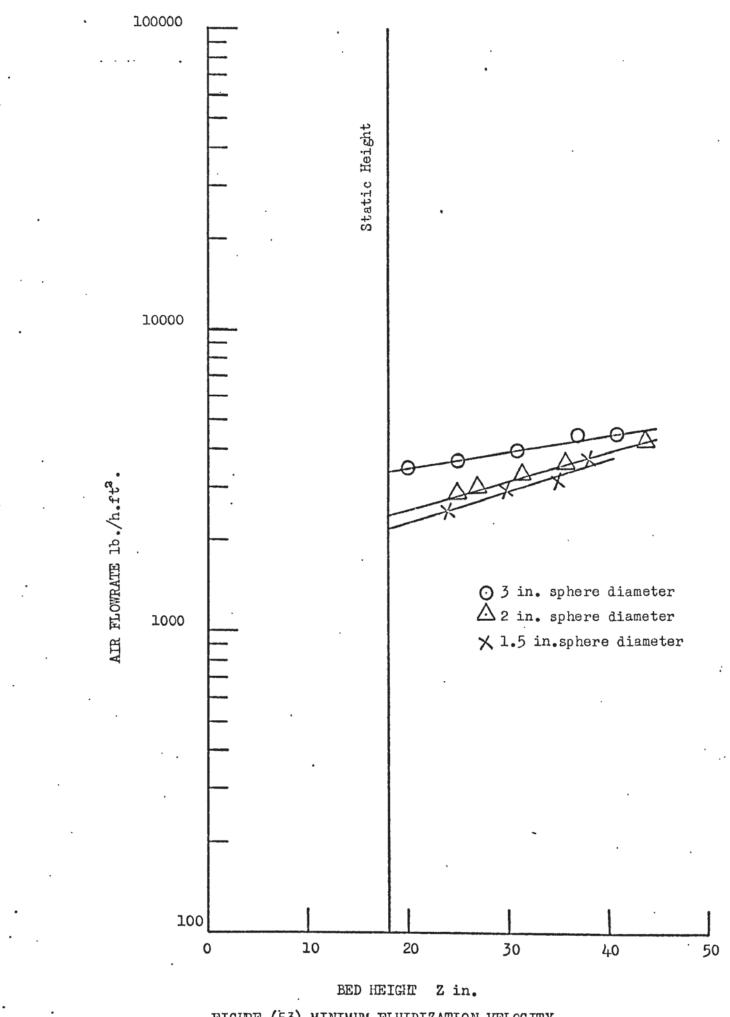


FIGURE (53) MINIMUM FLUIDIZATION VELOCITY.

and dependent on sphere diameter and density of the solid. Therefore the minimum fluidization velocity can be correlated as follows:

$$G_{mf} = 200 d_p \rho_s \pm 9\%$$
 (202)

The minimum fluidization velocity is in very good agreement with Chen and Douglas⁽¹⁶⁾ who found that G_{mf} was proportional to $d_p^{1.15}$.

5.7.2. MINIMUM FLUIDIZATION VELOCITY FOR THREE PHASE SYSTEM.

To find the minimum fluidization velocity for the three phase system, the pressure drop across the packing and the air flowrate relation was used. This is shown in Figs.(38, 39 and 40) for 3 in. diameter sphere, Figs.(42, 43 and 44) for 2 in. diameter sphere and Figs.(46, 47 and 48) for 1.5 in. diameter sphere. The minimum fluidization velocities for 3 in., 2 in. and 1.5 in. diameter spheres are listed in Tables (25, 26 and 27) respectively.

TABLE (25) MINIMUM	FLUIDIZATION	VELOCITY	FOR	3	in SPHERE	DIAMETER.

·					
Water	Pack	ing heigh	t ft.	Average	
flowrate lb./h.ft ² .	4•5	3	1.5	G _{mf} lb./h.ft ² .	$\frac{G_{mf}}{\rho_{S}}$ ft./h.
1095.6	2150	2150	2250	2183	407
1478.4	1900	21.50	2100	2050	382
1874.4	1800	2150	1920	1957	365
2270.4	1800	2040	2140	1993	372
2692.8	1700	2040	1950	1897	354
3168.0	1600	1950	1920	1823	340
3696.0	1580	1880	1920	1793	335
4171.2	1500	1880	1780	1720	321
4646.4	1480	1790	1700	1657	309
5148.0	1400	1780	1580	1587	296
5676.0	1380	1700	1600	1560	291
6230.4	1,330	1700	1600	1543	288
6864.0	1250	1680	1550	1493	278
					•

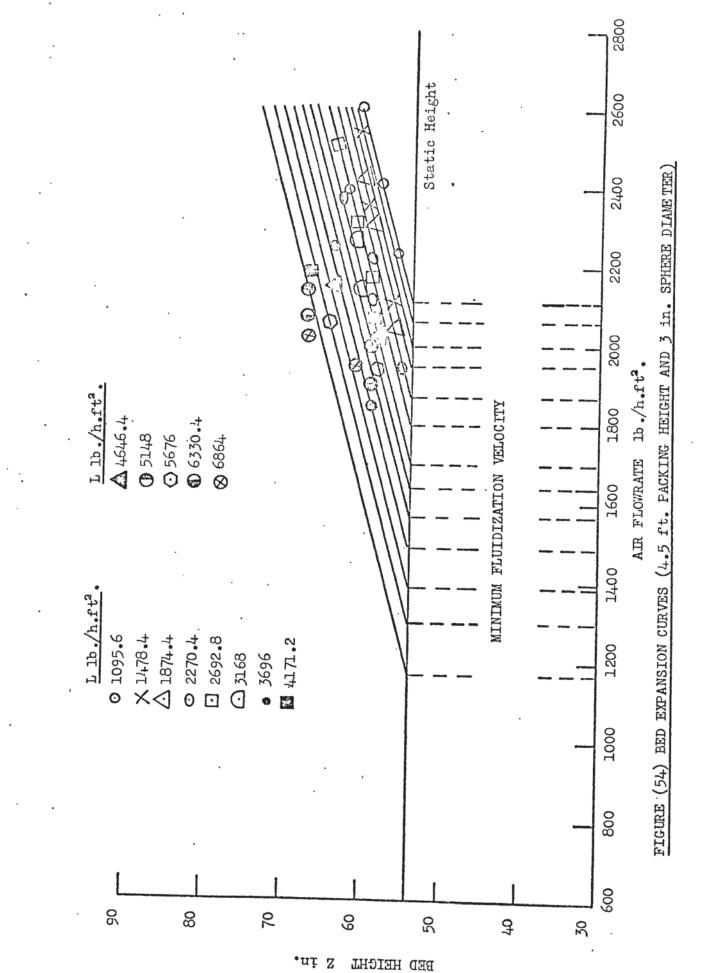
٦	3	7	
-		1	۰

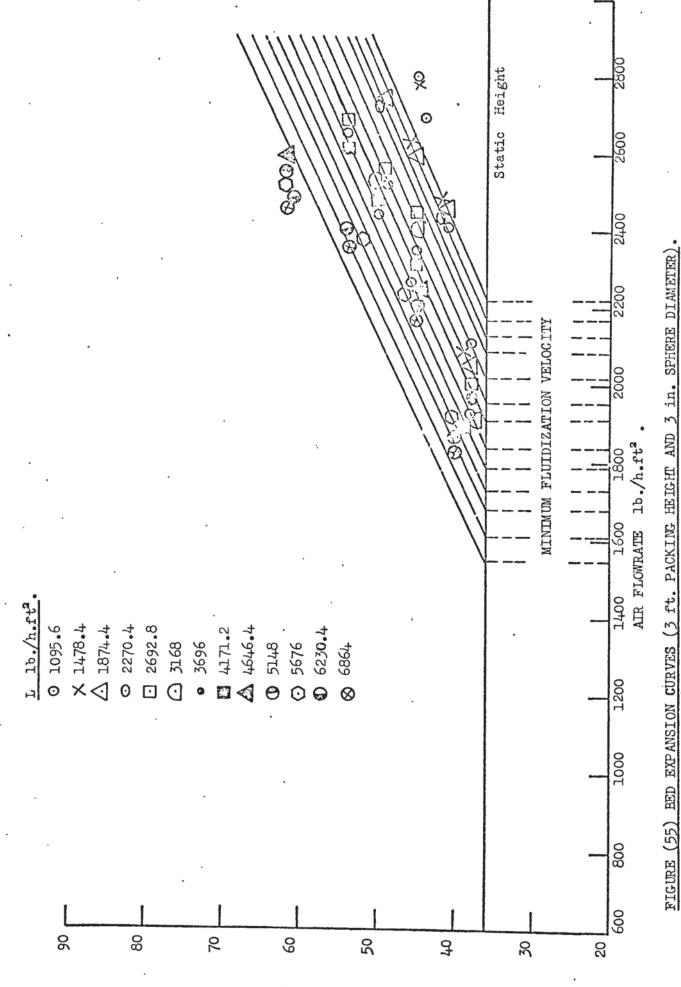
Water	Packing height ft.			Average G _{mf}	G
flowrate lb./h.ft ² .	4•5	3	1.5	lb./h.ft ² .	$\frac{\mathrm{mf}}{\mathrm{\rho}_{\mathrm{S}}}$ ft./h.
1095.6	1700	1700	1700	1700	351
1478.4	1550	1620	1650	1607	331.
1874.4	1480	1560	1580	1540	318
2270.4	1480	1420	1450	1450	299
2692.8	1380	1380	1400	1387	286
3168.0	1370	1340	1380	1363	281.
3696.0	1:330	1280	1320	1310	270
4171.2	1280	1230	1320	1277	263
4646.4	1250	1200	1.280	1243	252
5148.0	1240	1170	1250	3.220	251
5676.0	1170	1140	1150	1153	238
6230.4	1120	1120	1180	1140	235
6864.0	11.20	1050	1170	1113	230

TABLE (26) MINIMUM FLUIDIZATION VELOCITY FOR 2 in SPHERE DIAMETER.

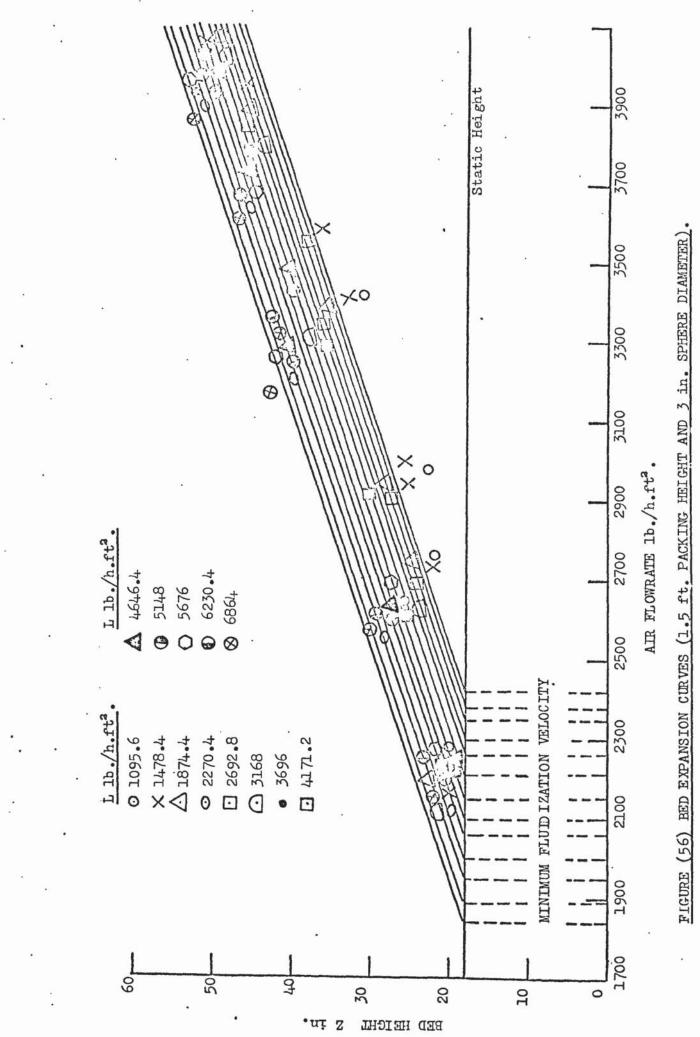
TABLE (27) MINIMUM FLUIDIZATION VELOCITY FOR 1.5 in. SPHERE DIAMETER.

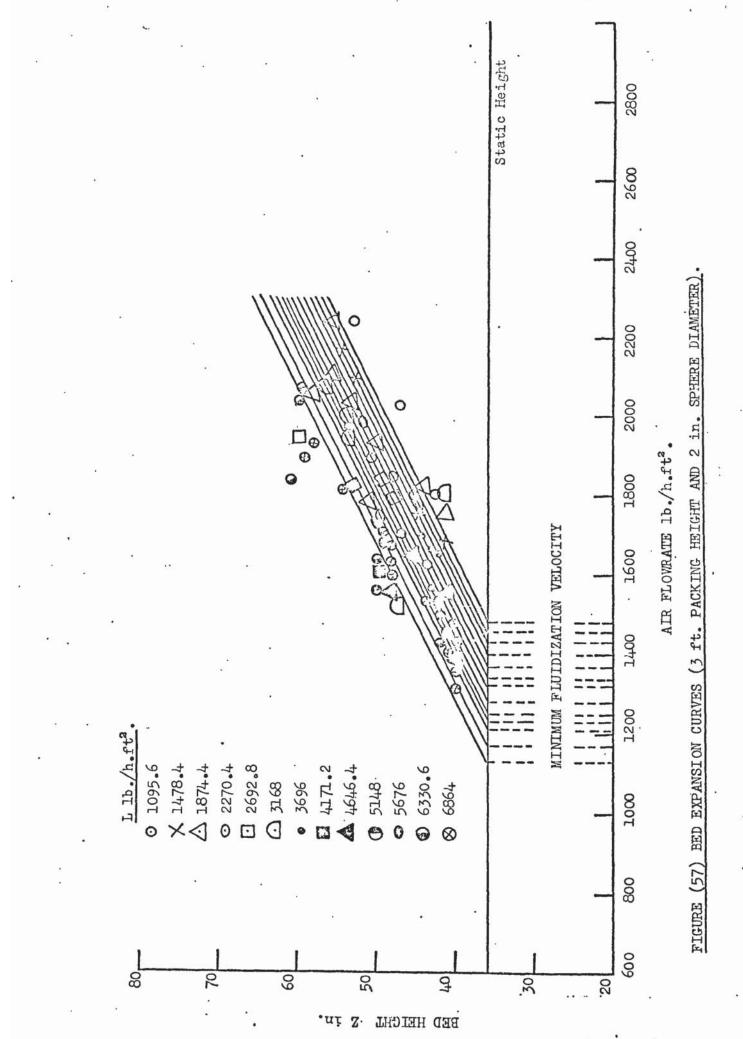
Water	Pac	king heig	ht ft.	Average G _{mf}	$\frac{G_{mf}}{\rho_{S}}$ ft./h.
flowrate lb./h.ft ² .	4.5	3	1.5	lb./h.ft ² .	°S
1095.6	1700	1650	1650	1667	230
1478.4	1700	1550	1600	1617	223
1874.4	1700	1500	1520	. 1573	217
2270.4	1630	1480	1480	1530	211
2692.8	1550	.1400	3.4+50	1467	203
3168.0	1500	1340	1400	1413	195
3696.0	1440	1290	1320	1350	186
4171.2	1400	1270	1300	1323	183
4646.4	1370	1180	1290	1280	ד72
5148.0	1280	1180	1280	1247	172
5676.0	1250	1140	1270	1220	168
6230.4	1200	1080	1270	1183	163
6861 ₊	1190	1050	1270	1170	162

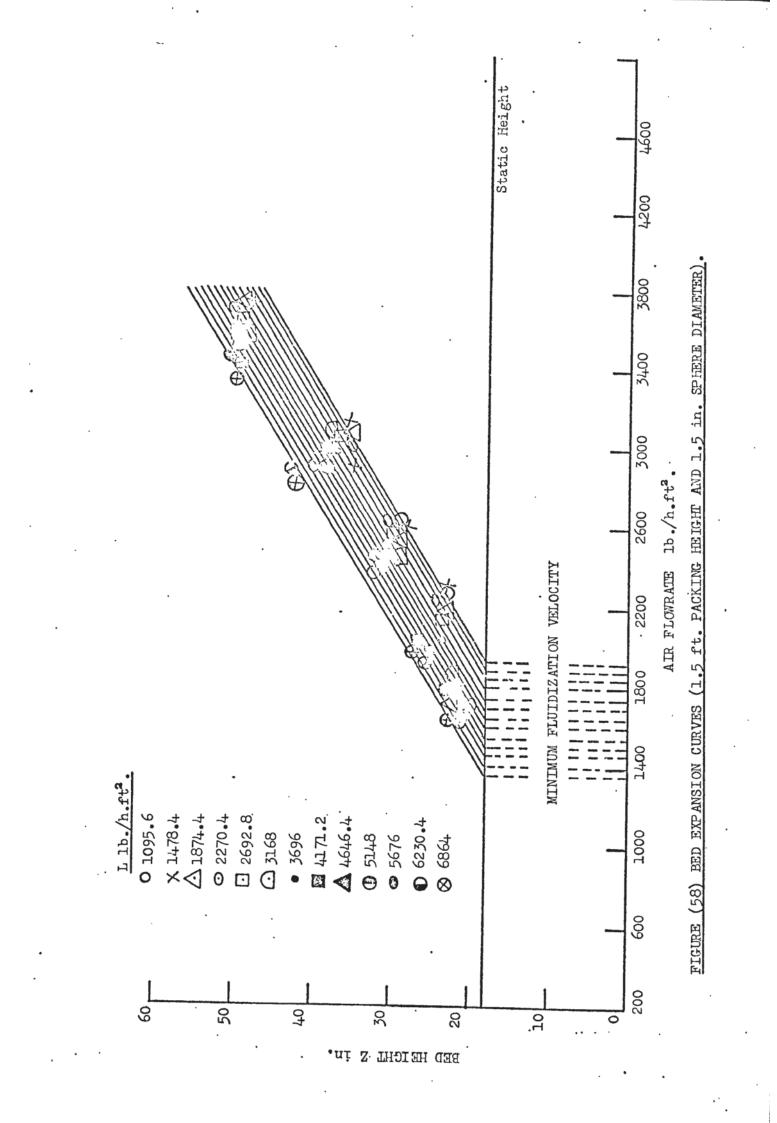

To check the minimum fluidization velocity in


Tables (25, 26 and 27) the method of plotting the packing height against air flowrate for a given sphere diameter and water flowrate

was used. By extrapolation of the linear relation to the point of the bed height equal to the static bed height, the abscissa of this point is the minimum fluidization velocity. This can be seen in Figs.(54, 55 and 56) for packing heights 4.5 ft., 3 ft. and 1.5 ft. respectively, Fig.(57) for 2 in. diameter sphere and 3 ft. packing height and Fig.(58) for 1.5 in. diameter sphere and 1.5 ft. packing height. The minimum fluidization velocities for 3 in., 2 in. and 1.5 in. diameter spheres are listed in Tables (28, 29 and 30) respectively.


Water	Packi	ng height	t ft.	Average G _{mf}	$\frac{G_{mf}}{\rho_S}$ ft./h.
flowrate lb./h.ft ² .	4.5	3	1.5	lb./h.i't ² .	$\frac{\rho_{\rm S}}{\rho_{\rm S}}$ ft./h.
1095.6	2110	2220	2420	2250	420
1478.4	2060	2170	2380	2203	411
1874.4	2000	2120	2350	2157	402
2270.4	1950	2080	2300	2110	394
2692.8	1870	2020	2260	2050	382
3168.0	1800	1950	221.0	1987	371
3696.0	1700	1910	2150	1920	358
4171.2	1640	1840	2100	1860	347
4646.4	1570	1790	2060	1807	337
5148.0	1490	1730	2000	1740	325
5676.0	1390	1680	1950	1673	312
6230.4	1300	1610	1890	1600	298
6864.0	1170	1540	1840	1517	283


TABLE (28) MINIMUM FLUIDIZATION VELOCITY FOR 3 in.SPHERE DIAME TER.



BED HEICHL Z IN

Water	Packing 1	neight ft.	Average Gmf	Gmf ft./h.
flowrate lb./h.ft ²	. 3	1.5	lb./h.ft ² .	ρ _S
1095.6	1480	1580	1530	316
1478.4	1460	1530	1495	308
1874.4	1430	1500	1465	302
2270.4	1400	1480	1440	297
2692.8	1370	1450	1410	291
31.68.0	1340	1400	1370	283
3696.0	1320	1370	1345	277
4171.2	1280	1330	1305	269
4646.4	1250	1280	1265	261
5148.0	1230	1250	1240	256
5676.0	1210	1240	1225	253
6230.4	1170	1220	1.1.95	246
6864.0	1130	1200	1165	240

TABLE (29) MINIMUM FLUIDIZATION VELOCITY FOR 2 in. SPHERE DIAMETER.

.

.

TABLE (30) MINIMUM FLUIDIZATION VELOCITY FOR 1.5 in. SPHERE DIAMETER.

Water	Pooki	ng height		Average G _{mf}	G _{mf} ft./h.
flowrate	TACKT.	ing mergine	10.	шı	
lb./h.ft ² .	4•5	3	1.5	lb./h.ft ² .	ρ _S
1095.6	1770	1860	1920	1850	255
1478.4	1720	1800	1880	1800	248
1874.4	1670	1740	1840	1750	242
2270.4	1600	i670	1800	1690	233
2692.8	1540	1580	1740	1620	224
3168.0	1480	1550	1700	1577	21.8
3696.0	1410	1480	1640	1510	209 [·]
4171.2	1350	1440	1600	1463	202
4646.4	1280	1400	1540	1407	194
5148.0	1210	1370	1500	1360	188
5676.0	1150	1.330	1460	1313	181
6230.4	1080	1290	1400	1257	174
6864.0	990	1250	1360	1200	166

Tables (25-30) show that the minimum fluidization velocities decrease as the water flowrate increases and it is independent of the packing height. Although there is a small variation among these velocities due to the lower part of the bed not being fully fluidized, ignoring these small variations the minimum fluidization velocity is independent of the packing height. Tables (25-30) also show that the minimum fluidization velocities increase as the sphere diameter increases. These statements are in excellent agreement with Chen and Douglas⁽¹⁶⁾.

Comparing Tables (25-27) with Tables (28-30) it can be seen that for a given sphere diameter and water flowrate, there is small variation among the results which were obtained by different methods as mentioned earlier. These variations are due to the packing heights which cannot be measured accurately. Therefore the pressure drop - air flowrate relation is more accurate than the packing height - air flowrate relation for the obvious reason mentioned above.

It is concluded that the minimum fluidization velocity can be correlated as Chen and Douglas's⁽¹⁶⁾ correlation which can be represented as follows:

For the minimum fluidization velocities obtained by the pressure drop-air flowrate relation:

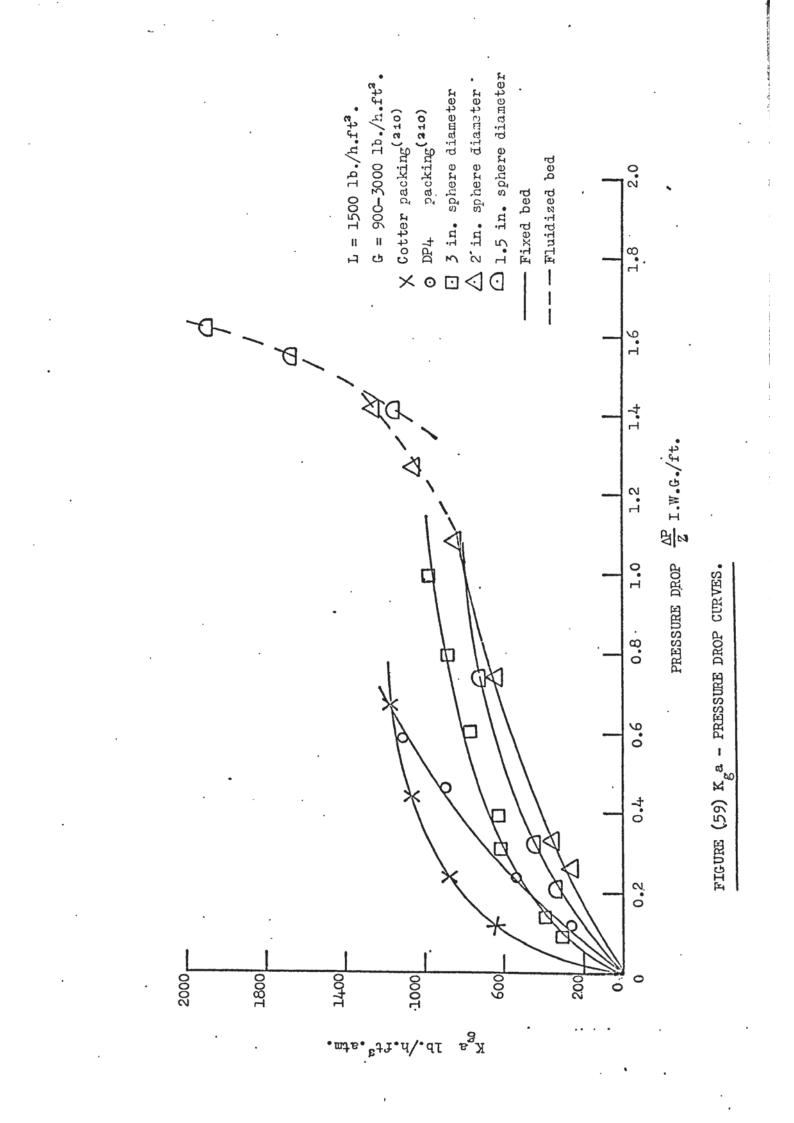
 $G_{mf} = 1435.5 d_{P}^{0.39} 10^{(-2.88 \times 10^{-5})L} \pm 14\%$ (203)

For the minimum fluidization velocities obtained by the packing height-air flowrate relation

$$G_{mf} = 1520.5 d_{P}^{0.37} 10^{(-2.76 \times 10^{-5})L} \pm 22\%$$
(204)

These two correlations predict a minimum fluidization velocity which is not great. To include the sphere density, these correlations can be represented as follows:

$$G_{mf} = 188 \rho_{S} d_{P}^{0.78} 10^{(-2.88 \times 10^{-5})L} \pm 14\%$$
(205)
$$G_{mf} = 200 \rho_{S} d_{P}^{0.76} 10^{(-2.76 \times 10^{-5})L} \pm .7\%$$
(206)


These correlations are in good agreement with Chen and Douglas (16).


When the water flowrate approaches zero the term $(10^{\beta L})$ approaches unity, and therefore the correlation with the latter relation can be compared for the two phase system Section (5.7.1). The similarity between these two relations tends to indicate that despite the presence of the additional liquid phase, the minimum fluidization velocity is still affected by the sphere diameter and sphere density in much the same way as in the case for air-solid fluidization.

5.8. ECONOMIC ASPECT OF POLYSTYREME SPHERES PACKING.

To determine whether it is economic to use the polystyrene spheres as packing in a cooling tower compared with the Cotter packing and DP4 packing, the overall volumetric mass transfer coefficient - pressure drop correlation was used. The reasons for choosing these two packings for comparison was that they gave high overall volumetric mass transfer coefficients compared with other types of packing used in cooling towers as shown in Fig.(32) and also for their wide commerical use.

Plots of the overall volumetric mass transfer coefficient against pressure drop $\left(\frac{\Delta P}{Z}\right)$ were made for a given water flowrate 1500 lb./h.ft². Fig.(59) and 4000 lb./h.ft². Fig.(60). These figures show that for a given water flowrate and pressure drop $\left(\frac{\Delta P}{Z}\right)$, the overall volumetric mass transfer coefficients for the Cotter and DP4 packings are approximately 30%-45% higher than the fixed beds of various sphere diameter and therefore the latter

packings are not economic to use. If the Cotter and DP4 packings results are extrapolated and compared with the fluidized bed results for the different sphere diameters and for a given water flowrate and pressure drop $\left(\frac{\Delta P}{Z}\right)$ then it can be seen that the latter give high overall volumetric mass transfer coefficients compared with the former within the air flowrates 2000-4000 lb./h.ft². Hence the fluidized bed for the different sphere diameters are comparable with other commerical types of packing.

6. WATER FILM FLOW OVER A SPHERE.

6.1. VELOCITY PROFILES.

The motion of a real fluid can be completely described by the Navier-Stokes equations of motion for a viscous fluid; at least the laminar flow past any obstacle will be predicted if the Navier-Stokes equations can be integrated under suitable boundary conditions (Section 2.11.1). Fig.(61) shows a volume element in spherical polar coordinates.

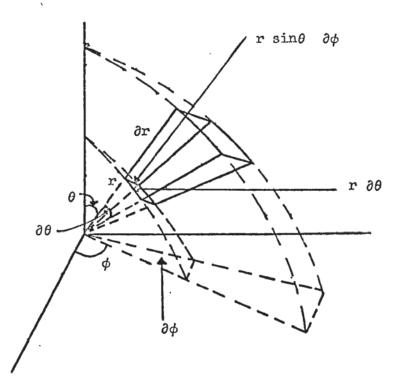


FIGURE (61) VOLUME ELEMENT IN SPHERICAL POLAR COORDINATES.

It was concluded in Section (4.3) that the water film movement between 28°-152°, 24°-156° and 21°-159° for 1.5 in., 2 in. and 3 in. diameters sphere respectively was in laminar motion. The movement of the water within the meniscus was turbulent and completely mixed.

To find the velocity profiles within the water film over a sphere the Navier-Stokes equation (Section 2.11.1) was used and the following assumptions made:

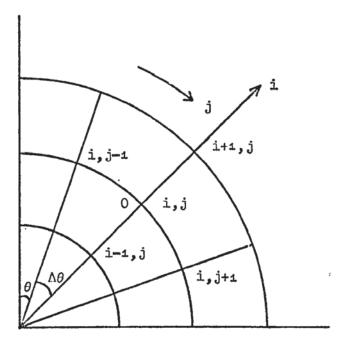
(1) The water film thickness is approximately con-

stant for a given sphere diameter and water flowrate, and is equal to the film thickness measured at the equator of the sphere.

(2) The ϕ -velocity component and the r-velocity component are equal to zero.

(3) The term $\frac{\partial P}{\partial \theta}$ is nearly zero.

(4) The system is steady (i.e. $\frac{\partial U}{\partial t_m}\theta$ is equal to zero).


(5) The liquid is viscous and incompressible.

It is of considerable interest to discuss further, several of these assumptions. Number one is justifiable because the measurement of the film thickness for different places on the sphere showed there was no great change for a given water flowrate and sphere diameter (Section 4.2.3). Number two is also justifiable because the movement of the dye was parallel to the surface of the sphere and there was not any movement in the ϕ and r-directions i.e. laminar motion (Section 4.3). Assumptions three and four need no further comment. Therefore the Navier-Stokes equation for the θ -velocity component can be represented as follows:

$$\rho_{\rm L} \left(\frac{U}{r} \theta \frac{\partial U}{\partial \theta} \theta \right) = \mu_{\rm L} \left(\frac{2}{r} \frac{\partial U}{\partial r} \theta + \frac{\partial^2 U}{\partial r^2} \theta \right)$$
$$+ \frac{\cot \theta}{r^2} \frac{\partial U}{\partial \theta} \theta + \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta^2} \theta - \frac{U}{r^2 \sin^2 \theta} \right)$$
$$+ \rho_{\rm L} g \sin \theta \qquad (207)$$

Equation (207) is a non-linear, second order partial differential equation which cannot be solved analytically but numerical methods generally provide adequate solutions more simply and efficiently to such equations. This is certainly so with finite-difference methods for solving partial differential equations. The relaxation method was used to solve equation (207) after it had been expressed

in finite-difference form. The principle of relaxation is to cover the flow field with a lattice, and approximate to the solution of the differential equation by satisfying a similar finite-difference equation which relates the values at neighbouring lattice points. The solution to the problem is thus found at a finite number of points, and the complete solution is obtained by interpolation between the lattice points. In the general case, consider the five points in the r, θ plane, the origin 0 and one point along each of the four axis arms as shown in Fig.(62). If U_{θ} is a function of r and θ , it can be expressed by equations (20 and 21) Appendix (F).

_h ____ _ h

FIGURE (62). r-0 PLANE

Equation (207) can be transferred into finite-difference equations (equations 20 and 21 Appendix F) which can be represented as follows:

.145.

$$\rho_{\mathrm{L}} \left(\frac{U_{i,j}}{r+i\hbar} \quad \frac{U_{i,j+1} - U_{i,j-1}}{2 \Delta \theta} \right) =$$

$$\mu_{\mathrm{L}} \left\{ \frac{2}{r+i\hbar} \quad \frac{U_{i+1,j} - U_{i-1,j}}{2\hbar} + \frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{\hbar^{2}} \right\}$$

$$+ \frac{\cot j\theta}{(r+i\hbar)^{2}} \quad \frac{U_{i,j+1} - U_{i,j-1}}{2\Delta \theta} +$$

$$- \frac{1}{(r+i\hbar)^{2}} \quad \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{(\Delta \theta)^{2}} -$$

$$\frac{U_{i,j}}{(r+i\hbar)^{2} \sin^{2} j\theta} \right\} + \rho_{\mathrm{L}} g \sin j\theta \qquad (208)$$

where $\Delta \theta$ and h are increments in the θ and r-directions respectively, and i and j are integers.

Equation (208) was used to find the velocity profiles for a 3 in. diameter sphere with a water flowrate equal to 92.4 lb./h./sphere and water film thickness equal to 0.00102 ft. When using this method, boundary conditions are required which specify all values of U_{θ} on a boundary completely enclosing the region of flow. The boundary conditions for U_{θ} are:

for
$$\theta = 21^{\circ}$$
, $U_{\theta} = 1.48 \text{ ft./sec.}$ axis of symmetry $\theta = 159^{\circ}$, $U_{\theta} = 1.48 \text{ ft./sec.}$

These velocities were obtained by dividing the water flow by the cross-section area of the film at $\theta = 21^{\circ}$ or 159° .

To complete the boundary conditions, it was assumed that the water flow at the nearest lattice points to the surface of the sphere was undisturbed and parallel to the surface. At the surface of the sphere zero velocity is assumed. The boundary conditions at the free surface of the film were found by measuring the free surface velocities at different sectors of the sphere (Section 4.4) and were 1.05, 0.69, 0.525 and 0.59 ft./sec. at

32°, 50°, 90° and 120° respectively.

Using the relaxation method⁽²¹²⁾ and equation (208) the film thickness was divided into 3 equal parts i.e. $h = \frac{0.00102}{3} = 0.00034$ ft. in the r-direction, and into 21 equal parts in the θ -direction i.e. $\Delta \theta = 7^{\circ}$. The calculation was begun by choosing the lattice spacing (h) to satisfy the above value and the spacing ($\Delta \theta$) to be larger to reduce the amount of calculation. An estimate for all U_{θ} values was made and inserted at each point of intersection of the lattice lines, and then the values of the residuals were calculated using equation (208). The values of U_{θ} were then adjusted to reduce the residuals which were repeatedly tabulated for each particular calculation. After these had been relaxed, the new values of U_{θ} were used and the cycle of operations repeated until satisfactory results were obtained. The greatest number of cycles was eight in any calculation.

The velocity profiles for a 3 in. diameter sphere are listed in Table (31).

TABLE (31) VELOCITY PROFILES.

U_{θ} ft./sec.				
Angle	Distance from the surface of the sphere ft.			
θ°	0	0.00034	0.00068	0.00102
21	0	1.47	1.47	1.47
28	0	0.61	0.932	1.1
35	0	0.49	0.792	0.92
42	0	0.475	0.74	0.786
49	· 0	0.469	0.70	0.69
56	0	0.468	0.676	0.624
63	0	0.479	0.676	0.591
70	0	0.485	0.674	0.557
77	0	0.488	0.67	0,541
84	0	0.488	0.665	0.525
91	0	0.495	0.669	0.525
98	0	0.488	0.665	0.525
105	0	0.488	0.67	0.541
112	0	0.485	0.674	0.557
119	· 0	0.479	0.676	0.591
126	0	0.468	0.676	0.624
133	0	0.469	0.70	0.69
140	0	0.475	0.74	0.786
147	0	0.49	0.792	0.92
154	0	0.61	0.932	1.1
161	0	1.47	1.47	1.47

Examining table (31) it can be seen that there are parabolic velocity profiles in the θ -direction as well as in the r-direction for the θ -velocity component.

6.2. TEMPERATURE PROFILES.

It is reported in the literature Section (2.3) that the majority of investigators in the cooling tower field had ignored the heat transfer resistance in the water phase (i.e. there is a uniform temperature within the water phase). However, a few of (Section 2.3.4) these investigators showed the existence of water

film resistance to heat transfer by different experimental methods or by using Mickley⁽⁶¹⁾ method.

To investigate whether there is a temperature profile within the water film over a sphere, the following assumptions are made:

(a) That there is heat transfer within the water

(b) That the physical properties of the water are not changing with temperature. This assumption is justifiable because the investigation is carried out with small temperature ranges

(c) The assumptions made for finding the velocity profiles (Section 6.1) are the same for this case.

Equation (117) was modified and used to predict the temperature profiles within the water film, and can be represented as follows:

$$\rho_{\rm L} C_{\rm L} \left(\frac{U_{\theta}}{r} \quad \frac{\partial T}{\partial \theta} \right) = K \left(\frac{2}{r} \quad \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial r^2} \right) + \frac{\cos \theta}{r^2 \sin \theta} \quad \frac{\partial T}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} \right)$$
(209)

where K is the thermal conductivity of water B.T.U./h.ft.°F. Equation (209) is a non-linear, second order partial differential equation which cannot be solved analytically but for which numerical methods generally provide adequate solutions more simply and efficiently. This is certainly so with finite-difference methods for solving partial differential equations. Therefore was equation (209) transferred into finite-difference equations which can be represented as follows:

$$\rho_{\rm L} C_{\rm L} \left(\begin{array}{c} \frac{U_{i,j}}{r+ih} & \frac{T_{i,j-1} - T_{i,j+1}}{2 \Delta \theta} \end{array} \right) = \\ \left(\frac{2K}{r+ih} & \frac{T_{i-1,j} - T_{i+1,j}}{2h} \right) + \\ \left(K & \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{h^2} \right) + \\ \left(K & \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{h^2} \right) + \\ \left\{ \frac{K \cos j\theta}{(r+ih)^2 \sin j\theta} & \frac{T_{i,j-1} - T_{i,j+1}}{2 \Delta \theta} \right\} + \\ \left\{ \frac{K}{(r+ih)^2} & \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{(\Delta \theta)^2} \right\}$$
(210)

150.

where h is an increment in the r-direction and equal to 0.00034, and $\Delta\theta$ is an increment in the θ -direction and equal to 7°.

To solve equation (210) boundary conditions are required. Consider the same example as in Section (6.1) which is obtained from Appendix (E.1.3), run No.992 having the following detail.

Water flowrate	= 1478.4	lb./h.ft ² .	
	= 92.4	lb./h./sphere.	

Air flowrate = 1796.0 lb./h.ft². Inlet water temperature = 113.0°F. Outlet water temperature = 69.5 °F.

Inlet air dry and wet bulb temperatures are 63.5°F. and 50.0°F. respectively.

Outlet air dry and wet bulb temperatures are 88.0°F. and 87.5°F. respectively.

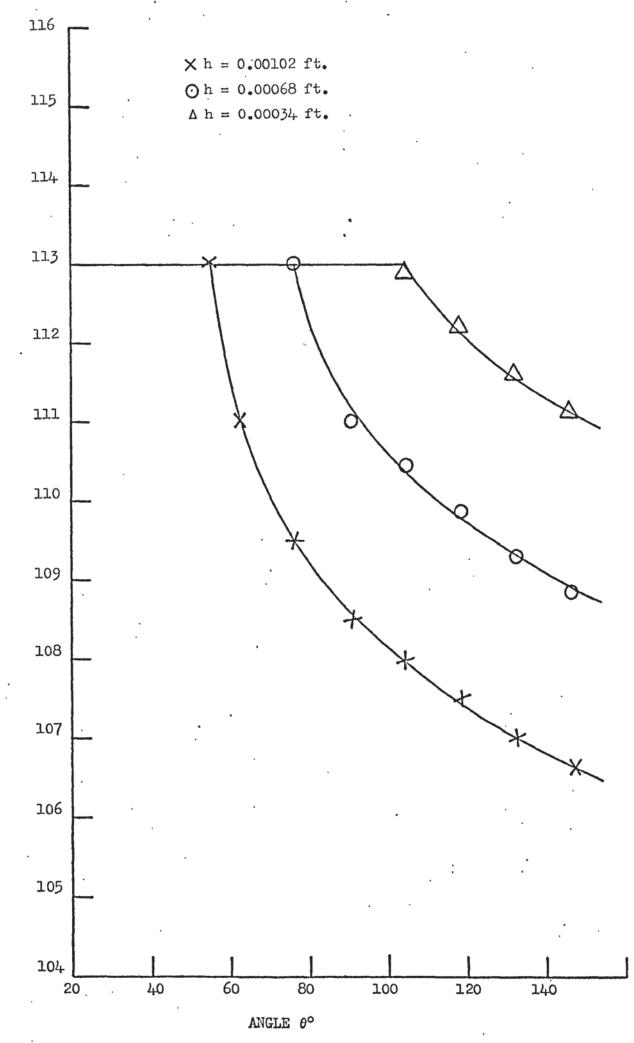
Packing height= 3 ft.Sphere diameter= 3 in.

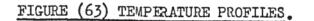
Referring to the above example the temperature boundary conditions for the water film over the sphere are as follows:

(a) At $\theta = 21^{\circ}$ T = 113°F. (inlet water

temperature).

(b) At the surface of the sphere the water temperatures are 113°F.

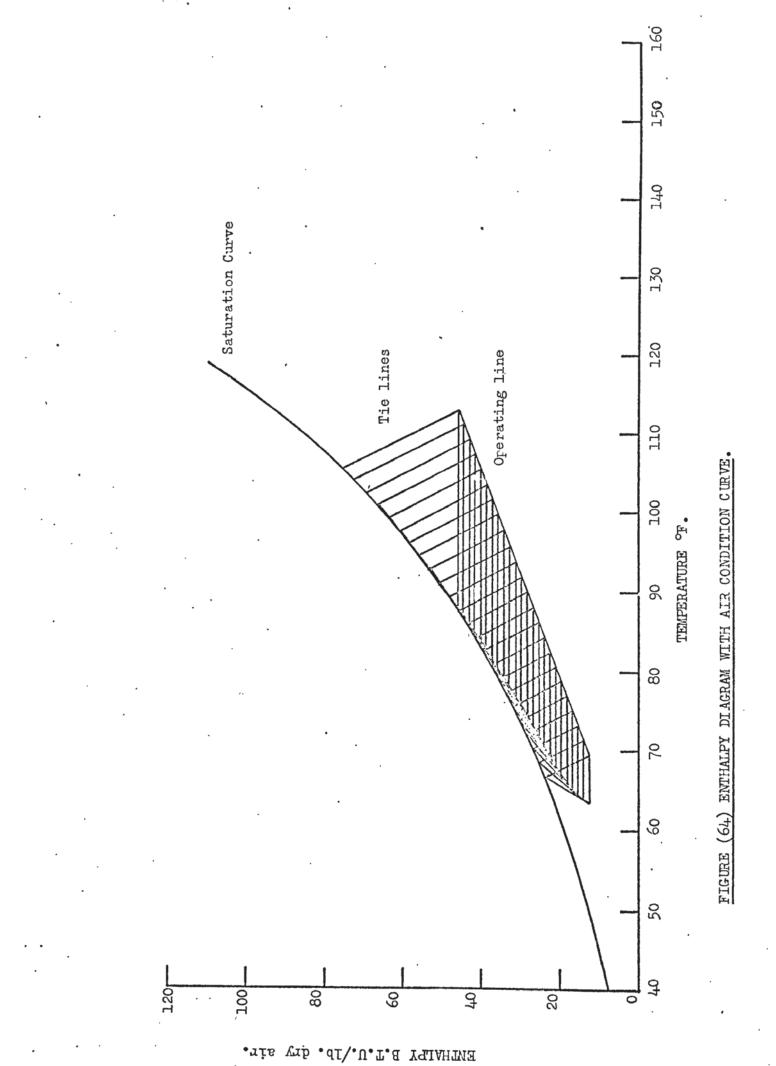

(c) At the air-water interface the temperatures of the water are unknown, but assuming a constant mass transfer coefficient in the air phase $R_g = 80 \text{ B.T.U./h.ft}^3$. (enthalpy unit) and since the heat transfer within the water film is due to conduction, the following equation must be satisfied at the air-water interface:


$$K \frac{dT}{dx} = R_g(H_{ai} - H_a)$$
(211)

where x is measured inwards from the free surface water film, H_a is the air enthalpy evaluated at 87.5°F. (i.e. complete mixing in the air phase). Assuming the temperatures at the interface and using equation (211) then (x) can be found. The assumptions for the temperatures at the interface should be less than 113°F. because the water is getting cooler while moving over the sphere and the value of R_g should be chosen in such a way that when these values are substituted in equation (211) the predicted values of (x) should be within the film thickness, otherwise false results can be obtained.

To check the validity of the R_g value, equation (41) Section (2.3.4) was used to calculate R_g and was equal to 80.2 B.T.U./h.ft². (enthalpy unit). There is therefore excellent agreement between the assumed and calculated values of R_g. If the calculated value of R_g had deviated from R_g assumed then other assumptions would have to be made until the correct value of R_g is obtained.

To find the temperature profiles within the water film the relaxation method (as described in Section 6.1) and equation (210) were used. The local velocities in equation (210) were obtained from Table (31), and the temperature profiles are shown in Fig.(63). It was found that the temperatures at θ equal to 147° are 106.6°F., 108.84°F., 111.1°F. and 113°F. at equal increment in the water film.



TEMPERATURE °F.

It was also found that the temperature at θ equal to 161° is 109.88°F. which is equal to the average temperatures at θ equal to 147° (i.e. complete mixing). To check the validity of the temperature at θ equal to 161° the Mickley⁽⁶¹⁾ method was used as Fig.(64). Since the Mickley method gives the water and air conditions at any section in the cooling tower, the cooling tower with 3 ft. packing height was divided into 12 layers of 3 in.diameter spheres (example was mentioned earlier) and the top layer was considered as a water distributor i.e. constant water temperature equal to 113°F. This is shown in Fig.(64) by plotting the tie lines by trial and error method using the Mickley method. It was found from Fig.(64) that the outlet temperature of the water from the second layer of spheres is 109.5°F. and this is in good agreement with the water temperature at θ equal to 161°.

It was concluded that the heat transfer by conduction within the water film in the θ -direction was small compared with the heat transfer by conduction in the r-direction. Referring to Fig.(64) it can be seen that the tie line slope is 3.83 and since $\frac{h_L}{R_g} = 3.83$ (Section 2.3.4) therefore $h_L = 80.2 \times 3.83 = 307$ B.T.U./h.ft².°F. Dividing the thermal conductivity of water (0.365 B.T.U./h.ft.°F.) by the water film thickness (0.00102 ft.) gives 358 B.T.U./h.ft².°F. This result is comparable with the heat transfer coefficient in the water phase (h_L) i.e. there is an increase of 16% in the latter result.

The conclusions is, therefore, that although there is evidence of a resistance to heat transfer in the water phase in cooling towers, for practical design purposes it may be ignored relative to the resistance in the air phase. This conclusion is in good agreement with the investigators^(62,63,65).

7) CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK.

7.1) CONCLUSIONS

A mechanical induced draft counter-flow air-water cooling tower has been constructed and used to study the transfer and hydrodynamic of fixed and fluidized beds of polystyrene spheres used as packing in the tower, and hence to provide systematic design data.

The method used to find the dry bulb temperature of the exit air gave an accurate result, but a lot of care was required to prevent condensation of vapour from the air stream and to prevent droplet carry over with the air sample.

The movement of the packing and individual spheres has been studied, and it was found that at all conditions a stagnant layer of one or two spheres height existed at the base of the tower. Bubbles occupied the whole cross-section of the tower and divided the bed into several layers by upwards moving slugs. During the upward motion spheres separated from the bottom of the slugs and fell back, until finally the slugs collapsed, while in the lower part of the fluidized bed new slugs were forming. The water flow enhanced the downward movement of the spheres. The frequency of formation of the layers in the bed depended on the packing heights, sphere diameter, air and water flowrate. The movement of the spheres in the layers and especially in the top layer established a parabolic velocity profile.

Two different methods were used to find the water film thickness over a sphere. The conductivity probe was rejected because the probe pulled part of the water film when it was moved away from the film and false results were obtained. The microscope method gave accurate results which agreed well with theoretical predictions.

A Statistical Analysis was used to correlate the

experimental results. The dependent variable $\Delta T/\Delta H_m$ was correlated with packing height, sphere diameter, water and air flowrates by fitting quadratic and linear surfaces using raw-data, semi-Log data and Log-Log data. The raw-data were rejected because of non-normal residual error distribution and large error mean squares. The Log-Log and semi-Log data correlations were both acceptable but the former was adopted for simplicity of interpretation. In addition the overall volumetric mass transfer coefficient can be correlated as follows:

$$K_{ga} = C(G)^{a} (L)^{b}$$

For a given sphere diameter, water and air flowrates, K_ga increases as the packing height decreases. These variations of K_ga are due to end effects and the effect of maldistribution. For a given packing height, water and air flowrates, K_ga varies only slightly with sphere diameter. This is due to maldistribution and changing specific surface area. The effect of maldistribution increases as the packing height increases and as the sphere diameter decreases. The effect of maldistribution predominates in the fluidized bed compared with the fixed bed. To correct K_ga for the end effect, it must be divided by the factor $\left(1 + \frac{\overline{Z}}{Z}\right)$ for different diameter spheres.

Different independent variables (fluidized bed packing height, voidage, 1 + effective free-board) are included in the three phase fluidized bed correlations to improve the similarity between fixed and fluidized beds correlations. The factor (1 + effective free board) shows good improvement compared with the other factors.

The K_g a values for three phase fixed bed are comparable with the corresponding values for the commercial packings, but higher values are obtained for the three phase fluidized bed. The pressure drop $\left(\frac{\Delta P}{Z}\right)$ across the two phase fixed

bed is proportional to $G^{1 \cdot 82}$ and $d_p^{-1 \cdot 11}$.

. The pressure drop across the two phase fluidized

bed is independent of the air flowrate and can be represented as follows:

$$\frac{\Delta P}{Z_{mf}} = 0.26(1 - \epsilon_{mf})(\rho_{S} - \rho)$$

This equation allows for the energy loss by collision and friction among the spheres as well as between the spheres and the surface of the container.

The pressure drop relations for three phase fixed beds are represented by three straight lines; at the lowest air flowrates the pressure drop $\left(\frac{\Delta P}{Z}\right)$ is proportional to $G^{2\cdot 17}$ $10^{(5\cdot9 \times 10^{-5})L}$ and $d_p^{-1\cdot11}$, but above a certain critical point the slope changes and the pressure drop $\left(\frac{\Delta P}{Z}\right)$ is proportional to $G^{2\cdot85}$, $10^{(9\cdot47 \times 10^{-5})L}$ and $d_p^{-1\cdot57}$, up to a second critical point where the line becomes almost vertical. The first critical point is the loading point and the second is the flooding point.

The fluidized bed is used to avoid the flooding which occurs in the fixed bed and to allow high air and water flowrates, thereby increasing the overall volumetric mass transfer coefficient. The pressure drop $\left(\frac{\Delta P}{Z}\right)$ for the three phase fluidized bed is proportional to $G^{0.764}$, $10^{(3.01 \times 10^{-5})L}$ and $d_p^{-0.66}$. The term $10^{\beta L}$ allows for the reduction in the free space in the packing due to the hold-up. The pressure drop relation for the three phase fluidized bed intersects the pressure drop relation for the three phase fixed bed in the loading region.

The air and water flowrates for the three phase fluidized bed should not exceed the flowrates used in the present research, otherwise the polystyrene spheres accumulate at the top grid and flooding occurs.

The loading velocities using polystyrene spheres

lie between the well-established results for Raschig rings and Berl saddles. The flooding velocities lie between the results for stacked and dumped rings.

The meniscus angles between two touching vertical spheres are 21°, 24° and 28° for 3, 2 and 1.5 in. diameter spheres respectively. The meniscus angles are independent of water flow-rates used in the present research; otherwise ripples start to form and the angle is proportional to $r^{-0.43}$. The upper meniscus angles between two touching horizontal spheres are 14°, 18° and 20.5° for 3, 2 and 1.5 in. diameter spheres respectively. The angle of the lower meniscus plus the rippled sheet is proportional to $\frac{L^{0.657}}{r}$. The rippled sheet acts as a secondary distributor.

The weight of the water remaining between the two touching vertical spheres (static hold-up) for the 3, 2 and 1.5 in. diameter spheres is 0.00127, 0.000993 and 0.000612 lb. respectively. A theoretical model is developed to represent the true static hold-up which can be used with the dynamic hold-up model to find the total water hold-up over a sphere.

Measurements of the water film thickness and the free surface velocity agree well with the theoretical predictions. For a given water flowrate the average free surface velocity increases as the sphere diameter increases.

In tests, the movement of blue dye shows that the water film over a sphere is in laminar motion, while within the meniscus it is in turbulent motion and completely mixed.

The minimum fluidization velocity for the two phase system obtained from the pressure drop - air flowrate relations are in good agreement with the results obtained from the packing height - air flowrate relation. Therefore either of these methods can be used to find the minimum fluidization velocity. $G_{\rm mf}$ is independent of packing height and proportional to d_p $\rho_{\rm S}$.

The minimum fluidization velocity for the three phase system obtained from the pressure drop - air flowrate relation is proportional to $\rho_{\rm S} d_{\rm p}^{0.78} 10^{(-2.88 \times 10^{-5}) \rm L}$ compared with the one obtained from the packing height - air flowrate relation which is proportional to $\rho_{\rm S} d_{\rm p}^{0.76} 10^{(-2.76 \times 10^{-5}) \rm L}$. There is a small deviation between the values obtained by the different methods. This is due to the packing heights which cannot be measured accurately. When the water flowrate approaches zero the term $(10^{\beta \rm L})$ approaches unity, and therefore the correlation with the latter relation can be compared for the two phase system. The similarity between these two relations tends to indicate that despite the presence of the additional liquid phase, the minimum fluidization velocity is still affected by the sphere diameter and sphere density in much the same way as in the case for air-solid fluidization.

It is not economic to use polystyrene spheres as a fixed bed compared with the existing commercial packings, but the fluidized bed is comparable at high air flowrates.

A theoretical analysis is developed to find the velocity and temperature profiles within the water film over a sphere. Relaxation methods appear to give accurate solutions to the problem of water film flow over a sphere. There is a parabolic velocity profile in the θ and r-directions. The heat transfer by conduction within the water film in the θ -direction is small compared with the heat transfer by conduction in the r-direction. Although there is evidence of a resistance to heat transfer in the water phase in cooling towers, for practical design purposes it may be ignored relative to the resistance in the air phase.

7.2) RECOMMENDATIONS FOR FURTHER WORK.

It is recommended that this work be continued in the

following ways:

(a) Measurement of the temperature profiles of the water flowing over a single column of touching polystyrene spheres in a cooling tower.

(b) Measurement of water temperature profiles over selected polystyrene spheres within the packing of a cooling tower.

(c) Measurement of the transfer and hydrodynamic characteristics of polystyrene spheres supported on vertical rods with change of the vertical and the horizontal space between the spheres. In this way flooding would be avoided and static hold-up reduced.

(d) Extend the fluidized bed of polystyrene spheres to study absorber and scrubber packing especially for situations where solids are present or are formed by reaction of the contacting fluids. Such applications are likely to have considerable future in the avoidance of atmospheric pollution.

APPENDIX (A)

•

AIR CALIBRATION CHART FOR THE ORIFICE PLATE.

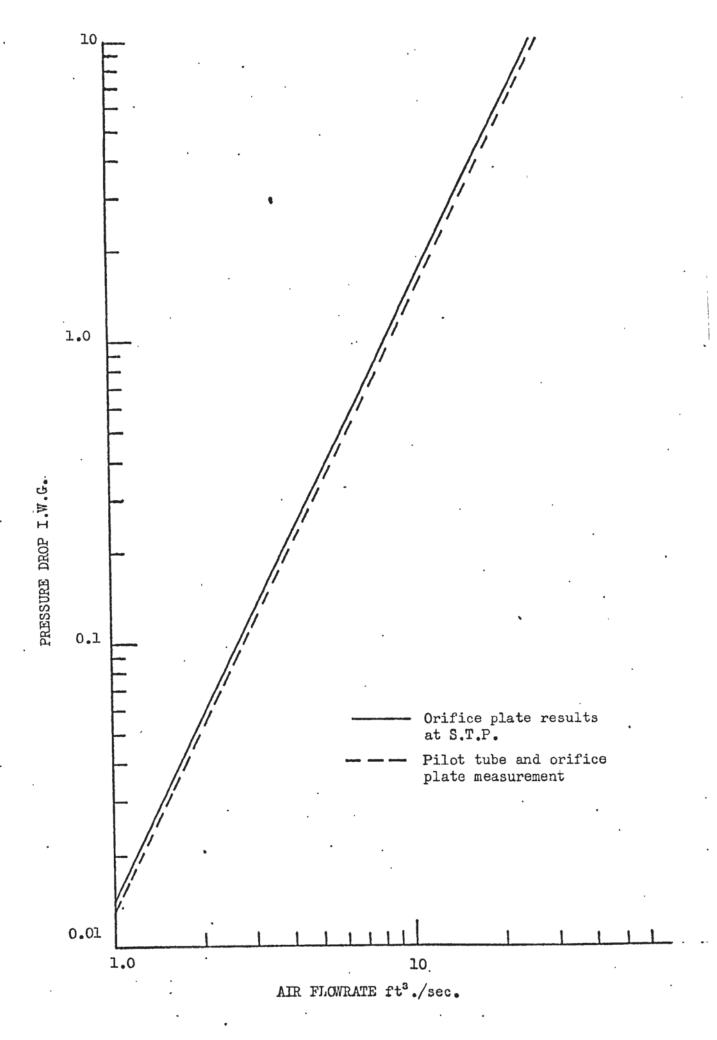


FIGURE (1) ORIFICE PLATE CALIBRATION CHART.

APPENDIX (B)

B.1. CALCULATION OF MASS AND HEAT BALANCE.

The water flowrate was calculated as follows:

$$L = 132 \times R_1 \tag{1}$$

where $R_1 = \text{Litre/min.}$ water flowrate obtained from the water calibration chart.

The air flowrate was calculated as follows:

$$V_{\rm H} = 0.73 \left(\frac{1}{M_{\rm a}} + \frac{X}{M_{\rm W}} \right) \left(\frac{t + 460}{P} \right)$$
(2)

= ft³./lb.dry air and its associated water vapour. The density of the dry air and its associated water vapour is

$$\rho_{a} = \frac{1}{V_{H}} \quad lb./ft^{s}.$$
 (3)

$$G = 359.2 \times 0.608 \times 1.072 \times 36 \int_{\rho_a}^{\Delta P_o} \times \rho_a \, \text{lb./h.} (4)$$

Assuming W = 1b./h. dry air entering the tower

... $W(1+X_2) = G_2$ lb./h. dry air and its associated water vapour enter the tower.

The amount of water evaporated = W_L

$$= G_2(X_1 - X_2) lb./h.$$
 (5)

Then $L(T_1 - 32)$ B.T.U./h. is enthalpy of water entering the tower.

and $(L - W_{L})(T_{2} - 32)$ B.T.U./h. is enthalpy of water leaving the tower.

 $G_1 \ H_{a_2} \ B.T.U./h.$ is enthalpy of the air entering the tower.

G H B.T.U./h. is enthalpy of the air leaving the

tower.

The percentage of the heat balance =

$$\frac{[G_1 H_{a_3} + L(T_1 - 32)] - [G Ha_1 + (L - W_L)(T_2 - 32)]}{G_1 H_{a_2} + L(T_1 - 32)}$$
(6)

The humidity was obtained from the Carrier psychrometric chart and tables (72,124,201), and the enthalpy was obtained from tables (49,124,201).

error

The percentage of the heat balance, mass balance, water and air flowrate were computed by a Digital Computer (P.D.S.1020) and the program was listed in Appendix (B.1.1.).

B.1.1. COMPUTER PROGRAM FOR CALCULATION OF THE MASS AND HEAT BALANCE.

PR 5464

001	INP	
002	C009	GO
003	INP	
004	COIO	GO
005	INP	
006	COll	GO
007	INP	
800	C012	GO
009	INP	
010	C013	GO
011	INP	
012	CO14	GO
013	INP	
014	C015	GO
015	INP	
016	CO16	G∙O
017	INP	
018	C017	GO
019	INP	

020	C018	GO	
021	INP		•
022	C019	GO	
023	rool	GO	
024	M009	GO	
025	C020	GO	
026	LOIO	G-0	
027	MOll	GO	
<u>0</u> 28	C021	GO	
029	L002	GO	
030	MO12	GO	
031	A003	GO	
032	C022	ĜΟ	
033	L013	GO	
034	D005	GO	
035	A004	GO	
036	M022	GO	
037	C023	GO	
038	L007	GO	
039	D023	GO	
040	C024	GO	
041	L021	GO	
042	D024	GO	
043	SQRT		
044	мооб	GO	
045	A014	GO	
046	· C025	GO	
047	L024	GO	
048	M025	GO	
049	C026	GO	
050	LO13	GO.	•

. 162.

1

051	A007	GO
052	C027	GO
0 53	L026	GO
054	D027	GO
055	C028	GO
056	L015	GO
057	A 007	GO
058	M028	GO
059	C029	GO
060	L026	GO
061	S029	GO
062	C 030	GO
063	r01.6	GO
064	S008	GO
. 065	M020	GO.
066	C031	GO
067	L020	GO
068	S030	GO
069	C032	GO
070	LO17	GO
071	S 008	GO
072	M032	GO
073	C033	GO
074	L026	GO
075	MO18	GO
076	C034	GO
077	·L029	GO
078	MO19	GO
079	CO35	GO
080	L035	GO
081	A031	GO

163.

.

.

.

•

\$

082	C037		GO
083	LO 34		GO
084	A033		GO
085	C038		GO
086	L037		GO
087	S038		GO
088	M036		GO
089	D037		GO
090	C039		GO
091	1020		GO
092	TYPE		
093	C/R	001	
094	Lo24		GO
095	TYPE		
096	C/R	001	
097	L025		GO
098	TYPE		
099	C/R	001). 9
100	L026		GO
101	TYPE		
102	C/R	001	30
103	L028		GO
104	TYPE		
105	C/R		
106	L029		GO
107	TYPE		
108	'C/R	001	
109	L030		GO
110	TYPE		
111	C/R	001	

112 L031 GO

:

164.

٠

113	TYPE		
114	C/R	OOL	
115	L033		GO
116	TYPE		
117	C/R	001	
118	L034		GO
119	TYPE		
120	C/R	001	
121	L035		GO
122	TYPE		
123	C/R	001	
124	l037		GO
125	TYPE		
126	C/R	001	
127	L038		GO
128	TYPE		
129	C/R	001	
130	L039		GO
131	TYPE		
132	C/R	001	
133	RET		

mvDr

B.2. CALCULATION OF THE OVERALL VOLUMETRIC MASS TRANSFER COEFFICIENT.

The overall volumetric mass transfer coefficient was calculated according to equation (24). The driving force correction factor (F) was found as follows:

$$Y_1 = H_{W_1} - H_{a_1}$$
 (7)

$$Y_2 = H_{W_2} - H_{B_2}$$
 (8)

$$Y_{\rm m} = H_{\rm Win} - H_{\rm am}$$
(9)

where
$$H_{am} = \frac{H_{a_1} + H_{a_2}}{2}$$

The ratios $\frac{Y_m}{Y_1}$ and $\frac{Y_m}{Y_2}$ were used to find the value of (F) from the Stevens Chart⁽⁴⁶⁾.

Equation (24) was computed without the driving force correction factor as shown in Appendix (B.2.1.), and it was also computed with the value of (F) as programed in Appendix (B.2.2.). It was found that the value of K_ga calculated in terms of water or air flowrate gave the same result if the heat balance was correct.

B.2.1. COMPUTER PROGRAM FOR CALCULATION OF K a WITHOUT THE VALUE OF (F).

PR 546	4	
001	INP	
002	C 004	GO
003	INP	
. 004	C 005	GO
005	INP	
006	C006	GO
007	INP	
008	C007	GO
009	INP	
010	C008	GO
011	INP	
012	C009	GO
013	INP	
014 .	.010	GO
015	INP	
016	COll	GO
017	INP	
018	C012	GO

		*					167.
	019	L004	GO				
	020	S005	GO				
	021	C013	GO				
	022	L007	GO		•		
	023	S 008	GO				
	024	CO14	GO				
	025	L005	GO	2	•		
	026	800A	GO				
	027	DOOL	GO				
	028	C015	GO		*5		
	029	r00e	GO				2
	030	S015	GO				
	031	0016	GO				
	032	L016	GO				
÷ .	033	DO13	GO				
	034	C017	GO				
	035	1016	GO				
	036	DO14	GO				
	037	C018	GO.				
	038	L009	GO				
	039	MOIL	GO				
	040	C019	GO	•		*	
	041	LO12	GO				
	042	MO16	GO				
	043	C020	GO				
	044	L019	GO	e.		10 10	
	045	M002	G-O				
	046	D020	GO				•5)
	047	C021	GO				
	048	L005 [`]	GO				
	049	S008	GO				

050	MOLO		GO	
051	C022	្	GO	
052	L020		GO .	
053	D002		GO	
054	C023		GO	
055	L022		GO	
056	D023		GO	
057	C 024		GO	
058	L021		GO	
059	M003		GO	
060	C025 ·		GO	
061	L024		GO	
062	M003		GO	,
063	C026		GO	
064	L009		GO	
065	DO10		GO	
066	C027		GO	
067	LO17		GO	
068	TYPE		-	
069	C/R	ÖOl		
070	L018		GO	
071	TYPE			
072	C/R	001	*1	
073	L019		GO	
074	TYPE			
075	C/R	001		
076	1021		GO	
077	TYPE			
078	C/R	001		
079	L022		GO	
080	TYPE	3. *		

1,68.

081	C/R	001	
082	L024		GO
083	TYPE		
084	C/R	001	
085	L025		GO
086	TYPE		
087	C/R	001	
088	L026		GO
089	TYPE		
090	C/R	001	
091	L027		GO
092	TYPE		
093	C/R	001	
094	RET		

B.2.2. COMPUTER PROGRAM FOR CALCULATION OF K a WITH THE VALUE OF (F)

PR 54	64			
001	INP			
002	COOl		GO	
003	INP			
004	C002		GO	
005	INP			
006	0003		G-O	
007	INP			
008	C004		G-O	
009	INP			
010	C005		GO	
011	L001		GO	
012	D005 .		GO	
013	TYPE			
014	C/R	001	•	
015	L002		GO	

016	D005		GO
017	TYPE		
018	C/R	001	
019	L003		GO
020	D005		GO
021	TYPE		
022	C/R	001	•
023	L004		GO
024	D005		GO
025	TYPE		
026	C/R	001	
027	RET		

B.3. CALCULATION OF THE EFFECTIVENESS AND EFFICIENCY OF THE COOLING TOWER.

The effectiveness of the cooling tower could be defined as follows:

$$\epsilon_{h} = \frac{H_{a_{1}} - H_{a_{3}}}{H_{W_{1}} - H_{a_{3}}}$$
 (10)

 $\epsilon_{\rm h}$ represented the ratio of actual tower energy exchange between phases to the energy which would result, provided the discharged air was saturated at the temperature of the entering water.

The usual definition of cooling-tower performance is based on the ratio of the actual cooling range (T_1-T_2) to the cooling range which would obtain if the water were discharged from the tower at the entering-air wet-bulb temperature $(T_1 - t_{Wb2})$. Therefore the efficiency of the water cooling tower could be represented as follows:

$$\epsilon_{p} = \frac{T_{1} - T_{2}}{T_{1} - t_{Wb2}} \tag{11}$$

The values of the effectiveness and the efficiency were listed in Appendix (E).

C.1. STATISTICAL ANALYSIS COMPUTER PROGRAM.

The 1900 ICL Statistical Analysis (Library program) which computes the method of least squares^(207,208,209) was used to perform the analysis of variance, and to use the program requires the following procedures:

r 1		T	T	· · · · ·			1	r							,																
├																															
			 																												
							<u> </u>													•											
		1	1				1																								
		<u> </u>				-0																									
<u> </u>								<u> </u>																							
		1				5	1																								
						2																									
											(-																	
						-0												-													
											\square																				
				E-I							2																				
		-		[1]		T					~																				
				X				-			~																				
<u> </u>																															
				A		L L					н																				
				H-							12																				
H-+				A		5																									
											<u>[5]</u>			ļ																	
L				[1				-			E-1																				
				;Ľ		5					D																				
				r h		0					Ð	-																			
				-1		0																			-						
				[1]		Ч					A																				
				11						2	E.H											T				Å					
├ ── †				Ð		0				R																$\overline{>}$					
<u>├</u> {										_	1-1															0					
				1-7		0				рц I																65					
				떠		9				[-1	Ä															0		0			
				[-1		8				4	1-1													1				0			
+				V.		2					-																	•			
\vdash						0				÷	\sim						-														
				1							L				L	L							_					$\overline{\mathbb{C}}$			
				-0-							6-1				1													5			
i	E-4			F1		9					4			-0						12	P.	A.	p.	2	A						A.
	Ы			Fri						_	1.2			FI						H	L	_			-1						Г
	돠			R		e															17	1-1	1-7								
L							•				(H			121	L													1-7			
	Å			14		\mathbb{N}					Z	_		E-I														ÊΫ			
	나자	L	-1	A		0				E	60			A			N	2		ਜ	FI	20	N	N	M	N	14	>			
	田	X	X	E-I						25				13			X	স	X	×	X	1	×	ম	মা	7	ŝ	1			
+	A		R			m				24	Ť			5			_		न्द	_	न्द		R		R	R		H		┝──┤	
		<u>e</u> í		21													R											_			
	1	H	[H	[E]		•				4	-61			0			EI	54	EH	E-I	E-I	EH	EH	EH	EH	ы	4				1
	ব	न्द	4	E-I		N				н	EH			Ч			A	A	A	A	2	A	\leq	4	ব	4	X	5			
├	ㅋ	18	E	5						5	5	_														_					
		104	100							9				৫				N		25.	N.	1	14	×	14	因	5	H			
	U			0							-4			0														S	1		1
├ ──┤	н			4		0					777	_		1															<u> </u>		
											E			A														E-1			
\vdash				ы		•																									
				2		0				\varkappa	\sim																	A			
IT				[m]		4				R		~		0	5																
<u> </u> †				N		0				EH	Fu	-64	-9	÷	EI	-								-				5			
┝━╍╄													_			-															-
				H			L			A	н		Ч	Ц															A		
				E		0				N	A	fμ	F4	FT-1	3	22	•							FI		S		F	2	74	
T		×		A		0					М	Ř	EH	R	н									υ		- F-1	E	Æ		-1	
<u>├</u> ─-†				12		0							A										N			3					
┣╄		н								_	E			н		_			÷	Z				Ъ			<u> </u>	4			-
		3		н		•					E	Ч		1	E	0				\$			ŝ	5	Ð	¥	B	1	یہ ا	Ň	
		EI		N		l				S			\neg	\sim						H			1-1	-9-	н	FJ		~		÷	
<u>├</u> ──┼		1.6.7		Ē						2	0	0	_	10	0	0				EI					ET		A	E.	5 4 C	FT	
┝											_	Ч	9				-						64	1-1		A	н	V			
		A		-	1	10							_									. 1								5	1
				÷Ó		5				-5	Н		Ч	Ч	Ч	Ч	н			A			A	Ω.	\leq	\sim	Я	12	F		
		MA		EI		•				н	ন্দ্র	3	Ċ	65	5	c h	C						VA	<u>μ</u>	7	AN			C+1		-
		N MA		HD					A	ΤI	5	ড . জ	Ċ	25	5	- 1-	C		N	>	03	S	\geq	_	Ы		A		C+1	S	
		MA		EI		0				н	5	ড জ	5	<u>د</u> ه ج	\$G	<u>ده</u>	U C	61		RV	_		N X	5	L S	Å		E	(* 1 1 - 1 1 - 1	Lî S	
		¢ N MA		ACT		•			EH	ATI	L	L dG	L \5 G	L AG	LAG	LSG	D U C	E1	0	RRW	1.	N	ELV	SS	ESL	I. A	TV A	11	E M	RES	
		IGNNA	S	F ACT		10.			AT	K A T I	ALLG	ALGG	A L SG	A L AG	ALAG	ALLG	φDUC	C E	I 0	RV	_		N X	SS	L S	Å	TV A	ELL	E M	Lî S	
	P	TIGNNA		ACT		0	N		EH	RKATI	L	ALGG	L \5 G	L AG	ALAG	ALSG	φDUC	U	I 0	SRRW	M M	A N	SEKV	φSS	RESL	4 I: A	T VA	ELL	E M	G R ES	
	LP	TIGNNA	ES	FFACT		N 10.	N		AT	K A T I	ALLG	= AL GG	= A L 5 G	= A L AG	= A L 4 G	= A L 5	R ¢ D U C	NC	ΠI	3 S R R W	AN	EAN	BSERV	RØSS	ØR ESL	I \$ I A	N T VA	DELT	ET T V	EGRES	
	Ц	ATI & N MA	X E S	IFFACT		LN LO.	2 N		DAT	4 R K AT I	F = A L G	5 = AL 4G	b = A L b G	D = A L A C	T = A L < G	I = A L 5	φDUC	AN C	ATIO	(B S R R V	M M	EANS	SEKV	φSS	ØR ESL	4 I: A	N T VA	ID E N L	LALIS	G R ES	
	R	VATI & NAA	AXES	DIFFACT		OLN LO.	0 2 N		F DAT	FORKATI	S F = A L /G	$I_{15} = A I G$	L[5] = A L [5]G	PD = AL	H T = A L 4 G	E = A L 5	PR ¢D U C	IANC	LATIO	(43 S R R V	X V EX	ME AN	ABSEVV	RØSS	ØR ESL	I \$ I A	N T VA	DELT	LALIS	EGRES	
	ERL	ATI & N MA	X E S	IFFACT	IX	OLN LO.	2 N		DAT	SFGRKATI	S F = A L /G	$I_{15} = A I G$	b = A L b G	PD = AL	H T = A L 4 G	E = A L 5	R ¢ D U C	AN C	LATIO	(B S R R V	XEV	ME AN	ABSEVV	CRØSS	CORESIL	SI 41: A	DENTVA	EIDENT	YL ALVE	REGRES	
	R	VATI & NAA	AXES	X D I F F ACT		oll N lo d	0 2 N		F DAT	FORKATI	N S F = A L G	F LS = AL GG	F L 5 = A L 56	SFD = A L AG	G H T = A L A G	$\mathbf{L} \mathbf{E} \mathbf{T} = \mathbf{A} \mathbf{L} 5 \mathbf{C}$	S PRODUC	R I AN C	ELATIO	T (J3 S R R V	T XE A M	T N E A N	T ABSEVV	I C R & S S	I C & R E I L	ES SI ØI: A	N T N A	PEIDENT	T F L A L M	T REGRES	
	LERL	ERVATI & NAA	NAKES	EXDIFFACT	24	ob I N N I O	0 0 0 2 N		Q F D A T	NSFORMATI	A R S F = A L G	RFLS = ALGG	TF L5 = A L 56	¢SFD=ALAC	I G H T = A L G G	A [I] E [I] = A [L] 5 C	SS PRADUC	A R I AN C	RELATIO	NT 43 SR RV	NTKENK	N T W E A N	NT ABSEVV	NT CR ØSS	NT CORESL	RESSIM	ENDENTVA	EPE IDE NE	AT Y L A I MI	NT REGRES	н
	\$ LER L	SERVATIÓN	L NA KE S	X D I F F ACT	ТR	oll N lo d	0 0 2 N		D < F DAT	AXSFORKATI	$\mathbf{F} \mathbf{A} \mathbf{N} \mathbf{S} \mathbf{F} = \mathbf{A} \mathbf{L} \mathbf{G}$	I R F L/ = A L 0	A T F L = A L 5 G	SFD = A L AG	I G H T = A L G G	$A \Vdash E = A \sqcup C$	S PRODUC	V A R I AN C	RELATIO	INT (B S R R V	T XE A M	T N E A N	NT ABSEVV	NT CR ØSS	NT CORESL	ES SI ØI: A	N T N A	EPE IDE NE	T F L A L M	T REGRES	
	LERL	BSERVATI & NA	ØL NAKES	EXDIFFACT	24	ob I N N I O	0 0 0 2 N		Q F D A T	NSFORMATI	$\mathbf{F} \mathbf{A} \mathbf{N} \mathbf{S} \mathbf{F} = \mathbf{A} \mathbf{L} \mathbf{G}$	I R F L/ = A L 0	TF L5 = A L 56	$\phi S F D = A L A C$	E I G H T = A L G G	I A I E I = A L 5 5	ØSS PRØDUC	V A R I AN C	RELATIO	INT 43 SRRV	INT KE AF	INTMEAN	INT ABSERV	INTCR SS	INT CORESL	CRES SI ØI: A	PEKDENT VA	DEPEIDEN	WATEL ALLAT	INT REGRES	S I
	\$ LER L	SERVATIÓN	ØL NAKES	EXDIFFACT	ТR	ob I N N I O	0 0 0 2 N		D < F DAT	AXSFORKATI	$\mathbf{F} \mathbf{A} \mathbf{N} \mathbf{S} \mathbf{F} = \mathbf{A} \mathbf{L} \mathbf{G}$	I R F L/ = A L 0	A T F L = A L 5 G	R ¢ S F D = A L AG	I G H T = A L G G	I A I E I = A L 5 5	SS PRADUC	A R I AN C	RELATIO	R I N T (43 S R R V	NTXEN	N T W E A N	NT ABSEVV	INT CR & SS	RIINT CORESU	RES SI ØIN A	ENDENTVA	EPE IDE NE	WATE LAILAR	NT REGRES	н

	1	T				·	T		 						· · · · ·									_			·	 1	
		–							 																			 	
							+		 																			 	
									 								i											 	
			<u> </u>	i					 																			 	
		–							 																			 	
						<u> </u>	<u> </u>		 							_												 	
				 					 		-																	 ŀ.	
		<u> </u>	<u> </u>			ļ			 	<u> </u>			 															 	
					<u> </u>		ļ		 		L		 	·							_		-						
			I														}												
		Γ										-																	
		1					-	-																				 	
		-							 -			-				_												 	-
		1-							 		-	1-																	
									 	<u>}</u> −−							<u> </u>						+					 	
							<u> </u>		 			<u> </u>									_							 	
p									 		-		ļ						ļ									 	
									 				·															 	
									 						_													 	
 									 			ļ	<u> </u>						<u> </u>									 	
		ļ							 	L		-																 	
	4								-			1																	
	\triangleright								 	<u> </u>	†	t	1				-								_			 _	
	Ð.											†						<u> </u>		-									
 	U											<u> </u>		t													-		
			0						 			+																 	
			•						 			<u>+</u>								-									
			6						 			+					-												
			5						 									 										 	
									 			┼──	<u> </u>				<u> </u>											 	
									 			-	 			<u> </u>	<u> </u>			<u> </u>								 	
											ļ			L	L		I	L	-	L								 	
			Ч						 		<u> </u>	L		L			1	L	ļ			_				ļ		 	
			[ii]						 										L							L			L
	\sim	હિં	5				I I		1			}		ł		4	1												
And in case of the local division of the loc			transfer or other						 			<u> </u>														<u> </u>		 	
	712		ΞV						 																				
	RN	NS	LE						 								 												
	R	14							 																			 	
	ТВ	AN	Г						 																				
	Å T R	RAN	G L						 																				
	ТВ	AN	I G I																										
	Å T R	RAN	G L																										
	Å T R	RAN	SIGI																										
	Å T R	RAN	T S I G L																										
	Å T R	RAN	SIGI																										
	Å T R	RAN	T S I G L																										
	Å T R	RAN	T S I G L																										
	M A T R	RAN	S A T S I G L																										
	Å T R		ESATSIG L	0.																									
	I S I N A T R	I I I I I I I R A N	LESATSIG L	ρ,																									
	M A T R	I I I I I I I R A N	LESATSIG L	ρ,																									
	SIS MATR	I I I I I I I R A N	A B L E S A T S I G L	φSP	년																								
	YSIS MATR	BLEE T BLEAN	C A B L E S A T S I G L	RØSP	Л. . К																								
	LYSIS MATR	ABLEE T T AN	C A B L E S A T S I G L	RØSP	Л. . К																								
	ALYSIS NATR	T A B L E A	C A B L E S A T S I G L	RØSP	Л. . К																								
	NALYSIS NALYSIS	T A B L E A	C A B L E S A T S I G L	RØSP	Л. . К																								
	ALYSIS NATR	T A B L E A	C A B L E S A T S I G L	RØSP	Л. . К																								
	ANALYSIS MATR	VIIABLIE	C A B L E S A T S I G L	RØSP	Л. . К																								
	N ANALYSIS M ATR	VAR I ABLE I R AN	NT VARTABLES AT SIG I	IRFLØCRØSP	RESELONI																								
	N ANALYSIS M ATR	VAR I ABLE I R AN	NT VARTABLES AT SIG I	IRFLØCRØSP	RESELONI																								
	N ANALYSIS M ATR	VAR I ABLE I R AN	NT VARTABLES AT SIG I	IRFLØCRØSP	RESELONI																								
	SIGN ANALYSIS NATR	ENT VAR I ABLEI	NDE NT VARTABLES AT SIG I	L & A I RFL & C R & S P	RESELONI																								
	SIGN ANALYSIS NATR	ENT VAR I ABLEI	NDE NT VARTABLES AT SIG I	L & A I RFL & C R & S P	RESELONI																								
	S S I ¢ N A N A L Y S I S N A L Y S I S N A L Y S I S N A L Y S I S	DENT VARIABLE	ENDENT VART A BLES A T S IG I	FLØAIRFLØCRØSP	RECRESEL M N L		F4																						
	E S S I Ø N A N A L Y S I S N N A T R	NDENT VARIABLE	PENDENT VARTABLES AT SIG L	TFLØALRFLØCRØSP	T RECRESSION N																								
	R E S S I \$ N A N A L Y S I S M A T R	E MDENT VAR I ABLE	Z P Z MDE NT V ARL A BLES A T S I G I	A T F L & A I R F L & C R & S P	и т азаза и л. г		E F																						
	R E S S I \$ N A N A L Y S I S M A T R	E MDENT VAR I ABLE	Z P Z MDE NT V ARL A BLES A T S I G I	A T F L & A I R F L & C R & S P	и т азаза и л. г		E F																						
	R E S S I \$ N A N A L Y S I S M A T R	E MDENT VAR I ABLE	Z P Z MDE NT V ARL A BLES A T S I G I	A T F L & A I R F L & C R & S P	и т азаза и л. г		E F																						
	R E S S I \$ N A N A L Y S I S M A T R	E MDENT VAR I ABLE	PENDENT VARTABLES AT SIG L	A T F L & A I R F L & C R & S P	и т азаза и л. г		E F																						

÷.,

C.1.1. METHODS OF CETTING THE ANOVA FROM THE COMPUTER PRINTOUT AND ITS CALCULATION.

The analysis of variance was obtained from the computer printout and was calculated as follows:

	•			
Effect	Degree of freedom D.F.	M.S.	M.S.R.	5% F level confidence
Regression on X ₁ and X ₂	2	A/ 2	A/2C	E
Extra contributed by X_1^2, X_2^2 and $X_1 X_2$	3	B/3 .	B/3C	Е
Subtotal Regression on X_1, X_2, X_1^2, X_2^2 and $X_1 X_2$	5	(A+B)/5	(A+B)/5C	E
Error	N-5	C∕(N-5)		•
Total	N-l	D/(N-1)		
Mean	l			

where

C = E.S.S. with all 5 variables (computer printout) D = (N-1) (variance in matrix 2 from computer printout) A+B = D-C A= D - (E.S.S. with only X₁ and X₂ from computer printout) B= D - C - A N = No. of observations E Obtained from F-Distribution table^(206,208,209)

ao,a1,a2,a3,a4,a11, a22 and a12 were obtained from the computer printout.

C.1.2. CORRELATIONS II C.1.2.1. THREE INCH S	IN LOG-LOG DATA SPERE DIANETER PACKING	DATA TER PACKI	NG		-						-	
			L.ON AVONA	0 . 1				ANOVA NO.2	N0.2			
•			No. of	observation	lon = 91			No. 0	of observation	11	65 .	
•			Packing	height =	= 6 ft.			Packing	g height	= 4•5	ft.	
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1 and X2	Ха		5	112.6	4.606	2075	3.1	2	6.403	3.204	1294	3.1
Extra contributed by X1 ³ , X2 ³ and X1X2		-	3	0•049	0.016	7.3	2.7	3	0.057	0,019	7.6	2 . 8
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and X1X3	5 0		2	9.260	1.852	834.6	2.3	ۍ ۲	e•465	1.293	522.2	2.4
Error			. 86	0.191	0.002			60	0.149	0.003		
Total			90	9.450	0.105			64	6.613	0.103		
Quadratic correlation												
Regression	60 67	а Ч	ზ ზ	811	822	813	a.o	81	8 3	811	822	a12
Coefficient	14.282	-5.22	-4.29	0.83	0.31	0.48	15.570	5.66	-4.63	0.92	0.39	۲4.0
Linear Correlation												
Regression	ao	a1	83 8					8 0	a <u>1</u>	3 2		
Coefficient	-2.096	1.51	-0.72					-1.793	1.36	-0.7.		
The quadratic and the]	the linear correlations were	relations		accepted and	l adopted.							

													ſ
•			ANOVA NO.	NO. 3				ANOVA	A NO: 4				1
			No. of	f observation	0	64		No. 0	of observation	11	52 .		
		•	Packi	Packing height	t = 3 ft.			Packing	ng height	= 1.5	ft.		_
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F	
Regression on X_1 and X_2			5	5.716	2.858	1473	3.1	2	3.121 [.]	1.560	314	3.2	
Extra contributed by X1 ² ,X2 ² and X1X3			2	0,048	910.0	8.3	2 . 8	м	0.089	0.030	6. 0	2.3	
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and X1X3	1X3			5.764	1.153	594	2.4	۲ س	3.209	0.642	129	2•4	1
Error			59	0.115	0.002				0.234	0.005			
Total			63	5.878	0.093			51	3.445	0.068			
Quadratic Correlation												•	
Regression	80 8	a <u>1</u>	53 5	811	33 3	a12	80 8	a <u>1</u>	3 ,3	311	323	6 773 6	
Coefficient	12.882	-4.67	-3.81	0.72	0.25	0.44	21.051	-10 •47+	-3.47	1.94	0 • 2+5	-0.10	
Linear Correlation													
Régression	ao	លី	88.				-	ao	a <u>1</u>	න ත			
Coefficient	-1.408	1.24	-0.74					1.395	1.13	-0.69			
The quadratic and the li	inear cori	the linear correlations were	were acce	accepted and	and adopted.								.76.

C.1.2.2. TWO INCH SPHERE DIAMETER PACKING.	ERE DIAMET	ER PACKIN	•									
•		•	ANOVA NO.5	V0.5				ANOVA NO.6.	NO.6.			
			No. of	observation	ion = 51			No. of	observation	ition = 91	Т	
			Packing	Packing height	= 6 ft.			Packir	Packing height	= 4•5	ft.	
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	· 5% F
Regression on X ₁ and X ₃	٤a		2	1.189	0.595	338	3.2	2	3.281	. L46. L	396	3.1
Extra contributed by X1 ² ,X3 ² and X1X3			2	0.062	0.021	11 . 8	2.8	2	0.078	0.026	6.3	2.7
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and X1Xa	(1Xa		5	1.251	0.025	·142.3	2.4	یر	3.360	0.672	162.3	2.3
Error			45	0.079	0.002			85	0.352	0.004		
Total			50	1.330	0.027			90	3.712			
Quadratic correlation												
Regression	a 0	81	33 3	811	333	a13	a0	a1	33		3 23	8 1 3
Coefficient	15.441	-3.55	-7.22	-0•79	-0.36	3.02	37.98	-17.45	-7.38	2.22	0.33	1.53
Linear correlation												
Regression	0 5	81	8,3					а 9	a1	a a		
Coefficient	-4.•71	1.9Ż	-0.39					-2.05	1.22	-0.50		
The quadratic and the linear correlations were accepted	inear cor	relations	were acce	pted and	adopted.	-						

•			ANOVA NO.	VO. 7				ANOVA NO.	NO. 8			
• .			No. of	observation	ion = 86			No. of	observation	:ion = 33		
۰.			Packinf	Packing height	= 3 ft.			Packin	Packing height	= 1.5 ft.	•	
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F.	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and X_2			2	3.243	1.621	329	3.1	5	1.048	0.524	2442	3.3
Extra contributed by X1 ³ , X2 ³ and X1X2			3	0.039	0.013	2.7	2.7	9	910.0	<u>600,0</u>	4•5	2.9
Subtotal Regression on X1,X2, X1 ² ,X2 ³ and X1X2	LX.a		ъ	3.282	0.656	133.3	2.3	ۍ	1.064	0.213	179 . 6	2.5
Error			. 80	0.394	0.005			27	0.032	0.002		
Total			85	3.676	0.043			32	1.096	0.034		
Quadratic correlation												
Regression	ao	a1	a ,a	811	888 88	813	80 80	81 8	32	811	822 8	81.2 8
Coefficient	-15.60	8.15	1.47	-1.05	-0.24	-0.18	16.648	-9.23	-2.57	2.0	0.46	-0.38
Linear Correlation												
Regression	80 80	a,	ал С					0 B	a,	a B		•
Coefficient	-1.34	1.17	-0.69					-2.726	1.37	-0.51.		
The quadratic and the 1	inear cor	linear correlations	were accepted	pted and	adopted.							

·

·

.

	C.1.2.3. ONE AND A HALF INCH SPHERE DIAMETER PACKING.	LE INCH SI	HERE DIAM.	ETER. PACK.	. ĐNI								
	•			ANOVA NO.	NO. 9				ANOVA NO.	NO. 10			
			·	No. of	observation	tion = 65			No. of	cobservation	tion = 51		
				Packing	g height	= 6 ft.			Packing	ig heigh t	t = 4.5	5 ft.	
	Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
	Regression on X_1 and X_2	X _a	3 8 0	5	5.927	2.964	1628	3.1	5	2.601	1.301	266	3.2
	Extra contributed by X ₁ ³ ,Xa ³ and X ₁ Xa		•	2	0.078	0.026	74•3	2.8	2	0.027	0.009	1.8	2•8
	Subtotal Regression on X1,X2,X1 ² ,X2 ³ and X1X3	(1X3		2	6.005	1.201	659.7	2.4	ŝ	2.628	0.526	107.4 ,	2.4
	Error			59	701.0	0.002			45	0.022	0.005		
	Total			64	6.113	0.096			50	2.848	0.057		
	Quadratic correlation												
•	Regression	80	a.1	8 3	841	322	313	80 80	a1	82 8	811	82.2	8 13
	Coefficient	-37.6	15.88	7.43	-1.73	-0.68	-1.15	13.918	-7.79	-1.47	1.09	-0.17	0.65
	Linear Correlation												
	Regression	80 8	81	8 3					a.o	a1	3.2		
	Coefficient	-2.71	1.70	-0.69					-0-454	0.98	-0.75		
	The quadratic and the linear correlations were accepted	linear col	rrelations	were acc	epted and	l adopted.							

			ANOVA NO.	11 .OV				ANOVA NO.	NO. 12			
-			No. of	observation	ion = 52			. No. o	of observation	tion = 42		
• .			Packing	height	= 3 ft.			Packiı	Packing height	= 1.5	ft.	
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	- 5% F
Regression on X1 and X2	a		N	3.630	1.815	1.54.3	3.2	2	2.259	1.129	24743	3.2
Extra contributed by X1 ³ ,X3 ² and X1X3			ñ	0.025	0.008	۲•۲	2.8	R	4TI.0	0.038	15.0	2.8
Subtotal Regression • on X1,X3,X1 ³ ,X2 ³ and X1X3	X1 Xa		ĥ	3.655	157.0	621.6	2.4	ک	2.363	0•4-75	186.0	2.5
Error			⁴⁶	0.054	0.001			36	0.032	0.003		
Total			51	3.709	0 . 073			74	2.465	090-0		
Quadratic Correlation												
.Regression	a 0	a 1	33	a 11	a a2	a12	8.0	a1	8 . 2	811	323	813
Coefficient	15.576	-7.90	-2.86	1.50	0.27	0.09	13.60	-10.68	0.60	2.39	0.14	-0.69
Linear Correlation												
Regression	a 0	a1	33 3					a.o	a1	32		
Coefficien t	-1.777	1.35	-0.74					- 2.15	1.24	-0. 54		·
The quadratic and the linear correlations were accepted	linear co	rrelations	s were acc	epted and	d adopted.	•						
	•											

.

.

.

•

,

.

.

.

180.

C.1.3.1. THREE INCH SPHERE DIAMETER PACKING	SPHERE DI	AMETER PAC	KING									
1			ANOVA NO. 13	0.13				ANOVA	N0. 14			
• .			No. of c	observati	.on = 91			No. of	observation	tion = 65		
• .			Packing height	height =	:6ft.			Packing	k height	= 4•5	ft.	
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F.	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and X_3	X _a		2	8.952	4.476	1581	3.1	2	6.223	3.112	1115	3.1
Extra contributed by X ₁ ² ,X ₂ ² and X ₁ X ₃			2	0.255	0.085	30•0	2.7	б	0.223	0 . 074	26.6	2.8
Subtotal Regression on X1,X3,X1 ³ ,X2 ³ and	.on and X1X2		5	9.207	1,841	650.4	2.3	۲	6 . 446	1.289	461•3	2.4
Error			. 86	0.243	0.003			. 60	0.168	0.003		
Total			90	9.451	1.105			64	6.613	0.103		
Quadratic correlation												
Regression	ao	а 1	3 ,2	811	8 33	a13	0.6	04 1	9 , 3	a11	623	3 13
Coefficient	111.0-	6.1×10 ⁵	-2.7×10	4	0	0	-0.126	5.5×10-4	-2.7×10 ⁴	4 0	0	0
Linear Correlation												
Regression	a0	81	8.3					9.0	84	8 . 2		
Coeffirient.	777 0-	5 5×10 4	יר~ <u>ה</u> 1					-0-43	5.2×10 ⁴	_0LX0 - [

. '

.

.

.

.

. .

.

.

			ANOVA NO.	10. 15				ANOVA NO.	0. 16			
-		•	No: of	observation	ion = 64			No. of a	of observation	ion = 52		
		•	Packing	height	= 3 ft.			Packing height		= 1.5 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and X_3			2	5.504	2.752	1228	3.1	N	3.007	1-504	246	3.2
Extra contributed by X1 ² ,X2 ³ and X1X2			3	0.242	180.0	36.0	2.8	5	0,149	0.05	8.1	2.8
Subtotal Regression on X1,X3,X1 ³ ,X3 ³ and X1X3	Xa		5	5•746	1.149	512.6	2.4	۲	3.15 6	0.631	103.1	2.4
Error			59	0.132	0.002			47	0.287	0.006		
Total			63	5.878	0.093			51	3.443	0.068		
Quadratic correlation												
Regression	о g	a <u>1</u>	8 B	a11	332	a13	a0	са Т	33 33	a11	822	813
Coefficient	-0.242	6.3×10 ⁴	-0.26×10	4	0	0	-0.154	1.0x10 ⁴	-2.2×10 ⁴	4 0	0	0
Linear Correlation												
Regression	а0 8	a1	az					ao	a1	3,3		
Coefficient	-0-425	4.5×10"4	-1.0×10 ⁴					-0:552	4.2×10-4	-1.0×10 ⁴	4	
The quadratic and the 1	inear cor	linear correlations were accepted and	were acce	pted and	not	adopted.						

C.1.3.2. TWO INCH SPHERE DIAMETER PACKING.	RE DIANET	ER PACKING.										
			ANOVA NO.	. 17				ANOVA	18			
			No. of o	observations	ons = 51			No. of	Pobservation	tion =	. 16	
•••			Packing height	height =	6 ft.			Packing	ng height	= 4.5 ft.	در. د	
Effect			D.F.	s.s.	M.S.	M.S.R.	5% F.	D.F.	5.5.	M.S.	M.S.R.	5% F
Regression on X_{1} and X_{2}			2	1.204	0.621	4.27	3.2	2	3.254	1.627	383	3.1
Extra contributed by X1 ² ,X2 ² and X1X2	•		3	0.061	0.020	14.0	2.8	3	0.097	0.032	2•6	2.7
Subtotal Regression on X1, X3, X1 ³ , X2 ³ and X	X ₁ X ₂		5	1.265	0.253 .	174.0	2.4	. 5	3.351	0.670	158	2.3
Error			45	D.065	0.002			85	0.361	0.004		
Total			50	1.330	0.027			90	3.712	140.0	·	
Quadratic correlation												
Regression	ao	a <u>1</u>	3 .2	811	823	8 1 3	a0	8 3	a <u>1</u>	a11	22 Z	a13
Coefficient	0.115	-2.0×10 ⁴	-2.3×10	4 0	0	0	0.087	1.0×10 4	3.0×10 ⁴	0	0	0
Linear Correlation												
Regression	ao	a <u>1</u>	8 3 3					9 O 8	8 4	8 3		
Ccefficient	-0.67	6.6×10 ⁴	-1.0×10 ⁴					-0-453	2;8×10 ⁻⁴	oix0.1-	4-4	`
The cuadratic and linear correlations were	ur correls	tions were	accepted but not	but not	adopted.							

-	·												
													r
•			ANOVA NO.	NO. 19				ANOVA N	NO. 20				
• .			No. of	observation	tion = 86			No.of c	observation	on = 33			
• •		•	Packing	s height	= 3 ft.			Packing	height	= 1.5 ft.			
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M .S.	M.S.R.	5% F	
Regression on X1 and	l Xa		2	3.102	1.551	338	3.1	2	1.038	0.519	0174	3.3	
Extra contributed by X1 ³ ,X1 ³ and X1X4			3	0.207	0•069	15.1	2.7	3	0.023	0.008	6.2	2.9	
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and	.on and X ₁ X ₃		5	3.309	0.662	144•3	2•3	5	1.062	0.213	169	2•5	
Error			. 80	0.367	0.005			27	0.034	100.0			
Total			85	3.676	0.043			32	1.096	0.034			
Quadratic correlation											•		
Regression	80	8 . 1	8,8	811	322	312	30 20	3,	3.2	311	22.2	310	
Coefficient	-0.871	1.5×10 ⁻³	1.3×10 ⁻⁴	0	0	0	-0. 671	5.1×10 ⁻⁴	5.1×10 ⁻⁴ ,1.3×10 ⁻⁴	0	0	С	
Linear Correlation									,				
Regression	0 Ø	81	. az				•	a0	a <u>1</u>	a 2		•	
Coefficient	-0.339	4.1×10 ⁴	-1.0×10 ⁻⁴					-0.868	6.1×10 ⁴	-1.0×10-4			18
The quadratic and the linear correlations were	linear cò	rrelations	were acc	accepted and	not	adopted.			,				4.

•

C.1.3.3. ONE AND A HALF INCH SEVERE DIAMETER PACKING	THE LOCH S	PUERE DIAME	TER PACKI	NG								
•			ANOVA NO.	0. 21				ANOVA	NO. 22			
			No. of	No. of observation	ion = 65			No.of	obse	ion = 51		
-			Packing	Packing height	f			Paćki		= 4.5	t.	
Effect			D.F.	ິ. ເ	M.S.	M.S.R.	5% F	D F	S.S.	M.S.	M S R	5% F
Regression on X ₁ and X ₂	Xa .		2	5-945	2.993	1 398	3.1	2	2.556	1.278	300	3.2
Extra contributed by X1 ³ ,X3 ² and X1X3			3	0-042	. 710-0	6. 6	2.8	М	LOL.O	0.034	8.0	2.8
Subtotal Regression on X1,X1,X1 ³ ,X3 ³ and X1X3	X1X3		5	5.987	791.I	563	2.4	ц	2.657	0.531	125.0	2.4
Error			59	0.126	0.002			45	191.0	0.004		
rotal .			64	6.113				50	2.848	0.057		
Quadratic correlation												
Regression	a.	a,	a,		323 323	312	80	37	83	G11	82.2	8 1 2
Coefficient	-1.165	2.1×10 ³	1.0×10 ⁴	0	0	0	0•347	-1.5×10 ⁴	4 -2.7×10-4	0 4 0	0	0
Linear Correlation												
Regression	a.	a1	82	•				2.0 2	a.	8 . 3		
Coefficient	-0-504	7.6×10 4	-1.0×10 ⁴					-0.202	4.0×10"4	-1.0×10 ⁴	4	
The quadratic and the l	inear cor	linear correlations were	vere accepted	and	ad op ted.				۰.			

•

.

•

•		<u></u>	ANOVA NO.	NO. 23				ANOVA NO. 24	VO. 24			
			No of o	No of observation	ion = 52			No. of	of observation	ion = 42		
• .			Packine	Packing height	= 3 ft.			Packing	Packing height = 1.5 ft	= 1.5 ft		
Effect			D.F.	S.S.		M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R	5% म
Regression on X1 and X2			2	3.578	1.789	1087	3.2	2	2.273	1.137	405	3.2
Extra contributed by X ₁ ² ,X ₂ ³ and X ₁ X ₂			2	0*130	0•043	26.4	2 . 8	Ν	0.088	0.029	10.5	2.8
Subtotal Regression on X1,X3,X1 ³ ,X2 ³ and X1X3	ıXa		5	3.707	147.0	. 450.7	2.4		2.361	0.472	168.4	2•5
Error			⁴⁶	0.076	0.002			36	0.104	0.003		
Total			51	3.783	0•074			.L4	2.465			
Quadratic Correlation												
Regression	0 8	a1	3 3	311	823 8	8 ₁ 2	800 80	8 1	8 .3	a11	433	& <u>1</u> 3
Coefficient	-0.341	4.9×10 ⁴	-2.4×10 ⁻⁴	0	0	0	-0.511	3.0×10 4	-1.0x10 -4-	-4- 0	0	0
Linear Correlation		,	ć							,		
Regression	80 8	81	23					a 0	7 ល	80		
Coefficient	-0.631	6.0x10 ⁻⁴	-1.0×10 ⁴					-0.678	5.7×10-4	-1.0×10	4	,
The quadratic and the 1	inear co	and the linear correlations were accepted	were acce		and not adopted	oted.			•			

•

.

•

.

C.l.4. CORRELATIONS IN RAW-DATA C.l.4.1.THREE INCH SPHERE DIAMETER	I RAW-DAT	A										
PACKING			ANOVA NO. 25	0. 25				ANOVA NO.26	N0,26			
·			No. of	observation	.on = 91			No. of	observation	tion = 65		
			Packing	height	= 6 ft.			Packing	ig height	= 4.5 ft		
Effect			D.F.	S.S.		M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_{\star} and X_{a}	5		2	127.91	64.0	14,8	3.1	N	48.20	24-10	413.2	3.1
Extra contributed by X1 ³ ,X3 ³ and X1X3		. •	2	33.31	01.11	25.7	2.7	5	9.45	3.15	54.0	2.8
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and X1X2	₹¥2		5	161.21	32.24	74.•7	2.3	5	57.65	11.5	19.8	2.4
Error			. 86	37.14	0.43			. 09	3.50	0.058		
Total			90	198.4	2.20			64	61.15	0.96		
Quadratic Correlation			·								•	
Regression	0 8	ស	a ₃	a11	823	8 <u>1</u> 3	ao	а <u>1</u>	вд	811	322	813 2
Coefficient	2.26	-1.3×10 ³	-6.8xl0 ⁴	0	0	0	1.15	4.0×10-4	-5.4×10	4	0	0
Linear Correlation		,										
Regression	a0	41	. 8.2					80 8	a1 1	8 3		
Coeffrient	0.058	2.0×10 ⁻³	-3.3×10"4					0:20	1.4×10 ³	-2.3×10 ⁴	4	
The quadratic and the linear correlations were rejected.	linear c	correlation	s were rej	ected.								

			ANOVA NO.	10. 27				ANOVA	NO. 28			
			No. of	0	ion = 64			-00.	obs	tion = 52		
			Packing	height	= 3 ft.			Packing	ng height	= 1.5 ft.		
Effect .	•		D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1 and Xa	رa ا		2	19.65	9.82	295.7	3.1	2	- T41 - 2	2.70	145	3.2
Extra contributed by X1 ³ ,X3 ³ and X1Xa			3	2.36	0•780.	23.7	2.8	2	Z.•45	0.45	26.1	2.8
Subtotal Regression on X1,X2,X1 ² ,X2 ² and X1X3	{1Xa		5	22.01	0†*†7	132.5	2.4	5	6.86	1.37	_74 . 0	2.4
Error			59	2.0	0.03			47	0.87	0.02		
Total			63	23.97	0.38			51	7.73			
Quadratic correlation												
Regression	80 8	а 4	g3	811	883 8	a13	9°0	a1	8 0	a11	8 8 8	a.12
Coefficient	0,603	E_OIXI.I	-4.3×10"3	0	0	0	0.73	1.0×10 ⁴	-2.7×10	4 0	0	0
Linear Correlation									, .			
Regression	80 80	a1	a.a				•	80 8	8 1	3,3		
Coefficient	0.452	8.2x10 ⁴	-1.8×10 ⁴					0.29	5.5xl0 -4	-1.2×10	¥	

C.1.4.2. TWO INCH SPHERE DIAMETER PACKING.	HERE DIA	ETER PACKI	NG.									
			ANOVA NO.	. 29				ANOVA	NO. 30			
			No. of observation	bservati	ton = 51			No. of	observation	ion = 91		
		•	Packing height	height =	ft			Packin		5		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	ະວ.	M.S.	M.S.R.	. 5% F
Regression on X ₁ and	Xa		2	8.32	4.16	, 1 404	3.2	7	14.18	7.l .	357	3•1
Extra contributed by X1 ² ,X2 ³ and X1X3			3	0.24	0.08	7.7	2.8	ĸ	0.62	0.21	10.4	2.7
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ and	on and X1Xa	· .	5	8.56	1.71	166.0	2.4	2	14.80	3.0	143.1	2.3
Error			45	0•46	0.01			85	1.69	0.02		
Total			50	9.02	0.18			90	16.49	0.18		
Quadratic Correlation	ſ											
Regression	a0	8 1	83 8	a11	823	813	0 8	9 1 1	8 3 3	811	832	873 8
Coefficient	2.57	-3.4×10"3	-2.2×10-4	0	0	0	1.31	-5.5×10"	-3.5×10	4 0	0	0
Linear Correlation			,									
. Regression	0 8	a1	ଟ ଅ ଅ					8.0 8	a1	8 .3		
Coefficient	-0.77	1.8×10 ⁻³	-1.0×10 ⁻⁴					40E.0	1.0×10 ⁻³	-1.0×10	4	
The quadratic and the	linear	dorrelations were rejected.	were reje	scted.								

•			ANOVA NO.	NO. 31				ANOVA NO.	NO. 32			
· .			No. of	observ	ation = 86			No. of	f observation	tion = 33	~	
•			Packin	Packing height	= 3 ft.			Packing	ng height	= 1.5 ft.		
Effect			D.F.	S.S.	M. S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1 and Xa	Xa		2	11.47	5.74	293	3.1	N	0.91	0•46	37	3.3
Extra contributed by X1 ³ ,X2 ³ and X1X2		•	3	1.35	645	22.9	2.7	3	0,10	0.03	2.7	2.9
Subtotal Regression on X1,X2,X1 ² ,X2 ³ and X1X3	41Xa		5	12.82	2.56	131.0	2.3	- 5	1.02	0.20	16.3	2.5
Error			80	1•65	0.02			27	0.03	10°0		
Total			85	14.38	. 0.17			32	1.05	0•03		
Quadratic correlation												
Regression	80 8	a1	32	311	a22	8 13	a.o	a1	8 3	a11	622	813
Coefficient	-0.78	2.9×10 ⁻³	-1.8×10	0	0	0	0.4	-2.1×10 ⁻⁴	-1.0×10	4 0	0	0
Linear correlation			•					,				
Regression	а0	a1	a 2					ao	с 1	8. 2		•
Coefficient	0.39	8.1×10 ⁴	-1.7×10 ⁻⁴					0.04	5.5×10 ⁴	-1.0×10 ⁴	4	
The quadratic and the	linear c	the linear correlations were rèjected.	s were rêj	ected.								

C.1.4.3. ONE AND A HALF INCH SFIERE DIAMETER PACKING	ALF INCH	SFTERE DIA	WETER PACK	ING								
			ANOVA NO.	VO. 33				ANOVA	NO. 34			
			No. of	observation	tion = 65			No, of	e observation	tion = 51		
			Packin	Packing height	= 6 ft.			Packiı	Packing heigur	= 4.5 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and	Хя		2	48.76	24+ 38	501.8	3.1	N	11.22	5.61	128	3.2
Extra contributed by X1 ³ ,X3 ³ and X1X3			Μ	7.36	2.46	50.6	2.8	3	2.06	0•69	15.6	2 °8
Subtotal Regression on X1,Xa,X1,Xa, and X1Xa	X1X3		5	56.12	11.22	231.0	2.4	. 5	13.28	2.66	60.4	2.4
Error			59	2.87	0°0			45	2.0	0.04		
Total			64	58•99	0.92			50	15.30	0.31		
Quadratic Correlation	d											
Regression	а С	а 1	83	811	333	8 1 2	a 0	a1	3 3	a11	322	a12
Coefficient	0.80	-7.2×10-4	-1.0×10 ⁻⁴	0	0	0	2.17	-1.5×10	3-4.5×10	4 0	0	0
Linear Correlation												
Regression	80 80	a1	3.3					a0	а 1	a 3		
Coefficient	-0.33	2.3×10 ⁻³	-2.3×10 ⁴					0.57	- 01× ⁴	-4-1.8×10	4	
The quadratic and the	linear	correlations	were	rejected.								

			ANOVANO.	NO. 35				ANOVA	NO. 36			
			No. 0	No. of observation	n	52		· No. of	f observation	tion = 42	8	
			Packi	Packing height	t = 3 ft.			Packing	ng height	= 1.5	ft.	
Effèct			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M .S.	M.S.R.	5% F
Regression on X_1 and X_3	Xa		2	7.33	3.67	132	3.2	~	6.25	3.13.	206	3.2
Extra contributed by X1 ² ,X3 ² and X1X3			2	1.98	0•66 .	23.7	2 . 8	м	1.75	0.58	38 . 4	2 . 8
Subtotal Regression on X1,X3,X1 ³ ,X3 ³ and X1X3	K1 Xa		5	9 . 31	1.86	66.9	2.4	S.	8.0	1.6	105.4	2.5
Error			49	1.37	0.03			36	0.55	0.02		
Total			51	10.68	0.21			77	8.55	0.21		
Quadratic correlation												
Regression	a 0	a 1	2.2	311	333	a12	90 8	8 1	ස හ	811	533 57	8 43
Coefficient	1.27	-1.2×10 ⁻³	-2.7×10 ⁴	0	0	0	1.17 .	-1.7×10 ⁻³	-1.0×10	0	0	0
Linear correlation									,			
Regression	80	a 1	a a	•				д0	a1	² 2		
Coefficient	0.09	9.0×10 ^{-'4}	-1.2×10 ⁴					-0.14	1.0×10 ⁻³	-1.0×10	4	
The quadratic and the	linear c	linear correlations were rejected.	were reje	sc ted.						ŕ		

•									ŧ			
C.1.5. CORRELATIONS C.1.5.1. LOG-LOG DATA	INCLUDING	G PACKING HEIGHT.	HEIGHT.									
			ANOVA NO.	NO = 37				ANOVA	NO. = 38			
•			No. of	observation	tion = 272	2		No. of	cobservation	в	261	, ,
.•			Sphere	dismeter	r = 3 in.			Sphere	diameter	r = 2 in.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X ₁ ,X ₂ (and Z.		3	30.1,8	10.16	2956	2.6	3	13.02	4-*34	863	2.6
Extra contributed by X1 ² ,X2 ⁴ and X1X3	•		2	0,167	0.06	16 . 2	2•6	Μ	.10°0	0•003	0.67	2 °6
Subtotal Regression • on X1, X1, X1, X1, X1, X2 and Z	and Z		9	30.64	5.11	14,85.7	2.1	. 9	13.03	2.17	4,31.8	2.1
Error			. 265	116.0	0.003			254	1.28	0.005		
Total			271	31.56				260	14.31			
Quadratic correlation												
Regression	ao	8 . 1	53 5	311 1	33 Z	812	0 8	81	8 . 3	311	a.z.z	313
Coefficient	11.81	-4.32	-3.78	0.73	0.33	0.26	3.12	-1.05	-1.67	0.23	0.04	0.27
Linear correlation												
Regression	90	a 1	33	83 8				ao	87 1	8 ,3	23 23	
Coefficient	-2.03	1.33	-0.72	0.60				-2:224	1.25	-0-57	0.52	
The packing height did not fit well the	l not fit		guadratic	and the	linear co	correlations.	ns .					

. .

 \mathbf{N}^{t}

.

٠

				ANOVA NO.	NO. 39			
				No. of	observation	tion = 210	0	
•				Sphere	diameter	= 1.5	in.	
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X1,X3 and	2		3	17.22	5•74	624	. 2.6
Extra contribu X1 ³ ,X3 ³ and X1	lbuted by X±Xa		-	2	0.057	0.019	2.J	2.6
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ ,X1Xa and	ssion on X ₁ X ₃ and	. 27		9	17.27	2•88	312.9	2•1
Error				203	1.87	0.009		
Total				209				
Quadratic Corr	Correl ati on							
Regression	ů0 0	a1	දී	211	833	613		
Coefficient	-5.90	1.25	1.64	0.27	-0.14	<u> 6</u> 4•0-		
Linear Correlation	tion							
Regression	ao .	a.1	а з	8 13				
Coefficient	-1.93	1.30	-0.71	0.54				
The packing he	height did 1	not fit weil	the	quadratic	ਸਾਹ	the linear correlations.	orrelatio	ns.

C.1.5.2. SEMI-LOG DATA	A											
			ANOVA	ANOVA NO. 4.0				ANOVA NO.	L4 .ON			
			No. of	observation	tion = 272	72		No. 0	of observation	n	261	
			Sphere	diameter	r = 3 in.			Sphere	e diameter	r =12 in.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X ₁ ,X ₂ a	and Z		3	29.64	9.88	2238	2.6	2	12.66	4.22	769	2.6
Extra contributed by X1 ³ ,X3 ² and X1X3			5	0.75	0.25	56.4	2.6	~	0.26	0.09	15.9	2.6
Subtotal Regression on X1,X2, X1 ³ ,X2 ³ ,X1X2 and Z	r Z Pri		. 9	30.39	5.07	4•74LL •	2.1	0	12.91	2.15	392.4	2.1
Error			265	1.17	0.004			254	1.39	0.006		
Total			271	31.56	0.12			260	14.31	0.06		
Quadratic Correlation												
. Regression	a0	a.1	с ^в	811	833 8	8 1 3	ao	н Ф	8°8	a 1 1	32 z	a.12
Coefficient	-0.53	5.9×10 ⁴	-2.5x104	0	0	0	-0.82	9.7×10 ⁻⁴	-1.7×10	0	0	0
Linear Correlation		۰									-	
Regression	8°0	a1	83	а З				90 8	a4	6 3	a.a	
Coefficient	-0-74	4.9×10.4	-1.0×10 ⁴	0.08				-0.70	4.8×104	-1.0x10 ⁻⁴	0.07	
The packing height did	not	fit well the	quadrati c	and the	linear c	correla ti ons.	ns .			-,		
•												T

•

١

•

.

•

.

				ANCVA NO.	NO. 42			
				No. of	f observation	11	210	
				Sphere	e ãiameter	= 1.5	in.	
Effect				. D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X.	X1, X2 and 2	Z		2	1.7 . 48	5.83	807	2.6
Extra contributed by X1 ² ,X2 ³ and X1X3	ed by			2	61.0	0.06	8 8	2.6
Subtotal Regression on X1,X2,X1 ³ ,X2 ³ ,X1X2 and	ession on X1X2 and Z			9	17.67	2.95	. 408	2.1
Error	-			203	1.47	0.007		
Total				209	19.14	0.092		
Quadratic correl	correlation							
Regression	a0	8 7	ទ ប	311	333	8 13		
C oefficient	-0.78	8.1×10 ⁴	-1.6×10	4 0	0	0		
Linear Correlation	ion		•					
Regression	0 ಸ	a1	8°3	ខ ស				
Coefficient	-0.77	5.7×10 ⁴	-1.C×10	⁴ 0.08				
The packirg height	did	not fit well	the	quadratic ar	and the linear	near corr	correlations.	

C.l.5.3. RAW-DATA													
			ANOVA NO. 4.3	TO. 4.3				ANOVA	NO. 424				· · · ·
			No. of	observation	ion = 272			No. cf	observation	11	561		
			Sphere	diameter	= 3 in.			Sphere	diam∺ter	1 1 2 1 2	in.		T
Effect ·			D.F.	S.S.	M.S.	M.S.R.	5% F	J.F.	S.S.	M.S.	M.S.R.	5% F	I
Regression on X1, X2 and	ad Z		3	212.4	70.8	258	2.6	3	77.1 -	25.7	260	2.6	
Extra contributed by X1 ² ,X2 ² and X1X3			3	40 • 44	14.68.	53.5	2.6	6	9 . 11	3.9	39 . 1	2•6	
Subtotal Regression on X1,X2,X2 ³ ,X2 ³ ,X1X2 and Z			9	256.4	42.7	155.7	2.1	9	88.7	14:•8	150	2,1	1
Error			265	72.7	0.27			203	20.1	0.1			·
Total [.]			2刀	329.1	1.21			209	108.8	0.52			
Quadratic correlation													1
Regression	20 20	a1	53	811	8.3. 3	8 1 3	а 0	8 1	9 3	a11	8 3 2	312	
Coefficient	0.22	5.0×10 4	-4.8×10 ⁴	0	0	0	-0.12	5.lxl0 ⁴	-1.7×10	4	0	0	
Linear correlation								,	,				·
Regression	a0	8 1	ຕ ເບັ	. 33				а 0	а 1	д з	8°3		r
Coefficient	-0.48	1.3×10 ⁻³	-2.4×10"4	0.2				-0-46	1.3×10 ⁻³	-01×2.1-	0.15		1
The guadratic and the linear correlations were rejected.	linear c	crrelation	s were re.	jected.									97.

•

C.1.6. CORREI	ATIONS IN	C LUD ING 1	PACKING H	CORRELATIONS INCLUDING PACKING HEIGHT AND SPHERE DIAMETER	SPHERE D	LANETER		
C.1.6.1. LOG-LO	LOG-LOG DATA							
				ANOVA NO.	0. 45			
				No. of	observation	<u>ξ</u> μζ = πο.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X ₁	X1,X2, Z and	ld d _P		4-	61.54	15.39	2560	2.4
Extra contributed by X1,X3 ard X1X3	ed by			3	71.0	0.05	6-45	2.6
Subtotal Regression X1,X2,X1 ² ,X2 ² ,X1X3,	ssion on X 1X3, Z and	đP		7	۲ ۲. 16	8.82	29tr.	2.0
Error				735	4.42	0.006		
Total				742	66.13	0.089		
Quadratic Correlation	ati on							
Regressi on	a.0	a 1	84	811	â2 z	813	a 3	3 4
Coefficient	6.72	-2.98	-2.08	0.65	0.16	01.0	0.56	-0.11
Linear Correlation	no							
Regression	80	a1	8.3	8.3 8.3	a 4			
Coefficient	-2.12	1.3	-0-67	0.56	-0.07			
The sphere diameter	તે.id	not fit well	the	cuadratic a	and the 1	inear co	linear correlations.	•

· 198.

C.1.6.2. SEMI-LOG DATA.	-LOG DATA							
		i.						
				ANOVA NO.	NO. 46	•		
				No. of	c ^l , servation	$r_{10n} = 7l_{4}3$	3	
• Effect				D.F.	S. S.	M.S.	M.S.R.	5% F
Regression on	on X1,Xa, Z	and d _P		4	60.51	15.15	2531	2.4
Extra contribut X ₁ ,X ₂ and X ₁ X ₂	uted by			. 3	1.12	0.37	62.62	2.6
Subtotal Regression X1,X2,X1 ³ ,X2 ³ ,X1X3,	sicn o 1Xa, Z	n and d _P		ź	61.7	8.8	1473	2.0
Error				735	4+a.24	9000		
Total				74.3	66.1	0.089		
Quadratic Corre	relation							
Regression	аo	57 7	82	811	9 . 3.3	813	ვ ვ	a.4
Coefficient	-0.59	6.9×10 ⁴	-2.0×10	4	0	0	0°07	-0-3
Linear correlation	ation							
Regression	80 80	81 .	a 2	ង ខ	6.4			
Coefficient	0.66	5.0x10 ⁻⁴	-1.0×10 ⁴	4 0.07	-0.35			
The sphere diameter		dic not fit	fit well the	e quadratic	c and the	linear	correlations.	cions.

.199.

C.1.7 CALCULATION OF THE COEFFICIENT OF SKEWNESS.

The coefficient of skewness was calculated as follows⁽²⁰⁾:

$$y_1 = \frac{\mu_3}{(\sigma^2)^{3/2}}$$
(12)

where

$$F \mu_{3} = \Sigma (X_{i} - \overline{X})^{3} F_{i}$$

$$= \Sigma F_{i} X_{i}^{3} - 3 \overline{X} \Sigma F_{i} X_{i}^{2} + 3\overline{X}^{2} \Sigma F_{i} X_{i} - \overline{X}^{3} F$$

$$= S_{3} - \frac{3S_{1}S_{2}}{F} + \frac{2S_{1}^{3}}{F^{2}}$$

$$F_{i} = \text{Frequency of } X_{i} \text{ (Residual error)}$$

$$F = \Sigma F_{i} = \text{Total frequency}$$

$$\sigma^{2} = S_{2} - \frac{S_{1}^{2}}{F} = \text{Variance}$$

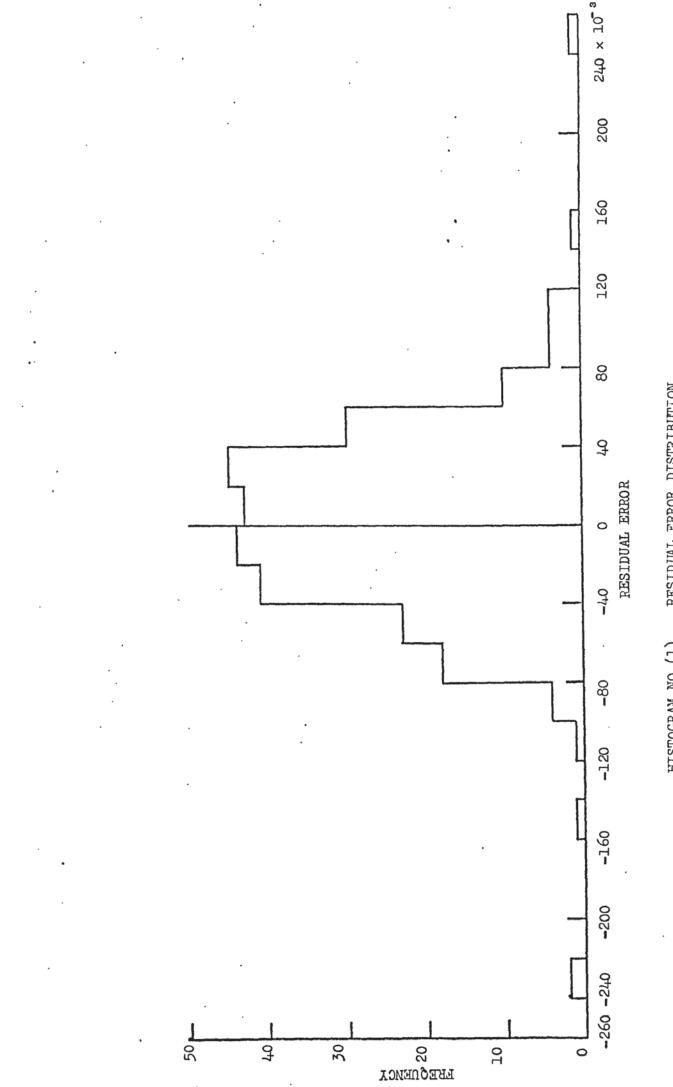
If $y_1 > 0$ the distribution would have a "long tail" on the right hand side and is said to have positive skewness. When $y_1 < 0$ the "long tail" would be on the left hand side and the distribution has negative skewness. If a distribution is symmetrical, then the skewness is zero.

The following example of the coefficient of skewness was calculated for the quadratic correlation in Log-Log data for 3 in. sphere diameter. The residual errors were obtained from the printout of the computer program for the analysis of variance and were plotted in Histogram No.1. From Histogram No.1 the following items were calculated

$$S_{3} = -6478 \times 10^{-6}$$

$$S_{2} = 6674 \times 10^{-4}$$

$$S_{1} = 2 \times 10^{-2}$$


$$y_{1} = -0.2$$

$$\sigma^{2} = 0.0024537$$

From ANOVA NO.1 to 4

..

o² = 0.0025286

RESIDUAL ERROR DISTRIBUTION. HISTOGRAM NO.(1) Therefore the (σ^2) values were in excellent agreement. The coefficient of skewness was calculated for different types of correlation as shown in Table (5).

C.1.8. THE 95% CONFIDENCE INTERVAL FOR THE CORRELATIONS.

The 95% confidence interval for the predicted value of Log y above the true correlation was

where

R = Log y

 $t_V(95\%)$ was the level of (t) distribution

based on (V) degree of freedom.

$$t_{V}(95\%)\sqrt{3^{2}} = K$$
(13)

$$R \pm K \qquad \text{For Log-Log data}$$

$$R \pm K \qquad \text{for raw-data}$$

Expressing the difference 10^{K} as a percentage the following expression, independent of R is obtained.

$$\frac{10^{R+K}}{10^{R}} - 10^{R} \times 100 = \left(10^{+K} - 1\right) \times 100 \quad (14)$$

C.1.8.1. QUADRATIC CORRELATIONS IN LOG-LOG DATA.

.

1

95% Confidence Intervals.	Packing height ft.	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix.
R <u>+</u> 0.0931	6	3	23.6	l	C.1.2.1.
R <u>+</u> 0.0986	4.5	3	24.7	2	
R + 0.0873	3	3	22.2	3	
R + 0.1401	1.5	3	38.0	4	
R <u>+</u> 0.0824	6	2	20.8	5	C.1.2.2.
R + 0.1264	4.5	2	33.7	6	
R <u>+</u> 0.1378	3	2	37.4	7	
R <u>+</u> 0.0677	1.5	2	16.4	8	
R + 0.0838	6	1.5	21.3	9	C.1.2.3.
R + 0.1375	4.5	1.5	37.1	10	
R <u>+</u> 0.0674	3	1.5	16.7	11	
R <u>+</u> 0.0992	1.5	1.5	25.6	12	
R + 0.1018			26.5		average

TABLE (1) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.2. LINEAR CORRELATIONS IN LOG-LOG DATA

TABLE (2) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence Intervals.	Packing height ft.	Sphere diameter in.	Error + %	ANOVA NO•	Appendix
R + 0.1025	6	3	26.8	1	C.1.2.1.
R ± 0.1130	4.5	3	29.7	2	
R <u>+</u> 0.1015	3	3	26.2	3	
R <u>+</u> 0.1595	1.5 .	3	44.2	4	
R <u>+</u> 0.1066	6	2	27.9	5	C.1.2.2.
R <u>+</u> 0.1374	4.5	2	37.1	.6	
R <u>+</u> 0.1419	3	2	38.7	7	
R <u>+</u> 0.0787	1.5	2	19.7	8	
R <u>+</u> 0.1075	6	1.5	27.9	9	C.1.2.3.
R <u>+</u> 0.1409	4.5	1.5	38.4	10	
R <u>+</u> 0.0789	3	1.5	19.9	11	
R <u>+</u> 0.1429	1.5	1.5	39.0	12	
R <u>+</u> 0.1176			31.2		average

C.1.8.3. QUADRATIC CORRELATIONS IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT

95% Confidence Intervals	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.1152	3	30.3	37	C.1.5.1
R <u>+</u> 0.1394	· 2	37.7	• 38	
R <u>+</u> 0.1885	1.5	54.2	39	
R <u>+</u> 0.1477		40.6		average

TABLE (3) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.4. LINEAR CORRELATIONS IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT

95% Confidence .Intervals.	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.1246	3	33.4	37	C.1.5.1
R <u>+</u> 0.1391	2	37.7	38	
R <u>+</u> 0.1900	1.5	54•9	39	
R <u>+</u> 0.1512		41.6		average

TABLE (4) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.5. QUADRATIC AND LINEAR CORRELATIONS IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT AND SPHERE DIAMETER.

TABLE (5) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence	Error	ANOVA	Appendix
Intervals	<u>+</u> %	NO.	
R <u>+</u> 0.1523	41.9	45	C.1.6.1
R <u>+</u> 0.1549	42.9	45	

1 . .

C.1.8.6.	QUADRATIC	CORRELATIONS	IN	SEMI-LOG	DATA
----------	-----------	--------------	----	----------	------

	•				
95% Confidence Intervals.	Packing height ft.	Sphere diameter in.	Error ± %	ANOVA NO.	Appendix
R + 0.1052	6	3	24.4	13	C.1.3.1
R + 0.1047	4.5	3	27.4	14	
R <u>+</u> 0.0938	3	3	24.2	15	
R <u>+</u> 0.1553	1.5	3	42.9	16	ļ
R ± 0.0749	6	1 2	18.9	דב	C.1.3.2
R <u>+</u> 0.1281	4.5	2	34.3	18	
R <u>+</u> 0.1331	3	2	35.8	19	
R ± 0.0699	1.5	2	17.5	20	
R <u>+</u> 0.0906	6	1.5	23.2	21	C.1.3.3
R <u>+</u> 0.1281	4.5	1.5	34.3	22	
R <u>+</u> 0.0797	3	1.5	20.2	23	
R <u>+</u> 0.1055	1.5	1.5	27.3	24	
R <u>+</u> 0.1058		·	27.6		average

TABLE (6) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.7 LINEAR	CORRELATIONS	IN	SEMI-LOG DATA	
----------------	--------------	----	---------------	--

TABLE (7) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confide Interval:	++++	Sphere diameter in.	Error ± %	ANOVA NO.	Appendiz
R + 0.14	6	3	40.6	13	C.1.3.1
R + 0.15	59 4.5	3	43.2	14	
R + 0.15	39 3	3	42.6	15	
R + 0.18	53 1.5	3	53.1	16	
R <u>+</u> 0.100	6 6	2	25.9	17	C.1.3.2
R + 0.14	20 4.5	2	38.7	18	
R <u>+</u> 0.16	33 3	2	45.6	19	
R + 0.086	52 1.5	2	21.9	20	
R + 0.102	21 6	1.5	26.5	21	C.1.3.3
R + 0.15	33 4.5	1.5	42.2	22	
R <u>+</u> 0.127	14 3	1.5	33.9	23	
R <u>+</u> 0.137	1.5	1.5	37.4	24	1
R <u>+</u> 0.137	78 .		37.4		average

. 204.

C.1.8.8 QUADRATIC CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HEIGHT

95% Confidence Intervals	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.1306	3	34.09	40	C.1.5.2
R <u>+</u> 0.1455	2	39.7	41	
R <u>+</u> 0.1670	1.5	46.9	42	
R + 0.1477		40.4		average

TABLE (8) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.9 LINEAR CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HEIGHT

95% Confidence Intervals.	Sphere diameter in.	Error <u>+</u> %	AN OV A NO .	Appendix
R + 0.1662	• 3	46.6	40	C.1.5.2
R <u>+</u> 0.1577	2	43.9	41	
R <u>+</u> 0.1762	1.5	49•9	42	
R <u>+</u> 0.1667		46.9		average

TABLE (9) 95% CONFIDENCE INTERVALS AND ERRORS

C.1.8.10 QUADRATIC AND LINEAR CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HE CONT AND SPHERE DIAMETER

TABLE (10) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence	Error	ANOVA	Appendix
Intervals.	<u>+</u> %	NO.	
R <u>+</u> 0.1520	41.9	46	C.1.6.2
R <u>+</u> 0.1700	47.9	46	

To represent the quadratic correlation in graphical form it was necessary to find the roots of the equation. This was carried out as follows:

Let Z = Log y A = Log X
Therefore equation (121) would be

$$Z = a_0 + a_1 A_1 + a_2 A_2 + a_{11} A_1^2 + a_{22} A_2^2 + a_{12} A_1 A_2$$
(15)
$$A^{2}(a_1) + A_2(a_2 + a_3 A_2) + (a_2 + A_2^2 + a_{12} A_{14} A_2)$$
(16)

$$A_{3}^{2}(a_{33}) + A_{2}(a_{3} + a_{12}A_{1}) + (a_{11}A_{1}^{2} + a_{1}A_{1} + B) = 0$$
 (16)

where $B = a_0 - Z$

Let
$$a_{2*} = S$$

 $a_2 + a_{12}A_1 = T$
 $a_{11}A_1^2 + a_1A_1 + B = R$

Letting the roots of the quadratic equation be Q and P.

$$Q_{p} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
$$M = \sqrt{b^{2} - 4ac} = \sqrt{T^{2} - 4SR}$$

Let

Then

$$Q = \frac{-T + M}{2S}$$

and
$$P = \frac{-T - M}{2S}$$

This procedure was computed keeping (Z) constant and varying the air flowrate values to find the corresponding values of the water flowrate. This was repeated for different values of (Z). The following 1900 ICL computer program was used to solve equation (16) and to plot the quadratic and linear correlations as shown in Figs.(23, 24 and 25).

01/09/70 COMPILED BY XALE MK. 4 B LIBRARY' (ED, SUBGRUUPSRA3) LIBRARY' (ED, SUBGRUUPGRAH); 'BEGIN' 'INTEGER' I.J.K.N: 'REAL' Y.S.T.R.P.O.M; 'REAL' 'ARRAY' X1, X4[1:1241, A[1:6], TITLE[1:3]; 'PROCEDURE' OPENPLOI: 'EXTERNAL': 'PROCENURE' CLOSEPLUT: 'EXTERNAL': 'PROCEDURF' STRARR(A,N,S); 'ARRAY'A;'INTEGER'N;'STRING'S; EXTERNAL !! PROCEDURE: HGPLOTT(X,Y,IC,L); 'REAL' X.Y: 'INTEGER' IC.L: EXTERNAL !! 'PROCEDURF' HGPAXIST(X,Y,BCD,N,S,THETA,XMIN,DX); 'VALUE' X.Y.N.S.THETA.XMIN.DX; 'INTEGER' N; 'ARRAY' BCD; 'REAL' X, Y, S, THETA, XMIN, DX; 'EXTERNAL'; 'PROCEDURE' HGPLINET(X,Y,N,K); 'VALUE' N,K; 'ARRAY' X,Y; 'INTEGER' N.K. 'EXTERNAL'; OPENPLOT: HGPLOTT(0.0,20.0,0,4); STRARR(TITLE, 10, '('LOGAIRFLOW')'); HGPAXIST(0.0.0.0.TILE, -10, 16.0.0.0.2.5,0.05); STRARR(TITLE, 12, '('LOGWATERFLOW')'); HGPAX1ST(0,0,0,0,TITLE,12,25,0,90,0,0,0,0,2); 'FOR' I:=1 'STEP' 1 'UNTIL' 6 'DO' 'BEGIN' ALIJ:=READ; 'END'; A[1]:=A[1]+0.80; 'FOR' Y:=0 'STEP' 0.05 'UNTIL' 1.25 'DO' 'BEGIN' A[1]:=A[1]=Y: $N_{1} = 0;$ FOR' 1:=1 'STEP' 1 'UNTIL' 124 'DO' 'DEGIN' X1[1]:=2,765+1+0.005; S:=A[6]; T:=A[3]+A[>]*X1[1]; R:=A[1]+A[2]*X1[1]+A[4]*X1[1]*X1[1]; M:=T*T-4*S*R; 0.0 "JF' M 'LE' 0:0 'THEN' 'GOTO' LAB: N:=N+1: M:=SQRT(M); P:=(-T-M)/(2*s); PRINT(1,3,0); PRINT(1,6,4); PRINT(T,6,4); PRINT(P,6,4); Q:=(-T+M)/(2*S); PRINT(Q.6.4); "IF' P 'LT' 0.0 'THEN' 'GOTO' TWO 'ELSE' 'IF' P 'GT' 6.0 THEN' 'GOTO' TWO 'ELSE' 'GOTO' ONE; THO: P.=Q: ONE: XP[1]:=P; 'X1[N]:=(X1[]]-2.5)*20.0; X2[N]:=X2[1]*5.0: PRINT(X1[N],6,4); PRINT(X2[N],6,4); PRINT(V,1.3): NEWLINE(1): LAB: 'END': NEWLING(1); K:=N; HGPLINFT(X1,X2,K,1); 'END'; CLOSEPLOT: . 'END';

207. .

APPENDIX D.

,

D.1. ANALYSIS OF VARIANCE FOR DIF D.1.1. LOG-LOG DATA CORRELATIONS.	OF VARIANCE FOR I DATA CORRELATIO	FERENT	TYPES (F (CORREL ATI	• NO ILL							
POLICIA PACKING	ENWIN INT		ANOVA NO.	No. 47				ANOVA	NO. 48			
			No. of	observation	i.on = 30			· No. of	observation	ion = 52		
		•	Packing	g height	= 4.5 ft.			Packing	g height	= 3 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X ₁ and 1	Xa		2	1.459	0.7295	209.	3.3	2	2.263	1.132	3810	3.2
Extra contributed by X ₂ ³ and X ₁ X ₂			N	1110.0	0.0056	1.6	3.3	5	0.0149	0.0074	25.0	3.2
Subtotal Regression on X1,X3,X3 and X1X	я		4	1•4 , 70	0.3675	105.5	2.7	4	2.278	0.570	7161	2.5
Error			25	0.087	0.0035			47	0.014	0.0003		
Total			29	1.557	0.0537			51	2.292	0*045		
Quadratic correlation			-									
Regression	80 8	8 1	д х	323	312			ao	a1	а 3	822	8 13
Coefficient	43.147	-10.51	-15-54	0.45	3.51			-9.271	4.14	1.91	0.13	- 1 . 09
Linear correlation												
Regression	30	a1	ชิ					au	а 1	8 . 3		
Coefficient	-1.310	1.25	-0.74	4				2.19	0.28	-0.85		
The quadratic and the	the linear co	correlations were	s were acc	accepted and	d adopted.	•						

				ANOVA NO.	• 49			
				No. of o	observation	on = 78		
•				Packing	height =	l.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1	1 and Xz			2	2.042	1.021	996	3.1
Extra contributed by X ₂ ² and X ₁ X ₂	ed by			N	140.0	L20°0	19•5	3.1
Subtotal Regression on X ₁ ,X ₂ ,X ₃ ³ and X ₁	ession and X ₁ X ₃			4	2.084	0.521	4,92•8	2.5
Error				73	0.077	1100°0		
Total				77	2.161	0.028		
Quadratic correl	correlation							
Regression	90	а 1	33	332	313			
Coefficient	15.20	-3.53	-4-96	++0 • 0	1.14			
Linear correlation	ion							
Regression	a.o.	a1	2,3					
Coefficient	0.60	0.51	-0.67			-		
The quadratic ar	and the lin	linear corr	correlations were		accepted and	adopted.		

D.1.1.2. TWO INCH SPHERE DIAMETER PACKING.	RE DIAMET	ER PACKIN	in the									
			ANOVA NO.	0. 50				ANOVA 1	NO. 51			
			No. of c	observation	on = 18			No. of	observation	tion = 93		
			Packing height	height =	: 4.5 ft.			Packing	g height	= 3 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.		5% F
Regression on X_1 and X_2			2	0.192	0.096	273	2+•7+	5	5.09	2.545	1472	3.1
Extra contributed by X ₂ ² and X ₁ X ₂			N	0.0008	+1000 • 0	0.50	3.6	N	0.055	0.0276	15.9	3.1
Subtotal Regression on X1,X3,X2 ³ and X1X3			4	0.193	0•0485	60.6	3•2	4	5.14	1.286	+r+12	2.5
Error			13	0.0098	0.0008			88	0.152	7100.0		
Total .			17	0.202	0.012			92	5.30	0.0576		
Quadratic correlation												
Regression	а а	81	9 9	822	313			a0	a1	59 59	g 3 3	a12
Coefficient	2.049	-0-75	0	-0.20	0.27			-17.14	3.82	6.14	-0.64	-0-77
Linear correlation			·									
Regression	೦ ಬೆ	a <u>1</u>	93 93					a0 8	a.1	a ₂		
Coefficient	0.890	0.33	-0.50					0.35	0.87	-0.87		
The quadratic and the linear correlations were	inear co	rrelations		accepted and	d adopted.	1.						

				·				
				ANOVA NO.	NO. 52			
				No. of	observation	iion = 58		
				Packing	g height	= 1.5 ft		
Effect				D.F.	s.s.	M.S.	M.S.R.	5% F
Regression on X_4	1 and Xa			2	1.404	0.702	8.64	3.2.
Extra contributed by X ₂ ³ and X ₁ X ₂	ed by			∾.	0.003	2100°0	2.0	3.2
Subtotal Regress on X1,X2,X2 ³ and	ression and X ₁ X ₂			4	1.407	0.352	4.33	2.5
Error				53	0.043	0.0008		
Total				57	1.45	0.025		
Quadratic correl	elation							
Regression	80 80	81	82	222	812			
Coefficient	13.47	4-40	3•21	LL.0-	-0.96			
Linear correlati	tion							
Regression	a0	a	8,2					
Coefficient	-2•07	1.34	-0~20					
The quadratic and		ear corre	the linear correlations were		accepted and a	ad op ted.		
								1

۱

D.l.l.3. ONE AND A HA	HALF INCH S	SPHERE DIAMETER	ETER PACKING	TNG								
			ANOVA NO.	NO. 53				ANOVA NO.	NO • 54			
·			No. of	observa	ttion = 26			No. of	f observation	tion = 26		
ŗ			Packin	Packing height	= 4.5 ft.			Packing	ng height	= 3 ft.		
Effect			D.F.	S.S.	.S. M	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and	Xa		2	2.031	1.015	342	4.2	2	2.297	1.149	623	3.4
Extra contributed by X ₂ ³ and X ₁ X ₂			5	6TO.0	9600°0	3.3	3.4	N	0.005	0.002	1.3	3•4
Subtotal Regression on X_1, X_2, X_3^3 and X_1X_3			4	2.05	6.683	230	3.0	4	2.302	0.576	312	2.7
Error			12	0.065	0.003			ដ	0.039	0.002		
Total			25	2.115	0.085			25	2.34	+760°0		
Quadratic correlation												
Regression	дO	a1	83 8	822	a 12			ao	a1	a_3	233 ·	313
Coefficient	-9.115	4•99	0	0.34	0.97			17.05	-3.05	-7.34	0.29	1.34
Linear correlation												
Regressi on	0 8	a.1	s D					a.0	a,	83		•
Coefficient	-0-49	1.17	-0.90					-1.87	1.68	-0.97.		
The ouedratic and the	inconil	cound of one more eccented and	0000	no fod on	5040000							

ANOVA NO. 55ANOVA NO. 55No. of observation = 60Facking height = 1.5 ft.Facking height = 1.5 ft.Regression on X4 and XaD.F. S.S. M.S. M.S. 5% FRegression on X4 and XaSubtotal Regression on X4 and XaSubtotal Xa <th co<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th>											
ANOVA NO. 55ANOVA NO. 55No. of observation = 60Packing height = 1.5 ft.b.F.S.S.M.S.R.ssion on X_1 and X_2D.F.S.S.M.S.R.ssion on X_1 and X_2D.F.S.S.M.S.R.N.S.R.ssion on X_1 and X_2D.F.S.S.M.S.R.N.S.R.ssion on X_1 and X_2D.F.S.S.M.S.R.N.S.R.ssion on X_1 and X_221.5630.781390contributed by220.1100.05527.5and X_1X_31.6720.418209x_3^2 and X_1X_31.6720.418209x_3^2 and X_1X_3550.1100.002Tx_3^2 and X_1X_3591.7830.030Itic correlationa3333sionaaa333tic correlationa3333sionaaa333tic correlationaaa33tic correlationaaa33tic correlationaaa33tic correlationaaa33												
No. of observation = 60Packing height = 1.5 ft.Packing height = 1.5 ft.Packing height = 1.5 ft.Sion on X ₄ and X ₃ D.F.S.S.M.S.R.ssion on X ₄ and X ₄ D.F.S.S.M.S.R.390contributed by21.5630.781390contributed by20.1100.05527.5and X ₄ X ₃ 20.1100.05527.5cal Regression on41.6720.418209X ₃ ² and X ₄ X ₃ 50.1100.0021X ₃ ² and X ₄ X ₃ 50.1100.0021tic correlation50.1100.0021tic correlationaoa_4a_3a_43sionaoa_4a_3a_43const20.292.0021					ANOVA N					•		
Packing height = 1.5 ft. b.F. S.S. M.S. M.S.R. ssion on X ₄ and X ₃ 2 1.563 0.781 390 sontributed by 2 1.563 0.781 390 contributed by 2 0.110 0.055 27.5 and X ₄ X ₃ 2 0.110 0.055 27.5 sal Regression on .4 1.672 0.418 209 x ₃ ² and X ₄ X ₃ .4 1.672 0.418 209 x ₃ ² and X ₄ X ₃ .4 1.672 0.418 209 tic correlation .4 1.672 0.418 209 sion 59 0.110 0.0002 1 1 tic correlation 59 1.783 0.030 1 1 sion a ₁ a ₂ a ₂ a ₁ 1 1 1 could all all all all all all all all all a					of	observati	11					
t D.F. S.S. M.S. M.S. M.S. ssion on X ₄ and X ₃ 2 1.563 0.781 390 contributed by 2 1.563 0.781 390 contributed by 2 0.110 0.055 27.5 and X ₄ X ₃ 2 0.110 0.055 27.5 cal Regression on 4 1.672 0.418 209 X ₃ ² and X ₄ X ₃ 5 0.110 0.055 27.5 X ₃ ² and X ₄ X ₃ 5 0.110 0.055 27.5 tic correlation 5 0.110 0.050 7 sion a a a a 209 vic correlation 5 0.110 0.050 7 7 tic correlation 5 1.783 0.050 7 7	•				Packing	1 1	1 . 5					
ssion on X1 and X2 2 1.563 0.781 390 contributed by 2 0.100 0.055 27.5 and X1X3 2 0.110 0.055 27.5 and X1X3 2 0.110 0.055 27.5 tail Regression on 4 1.672 0.418 209 tail Regression on 5 0.110 0.002 209 tail Regression on 5 1.783 0.030 209 tail Regression on aa aa aa 3 tail Regression on 5 0.102 2.00<	Effect				D.F.	S.S.	M.S.	M.S.R.	5% F	·		
	Regression on X1	1 and Xa			, CZ	1.563	0.781	390	3.2			
tal Regression on Xa ² and X ₁ Xa $\cdot 4$ 1.672 0.418 209 Xa ² and X ₁ Xa 55 0.110 0.002 209 xic correlation 59 1.783 0.030 209 tic correlation 59 1.783 0.030 200 tic correlation a_1 a_2 a_2 a_2 tic correlation 29.97 -7.02 -9.54 0.29 2.00	Extra contribute Xa ² and X ₁ Xa	ed by		•	N	OTT.O	0.055	27.5	3.2			
tic correlation sion ao at as as at at at correlation cient 29.97 -7.02 -9.54 0.29 2.00	Subtotal Regress X1,X2,X2 ³ and X1	sion on 1Xa			• 4	1.672	0.418	209	2.5			
atic correlation ssion ao a1 a3 a23 a12 icient 29.97 -7.02 -9.54 0.29 2.00	Error				55	011,0	0.002					
ion ao a ₁ aa a ₂₃ 29.97 -7.02 -9.54 0.29	lotal				59	1.783	0.030				, .	
ao a ₁ aa a ₂ a 29.97 -7.02 -9.54 0.29	Quadratic correl	lation										
29.97 -7.02 -9.54 0.29	Regression	a.0	a.1	a .2	823	a12						
vinear correlation	Coefficient	29•97	-7.02	-9-54	0.29	2.00						
	Linear correlati	ion										
Regression ao aa aa	Regression	ao .	a1	83 8								
Coefficient 2.13 0.12 -0.73	Coefficient	2.13	0.12	-0.73								
The quadratic and the linear correlations were accepted and adopted.		nd the li	near cori	relations	were	ep ted and	l ad op ted.					

•

. .

.

ANOVA No. o	SEMI-LOG DATA CORRELATIONS THREE INCH SPHERE DIAMETER PACKING									
	ANOVA NO.	. 56				ANOVA	NO. 57			
	No. of c	observat	ion = 30			No. of	cobservation	:ion = 52		
•	Packing	height	= 4.5 ft.			Packing	ig height	= 3 ft.		
Effect	D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
\cdot Regression on X_1 and X_2	2	1.402	0.700	. 216 .	3.3	2	2.084	1.042	1603	3.2
Extra contributed by Xa ³ and X ₁ X ₂	5	+7C0∙0	0.037	2.11	3.3	2	0.1778	0.089	137	3.2
Subtotal Regression on X1,X3,X3 ² and X1X3	4	1.476	0.369	ΨTT	2.7	4	2.261	0.565	870	2•5
Error	25	0.081	0.003			, 747	0°031	0.0007		
Total	29	1.557	0.054			51	2.292	0.045		
Quadratic correlation										
Regression a1	33	332	312			80 8	8 1	a ,2	33 33 3	843 13
Coefficient 1.046 -1.0×10 ⁴	4 -6.1×10 ⁻⁴	0	0			0.406	1.6xl0 ⁴	1.9×10 ⁴	0	0
Linear correlation										
Regression a.	a.a.					a0	a1	8 3		
Coefficient -0.037 3.0×10-4	- 01×0.1-	4				0;404	1.0×10 ⁴	-1.1×10 ⁻⁴		

				ANOVA NO.	10. 58			
	•			No. of	observation	ion = 78		
		(*)		Packing	height	= 1.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on 1	X_1 and X_3			2	1.926	0.963	111	3.1
Extra contributed by Xa ³ and X1Xa	ted by			2	441.0	0.072	- 58	3.1
Subtotal Regression on X ₄ X ₂ ,X ₃ ³ and X ₁ X ₃	ssion 1 X ₁ Xa			4	2.070	0.518	814 .	2.5
Error				73	160.0	100.0		
Total			·	17	2,161	0.028		
Quadratic correlation	elation							
Regression	80 8	a 1	53 53	822	3.1.3			
Coefficient	0.553	-1.0×10 ⁵	-2.6×10	0	0			
Linear correlation	rion							
Regression	ao	a <u>1</u>	23					
Coefficient	0.121	1.0×10 ⁻⁴	-1.0×10 ⁴					
The ouadratic a	and the linear correlations were accepted but not adopted	near cori	celations	were acc	epted but	not ador	ted.	

۱

D.1.2.2. TWO INCH SPHERE DIAMETER PACKING.	PHERE DIA	METER PACKI	NG.									
			ANOVA NO.	NO. 59				ANOVA	NO. 60			
			No. of	observation	tion = 18			No. of	f observation	ition = 93	2	
			Packing	g height	= 4.5 ft.			Packing	ng height	= 3 ft		
Effect .			D.F.	S.S.	S. M	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X ₁ and	l Xa		5	0.189	0.095	151	3.6	2	5.124	2.562	1493	3.1
Extra contributed by Xa ² and X ₁ X ₂	~	•	N	* 700 * 0	0.002.	3.6	3.6	N	0.022	LLO.O	6.3	3.1
Subtotal Regression on X1,X2,X2 ³ and X1X3	g		4	4,61.0	640.0	22	2.9	7	5.146	1.287	750	2.5
Error			51.	0,008	0.0006			88	0.151	0.002		
Total [.]			17	0.202	0.012			92	5.30	0.058		
Quadratic correlation	ų											
Regression	⁸ 0	3 1	8.2	832 8	813			a.o	a1	а 3	322	8 43
Coefficient	1.124	2.7×10 ⁴	_01×+1-	0	0			0.076	2.9×10 ⁴	-1.3×10	4 0	0
Linear correlation												
Regression	80	81	83					a 0	a1	8 2		
Coefficient	0.433	2.2x10-5	-1.0×10 ⁴					-0.002	2.9×10 ⁴	-1.0×10 ⁴	4	
The quadratic and the	e linear	linear correlations were accepted	ns were ac		but not a	adopted.						
												Ī

				ANOVA NO.	0. 61			
				No. of	observation	ion = 58		
				Packing	height =	= 1.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X_1 and X_2	^o		2	1.356	0.678	610	. 3.2
Extra contributed by Xa ² and X ₁ Xa	ted by			N	0.036	0.0178	16	3.2
Subtotal Regression on X1,X3,X3 ² and X1	ession anà X ₁ Xa				1.591	0.348	313	2.5
Error				53	0.059	100.0		
Total				57	1.450	0.025		
Quadratic corre	correlation							
Regression	a 0	a <u>1</u>	83 8	833	813			
Coefficient	-0.294	3.7×10 ⁴	01×6•1-	4 0	0			
Linear correlat	ation							
Regression	a0	a1 .	8.2					
Coefficient	-0-215	_0TX5"T	_0T×5.1-	-				
The quadratic a	and the li	the linear correlations	elations	were accepted but not	pted but	not adop	adopted.	

D.1.2.3. ONE AND A HALF INCH SPHERE DIAMETER PACKING.	F INCH S	PHERE DIAM	ETER PACKI	- ING								
			ANOVA NO.	IO. 62				ANOVA	NO. 63			
-			No. of	ob servati on	ion = 26			No. of	observation	ion = 26		
•			Packine	Packing height	= 4.5 ft.			Packing	ig height	= 3 ft.		
Effect			D.F.	5.5.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_1 and X_3	. 6		0	1.928	0.964	189	3.4	ß	2.198	J.•10	7+90	3.4
Extra contributed by Xa ² and X ₁ Xa			2	0.080	0*70* 0	6.7	3.4	N	0.095	0_048	21.2	3.4
Subtotal Regression on X1,X2,X2 ² and X1X2			4	2.01	0.502	98.3	2.7	. 4	2.294	0.573	256	2.7
Error			21	0.107	0.0051			21	0.047	0.002		
Total			25	2.12	0 . 085			25	2.340	460.0		
Quadratic correlation												
Regression	a0	9 1	ಜ ರ	3 22	a12			80 80	a1 8	8 3	323	87 3
Coefficient	-0.945	9.0×10 ⁴	2.0×10 ⁵	0	0			0.507	2.4x104	-4.0×10-4	0	0
Linear correlation												
Regression	a0	. 8 <u>1</u>	8 3					000	ъ ъ	83 8		
Coefficient	-0.391	5.3x10 ⁴	-1.0×10 ⁻⁴					-0.260	4.8×10 ⁻⁴ -1.2×10 ⁻⁴	-1.2x104		
The quadratic and the	linear c	and the linear correlations were accepted but not	W ere acc	ep ted bu		adopted.						

				AMOVA NO.	ND 64			
				TWANT	+0 •0			
				No. of	observation	:ion = 60		
				Packing	height	= 1.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1	1 and X2			2	1.445	0.722	257	3.2
Extra contributed by Xa ² and X ₁ X ₂	ed by			N	0.185	0.093	33.0	3.2
Subtotal Regression on X1,X3,X3 ³ and X1	ession and X1Xa			· +	1.628	۰.407	· 145	2.5
Error				55	0.154	0.003		
Total				59	1.783	0.030		
Quadratic corrle	corrleation							
Regression	а0	a1	88	822	313			
Coefficient	0.874	-1.4×10	-3.2×10	4 0	0			
Linear correlati	tion							
Regression	80 8	81 1	8.3 8,3					
Coefficient	0.244	2.0×10 ⁵ 1.0×10 ⁴	-01×0.1-					
The quadratic and	the	linear correlations	elations 1	were accepted		but not adopted.	ted.	

D.1.3. RAW-DATA CORRELATIONS D.1.3.1. THREE INCH SPHERE DIAMETER PACKING	CORRELATIONS H SPHERE DIA	METER PACK	ING									
			ANOVA NO.	. 65				ANOVA NO.	NO. 66			
			No. of o	observation	on = 30			No. of	cobservation	tion = 52		
			Packing height	height =	:4.5 ft.			Packing	ng height	= 3 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X_{4} and X_{3}	Xa .		2	30.789	15.395	130	3•3	2	31.398	15.70	291	3.2
Extra contributed by X _a ² and X ₁ X ₂			2	4•703	2.351.	19.8	3.3	≈.	7•821	3.910	72.6	3.2
Subtotal Regression on X1,X2,X2 ² and X1X3			4	35•492́	8.873	74•8	2.7	4	39.219	9.805	1.82	2.5
Error			25	2.965	0.119			4-9	149.2	0.0539		
Total			29	38.457	1.326			51	098.14	0.821		
Quadratic correlation												
Regression	a.o	a <u>1</u>	9 3	333	813			a0	31	32	623	B12
Coefficient	1.345	1.8×10 ⁻³	-1.4×10 ⁻³	0	0			2.270	0×10 ⁻³	-1.0×10 ⁻³	0	0
Linear correlation												
Regression	g0	97 97	82	•				4 0	8 1	a 2		
Coefficient	-0.663	1.9×10"3	-4.0×10 ⁻⁴					2.345	3.5×10-4	-4.1×10 -		
The quadratic and the	linear c	the linear correlations were rejected.	s were rej	ected.								

•

•

.

-			·					
				ANCVA NO.	10.67			
				No. of	observation	ion = 78		
				Packing	height	= 1.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1	1 and X2	•		N	13.344	6.672	374	3.1
Extra contribut Xa ² and X ₁ Xa	ited by			۷۵ .	2.113	1.057	59.2	7 T
Subtotal Regression on X1,X2,X2 ² and X1	sion ã X ₁ Xa			· 4	15.458	3 . 864	216.6	2.5
Error				73	1.303	0.0178		
Total					16.760	0.218		
Quadratic correl	elation					•		
Regression	а0	8 7	32	322	313			
Coefficient	2.682	2.0×10 ⁵	.0×10 ⁵ -8.0×10 ⁴	0	0			
Linear correlati	tion							
Regressi on	80 8	a1.	83					
Coefficient	. 1.554	1.5×10 ⁴	-2.3×10 ⁻⁴					
The quadratic ar	and the liv	linear correlations	ſ	were reje	rejected.			

.

•

•

· . .

•

221**.** .

				,								
D.1.3.2. TWO INCH SPHERE DIAMETER PACKING.	RE DIAMET	ER PACKING			•							
			ANOVA NO.	VO. 68				ANOVA	NO. 69			
			No. of	ob serva ti on	tion = 18			No. of	observation	tion = 93		
		•	Packing	g height	= 4.5 ft.			Packing	g height	z 3 ft.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S	M.S.R.	5% F
Regression on X ₁ and X ₂			N	2.554	1.277	TOL	3.6	2	58.794	29.40	875	3.1
Extra contributed by Xa ² and X ₁ X ₂		. •	5	0.1365	0•068	5•4	3.6	5	4.680	2.34	70.0	3.1
Subtotal Regression on X1,X2,X2 ³ and X1X3			4	2.691	0.673	53	2.9	4	63.47	15•87	472•5	2.5
Error			13	0.165	0.013			88	2.960	0.034		
Total			17	2.856	0.168			92	1.442	0.722		
Quadratic correlation												
Regression	a 0	a 1	8 2	378 2	8 13			a.o	а 1	a,	322	втв
Coefficient	5.442	-1.0×10 ⁻³	-1.8×10 ⁻³	0	0			-1.526	2.7×10 ⁻³	3.5×10 ⁵	0	0
Linear correlation			,	ŕ						-		
Regression	а0 В	81	8.2					а0 8	a1	83 8		
Coefficient	2.769	-4.7×10 ⁵	-3.0×10 ⁻⁴					0.399	1.3×10 - 9	-3.1×10 ⁻⁴		
The quadratic and the 1	linear co	correlations were rejected.	were reje	cted.								

-

· •

			ľ					
				ANOVA NO.	0. 70			
				Nof. cf	observation	ion = 58		
				Packing	height =	: 1.5 ft.		
Effect				D.F.	5.5.	M.S.	M.S.R.	5% F
Regression on X	X_1 and X_2			2	13.45	6.73	571	.3.2
Extra contributed by X2 ³ and X1X2				5	ם.•468	0.734	62.3	3.2
Subtotal Regression on X1,X2,X2 ³ and X1	ession and X ₁ X ₂			4	14 . 92	3.729	316.5	2•5
Error				53	0.62	0*012		
Total				57	15•54	0.273		
Quadratic corre	correlation							
Regression	а0 8	31	8.2	822	a12			
Coefficient	0.238	1.3×10 ⁻	-7.8xl0	4 0	0			
Linear correlation	i on							-
Regression	90	31	3 3					
Coefficient	0•643	7.8×10 ⁻⁴	-5.2×10 ⁴					
The quadratic a	and the li	near corr	linear correlations were rejected.	were rejt	soted.			
			•					

			•									
D.1.3.3. ONE AND A HALF INCH SPHERE DIAMETER PACKING.	ALF INCH S	SPHERE DIAM	STER PACK	- JNG								
			ANOVA NO.	0.71				ANOVA NO.	NO. 72			
			No. of	observation	on = 26			No. of	observation	tion = 26		
			Packing	height =	: 4.5 ft.			Packing	ig height	= 3 ft.		
Effect		-	D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	·5% æ
Regression on X1 and	Xa		2	32.151	16.076	52.3	3.4	2	39.322	19 . 66	122	3•4
Extra contributed by Xa ^a and X ₁ Xa			2	10.136	5.068	16 . 5 ·	3•4	7	8.80	4.•40	27 . 3	3.4
Subtotal Regression on X1,X2,X2 ² and X1X3	~		4	42.287	10.572	- 34.4	2.7	4	48.12	12.03	74•6	2.7
Error			5	6+1+9	0.307			27	3.385	0.161		
Total			25	48.737	1.950			25	51.51	2.06		
Quadratic correlation	d											
. Regression	a o	а 1	8 0	433 9	8 13			о d	а т	സ സ്	53 53 53	a13
Coefficient	-11.088	8.4×10 ⁻³	1.9×10 ⁻³	0	0			-0-485	3.5×10 ⁻³	-8.3x10 ⁴	0	0
Linear correlation												
Regression	80 8	31	83					дo	a <u>1</u>	a 2		
Coefficient	-1.331	2.6×10 ⁻³	-3.2×10 ⁴					-0.231	2.2×10 ³	-5.0×10 ⁻⁴		
The quadratic and th	le linear	the linear correlations were rejected.	ns were r	ejected.								

۱

224.

				ANOVA NO.	Vo. 73			
				No. of	of observation	ion = 60		
				Packing	height	= 1.5 ft.		
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X1 and Xa			N	8.017	4.008	96.7	3.2
Extra contributed by Xa ² and X ₁ Xa	ted by			5	2.487	1.244	29.9	3.2
Subtotal Regression on X1,X2,X2 ² and X1	ession anà X ₁ X2			4	10.504	2.626	63.3	2.5
Error	•	\$		55	2.281	140.0		
Total				59	12.785	0.217		
Quadratic correlation	elation							
Regression	90 8	aı	33	933	313			
Coefficient	3.864	-4.2×10	-4.2×10 4-1.0×10	3 0	0			,
Linear correlation	ti on							
Regression	a0	a1	aa					
Coefficient	1.831	-1.5×10	-1.5×10 5-2.0×10 4	4				
The quadiatic a	and the li	linear cor	correlations	were	rejected.			

D.1.4. CORRELATIONS INCLUDING PACKING HEIGHT D.1.4.1. LOG-LOG DATA CORRELATIONS	NS INCLUD. TA CORRELI	ING PACKING	HEIGHT									
			ANOVA NO. 74). 74				ANOVA NO. 75	NO. 75			
		•	No. of c	observation	on = 160			No. of	ob servati on	ti on = 169	9	
			Sphere d	diameter :	= 3 in.			Sphere	diameter	r = 2 in.		
Effect .			D.F.	· S.S.	M.S.	M.S.R.	5% F	D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X1,X3 a	and Z		3	7.026	2.342	1470	2.7	3	6.732	2.244	669	2.7
Extra contributed by Xa ³ and X ₁ Xa			5	0.073	0 •036	22.8	3.1	5	0•055	0.028	8•6	3.1
Subtotal Regression on X1,Xa,Xa ² ,X1Xa and Z	о И 17		5	- 01°-L	1.420	890.8	2•2	5	6.767	1.357	4.23	2.3
Error			154	0.245	0.0016			163	0.523	0.003		
Total			159	7.344	9470•0			168	. 112.7	-+++0•0		
Quadratic correlation												
Regression	а С	ц ц	33 3	au S	32x 3	8 13	a.o	a1	8 . 3	а з	63 % 6	313
Coefficient	13,69	-2.77	-4-90	0.59	-4L.0	0.93	- 17 . 385	4•65	5.36	0.90	90.38	-1.07
Linear correlation												
Regression	80	н Со	a.a	າ ຜູ				a.0	a,	a, M	8.4	
Coefficient	0.72	0.53	-0-75	0.6				-0.897	0.97	-0.73	0.89	
The packing height did not fit, well the quadratic and	id not fit	well the	quadrati c	and the	linear c	correlati uns	ons					

•

٠

.

				ANOVA NO.	vo. 76			
				No. of	observation	cion = 112	0	
				Sphere	di ame ter	: = 1.5 in.	1.	
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X1,X2 and	2		3	6.497	2.166	458	2.7
Extra contributed by Xa ² and X ₁ Xa	ited by			0	0.368	0.184	3.9	3.1
Subtotal Regression X1,X2,X2 ² , X1X3 and	ssion on a and Z			<u>م</u> .	6.865	1.373	290	2.3
Error				107	0.506	0.005		
Total				TII	7.371	0.066		
Quadratic corr	correlation							
Regression	0 ช	8 4	g3	a.3	332	313		
Coefficient	34.0704	-7.69	-11.67	0.45	0•49	2.20		
Linear correlation	tion							
Regression	a.o	a.1	a 2	8°3				
Coefficient	2.364	0.24	-0-94	0•49				
The packing height	did	not fit well	the	quadratic (and the]	the linear correlations.	rrelation	

D.1.4.2. SEMI-LOG DATA CORRELATE ONS	TA CORRE	LATT ONS										
,			ANOVA NO. 77	0. 77				ANOVA NO.	No. 78			
			No. of	observation	ion = 160			No. of	observati on	i on = 169		
•			Sphere	diameter	= 3 in.			Sphere	diameter	= 2 in.		
Effect			D.F.	S.S.	M.S.	M.S.R.	5% F	D.F.	s.s.	M.S.	M.S.R.	5% F
Regression on X1,X2 and	and Z		2	6.601	2.20	992	2.7	2	6.285	2.095	374	2.7
Extra contributed by X ₂ ² and X ₁ X ₂			N	0.402	0.201	90.6	3.1	N	LLL.0	0.056	6•6	3.1
Subtotal Regression X1,X2,X2 ³ ,X1X2 and	ta 2		5	7.003	1.401	4.631	2.3	5	6.40	1.279	228	2.3
Error			154	0.342	0.002			163	0.914	0.006		
Total			159	7.344	.0*0°.			168	7.310	+7†0°0		
Quadratic correlation												
Regression	au	а 1	д. ₂	a ₈	ಡಿಚ ಚ	a12	a0	д 1	8 8	3.3 3	a, s a	87X
Coefficient	0.463	-1.0×10 ⁵	-2.8×10 ⁻⁴	0.09	0	0	-0.290	2.3×10 ⁴	-1.3×10 ⁻⁴	41.0	0	0
Linear correlation		ſ	ı						,			
Regression	aυ	a1	23	as				80 8	a <u>1</u>	8. 4	8 8	•
Coefficient	0.039	7.0×10 ^{+ 5}	-1.0×10 ⁻⁴	۲•0				-0.353	2.2×10 ⁴	-1.0×10 ⁻	0.13	
The packing height di	did not fi	fit well the	quadratic	anà the		linear correlations.	ons.		ſ	,		

•

228。

•	

				ANOVA	ANOVA NO. 79			
				No. of	observation	tion = 112	N	
-	·			Sphere	diameter	= 1.5	in.	
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X1,X3	and Z		3	5.882	1.961	172	2.7
Extra contributed X2 ² and X1Xa	uted by			5	0.716	0.358	49•5	3.1
Subtotal Regression on X1,X2,X2 ³ ,X1X2 and Z	ession or 2 and Z	-		2	6.598	1.320	183	2.3
Error				ToT	0.773	0.007		
Total				TTT	7.371	0.066		
Quadratic correlation	relation							
Regression	a 0	а 1	8 8	8.3 3	823	a12		
Coefficient	1.055	-1.9×10	-1.9×10 ⁴ -4.1×10 ⁴	4 0.06	0	0		
· Linear correlation	ation							
Regression	в В	a1	g2 9	a 3				
Coefficient	0.286	1.6×10 ⁻⁵	-1.2×10	± 0.07				
The packing height did not fit	sight did	not fit	well the	quadratic	end	the linear c	correlations.	. SC

D.1.5. CORREI	CORPET.ATTONS IN	TNCLUDING PACKING	PACKTNC	HRICHT AND		SDHERE DIAMETER		
	DG DATA CC	CORRELATIONS				WHAT FROM T		
			1	ANOVA	NO. 80			
				No. of	observation	titon = 441	L	
Effect				D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on X	X1,X2,Z and	ਕ ਰੂ		4	20.592	5.148	886	2.4
Extra contribut Xa ² and X1Xa	ted by			N	0.178	0.089	15.3	3.0
Subtotal Regression on X1,X2,X2 ² ,X1X2,Z and d	ssion on Z and d _P	* *		.'9	20.771	3.462	596	2.1
Error				4-34	1.942	0,0045		
Total				0+14	22.71	0.052.		
Quadratic corre	correlation							
Regressi on	80 80	a1	83	д 3	8.4 4	323	873 843	
Coefficient	307.II	-2.42	-4.05	0.65	40.0	0.08	0.81	
Linear correlation	rion							
Regression	ao	a <u>1</u>	a2	a ₃	С.4 4			
Coefficient	1.000	0.49	-0.79	0.65	0.03			
The sphere diam	diameter did	not fit well	the	quadratic	and the linear		correlation.	

•

.

D.1.5.2. SEMI-LOG DATA CORRELATIONS	-LOG DATA	CORRELAT	LONS					
				ANOVA NO.	0.81			
				No. of	observation =	[ton = 44]		
Effect				. D.F.	S.S.	M.S.	M.S.R.	5% F
Regression on	X1,X2,Z	and d _P		4	19.069	14.77	796	2.4
Extra contributed by X ₂ ² and X ₁ X ₂	uted by			5	1 . 032	0.52	86.2	3.0
Subtotal Regression on X1,X2,X2 ³ ,X1X2, Z and	sion o Z and	р ф		9	20.10	4•02	÷/• 129	2.1
Error				4-34+	2.61	0.006		
Total				0+7+7	22.71	0.052		
Quadratic corr	correlation							
Regression	a.o	a 1	32	33	a.4	322	312	
Coefficient	0.446	-3.0×10 ⁻⁵	-3.0×10	⁴ 0.094	0.26	0	0	
Linear correla	ation							
Regression	ao	31	83 8	a 3	a4 ,			
Coefficient	0°064	5.0×10 ⁺⁵	-1.0×10 ⁻	⁴ 0.092	0.25			
The sphere dia	ameter did	not	fit weel the	quadratic	and the	linear	correlations.	ons.

D.2.1. QUADRATIC CORRELATIONS IN LOG-LOG DATA

95% Confidence Intervals.	Packing height ft.	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.1157	4.5	3	30.6	47	D.1.1.1.
R <u>+</u> 0.0338	3	3	8.1	48	
R + 0.0637	1.5	3.	15.9	49	
R + 0.0520	4.5	2	12.7	50	D.1.1.2.
R <u>+</u> 0.0815	3	2	20.5	51	
R <u>+</u> 0.0559	1.5	2	13.8	52	
R <u>+</u> 0.1068	4.5	1.5	27.9	53	D.1.1.3.
R + 0.0842	3	1.5	21.3	54	
R + 0.0877	1.5	1.5	22.5	55	
R <u>+</u> 0.0757			18.1		average

TABLE (11) 95% CONFIDENCE INTERVALS AND ERRORS

D.2.2. LINEAR CORRELATIONS IN LOG-LOG DATA.

TABLE	(12)) 95%	CONFIDENCE	INTERVALS	AND	ERRORS

Appendix	ANOVA NO•	Error <u>+</u> %	Sphere diameter in.	Packing height ft.	95% Confidence Intervals
D.1.1.1.	47	31.2	3	4•5	R <u>+</u> 0.1182
	48	11.7	3	3	R <u>+</u> 0.0475
	49	19.7	3	1.5	R <u>+</u> 0.0778
D.1.1.2.	50	12.7	2	4•5	R <u>+</u> 0.0522
	51	24.1	2	3	R ± 0.0941
	52	14.0	2	1.5	R <u>+</u> 0.0569
D.1.1.3.	53	31.5	1.5	4.5	R <u>+</u> 0.1188
	54	21.6	1.5	3	R <u>+</u> 0.0851
	55	32.4	1.5	1.5	R <u>+</u> 0.0122
average	56	21.8			R <u>+</u> 0.0852

D.2.3. QUADRATIC CORRELATION IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT

TABLE (13) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence Intervals.	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.0783	3	19.7	74	D.1.4.1
R <u>+</u> 0.1111	2	29.1	75	
R <u>+</u> 0.1354	1.5	36.5	76	
R <u>+</u> 0.1082	,	28.4		average

D.2.4. LINEAR CORRELATIONS IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT

	onfidence ervals	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u>	0.0885	3	22.7	74	D.1.4.1.
R <u>+</u>	0.1161	2	30.6	75	
R <u>+</u>	0.1763	1.5	50.0	76	
R <u>+</u>	0.1269		34.4		average

TABLE (\mathcal{V}_{+}) 95% CONFIDENCE INTERVALS AND ERRORS

D.2.5. QUADRATIC AND LINEAR CORRELATIONS IN LOG-LOG DATA WHICH INCLUDE PACKING HEIGHT AND SPHERE DIAMETER

95% Confidence Intervals	Error <u>+</u> %	ANOVA NC •	Appendix
R ± 0.1311	35.2	80	D.1.5.1
R <u>+</u> 0.1367	37.1	80	

TABLE (15) 95% CONFIDENCE INTERVALS AND ERRORS

D.2.6. QUADRATIC CORRELATIONS IN SEMI-LOG DATA

TABLE	(16)	95%	CONFIDENCE	INTERVALS	AND	ERRORS	

	nfidence rvals	Packing height ft.	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> C	0.1117	4.5 ·	3	29.4	56	D.1.2.1.
R <u>+</u> C	0.0500	3	3	12.2	57	
R <u>+</u> C	0.0690	1.5	3	17.2	58	
R <u>+</u> C	0.0492	4•5	2	11.9	59	D.1.2.2.
R <u>+</u> C	0.0812	3.	2	20.5	60	
R <u>+</u> C	0.0653	1.5	2	16.1	61	
R <u>+</u> 0	0.1401	4•5	1.5	38.0	62	D.1.2.3.
R <u>+</u> C	0.0929	3	1.5	23.9	63	
R <u>+</u> 0	.1039	1.5	1.5	27.0	64	
R <u>+</u>						average

D.2.7. LINEAR CORRELATIONS IN SEMI-LOG DATA.

95% Confidence	Packing	Sphere	Error	ANOVA	
Intervlas	height ft.	diameter in.	± %	NO.	Appendix.
R <u>+</u> 0.1488	4.5	3	40.1	56	D.1.2.1.
R <u>+</u> 0.1278	3	3	34.3	57	
R <u>+</u> 0.1097	1.5	3	28.5	58	
R <u>+</u> 0.0556	4.5	2	13.8	59	D.1.2.2.
R <u>+</u> 0.0859	3	2	21.9	60	
R <u>+</u> 0.0813	1.5	2	20.5	61	r 1
R <u>+</u> 0.1770	4.5	1.5	50.0	62	D.1.2.3.
R <u>+</u> 0.1543	3	1.5	42.6	63	
R <u>+</u> 0.1513	1.5	1.5	41.6	64	
R ± 0.1212			32.7		average
		1	1	•	•

TABLE(17) 95% CONFIDENCE INTERVALS AND ERRORS

D.2.8. QUADRATIC CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HEIGHT

TABLE (18) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence Intervals	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.0923	3	23.6	77	D.1.4.2.
R + 0.1468	2	40.0	78	
R <u>+</u> 0.1674	1.5	46.9	79	
R <u>+</u> 0.1355		36.8		average

D.2.9. LINEAR CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HEIGHT

TABLE (19) 95% CONFIDENCE INTERVALS AND ERRORS

95% Confidence Intervals	Sphere diameter in.	Error <u>+</u> %	ANOVA NO.	Appendix
R <u>+</u> 0.1353	3	36.5	77	D.1.4.2.
R <u>+</u> 0.1545	2	42.6	78	
R <u>+</u> 0.2301	1.5	69.8	79	
R <u>+</u> 0.1733		49.6		average

D.2.10. QUADRATIC AND LINEAR CORRELATIONS IN SEMI-LOG DATA WHICH INCLUDE PACKING HEICHT AND SPHERE DIAMETER

TABLE (20) 95% CONFIDENCE INTERVALS AND ERRORS

.

Error <u>+</u> %	ANOVA NO。	Appendix
41.9	81	D.1.5.2.
51.0	81.	
	<u>+</u> % 41.9	<u>+</u> % NO. 41.9 81

D.2.11. CORRELATIONS WITH THE FACTOR $\left(1 + \frac{Z_0 - Z}{Z_0}\right)$

.

. .

95% Confidence Intervals	Packing height ft.	Sphere diameter in.	Error <u>+</u> %
R + 0.1357	4.5	3	36.8
R <u>+</u> 0.0647	3	3	16.1
R <u>+</u> 0.0947	1.5	3	24.5
R <u>+</u> 0.1411	4.5	2	38.4
R <u>+</u> 0.2341	3	2	31.4
R <u>+</u> 0.1220	1.5	· 2	32.4
R + 0.0826	4.5	1.5	21.1
R + 0.1309	3	1.5	35.2
R <u>+</u> 0.0634	1.5	1.5	15.6

TABLE (21) 95% CONFIDENCE INTERVALS AND ERRORS

APPENDIX E.

•

E.1 EXPERIMENTAL DATA AND RESULTS

,

•

E.1.1 One and a Half Inch Sphere Diameter

Table (22) Experimental Data and Results

.

ŕ...

•

1	.:	1	1	1	1	1	1	1	1			1	1
Φ	I.W.G.	ţ	0.142	0.27	0.66	1.1	1.2	0.142	0.275	0.683	1.13	1.22	0.142
TOWER	PERFORMANCE	цц	0.48	0.53	0.47	0.5	0.33	0.62	0.66	0.64	0.63	0.53	0.72
TC	PERFO	ы ^ц	0.416	0.536	0.708	0.810	0.863	0.348	0.461	0.618	0.708	0.738	0.288
	12	NI	72	72	72	72	72	72	72	72	72	72	72
K a g lb per h per		per atm.	94.2	154.7	297	493.5	572.8	117.1	196.2	373.0	510.9	490	130.6
HEAT BAL-	ANCE	0 %	4.4	-1.2	1.3	0.74	3.6	2.1	0.29	10.0	0.13	2.55	0.03
	ML	u∕d1	17.7	27.7	32.0	32.2	47.8	19.9	27.7	35.4	39.7	44.5	22.9
		twb1	103	105	100	98	011	105	105	102	101	104	107.5
	TUO	t,	155	159	158	156.5	159	157	160	158	158	158	158
0 F	AIR	twbl	88.3		86.5	84	63	92	93	06	90	92.5	96
TEMPERATURES	NI	t _{wb2}	48	50	64	51	51	48	50	49	51	51	48
TEMPI		t t	60	63	59	62	62	60	63	59	62	62	60
	WATER , OUT	72 2	84.5	79.0	66.5	61	61.5	86.5	80.2	70	66.5	67	06
		ч	110.5	112.5	109	103.5	127.5	107	106	104	104	112	107
	н I	υ	1.60	1.21	0.803	0.693	0.68	2.19	1.64	1.12	0.993	0.964	2.81
FLOWRATES	t	υ	682.6	905.8	1364.7	1581.3	1612.4	676.2	904.2	1317.8	1488.8	1533.7	668.2
FLOW	tp/n ft	ч	1095.6	1095.6	1095.6	1095.6	1095.6	1478.4	1478.4	1478.4	1478.4	1478.4	1874.4
	ND NO		ч	2	e	#	S	c	2	ω	б	10	1

.

•

.

								•.						
٩Ď	I.W.G. ft	0.233	0,733	1.16	1.23	0.15	0.292	0.77	1.17	1.25	0.15	0.325	0.60	1.18
4	•	0.78	0.77	0.76	0.70	0.73	0.84	0.83	0.78	0.77	0.78	0.9	0.67	0.83
TOWER	PERFORMANCE E	0.383	0.488	0.575	0.608	0.253	0.327	0.419	0.52	0.515	0.260	0.267	0.330	0.43
en	E EE	72	72	72	72	72	72	72	72	72	72	72 (72 (72 (
Ka g per Z	n per IN ft ³ per atm.	2.34 . 3	383.4	522.9	491.8	133	255.7	411.6	502.8	471.4	139.6	288.8	438.9	458.2
qŢ.	ALCE F	-0.85	0.51	2.4	1.03	-0.704	-0.85	0.23	1.7	0.089	-1.69	-0.54	0.87	0.53
M.	u/di	27.6	26.9	28.6	40.7	35.1	27 . 6	28.5	40°0	43.2	40.8	23.9	32.5	41.2
	twbl	301	98.5	86	103	119	106	OOT	105	101	122	104	102	30T
	our t1	159	158	156	158	166	159	1 58	141	147	167	159	159	157.5
۲ <i>4</i>	AIR t _{wbl}	86	84	83.2	16	011	63	85	63	416	115	89	06	94.5
TEMPERATURES	IN twb2	50	6#	51	51	21	50	64	51	51	51	50	ର ମ	51
TEND	t 2	63	59	62	62	62	63	59	62	62	62	63	23	62
	WATER OUT T2	31.5	11	68	77	100.5	83	74	75	76	105	8ì.5	. 77.5	79.5
	T T T	101	92	16	102	121	66	92	τοτ	102.5	124	8 6	95	TOT
	니 이	2.07	1.45	1.30	1.28	3.57	2.51	1.81	1.68	1.63	4.32	2.94	2.24	2.03
ATES	5 5	90tt • 2	1295.7	1438.2	1462.6	635 . 5	904.2	1251.7	1348.5	1393.5	662.5	4° ††E	1200	1293.8
FLOWRATES	15/h г.	1974.4	1874.4	1874.4	1874 .4	2270.4	2270.4	2270.4	2270.4	2270.4	2ċ32.8	2692.8	2632.8	2692.8
	RUN.	12	13	- 11	15	15	17	18	19	20	21.	22	23 .	さい

237.

								,						
٩p	I.W.G. ft	1.25	0.15	0.325	0.82	1.19	1.25	0.15	0.342	0.86	1.20	1.25	0.167	0.35
		1.0	0.8	0.91	0.92	0.87	0.84	0.88	0.95	0.94	0.9	0.88	0.83	0.95
TOWER	performance e f e _h	0.443	0.224	0.241	0.315	0.37	0.375	6.179	0.213	0.272	0.32	0.33	0.198	0.19
-	PER E	72	72	72	72	72	72	72 (72	72	72	72	. 22	72 (
Ka g per Z	h per ft ³ per atm.	458	133	322.4	480.5	468.9	431.9	156.6	380.3	1,97.1	455.3	437.5	147.8	·375.4
	ALICE f ALICE f % P	0.52	-2.71	0.29	-0.36	0.44	0.045	-2.5	0.28	0.02	0.45	0.026	-1.7	14.0
	प/वा	44 . 2	45.8	22.9	32.9	ተ" ፒተ	9*11	38 . 5	22.6	32.8	43.5	46.5	53.7	22.3
	twbl	108	126	103	103	011	107	121	102	103	103	107	131	102
	our t1	THT	167	159	160	156	139	166	159	160	149	142	168	159
о с	AIR t _{wbl}	96	611	88	91.5	96	61	113	87.5	92	86 .	99.5	125	. 18
TEMPERATURES	IN twb2	51	51	50	. 6 1	51	51	51	50	49	51	51	51	50
TEMP	t 2	62	62	63	59	62		52	6.3	23	62	62	62	63
	WATER OUT T2	80	110	81.4	80.5	82.5	83.5	105	81.5	82.5	86	87	3116	82
	T T T	103	127	31.5	. 55	TOT	103	118	06	95	102.5	104.5	132	83 ° 2
	2 0	2.02	5.185	3.46	2.72	2.55	2.47	5.89	4.03	3.27	3.09	3.01	7.05	4.54
FLOWRATES	ft ² G	1329.8	610.8	917.2	1164.9	1252.9	1280.8	628.2	918.2	1130.9	1198.1	1225.5	592.3	1.919
FLOWI	л. 1.	2692.8	3158	3163	3168	3168	3168	3696	3696	3596	3596	3636	4171.2	4171.2
• * •	RUN No.	25	26	27	26	29	30	31	32	ເຕ	34	35	36 .	37

2.38,

							•							
٩p	I.W.G. ft	0.83	1.2	1.25	0.183	0.683	0.903	1.22	1.28	0.2	0.4	0.93	1.23	1.20
	•	0.92	0.89	0.91	0.91	0.95	4 6°0	0.91	16.0	0.93	10.97	0° 94	0.91	0.91
TOWER	PERFORMANCE E _r E _h	0.255	0.283	0.278	0.113	0.161	0.219	0.25	0.241	0.108	0.15	0.183	0.218	0.209
	L L	72	72	72	72	72	72	72	72	72	72	72	72	72
	NI			•	·					•				
Ka E lb per	ft ³ ft ³ per atm.	458.7	412	1;30	162	337	446.7	411.5	401.3	173	391.3	ħ • ħ 0 Ħ	375.3	355.3
HEAT 1 BAL- 1		1.54	0.66	-0-89	-1.5	+0 • tt	0.59	0.24	-0-68	-1.54	0.13	0.17	0.097	-1.1
M.	प/वा	32.7	43.8	47.3	23.9	22.9	33.3	6.44	45.5	27	22.3	32.5	45.8	46.1
	t _{wb1} ,	16	111.5	112	108.5	102	105	III	115	III	102	106	112	113
	our 1	160	150	155	159	159	T60	151	153	160	159	154	152	149
۰ د د	AIR t _{wbl}	92.5	65	IOI	. 72	83	40	TOT	lol	IOI	88	34	102	102
TEMPERATURES	IN twb2	64	51	51	8 †1	50	6 t r	51	51	1,8	50	6 71	51	51
TEMPI	5 t	59	. 62	62	60	63	59	62	62.	60	63	59	62	62
	WATER OUT T2	64	83	06	. 62	1 18	66.5	91.5	92	98.4	84	88	51	94.5
	T L WA	96	104	105	TOT	90.5	67	105	105	104.5	06	97	105	106
	410	3.79	3.6	3.55	6,98	5.07	4,35	4.16	4.11	7.84	5.78	4.95		4.55
FLOWRATES	lb/h ft ² L G	1100.5	1160.3	1175.8	665.7	617.2	1066.9	1115.5	1130.9	657.4	£•168	1041.2	1083.4	1103.9
FLOW	ग/पा	.171.2	4171.2	4171.2	ħ°9ħ9ħ	. h•9ti9ti	4645.4	4646.44	#846.4	5148	5148	5148	5148	5148
	RUN No.	38	39	011	ĩħ	42	43	***	45	с 1	47	418	49	20

		•	•	
	•		•	
·				
		,		
		-		
•			•	
	10			
	ų,			
•	5			
ċ	S			
	Ř			
	ď			
	g			
	Ъ			
	H			
	Ä			
	ч			
	ta			
	ġ			
	Ĕ			
	12			
	ø			
	X			
,	щ			
	Table (22) Experimental Data and Result			
,	3			
	~			
•	le		;	
	ନ୍ନ			
	H	۰,		,

						•							•		
Δp.	I.W.G. ft	0.22	0.43	0.98	1.23	1.29	0.22	0.43	0.1	1.24	1,29	0.23	0.44	1.0	
		0.93	0.97	0,96	0.92	46*0	0.93	0.81	0°,94	0.52	0.93	0.94	0.92	0.93	
TOWER	PERFORMANCE E _r E _n	0.094	0.138	0.159	161.0	0.188	160.0	0.139	0.143	0.176	0.165	0.873	0.127	0.138	
ы	N NI	72	72	72	72	72	72	72	72	72	72	72	72	72	
Ka E lb per	l per ft ³ per	159	364	394	356	391	169	. 235	, 352	345	327	180	229	325	
	BAL- h AlicE f % 7	- 1. 6	0.22	-0.42	-0.60	-1.35	-1.33	-1.1	0.3	0.03	-1.27.	-1.18	-1.2	0.62	
M.	л 4/41	27.6	22.3	30.0	46.3	47.5	.29•6	8•44	26.4	45.5	47.9	32.5	47.8	30.5	
•	twbl	714	102	103.5	OIT	411	3116	711	102	112	115	118	118.5	105	
	our t ₁	164	160	159	158	154	167	165	159	164	147	167	165	159	
0	AIR t _{wbl}	103	ဗ္	92,5	103.4	104	105.2	011	06	104.2	105	108	112	64 • 5	
TEMPERATURES	IN t _{wb2}	чв.	50.	51	51	51	48	67	51	51	51	8 11	. 6 tr	21	
TEMPE	т т	60	63	62	62	72	60	53	62	. 29	62	60	59	62	
	WATER OUT T2.	TOT	84.5	88	96.3	96.5	103	105	87	98	66	105.5	107.5	5*16	
	UN T L	106.5	05	56	101	106	108.5		63	103	108.5	III	316	80	
	410	9.07	6.37	5.54	5.41	5.35	10.03	7.75	6.29	6.19	6.08	11.18	8.61	7.17	
ATES	ft ² G	626.3	891.3	1023.8	1050.9	1061.1	621.3	804 .0	989 ° 8	1005.9	1024.3	614.3	796.7	958	
FLOWRATES	1b/h ft ² L G	5676	5676	5676	5676	5676	6230.4	6230.4	6230.4	6230.4	6230.4	6854	6864	6864	
,	RUN No.	21	52	53	22	55.	56	57-	58	23	• 03	61	52	63	

Tabl	Table (22) Experimental Data and Results	xperiment	al Data	and Re	sults				•									
RUN	•.•	FLOWRATES 1b/h ft ²	н ^с	WA.	WATER OUT	TEMPER	TEMPERATURES ^O F A	o _F AIR			ы Ц ц	HEAT BAL- 1 ALCE	Ka E D per ft ³ I	Z NI	TOWER	,	Δp I.W.G.	
No.	• 1 • ` `	ບ	10		рн И	t 7	t wb2	twbl	, , , , , , , , , , , , , , , , , , ,	twbl	u/ar		per atm.		<mark>ہ</mark> د	ы ^с	ft	
64	. 6864 s	1.974.J	7.05	108	COT	62	51	105	154	#TT	45.4	-1.3	328	72	0.14	0.95	1.24	
65	6864	665	5 • 92	OTT	TOT	62	51	TOS	157	811	47.8	-0.67	300	72	0.153	0.91	1.29	
65	1095.6	583°	19•1	LTT	86	61	52	. ² 6	157.6	103	21.9	3.2	145.7	54	0.477	0.506	11.0	
67	1095.6	924.8	21.18	121	80	65	53.5	95	160	108	29.3	4.2	210.9	54	0.607	0.43	0.23	
63	1095.6	1290.8	0.849	121	76.5	66	59	32	162	105	31.3	. † †	268.5	54	0.718	0.34	0.45	
6g	1095.6	1973.8	0.555	117	63	66 . 5	58	87	161	101	38.8	1 ,0	781.7	59	0.915	0.314	1.47	-36
70	1095.5	2035.4	0.538	130 5	62	65	57.5	s0°2	161	104	1.94	5.3	860	26.	0.938	0.245	1.5	• : ¢ .
1	1478.4	677.3	2.18	106	85	61	52	.86	156	105	19	3.7	178.6	54	0.383	0.628	0.11	
72	1478.4	1.919.1	1.61	112	81	65	53.5	33	160	109	31.4	2,05	287.4	54	0.53	0.62	0.24	
73	1478.4	1291.4	1.15	OIT	80	66	59	89	161	104	26.9	4 . 8	261.4	54	0,583	0.43	0.48	
		****	•		-		• •						•				•	

-<u>:</u>(

•**.

"For the fluidized bed k_{g} and Ap were based on fixed packing height ۶, ۱ 3 - Z ...

241

	•	,	* .	≪,			•		, - %	**			:		
	Δp I.W.G. ft	1.38	1.51	1.53	0.133	0.23	0.51	1.42	1.52	1.55	0.14	0.24	. 0.53	7.44	
	•	0.32	0.5	0.41	0.603	0.78	0.54	0.471	0.57	0.54	0.84	0.82	0.6	0.56	
	TOWER PERFORMANCE E E E	0.856	0.804	0.803	0.348	0.456	0.489	0.730	0.659	0.697	0.291	0.358	0.443	0.648	
	Z	54	59	59	54	54	54	54	59	53	54	54	54	54	
	K a Ib per h per ft per atm.	694.3	698	633	247	383	275	562	547	616	259 .	362	311	561	
	HEAT BAL- ANCE	5.8	2.6	3.04	0.06	1.0	2.4	3.3	3.2	2.4	0.07	0.17	2.95	3.0	
	n'u Jb/h	52.9	-36.7	47	27.3	30.3	26.7	52.7	63	· , †1†	26	29	28	53	
	tubl	108.5	101	105	111.5	109	104	108	TOT	1CH	III	107.5	104	OTT	
	our t1	162.5	162	161	160	161	161	164	191	160	160	161	161	165	
•.	s ° _F AIR twb1	98.5	87	16	. 201	97	68	38	66 v	16	102	95.5	. 06	3 3° 2	
	TEMPERATURES ^O F A IN t2 twb2 tw	19	58	57.5	52	53.5	59	19	58	57.5	52 (53.5	ç Q	61	
	TEMPE I I I	67.5	. 66.5	65	19	65	66	67.5	66.5	. 99	19	65	66	67.5	
	TER our 12	17	. 67	68.5	83.5	81	. 82	76.5	: 72	72.5	T6	83.5	83	80	
	WATER IN O	130.5	104	115	109.5	†0	TOH	118.5	66	107	107	TOT	102.5	115	1
	니 0	0.825	162;0	0.772	2:85	2.03	9 † ,1	1.09	1.06	1.03	3.45	2.45	1.78	1.39	
	RATES ft ² GG	h°1671	0181	1913.7	655.6	1.922.	1284	C LTLT	1764	1814 #		926	1277	1630 0	
	FLOWRATES 1b/h.ft ² L G	1478.4	1478.4L	1478.4	. #* #28T,	1374.4	1874.4	1374 .t	1874.4	1374.4	2270.4	2270.4	2270.4	2270.4	
	RUN No.	74	75	76	77	78	. 19	80	31	82	83	84 84	85	ц ц ц	

•	· -:«	*	•				-34	*					-2
ÅP I.W.G. ft	1.54	1.56	41.0	0.24	0.567	1.48	1.55	1.56	0.14	0.244	0.622	1.50	1,58
• •	0.63	0.62	0.856	0.82	0.66	0.34	0.64	0.68	06*0	0.85	0.72	0.73	0.74.
TOWER PERFORMANCE E E E	0.585	0.615	0.241	0.304	0.366	0.536	0.506	0.526	0.198	0.25	0.333	6449	0.427
Z	59	59	54	54	54	54	59	53	54	54	54	24	23
Ka Bb per h per ft 3 per atm.	549	618	247	322.8.	297 .	408	496	564	232.5	314	33.	533	507
HEAT BAL- 1 Alice 8	2.2	1.20	-0.24	0.23	1.1	3.3	-0.36	0.64	-0.68	-0-94	0.78	2.4	0.84
м ^г лу/н	36	47	26	27.2	27.6	37.5	44.9	48.4	25.4	28.5	30.6	35.6	39.2
t wb1	102	106	111	107	104	105	104	108	011	107	105	JOS	.50I
 t 1	158	161	159	161	162	164	162	163	159	160	162	163	163
o _F AIR t _{wb1}	68	63	101.5	94	06	88	16	94.5	IOI	95	92.8	92.5	92.4
TEMPERATURES IN t2 twb2	59	57.5	52	53.5	59	61	59	56.5	52	53.5	23	61	59
TEMPER IN t2	89	66	61	65	66	67.5	68	66	61	65	66	67.5	63
ER OUT	76.	76	с 6	85.5	85	80.5	± 10	80	94 • 5	33	87	82.5	82.5
WATER IN T	100	105.5	105	99 ° 2	100	EOT	66°2	105	105	33°2	IOT	100	100
	1.32	1.28	4 . 09	2.89	2.15	1.70	1.40	1.58	4.79	3.42	2.58	2.1	2.03
 RATES ft ² G	1721.9	1776	659.3	530°#	1254.4	1579.5	1916°3	1705	660.4	927.2	1226	1503	1503.5
FLOWRATES Lb/h ft ² L G	2270.4	2270.4	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	3168	3165	3168	3169	3166
RUN No.	87	88	83	30	16	92	63	54	95	<u></u> 36	16	93	ee.

0.678 0.267 0.144 0.267 1.56 1.53 1.56 17.0 1.61 0.14 1.61 1.56 1.54 I.W.G. 40 0.88 0.85 0.73 0.80 0.73 0.78 0.84 05.0 0.88 0.76 0.79 0.85 0.82 PERFORMANCE ណ៍ជ TOWER 0.484 0.179 0.22 0.390 0.321 0.438 0.167 0.329 0.421 0.142 0.285 0.360 0.385 ы 59 54 59 54 54 69 5 ដ្ឋ 50 69 54 5 54 2 NI Ka g lb per 224.3 ft 3 h per 310 per 647 248 610 578 324 371 555 atm. 791 372 531 -0.97 749 1.05 -0.61 1.26 2.14 10.0 2.82 0.36 -1-3 BAL-HEAT ALICE -1.5 3.6 2.7 -1.1 40 40.5 51.4 25.5 28.5 28.7 30.6 55.1 26.1 31.3 33.7 54.3 34.7 h/dI л м 0;‡ t wbl 109 110 107 106 105 106 110 107 105 110 106 107 111 159 160 160 LUO 164 162 163 164 164 159 161 163 166 164 Ъ, twbl 96.3 101.2 95.5 1.40 AIR о Но С 92 63 102 ဗီ **8** 57 415 <u>в</u> 97 TEMPERATURES wb2 57.5 53.5 57.5 53.5 56.5 25 53 52 59 50 53 61 61 NI t ∵ 67.5 67.5 ۴., 65 66 66 68 61 66 61 65 66 89 65 50 95.5 ч Ч 87.5 82.5 97.5 90.5 86.5 84.5 82 83 83 5 83 85 WATER 98.5 101.5 105 105 65 66 10 105 507 102 66 100 101 H 5.6 **1.88** 2.53 3.05 2.10 2.47 6.33 4.50 3.50 2.83 2.54 2.41 **0.**4 10 1 : 1214 1461 1495.6 1757.6 653.5 926.3 1419.3 1191.6 <#171.2 1731.9</pre> 1683 927 660 THHT FLOWRATES 1b/h ft² U 3696 🦾 3636 🦾 3696 3696 3168 3596 4171.2 4171.2 4171.2 4171.2 4171.2 3636 101 100 103 102 Ę 105 108 No. 106 107 109 110 112 1

Table (22) Experimental Data and Results

	I. Results
	and
	Data
	Experimental
	(22)
	ø

Tdble

													۰.			
			•		•		**	**		•		÷.	*	: 44		
۵D	I.W.G.	ţ,	ημ ι. Ο	0.278	0.778	1.556	1.611	1,556	0.156	0.289	0.833	1.578	1.522	1.556	0.156	
ER	PERFORMANCE	ц ^ц	6.0	0 . 89	0.81	0.82	0.81	0.88.	05.0	0.91	0.84	0.85	0.84	0.87	0.90	
TOWER	PERFO	ដុ	0+1.0	0,181	0.271	0.333	0.294	0.344	0.122	0.179	0.241	0.256	0.276	0.344	0.103	
,67	NI		54	54	54	54	59	69	24	2 #	54	54	23	63	54	
Ka g lb per	h per ft ³	per atm.	245.3	343.2	422	547	474	739	231	392	434 . 5	478	517	196	210	
	BAL- AJICE	d2	-0.48	T+-0-	2.2	2.9	0.77	-0.98	-0.82	0.39	1.66	0.32	0.97	0.85	-1-3	
M	а с	u/ar	26.4	29.3	33 ° 3	35.0	40.5	55 . 6	26.4	3C . 3	32.8	36.3	42.5	57.6	27.3	3
		twbl	11	103	107	106.5	108	111	111.5	108	107	1C8	108.5	112	112	
·	110	t 1	160	161	162	165	, 168	165	160 160	162	162	165	167	165	160	
ې بې	AIR	twb1	102.4	6	. · 96	95	96	98 °C	102.5	67	36	96	68	100	103	
TEMPERATURES [°]	TN	t wb2	52	23°3	29	19	59	47.4	ି 52	53 , 5	59	. 19	23	57.5	25 25	
TEMP		7 t	.9	65	66	68 .5	89	60	61	65	66	67.5	8	66	. 9	,
	- WATER N OUT	6		16	⊮ ⊖06	87	- 60 8	87	66	91.5	90.5	06	90 .5	83	100	
	NI . M	H.	105.5	89 °3	101.5	100	101.5	102.5	105.5	8°66	100.5	100	102.5	104	105.5	
	1	U	5.05 7.06	5 . 02	4.02	39 3,39	3°33 3°33	a, ∶ 2.80	7.83	5.58	4.51	3,92	3.82	3.14	8.65	,
FLOWRATES	ft ²	ບ ຸ່.	657.7	922 535	1157.3	1371.3 1371.3	1394 • 3	1657.4	657.6	922	1141.6	1312.5	1346.6	1640	655.6	
FLOW	lb/h ft ²	1	5555 4646.4	4645 . 4	4646.4	4646.4	50%0 4646.4	4076.44	5148	5148	5148	5148	5148	5148	5676	
	RUN	No.	113	114	115		. '	-			:	122		1	123	

							`											
,	· ·					• •	*	*	•	•	~*	A 5	-*	*			a, f.	
	Δp	I.W.G.	ft	0.30	0.878	1.589	1.633	1.611	0.156	.0.311	0.922	1.60	1.644	1.622	0.178	0.333	0.989	
	¢.		а ^ц	0.92	0.85	0.85	0.88	0.91	0.92	.16.0	0.86	0,85	0.86	0.91	0.92	0.93	0.85	
	TOWER	PERFORMANCE	ц ^н	0.152	0.202	0.238	0.247	0.247	0.935	0.151	0.202	0.268	0.228	0.221	0.926	0.129	641.0	
	17	NI		54	54	54	59	. 69	54	54	54	54	59	63	54	54	54	
	Ka g lb per	n per ft ³	per atm.	368	392	473	533		216	396	433	. 609	496	570	234	394	014	
	HEAT	ANCE	%	-0-39	0.63	0.85	0.48	-2.9	-1.3	0•#°	1.74	3.8	0.93	-2.4	-0.66	-0.32	1.45	
	"M	3 4		30, 3	33.1	36.5	44.3	57	27.3	30.7	32.7	37.6	44.5	56.5	27.6	31.4	32.1	
			t wbl	108	107.5	108	OIT	113	112	108	108	103.5	III	114	113	. 601	103	
		0117	t,	161.5	163	165	167	166	161.5	161.5	164	167	167	165	163	163	165	
	بند 0	AIR	twbl	97	96 . 8	. 19	100	IOI	103	97.4	67	38	101	102	103.5	85	97	
	ATURES		twb2	53.5	59	61	23	57.5	52	53.5	23	19	23	57.5	52	53.5	23	
	TEMPERATURES	IN	t 2	65	66	67.5	68	66	Ì9	65	65	67.5	68	55	61	65	66	
•		WATER	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	92.5	92,5	91.5	92.5	\$2.5		80		16	94.5	94.5	101	54	 63°2	
		TN		. 99 .5	TOT	TOT	103.5	1 Ct		ICO	TOT	102		105		, 001	101	
		Ч	co I	6.16	5.09	6 ¹ .1	4.38	3.63	9.5	6.17	5.7	5.08				7.47		
	ATES	ft^2	υ	922	1115	1253	1295	1564	655.6	921	109.4	1225.7	1254.3	1487.3	655	GTG	1073	
	FLOWRATES	1b/h 1	•ำ	5676	5676	5676	5676		6230.4			6230.4	5230.4	6230.4	68ô4	6864	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	• •	RUN	No.	126	, ~	128	, <i>1</i>	130	131 6	132 6	133 6	134 6	135. 5	136 6	137 6	138	139	

	·		*	· -12	•		٠,	e;	*	*					*	Marine
:	Δp I.W.G. ft	1.60	1.644	1.622	0.133	0.189	0.55	1.0	1.1	1.33	0.133	0.30	0.567	1.08	1.16	
		0.85	05*0	0.91	0.46	0.37	0110	0.42	0.35	0.38	0.54	0.47	0.51	0.50	0.52	
	TOHER PERFORMANCE E Eh	0.22	0.20	0.20	0.355	0.529	0.580	0.784	0.879	0.916	0.261	0.42	0.467	0.602	0.787	
	Z	54	59	69	36	36	36	30	40	43	36	36	36	36	041	
•	Ka Ib per h per ft ³ zer atm.	514	495	522	151	223	292	666	1046	1421	161	221	303	1,80	ιοτι	
	HEAT BAL- ANCE	2.45	0.18	-2.1	2.85	1.24	0.25	0.20	1.76	0.98	1.74	-0.84	-1.71	-1.95	2.0	
/ • . · .	WL 1b/h	36.5	1 ⁺¹⁴ .6	56.8	10.6	31.8	23.0	32.0	38.2	33.7	11.3	33.5	74.44	33.5	37.1	
	t wb1	103	112	† [T]	TOT	101	66 6	105	102	101	38	108	100	105	100	Andreas Province
	our .	167	168	166	156	162	160	161	158	160	156	162.5	160	191	155	
	oF AIR twb1	33	102	. 201	82	9 9 9	83.5	86	85.	80	78	97.5	85	83	86	in the second
	TEMPERATURES IN t2 twb2	61	59	57.5	49.5	49.5	56.5	57	55	54	49.5	49.5	56.5	56	56	An and a second s
	TEMPE I t2	67.5	68	66	62	62	66	. 99	. 99	66	62	62	66	60	66	, and an and the second metal second
sults	WATER	86	36	96 .5	84	86	77.5	68	63	60	82	16	80.5	76.5 .	66	nden St. Filmske ved Server
and Re	T NN NI	102	105	106	103	127	106.5	108	114	103.5	93.5	121	101.5	106	103	
al Data	10	5.77	5.775	4 ,82 ℃	1.57	1.16	0.832	0.68	0.57	0.49	2.11	1.55	1.15	<u></u> *6*0	0.80	
eriment	ATES ft ² G	1189	1205.7	1421.7	700.3	946	1317	1617	1307	2232	702	545	1286	1571		
Table (22) Experimental Data and Results	FLOWRATES 1b/h ft ² L G	6864	6864	6864	1095.6	1095.6	1095,60	1095,6.	1062 (*** 1601)	1095.6	3478 °4 °	1478.4	1478.4	1478,4 * 1571	1478.4 1648.8	
Table (RUN No.	140 (141 0	142	143	144 0	145 1	146°]	147 1	148 I	149 1	150 1	151 5 1	152 I	153 1	

í

:

247• .

** -0.616 1.216 1.357 0.158 0.315 0.316 0.767 0.167 0.15 1.15 ·1.35 1.33 1.25 1.45 I.W.G. ¢ĵ 0.53 0.39 0.54 0.58 0.57 0.71 0.52 0.58 0.60 0.59 0.70 0.70 0.74 0.62 PERFORMANCE ផ្ទុំ TOWER 0.405 0.837 0.227 0.725 0.335 0.394 0.527 0.595 0.352 0.658 0.202 0.291 0.195 0.49 ឩឩ 36 36 04 ç . 46 36 33 36 36 5 53 36 36 36 N NI Ka E lb per h per 1163 1128 1128 1288 150 248 . 429 155 365 516 807 179 261 0.025 352 per atn. ft 3 -0.86 -0.16 0.50 0.89 11.0--0.27 -0.69 1.07 0.57 -4.3 HEAT BAL-AJCE -1.2 1.3 -1.8 48.2 20.3 31.6 31.1 16.2 28.9 21.8 38.7 34**.**8 59.6 28.7 31.7 37.4 22.8 1b/h л Ч 105.5 106.5 39.5 107.5 50 106 109 103 110 wb1 104 106 103 102 102 160 50 164 158 161 161 **1**62 151 162 162 163 160 157 157 162 ٦, AIR twbl 96.2 80.5 36.5 <u>д</u>. 83 8 633 87 92 84 92 e 6 ±8 633 82 TEMPERATURES 49.5 49.5 56.5 49.5 49.5 49.5 46 wb2 51 56 56 57 50 51 57 IN 63.5 63.5 80 62 62 60 74 74 62 66 66 66 62 55 65 62 50 66.5 82.5 67.5 73.5 50 **6**9 92 05 80 27 66 97 66 5 10 WATER 104.5 120.5 101.7 112 36 101 194 06 109 103 N H 11 88 63 111 0.70 1.96 1.76 2.73 1.46 3.36 2.73 1.04 0.50 2.38 .3.36 I.33 1.07 4.03 110 2126.5 1281.7 954.7 2270.4 1281.8 658.6 675.4 955 686.8 1800.6 2270.4 1481.2 2126,2 1709.4 2086 1874.4 1509 C FLOWRATES 1b/h ft² 1874.4 1478.4 1874.4 1874.4 2270.4 2270.4 2652.8 1874.4 1874.4 2270.4 2270.4 ผ 155 15⁴ 156 166 159 160 157 158 163 RUN 161 162 164 167 165 No.

Table (22) Experimental Data and Results

	. '	• .		e		•X	•	مد						•		
	Δp	I.W.G. ft	0.333	0.833	1.38	1.38	1.45	0.167 *	0.367	05*0	1.43	1:38 *	1.53	0.20	0.333	6 . 0
	•		0.58	0.65	0.70	0.74	0.72	0.67	0.62	0.72	0.71	0.79	0.76	0.72	0.56	0.77
	TOWER	PERFORMANCE E. E.	0.293	0.333	0.35	0.487	0.544	0.168	0.246	0.283	0.306	0.405	0.478	0.135	0.232	0.244
	2	A A NI	36	36	36	0;1	47	36	36	36	3 C	0†	47	36	36	36
	Ka. Bb per		246	386	487	719	1157	182	234	399	. Thh	836	1155	176	266	t13
		BAL- h ANCE %	2.9	-1.33	-1.78	1.5	-0-39	-0,35	-1.6	-2.4	-3.7	-1.0	0.13	-1.7	-0.71	-2.3
	a	प/वा	35.7	32.7	29.8	34.7	19.44	25.2	39.8	34.3	41.5	40.2	49.3	27	41.4	34.4
		twbl	112	103.5	104.5	104	106	112	114	105	106	107	107.5	113	. SII	105
		our t1	162	161	160	158	160	1.62	163	162	162	160	161.5	163	164	163
•	°,	AIR twbl	102	. 26	1. 98	87	83	99.5	104.8	46	35	16	88.5	101.5	106	ۍ عد 5
	TEMPERATURES	t twb2	56.5	20.	56	56	51	49.5	56.5	56	56	56	51	49.5	56.5	56
	TEMPER		. 99	66,	- ⁻	66	63.5	62	.66	66	66	56	63.5	62	56	66
		ER OUT T2	100	88	82	76	72	101.5	104	. 06	06	81	74.5	103.5	104.5	. 16
		WATER IN (118	103.5	36	95	67	112	119.5	103	105	36	96	112	611	102
		កា ខេ	2.89	2.1	1.86	1.63	1.3	4.79	3.44	2.56	2.3	1.97	1.58	5.62	4.03	3.07
	ATES	ft ² G	831.3	1273.6	1450.3	1649.4	2054	662	521	1236.8	1383.3	1610 🐇	2005	658	1.16	1205
	FLOWRATES	lb/h ft ² L G	2692.8	2692.8	2692.8	2692.8	2692.8	3168 Ç	3168 , ²	3168 . 2	3158	3168	3168	3696	3636	3636
,	•	RUN No.	168	169	170	171	172	173	174	175	176	177	173	179	18.5	191

			,	-										
		~	* *		2	+	<u>.</u>	-**	*	e		Ð	•	*
	Δp I.W.G. ft	1.48	1.46 1.57	0.20	0.417	10.1	1.55	1.5	1.5	0.233	0.43	1.116	1.0	1.52
	-	0.76	0.82	0.74	0.72	0.81	0.82	0.82	0.84	0.78	0.77	0.83	0.84	0.88
	TOWER PERFORMANCE E Eh	0.275	0.345 0.413	0.127	861.0	0.211	0.240	0.256	0.356	0.119	0.161	0.172	0.202	0.247
	IN .	36	40 52	36	36	36	36	01	61	36	36	30	35	0
• ·	Ka B per ft ³ ft ³ per atm.	n60 ··	814 1083	190	277	4,25	493	593	1124	209	262	381	4:50	712
•	HEAT BAL- 1 Alice	-3.5	-1.4 0.16	-1.4	-2.1	-3.0	-4.6	-4.3	-1.4	-1.4	-3.5	-3.5	-4.9	6°°°
	WL Jb/h	45.8	41.4 51.8	28.4	42.7	35 • 7	49.9	42.8	51.5	29.9	43 . 4	35.2	419	47.4
	twbl	109	107.5 108.5	112.5	115.5	106.5	011	109	103.5	114	11 6	107.5	III	011
•	our t1	164	161	163.5	164.5	163	165	162	162	164	165	163	165	163
	o _F AIR t _{wbl}	4.86	92 90 . 3	103	107	36	101.5	93.	16	104.5	107.3	96.2	102	9
	tatures I twb2	56	56 51	49.5	56.5	56	56	56	51 .	19.5	56.5	57	56	26
	TEMPERATURES IN t2 twb2	66	66 63 . 5	62	66	99	66	66	63,5	62	65	66	65 65	; ; ,
ults	cr our 12	63	83.5	104.5	105	92.5	95.5	88.	80 80	: 501	105	716	97.5.	89.5
and kesults	WATER IN T_1	107	8 0 5	112.5	. 411	102	3 108	66	96	112.5	115.5	101.7	108	100.5
1 Data	טוב	2.78	2.35 1.92	6.33	4.56	3.53	3.25	2.63	2.22	7.15	5.03	4°07	3.7	3.07
rimenta	NTES rt ² G	1329	1575 1922.6	654	- †1 6	1181.5	1282	1556 S	1896,6	650.4	912 . 4	1149.7	1246.3	1512
Table (22) Experimental Data	FLOWRATES 1b/h ft ² L G	2*	3696 3696	4171.2	4171.2	4171.2	171.2.1	4171.2 1	4171.2	4646 , 4	4645.4	4645.4 1		C . th . 2 th 3 th
Table (KUN No.	· .	184	185 4	185 4	187 4	123 4	183 4	130 H	191 4	192. 4	193 4	1	132 132

•

•

••

				**	m			~	* .	*					**	*		
	ď۵	I.W.G.		1.6	0,233	0.45	1.167	1.667	1.52	1.67	0.233	0.467	1.23	1.63	1.5	1.67	0.23	
		•	цц ц	0.85	0.82	0.80	0.83	0.88	0.89	0.86	0.84	0.83	0.88	0*00	.16.0	0.83	0.86	
	TOWER	PERFORMANCE	ш ⁶	0.326	0.096	0.145	0.148	0.167	0.214	0.28	0.08	0.145	0.144	0.147	0.281	0.255	0.03	
5	13	IN	H	617	36	36	36	36	017	51	36	36	36	36	0†	52	36	
x a	lb per	L.	per atm.	1064	198	273	101	445	671	985	181	322	429	** **	892	666	215	
	HEAT 1		qр	-0.95	-2.5	-3.3	-3.9	-5.5	-4.7	-1.9	-2.9	-2.4	-2.9	-5.3	-2.4	-2.1	-2.4	
.•	W,	, dt		53.6	30.8	43	35.7	48.8	48.5	54.3	31.1	t++ 2	36.2	48.8	t°is	20	32.2.	
			t wbl	011	114	116.5	108	111.5	III	011	3115	117	109	113	112	III	115	
		OUT	t	162	164	165	163	165	163	163	164	165	164	165	164	164	165	
	ы. 0	AIR	twbl	6	105.5	. 801	67	102.5	96.3	33	106	. 60T	33	103	86	64	107	
	TEMPERATURES	N	twb2	51	49 . 5	56.5	57.	56	56	51	49.5	56.5	57	56	۵ <u>۵</u>	51	49.5	
	TEMPE	NI	t2	63.5	. 62	66	66	. 99	66	63.5	62	. 99	66	66	99	63.5	62	
		WATER	5 13	82		106.5	94.5	98.5	16.	84.5	107	1C5.5	95.5	99.5	T6	86	107	
		WA7 IN	ц. Г	. 26		115	. IOL	107	100.5	97.5	112	115	102	107	101.5	38	. 211	
		н I	υ	2.47	1.94	5.8	4.57	4.26	3.34	2.80	8.77	6.42	5.18	4.76	3.77	3.1	9.65	
	ATES	ft ²	ບ	1878	648	827.3	1126	1203.6	1540.7	1836 .4	647.3	834	1095.5	. 2611	1505	1832	644.6	
	FLOWRATES	1b/h ft ²	ы	4646.4	5148	5148	5148	5148 .	5148	5148	5676	5676	5676	5576	5676	5676	6230.4	
· · · ·		RUN	NO.	155	197	198	66T	200	201	202	203	204	205	206	207	208	209	

251.

:

				• .		•	*	**		•			*	-2			
	ďγ	I.W.G.	ft	0.5	1:28	1.75	1.53	1.73	0.25	0.517	1.33	1.8	1.53	1.73	0.2	e.o.	0.567
	- 4		ц ^щ	0.85	0.89	0*00	0.81	06*0	0.86	0.88	16.0	0.91	0.93	0.91	0.384	0.39	0.33
<i>.</i>	TOWER	PERFORMANCE	ы ^я	0.121	0.133	0.118	0.186	0.245	0.08	0.112	111.0	0.118	0.143	0.213	0.363	0.423	0.543
	13	NI	.	36	36	36	40	53	36	36	36	36	0 11	53	87	18	18
•	Ka g lb per	h per ft ³	per atm.	294	7447	363	757.	1601	237	320	429	438	664	1072	231	346	458
		BAL-	o%	-3.1	-2.5	-5.3	29	-1.2	-1.6	-3.0	-2.98	-4.2	-4.3	-1.74	1.3	2.4	0.47
	, M		u/qr	44.5	36.1	46.7	45 . 8	56	32	4C	36.5	46.9	45	56.5	19.0	17.5	27.6
			twbl	116.5	109.5	114	TTT	111.5	SIL	117	III	411	יווו	112	103	97.	100
		4410	t 1	165	164	165	164	164	Jes	166	164	166	164	164	158	155	161
	ۍ س	AIR	twbl	109	98 ° 3	. 601	95.5	94.5	107	OTT	6 6	103.4	95	35	94.2	82.5	86.5
	TEMPERATURES		t wb2	56.5	56	56	56	21	49.5	56.5	57	56	55	51	50	51.5	53.5
	TEMPEI		5. 17	.66	66	66	: 66	63 . 5	62	66.	66	66	66	63.5	62.5	64	66
		WATER I OIIT	10	107.5	, 90 ,	IOL	16	86.5	107	108	67	TOT	92	83.	96.5	83,5	82.5
		TN	і н ⁻¹	114.5	102.	LOT	66	38	112	114.5	102	107	86	98	123	107	
	·	н	່ບ	7.05	5.80	5.45	4.15	3.45	10.64	7.8	6.48	6.13	4.57	3.87	1.67	1.175	0.864
	LATES	ft ²	U	385 1788	1073.6	1142	1500	1804	644 .5	880	1059	1120	1502	1776	653	932.6	1259
	FLOWRATES	¶∕dI	.പ്	6230.4	6230.4	6230.4	6230.4	6230.4	6864	6864	6364 S	6864	6864	6854	1095.5	1035.5	1035.6 1
•	. •	RUN	No.	210	211	212	213	214		216				220			

•.•:

Table (22) Experimental Data and Results

•

		**	*	-37 -	-::			ŝŝ	ş	*	`-#	۰.		
Åp I.W.G. ft	1.20	1.33	1.47	0.2	0.3	0.6	1.27	1.36	1.53	1.767	1.967	0.2	0.3	0.80
, •	0.37	0.34	0.25	0.45	0.51	0.405	0.48	0.45	0.34	0.17	0.29	0.51	0.56	0.54
TOWER PERFORMANCE	0.769	0.791	0.807	0.272	0.327	0.423	0.635	0.677	0.712	0.743	0.78	0.242	0.275	0.369
Z Z	18	23	29	13.6	18.2	18	18	23	29	35	64	18	18	18
$\begin{array}{c} \begin{array}{c} X_{g} \\ B_{g} \\ 1b \\ per \\ ft^{3} \\ ft^{3} \\ per \\ atm. \end{array}$	1183	1196	748	262	379	456	1080	1253	1263	649	702	272	420	617
HEAT BAL- Alice	0.23	0+0	0.42	2.7	÷1+*• 0-	-0.10	-1.6	0.29	1.35	0.82	0.48	0.35	-0.15	-0.6
ML Jb/h	37.1	28.2	42.0	14.6	18.2	25.8	39.0	26.0	39.7	58.9	64.6	21	17.7	22.6
twbl	TOT	95	96	86	16	66	102	94 .5	57	66	86	105	5° 96	36
t 1	ISI	158	155	156	156	161	162	158	156	156	157	159	155	157
o _F AIR t _{wbl}	86	77	. 61	85	83	85	88	75.5	78.3	86.5	84.2	30	82.5	80 . 8 .
TEMPERATURES IN t2 t _{wb2}	54.5	57	53	50	51.5	53.5	54,5	.57	53	60	60	50	51.5	53.5
TEMPER IN t2	89	67.5	.65	62.5	64	. 66	68	67.5	65.	70	70	62.5	54	
T2 DUT T2	58	66	65	5.16	84.5	. 85.5	th2 -	68	68	62	76.5	001	84.5	80
WATER IN T1	113	1001	. 311	107	100.5	601	108	16	105	134 :	135	116		95.5
ч I O .	0,64	< 0.482	0.807	(2:2	1.59	1.16	_ة 0.874	0.65 `	0.55	0.48	0.39	2.85	2.01	1.41
FLOWRATES 15/h ft ² L G	1722	2274	2633	010	. 931	1274	1693	2281	. 2625	3113	3770	2655	932.2	1331
FLOWRATES 15/h ft ² L G	1095.6	1096,6	1095.6	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1-73.4	1874.4	4. 473 L	1674.4
RUN No.	, 22 ¹	225	226	227	223	229	230	231	232	233	234	235	235	237

	·	•			•											
	• •		*	**	**	*				*	*	**	**	*		
	Δp I.W.G. ft	1.333	1.433	1.567	1.633	2.033	0.20	0.333	0.867	J.40	I.433	1.60	1.8	2.07	0.233	
		0.55	0.45	111.0	0.25	0.35	0,57	0.62	. 0.62	0.63	0.51	0.43	0.31	0.41	0.63	
	TOWER PERFORMANCE E _r E _h	0.553	0.618	0.602	0.656	0.726	0.187	0.253	0.32	0.442	0.529	0.542	0.614	0.657	0.177	
	Z NI	18	23	29	35	64	18	18	18	20	23	23	35	49	8	
	Ka Bbper h per ft per atm.	1211	1226	1268	785	T ₇₅	243	200	703	OIII	1181	1284	935	TITI	1thE	
	HEAT BAL- Alice \$	-1.7	0.59	-1.1	-0-79	.0.27	-2.5	0.52	-0.84	-0.56	-0-83	0.07	-0.4	0.06	-1.5	
	n ™L ML	42 . 1	37.5	133 °t	53.3	63.8	24 . 6	18.2	21.5	30.2	39°6	39.3	с•о́9	60.0	22	
	twbl	103	65	. 96	66	86	108	97	96	66	66	36	65	96.5	SOL	
	our t1	162	160	156	157	156	161	- 156	158	160	160	155	156	156	191	
	or AIR twbl	06	83	78	86.5	8 4 5	100	83	80	82	84	78	387	33	`` 85	•
	TEMPERATURES IN t2 t _{wb2}	54.5	57 -	53	60	.60	50	.51.5	53.5	54.5	57	53	09	60	50	
	TEMPER IN t2	. 3	. 67.5	65	.70	20	62.5	64	66	68	67.5	65	20	70	62.5	,
	WATER I OUT T2	577.5	74	70.5	81.5	22	104.5	84	13	.76	77	72	82	78	66	
•	IN TL T	IOS	101.5	67	122.5	122	111	35	16	86	3 ° 2	94.5	117	112.5	103.5.	
	ч 0	1.12	0.84	0.72	0.61	÷0.50	्3•5	2.44	1.72	1.34	1.03	0.37	0.74	0.61	ħ [° tr	
	FLCWRATES lb/h ft ² L G	1669	2221.5	2607	¢3083	3745	. 249	631	1319	1695	2215	2598	3078	. LTLE	650	
	FLOWRATES 1b/h ft ² L G	1874.4	1874.4	1874.4	1374.4	4° †1810	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2692.5	*
	RUN ¥o.	238	239	:240	241	242	243	*24H	245	246	247	248	2#9	250	251	

Table (22) Experimental Data and Results

•

.

Î,

;

6

254.

		n	*	*	**		**		•		4		**	*	
	• •	C C			•	~		e	თ				ť	R.	
		0.357 0.967	1.433	1.433	1.60	1.867	2.17	0.233	0.433	1.10	1.567	1.47	1.633	1.60	
	Δp I.W.G. £t	0.68	71	0.51	52	36	: 417*0	0.75	33				•		-
	R LANCE E _h		0.71		0.52	0.36			0.63	0.72	0.62	0.57	0.55	0.41	ţ
•	COWE	0.195 0.279	0.377	0,495	0.483	0.565	0.596	0.125	0.21	0.267	0.356	0.443	0.422	0.500	ł
	E PER 1	- • .													
	2 NI	18	. 20	23	30	35	61	18	18	18	21	23	30	37	
	$\begin{array}{c} X_{g} \\ B \\ D \\ D \\ F \\ f \\ f \\ f \\ e \\ a \\ a$	476 804	1199	1177	1304	1040	1238	310	503	879	1040	1231	1261	1109	1 92
	HEAT BAL- Alice \$	-1.5	-1.4	-0.42	-1.15	-0.68	-1.1-	-3.6	600*0	-0.17	-0.48	-1.1	-1.6	-0.53	ŝ
•	wr 1b∕h	18.2 20.7	28.7	- tt°6tt	45.2 -	62.6	60.03	22.7	24.8	24.0 -	38.5	52.8	48.2 -	59.3 -	
	· ·	`			4	9						Ŋ			
	twbl	96 .5 96	97.5	102.5	. 97	66	96.5	105	102	86	100	104	98 . 5	66	
. •	our t1	155 158 [.]	160	160.5	156	156	157	160	158	159	157	162	156.5	157	
•	°F AIK t ^{wb} l	83 79.5	. 18	89.5	81.5	88	83	97.5	90.4	83	87	16	83	87	5
				Ň	ω.		. 00	0,	0,		ω,	с, Х.	ω	ŵ	
•	ERATUR IN ^t wd2	51.5 53.5	54,5	57	53	60	60	50	53	53.5	540	57	53	60	
	TEMPERATURES IN t2 twb2	664 664	68	67.5	65	20 [°]	70	62.5	65.5	66	29	67.5	65	70	۰.
ults	ER OUT 72	64.5 	76	82	.92	83.5	52	65 5	92.5	81,	63	34	79	84.5 70	
nd Res	WATER IN T ₁	92 . 5 87 . 5	88	106.5	97.5	ָּ ⁺ ננ	107	106	103	. 16	65	105.5	68	6	•
ta a		j	~								07			109	
al Da	10	2.89	1,6	1,24	1,05	0.88	0.73	4.87	3.32	2.48	1.51	1.48	1.24	1,04	
iment	C S S	931* 1309**Z	1688	2164 🗧	2568	3055	3717	651	953	80	23 23	e t	50	36	
Cxper	FLOWRATES 1b/h ft ² L [°] G	. •	•			•		ĝ	0	1250	1753	2143	2550	3039	<
Table (22) Experimental Data and Results	ਸ਼ ਕਿ ਸ	2692.8 2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	3168	3158	3168	3158	3168	3168	3168	
Table	RUN No.	252 253	254	255	256	257	258	259	- 260	261	252	263	264	265	
			· · · ·				3 ¹ .			3	53 - S. S.		5.540	فهر محري	(- 17 - 2 4 - 1

٠

.

255.

						,			-		•		6		4	وديار مكاورواي	
		, • ·	*	•		**	-::	-32	નેર	- X			•	*	*	4	
	•		2.20 0.233	0.467	1.167	1.567	1.60	1.63	1.63	2.2	0.30	0.50	1.20	1.60	1.67	1.73	
			0.48 0.82	0.70	0.72	0.67	0.63	0.58	0.48	0.51	0.87	0.74	0.75	0.69	0.63	0.59	
	•	TOWER PERFORMAN E _r E _r	0.545	0.174	0.247	0,340	168.0	0**0	0.456	0.522	0.107	0.183	0.20	0.316	0.345	0.352	
and Results r r r r <th colsp<="" td=""><td>•</td><td></td><td>18</td><td>18</td><td>18</td><td>21</td><td>25</td><td>30</td><td>37</td><td>20</td><td>18</td><td>18</td><td>18</td><td>21</td><td>26</td><td>31</td></th>	<td>•</td> <td></td> <td>18</td> <td>18</td> <td>18</td> <td>21</td> <td>25</td> <td>30</td> <td>37</td> <td>20</td> <td>18</td> <td>18</td> <td>18</td> <td>21</td> <td>26</td> <td>31</td>	•		18	18	18	21	25	30	37	20	18	18	18	21	26	31
and Results $^{\rm r}$ <th colsp<="" td=""><td>· . •</td><td></td><td>1349 1349</td><td>. 08 ti</td><td>846</td><td>1192</td><td>1263</td><td>1408</td><td>1245</td><td>1473 ⁻</td><td>528</td><td>586</td><td></td><td>1219</td><td>1284</td><td>1030</td></th>	<td>· . •</td> <td></td> <td>1349 1349</td> <td>. 08 ti</td> <td>846</td> <td>1192</td> <td>1263</td> <td>1408</td> <td>1245</td> <td>1473 ⁻</td> <td>528</td> <td>586</td> <td></td> <td>1219</td> <td>1284</td> <td>1030</td>	· . •		1349 1349	. 08 ti	846	1192	1263	1408	1245	1473 ⁻	528	586		1219	1284	1030
and Results TEMPERATURES r			-0.67	-2.5	-		6.0-	-0.5	-0.4	-0.3	-1.2	-1.6	-0.48		-2.5	50.5 -0.5 1030	
and Results TEMPERATURES ^{C}F TEMPERATURES ^{C}F WATER WATER T_{1} $^{T}2$ $^{2}2$ W,b2 M,R M,R M,R M,R M,R W,M,L T,L T L	•	ыг Лр/h		31.4	30.8	44.3 ^{°'}	48.2	51.1	58.7	66.9	15.7	36,6	35.3	, 149`	52.6	50.5	
and Results TEMPERATURES r TI TEMPERATURES r TI T r r MATER IN AIR OUT IN CUT r_2 t_{wb2} r_{wb1} r_1 UN CUT r_2 t_{wb2} t_{wb1} r_1 UN CUT r_2 t_{wb2} t_{wb1} r_1 UN CUT r_2 t_{wb2} t_{wb1} r_1 UO r_2 t_{wb2} t_{wb1} t_1 UO r_2 t_{wb2} t_{wb1} t_1 UO r_2 t_{wb2} r_1 t_1 UO r_2 r_2 r_{wb2} r_1 r_1 UO r_2 r_2 r_2 r_2 r_1 r_1 UO r_2 r_2 r_2 r_2 r_2 r_2 r_2 UO r_2 r_2 r_2 r_2 r_2 r_2 r_2	·	t wbl	96.5 102	106	102	102	105	86	66 . 66	98.5	100	OTT	104	103	. 30I	6 6	
and Results TEMPERATURES $^{\circ}$ NATER TEMPERATURES $^{\circ}$ NATER IN AIK IN CUT IN T T2 t, b) 104 80 70 60 83.3 97 91 62.5 50 81.5 97 91 62.5 50 81.5 97 91 62.5 53 97 98 87 66 53.5 91 98 87 66 54 90.5 98 80 65 53 84.5 98 84.5 70 60 87 98 84.5 70 60 86 98 84.5 70 60 86 99 84.5 70 60 86 9105 84.5 70 60 86 92 84.5 70 60 86 93 97.5 53 93 93 93 93 54 <td></td> <td>t 1</td> <td>159</td> <td>160</td> <td>159</td> <td>•••</td> <td>191</td> <td>157 -</td> <td>157</td> <td>156</td> <td>158.5</td> <td>163.5</td> <td>161</td> <td>157</td> <td>162</td> <td>157</td>		t 1	159	160	159	•••	191	157 -	157	156	158.5	163.5	161	157	162	157	
and Results TEMPERATURES IN TEMPERATURES IN TEMPERATURES IN T IN CUT IN U IN CUT IN CUT IN U IN U IN U IN U IN U IO 00 97 91 62.5 93 87 65 53.5 101 85 65 54 103 86 65 53.5 103 86 65 53.5 103 84.5 70 60 105 81.5 70 60 105 81.5 65.5 53.5 100 93 87.5 53.5 101 93 65.5 54.5 101 93 57.5 54.5 103 53.5 54.5 54.5 103 53.5 54.5 103	· .	of AIR twbl	83.3 81.5	. 16	83	90 . 5	16	84.5	87	. 98	88.4	101.5	63	63	-	84	
and Results WATER WATER IN CUT T ₁ T ₂ 97.91 98.87 98.87 105.84.5 105.84.5 105.84.5 105.87.5 106.82 100.5 100 101.90 103.83 103.5 100 100.5 100 100 103.83 100 100 100 100 100 100 100 10	•		60	23	53.5		59.5	53	. 09	60	50		53.5	54; 1	59.5	50	
and Results WATER IN CUT T ₁ T ₂ 97 91 98 87 98 87 98 87 98 87 103 86 103 86 103 86 105 84.5 105 84.5 105 87.5 105 100 101 90 103 88 103 87.5 103 87.5 103 86 103 86 105 82 105 82 100 82 1		TEMPER t 1N	70	65.5	20	65	63	65 (70	70	62,5	. 65.5	66	εõ		65	
	ults	ER CUT T2	80	80 7 80	87	85	86 0	80	84.5	82	87.5.	100		97.5	83	81.5	
	and Res	MAT IN T ₁	104	107.5.	686	IOL	103			1 90T	62	110.5	101	103	TOS	.16	
al Data 5.56 6.23 1.47 1.47 1.23 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97	Data	טןר	0.868 5.55	3° 3°,	2.97	2,14	1.8	7.47	1.23	1.02		4.53	3.4	2.4	2.05	1.66.	
erimenta ATES ATES ft ² 564,2 664,2 1723.5 1723.5 1723.5 1723.5 1723.5 1723.5 1710 1710 1710	rimenta	t ² 6	3649 664 2	723.5	1244.4	1728	2043		3003 4		۰ ۰		1227.6	0111	5103		
<pre>(22) Experimental FLOWFATES Ib/h ft² Ib /h ft² Ib /h ft² 31683649 0 31683649 0 35963649 0 35963649 0 359630031 359530031 369620435 369620435 369630031 369530031 3703 370031 37003 370031 37003 370031 37003 370031 37003 370031 37003 3</pre>	22) Expe	FLOWRA 1b/h f L	•	3525						3696 · · · ·	171.2	171.2				4171.2 2524	
Table (: No. No. 255 3 256 3 2557 3 2557 3 2559 3 2579 3 2579 3 2579 3 2579 3 2779 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Table (RUN No.			,			*			•				1.15	а С.	

•						• •					•	•				
		*	-20	•			-44	*: .		નર	*		٠		*	
•	0 0	0 1 0	2.2	0*30	0.50	1.23	1.56	1.56	1.73.	2.10	2.3	0.30	0.50	1.1	1.63	
	н	1 IT 0.56	0.54	0.91	61.0	0.79	0.75	0.67	0,63	0.58	0.58	0.91	0.83	0.77	0.78	
	TOWE	^E r ^E h 0.415	0.483	C. 095	0.164	0.217	0.271	0.337	0.310	0.402	0.442	0.08	0.147	0.204	0.245	
	I NI	38	50	18	. 1 8	18	22	26	31	38	50	18	18	18	22	
	Ka Ib per ft ³ ft	atm. 1354	1548	604	607	368	1137	1334	.1313	1481	1587	551	640	932	T9TT	
	AT L- CE	₿° 0-	-0.34	-1.i	-2.3	-0.6	-2.5	-0.75	-1.76	0.076	-0.9	-1.6	-2.8	-0.33	-3.2	
	WL Jb/h	55.4		14.8	38.0	37.8	51.8	53.9	51.3	57.6	68.8	15.2	4 1. 2	0°1†	55	
		^w bl 98.5	98.5	66	112	106	105	107	100	66	66	66	113	108	101	
		1 158	158	157	164.5	161.5	163	162	157	158	158	156.5	166.5	163	164	
	°F AIR	wb1 86	86.5	86.	103.5	35	<u> 3</u> 6	93.2	85	87	87	86.5	105	97.3	80	
	ATURES	wb2 60	60	51.5	53	53.5	56	59 • 6	53	60	60	51.5	53	53.5	56	
	TEMPER IN	70	70	64	65.5	66	67.5	63	65	20	70	64	65.5	66	67.5	
	our	8 ^{t1} 2	83	85	101.5	91.5	6	68	ŝ	84.5	÷ 84	35	102.5	64.5	63	
	WATER IN (101	104.5	88.5		102	104	104	96.5	101	103	83	111	105	105	
	-10	1.38	1.17	. 6.83	5.08	3.81	ب.2 ÷7 8	. 2.26	1.85	. 1.57	1.32	. 7.63	5.65	- 4.23	1. 6	
	ATES ft ² G	2992	* 3568.2	675.4	319 315	1221	1670.5 02.78	2052	" 2494	2952	3522.7	674.3	016	1216	1560	
	FLOWRATES Ib/h ft ²	~		4646.4	3 4645.4	4640.4	4646.4	1.3434	÷.4646.4	4646.4	4645.4	5148	5148	5143	5148	
	RUN No.	281		283	5 28 #	285	286	287	283	289	250	291	292	6523	294	

257.

Table (22) Experimental Data and Results

		*	*	-35	*				-**	*	*	**	*		
Δp I.W.G.	ft	1.57	1.77	2.1	2,33	. 0°°0	0.50	1.17	1.63	1.63	1.80	2.2	2.4	0.30	0.5
CE I.W	14	0.70	0.64	0.59	0.61	16.0	0.83	0.82	0.76	0.72	0.67	0.65	0.64	0.91	0.83
TOWER	ь Б	0.315	0.291	0.358	0.405	0.092	0.138	0.186	0.255	0.292	0.257	0.342	0.393	0.073	0.134
IN Z		26	32	38	50	18	18	18	22	26	32	38	50	18	13
Ka. g h per	ft per atm.	1401	1351	1439	1615	IT1	661	1023	1261	1439	0681	1505	1772	645	726
	ALICE &	-0.76	-1.0	-1.0	-1.2	-0.3	-2.2	6 • 0-	-0.81	-0.77	-1.3	-0.2	-0-8	-0-64	-1.1
n M	Ib/h	55.6	51.0	59.0	68.8	15.4	41.2	43.2	55.4	57.2	52	59 . 4	72.6	15.9	t.14
-	t wb1	107	COI	39 °2	† *66	66	113	108	103	301	99 . 5	100	TOD	. 99.5	113
· ·	our) t1	163	157	158	158	157	167	163.5	163.5	164	157	158	158	157	166
°F. AIR:	twbl	94.2	82 82	87.5	87.3	87	105	98.5	97.5	95	86	38.2	86.5	88	105
TEMPERATURES	t t _{wb2}	59.5	53	09	. 09	51.5	54.	53,5	56	59.5	53	60	.09	51.5	23
TEMPER	t ^t , t	69	65	70	70	64	65 .5	. 99	67.5	69	65	70	70	64	65 . 5
цк	ED F N	06	83.5	85	85	86	103	95	92.5	16	84.5	87	85.5	87.5	103
WATER	NL	104	35	100.5	102	89.5	III	104.5	105 SOL	70 1	00	101	102	90.6	111
, L	10	2.53	2.03	1.75	1.47	8.4	6.24	4.7	3.35	2.81	2.32	1.96	1.64	°°5	6.85
ATES ft ²	ت	2035	2471	2948	3508	670	016	1210.6	1690	2019	2446	2396	3455	\$672.2	015
FLOWRATES 1b/h ft ²	•14	5148	5148 °	5148.	5148	5676	5676	5676	5676	5676	5676	5676	5676	6230.4	6230.4
RUN	.ov	295	235	297	298	293	300	301	302	303	304	305	308	301	308

٢.

258.

•

	•		· ·	•							•					259	•
					*	*	-:«	-%	**			• .	*	*	4	4:	-;¢
	, đă	I.W.G.	ft	1.233	1.633	1.633	1.867	2.2	2.4	0.30	0.5	1.233	1,633	1.633	1.933	2.2	2.4
	•		ц ц	0.79	0.76	0.73	0.69	0.66	0.65	0.92	0.84	0.83	0.78	0.75	0.51	0.70	0.70
	TOWER	PERFORMANCE	а ^н .	0.162	0.23	0.27	0.247	0*305	0.354	0.063	0.130	0.156	0.22	0.247	0.238	0.238	0.325
	И	NI	٢.	18	22	26	32	43	50	18	18	18	22	26	32	6; 1	50
	K a E Der	n per . ft ³	per atm.	859	1245.	1438	1407	, 1507	1775	579	780	955	1324 [°]	1442	1523	1587	1823
		ALCE	d'a	-1.06	0.92	-0.61	-1.1	. 6'1-	-1.6	-1.2	-0.7	-1.0	-0*33	-0.61	-0-3	-1.1	-1.6
	W,	a :	u/qt	43.3	57	57.3	51.8	65.6	73.3	.16.5	41.2	47.3	57.5	58.0	51.6	62.8	72.7
			t _{wb1}	10 9	108	108.5	100	101.5	τοτ	100	113	011	108.5	60T	100	102	102
	•			164	163	164	158	158	158	157	166.5	164	163	164 ×	161	191	161
	ь. С	AIR	twb1.	65	98 . 5	95.3	93	06	, 83	88.7	105 .	102	66	95,8	86	89.5	68
	TEMPERATURES		t twb2	53.5	56	59.5	53	60	60.	51.5	53	53.5	56	59.5	53	60	60
	TEMPE		5, t	99	. 67.5	63	65	70	10	64 r 2	65.6	. 99	67.5	60	65	. 70	70
		WATER	, <mark>л</mark> с	97.5	, 94 . 5	92	85	88.5	S6.5	88.5	103	99 ° 2	95	80 80	85	. 83.5.70	81
		WA	5 m . 1 H	106	105	104 ₃₂	95 ° 2	lol	101	16	110.5	108	105	104	ĜS	100	100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ч	10	5.2°	3.75	3.11	2.55	2.16	1.82	671 10.24	7.54	5.84	4.15	3.45	2.83	2.4	2.02
•	ATES "	ft ^{2.}	U	1198	1651 _{.85}	2005.5		2879	3424	671	10	1176	1655	1992	2426.5	2669	3336
. 4 . 5 . 7 1	14	1b/h ft ²	H	6230.4	6230.4 J651	6230.4 2005.5	6230.4 2436	6230.4 2879 S	6230.4	5854 6	6864 _~ 9		6864 1555	319 ₃₄ 5354	6864 S	6364 N	
		RUN	No.	309 6	310 6	311 6	312 6	313 6	314, ₂₇ 6	315 5	315 5	317 6864 _{74 4}	318 5	319 ₂₃ 5	320 6	321 C	322 6

Table (22) Experimental Data and Results

Two Inch Sphere Diameter	ere Diam	neter	- , , , , , , , , , , , , , , , , , , ,	•	•	•			••••	, 8 		2			
tal	Date	Table (23) Experimental Data and Results	sults		*				**	1 - 5 1 -	*		•		· , ·
	87 87	ې م		TEMPERATURES		с, Ъ	€16 231 27	-} , ,		HEAT	Ka g lb per	. 17	TOWER	CK CK	
	1 0	TN T	WATER OUT T2	t ^t 2		AIR t _{wbl}	our t ₁	t wb1	ML Jb/h	BAL- ANCE %	n per ft ³ per atm.		PERFORMANCE E Eh	MANCE	I.W.G. ft
	2.1	116.5	60	70	59.5	TOO	164	104	32.9	3.4	154	72	0.465	0.58	0.217
	2.06	106	86	70	61	92	146	95	23.2	3.86	158	72	444.0	0.59	0.217
	1:75	III	85.5	70	19	³ †6	164	102	29.3	4.85	172	72	0.510	0.53	0.283
	1.26	112	78	70	61	64	, 166	-98 -	41.7	ł . 06	273	72	0.667	0.52	0.55
	1.17	109.5	76	70	61	94	167	67	44.8	1,02	320	72	0.691	0.57	0.717
	1.06	97	70	68	60	87.5	160	99.5	38.5	-0.67	472	72	0.730	0.69	1.20
	2,31	105	87 .	67	° 09	63	162	, OOL	25.8	2.88	178	72	0*10	0.64	0.25
	1.74	99 ° 2	81	68	57.5	88	155	102	30.8	0.94	227	72	144.0	0.65	0.383
	1.6	99 . 5	77	68	57.5	06	157	103.5	36.7	1.66	339	72	0.524	0.71	0.583
	1.47	98.5	74.5	68	57.5	89.5	156.5	102.5	39.2	1.64	411	72	0.585	0.72	0.783
•	1.34	96	73	68	60	88.4	160	001	38.1	0.41	486	72	0.639	0.75	1.20
	2.34	100	82.5	63	57.5	90.5	157	103	29.7	3.78	266	72	144.0	0.71	0.383
	2.11	108	85	68	57.5	98	161	107	44.5	1.13	291	72	0.456	0.72	0.482

L.W.G. ₫7 0.633 0.817 0.417 0.617 0.417 0.617 0.817 0.483 0.833 ÷ 0.417 1.23 1.00. 1.23 1.0 0.73 0.78 0.75 0.82 0.76 0.86 0.84 0.81 0.84 1.00 05.0 0.85 0.83 0.81 ធ PERFORMANCE TOWER 0.506 0.384 0.443 0.546 0.519 0.315 0.373 0.442 0.466 0.461 0.278 0.409 0.395 0.384 ۳ 72 72 72 72 72 72 72 72 72 72 72 72 72 72 N A lb per h per ft³ per atm. 372 452 273 389 549 240 348 474 503 525 257 414 466 554 2.39 -0.34 1.74 1.51 1.50 2.18 1.11 2.76 1.82 HEAT BAL-ANCE -0.31 2.47 1.4 1.1 1.5 42.3 40.6 29.7 34.4 36.2 24.0 34.4 33.9 37.6 36.8 25.0 36.3 37.2 h/h 36.1 ר א 100.5 102.5 103.4 101.5 101.3 102.8 102.4 104 t wbl 105 102 102 103 100 101 157.5 1, 0<u>0</u>1 159 .160 153 160 161 159 160 159 160 162 160 150 160 AIR twbl 88.5 92.5 92.5 89.4 91.5 TEMPERATURES F g 88 63 94 80 8 8 32 Б twb2 57:5 57.5 58.5 58.5 58.5 58.5 59.5 59.5 59.5 59.5 55 00 55 80 N 74 74 89 68 67 67 89 67 67 67 67 89 68 63 68 63 81.5 83.5 85.5 7 0UT 80.5 82. 78 80 80 17 75 83 83 78 78 63. WATER 96.3 95.5 93.4 L II . 63 103 80 65 98 95 97 95 99 97 95 1.77 2.43 2.12 1.66 1.91 05.L 2.56 2.34 2.18 2.03 3.57 2.95 2.70 2.63 Ч 10 1621.5 1518 1413 1272 1107 1074 1238 1454 1b/h ft² c 1354 1558 1035 1249 1353 1407 FLOWRATES 2962.8 2962.8 2962.3 2962.8 3163 2692.8 3168 3163 3168 3168 3656 Ļ 3695 3695 3696 RUN No. 337 339 336 338 343 344 340 342 341 345 540 340 347 348

Table (23) Experimental Data and Results

	∆p T u C	ţ,	1.23	0.517	C.683	0.85	1.05	1.23	0.483	0.717	0.883		1.23	0.567	0.833	0.583
	NCE	ц ц	0.91	0.86	05.0	16.0	0.94	0.93	0,85	0.87	0.53	0.93	0.95	0.89 0	05.0	0° 63
	TOWER PERFORMANCE	្ត្រ	0 . 394	0.257	0.286	0.329	0.353	0.354	0.221	0.271	0.279	0.299	0.288	0.203	0.253	0.256
	2	IN	72	72	72	72	72	72,	72	72	72	72	72	72	72	72
К С ^а	lb per h per	ft ³ per atm.	559	294	392	486	623	619	268	364	468	514	562	321	423	191
HEAT	×	ANCE	-0.28	60°0	-0.54	0. 4	0.73	0.67	0.221	0.271	0.279	0.299	0.288	0.67	1.3	0.47
	л М	h/h	36.5	27.7	32.4	35.0	36.0	35.6	25.9	31.3	32.9	33.3	33.9	28.6	28.0	42.1
<i>.</i>		twbl	101	102	102.4	102.8	102	IOL	102.5	103	103	102.5	τοτ	tol.4	104	105.8
		our t t	160	160	161	161.5	161.7	160 ,	191	161	161	160.5	159	157	158.5	159.4
	AIR	twbl	8	16	32	92	1.16	90.5	06	91.2	91.5	6 1 6	50°3	16	32 *	67
	TEMPERATURES	twb2	60	60		60	60	60	63	60	60	60	60	55	55	55
	TEMPE	, ⁰ 4	68	68	68	68	68	68	68	63	68 .	68	68	65	65	65
	ER	oUT 12	80	86	85	83.5	82	81	86.5	85.5	84.5	83.5	83	86.5	87.5	88.5
	WATER	N H	ີ ຄີ	95	95	95	46	63 ×	[.] 94	95	ੰਸ6	93.5	92.3	34.5	98.5	. 100
	<u>,</u> -1	ບ່	2.48	3.73	3.38	3.16	3.05	2.89,	4.26	3.73	3.60	3.51	3.35	4.84	4 . 29	4.18
MTES	ft ²	ບັ	1494	6111	1233	1322	1365 ₂	1445	1601	1245:	1289.5	1323	1388	1064	1201	1230
FLOWRATES	lb/h ft ²	ц .	3695	3695	36965	3696	3696	3696	1646 .4	4646.4	4646.4	4646.4	4646 . 4 J388	5148	5148 🤅	5148 **
	RUN	No.	350 5	3519	352	353	354	355	356)	357.	- 358	359	350	361	362	353

	٩Ď	I.H.G.	ft	1.12	1.27	0.533	0.857	1.12	1.283	0.633	0.90	1.133	1.267	0.567	11th π • Ο	1.156	1.56
		NCE	Бр.	0.93	1 6°0	0.50	0.90	0,91	0 •94	0.91	0.93	0.96	0.921	0.92	0.49	0.47	0.42
	TOWER	PERFORMANCE	ដ	0.278	0.292	0.175	0.237	0.255	0.262	0.167	0.195	0.207	0.22	0.131	0.627	0.810	0.854
				72	72	72	72	72	72	72	72	72	72	72	514	54	54
	Ka g per		per atm.	516	607	274	406	468	553	327	4:25	532	472 ,	279	264	1011	324
	HEAT . BAL- Ib h	н.		1.3	1.08	-1.15	0.77	1.63	1.27	0.21	0.38	0.48	1.32	-1.04	3.2	2.5	0.056 `
÷	WL.	1	u/q1	43.6	. 46.2	39.0	45.4	45.0	45.1	29-6	36.5	37.9	36.0	31.8	33.9	4.7.7	59.6
	•	-	twbl	105	105	107.5	108	106.5	105.5	IOI	102.5	103	102.5	104	103.4	104	101
		Ino	t1	159.5	159.5	160.6	. 163	161	160	157	157.5	159	158	150	163	165	166.7
	0	AIR	twbl	97	97	100	100	38•5	67	16	93 . 4	4:6	6 3	04 . 4	16	92.5	36
	TEMPERATURES		twb2	55	55	55	55	. 55	55	. 55	55	55	55	55	57	57	58
	TEMPEI	NI	5	65	65	65 .	65	65	65	67	67	67	67	67	67	67	68.5
		our	ц Ч	87.5	86.5	95	92	06	88	87.5	88	87.5	87	91.5	77.5	63	675
		WATER	H H	100		103.5	103.5	102	66*1	1 16	96	96	96	67	112	115	123.
,	ت	10	1	+0°+	3.64	5.48	4.72	4.57	4.34	5.74	5.24	5.1	4° 36	6.73	1.16	0.83	0.81
	ATES F+ ²		U	1274	1342	1036	1201	1242	1308	1085	1190 ×	1222	1256	1020	1278.9	1667.3 (1620
	FLOWRATES		ы л	5148	5148	5676	5676	5676	5676	6230.4	6230.4	6230.4	6230.4	6864	1478.4	1478.4]473.4
•	RIIN	No.		364	365	365	367	368	369	370	371	372	373	374	375	376	277
			. ' '	•					-		1. 1.	-		• •	· · ,	· · ·	+ 1°

IDOPENDE: TEMPERATURES TEMPERATURES					• •										•						
FLOREMTES TEXPERATURES OF Ib/h ft ² TEXPERATURES OF IB/h ft ² TEXPERATURES OF IB/h ft ² Texperation IB/h ft ² Image IB/h ft ² Image IB/h ft ² Texperation IB/h ft ² <		AP I.N.G. ft	0.276	0.33	0.50	0.74	0.142	0.93	0.467	0.978	1.60	0.316	0.564	0.831		0.644					
		E P NCE	0.43	0.40	0,43	0.52	0.69	14.0	0.55	0.58	0.59	0.56	0.52	0.54	0.55	0 • ⁴ 4					
ILONRATES TANE ALT TANE ALT NL		TOWER ERFORMA	0.651	0.679	0.741	0.827	0.582	0.917	0.495	0.680	0.739	0.48	0.592	0.708	0.773						
ILONRATES TENPERATURES P ML ML <			54	54	54	54	54	64	54	54		54	54	54							
FLOWRATES TEMPERATURES $^{\circ}$ MEM MEM MEM MEM MEM MEM L C T MEM MEM L C MEM MEM MEM MEM L T T MEM MEM <th <<="" colspan="5" td=""><td></td><td>H ·</td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>H ·</td> <td></td> <td></td> <td>,</td> <td></td>						H ·			,											
ID/M fL2 TEXPERATURES $T_{\rm M}$ MEM- ID/M fL2 $T_{\rm M}$ MEM- ID/M fL2 $T_{\rm M}$ MEM- ID/M fL2 $T_{\rm M}$ MEM- ID/M L G $\frac{T}{G}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ L G $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ $M_{\rm M}$ L G $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ L G $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ L $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ L $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $T_{\rm M}$ $M_{\rm M}$ L $T_{\rm M}$		Ka Bber h per ft per atm	225	230	265	369	166	437	.234	436	526	224	304	445	261	. 292					
FLOWRATES L TEMPERATURES $^{\circ}$ 1h/h ft ² L G IN MATER AIR OUT L G T T T T T AIR OUT L G T T T T T AIR OUT L G T T T T T AIR OUT L G T T T T T AIR OUT L H78.4 ES1 1.774 119 84.5 71.5 66 97 166 105.5 L H78.4 1790 1.97 133 92 72.5 62.5 103 112 L T T 1 69 74.4 107 1147 L T 122 84.5 69.5 59 169 104 L T 109 109 123 109 10			10.8	6.5	7.7	5.4	5.2	7.7	2.1	3.95	1•95	-2.0	0.35	3.3	5.6	1.5					
FLOWRATES TEMPERATURES TEMPERATURES ΛIR		л ^W л	23.8	28.6	35.3	32.5	34.9	30.7	31.9	41.2	45.0	36.2	41.3	43.0	42.3	20					
FLOHRATES TEMPERATURES TEMPERATURES AIR $1D/h$ ft ² L MATER AIR AIR L G $\frac{1}{G}$ IL $AIER$ AIR L G $\frac{1}{G}$ IL IR AIR $IL G IL IL IR AIR IH/R_{L} ES1 IL/H IR IR AIR IH78_{L} ES2 IL/H IL9 RU Z V_{MD2} V_{MD1} IH78_{L} IL91 IL92 IL91 IL22 RU Z V_{MD2} IH78_{L} IH91 0.099 IL8 75 72.5 62.5 110 IH78_{L} IH91 0.099 IL8 75 72.5 62.5 90.2 IH78_{L} I191 IL91 IL91 IL91 72.5 62.5 90.2 IH774_{L} I1792 IL91 $	· ·	twbl	301.	107	105.5	104	112	97.5	103	103.5		102	66	61	95	103					
FLOWFATES TEMPERATURES $1b/h$ ft ² L $NATER$ TEMPERATURES L G T_1 T_2 t_{wb2} L G T_1 T_2 t_{wb2} L G T_1 T_2 t_2 t_{wb2} L G T_1 T_2 t_2 t_{wb2} $LH78.4$ $S52$ 1.54 122 84 72 66 $L478.4$ 1230 1120 122 80.5 72 66 $L478.4$ 1491 0.099 118 75 72 66 $L478.4$ 1791 1.097 133 92 72.5 62.5 $L478.4$ 1792 $1.094.5$ 133 92 74.5 69.5 59 $L1478.4$ 1792 $1.094.5$ 1095.5 844.5 72.5 66.5 59 $L1478.4$ 1792 $1.094.5$ 1095.5 844.5 79.5 60.5 59 $L1874.4$		our t1	166	167	166	169	163	173	163	164	164.5	166	168	168	168	169					
ID/h ft²IID/h ft² L WATERLG G IMLG G T_1 LG G G LH78.4 G G LH78.4 G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L G G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L G G G L G G G L G L G G <td></td> <td></td> <td>63</td> <td>66</td> <td>67</td> <td>95</td> <td></td> <td>90.2</td> <td>92.5</td> <td>92</td> <td>16</td> <td>54</td> <td>92.5</td> <td>16</td> <td>83</td> <td>100.7</td>			63	66	67	95		90.2	92.5	92	16	54	92.5	16	83	100.7					
ID/h ft²IID/h ft² L WATERLG G IMLG G T_1 LG G G LH78.4 G G LH78.4 G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L G G G L $H78.4$ G G L $H78.4$ G G L $H78.4$ G G L G G G L G G G L G L G G <td></td> <td>tature: t_wd2</td> <td>66,</td> <td>66</td> <td>66</td> <td>66</td> <td>.62.5</td> <td>69</td> <td>23</td> <td>59</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>57.5</td>		tature: t _w d2	66,	66	66	66	.62.5	69	23	59	60	60	60	60	60	57.5					
FLOWRATES L WATER 1b/h ft ² L WATER L G G IN L G G IN L G G T L G G T L G G T L G G T L G G T L G G T L G G G L G G G L L L G G L L L L T L G L G G L L L L G L L L L G L L L L G L L L L G L L L L L L L L L L L L L		TEMPER IN t2	71.5	72	72	72	72.5	74 /		69.5	70.5	63	69	63	. 69	63					
FLOWRATES L Kat 1b/h ft ² L G IN L G G TN L G G TN L G L TO LH78.4 S51 L TO LH78.4 1230 T 122 LH78.4 1230 T 123 LH78.4 L L T LH78.4 L L T LH78.4 L L T 133 LH78.4 L L L T LH78.4 L L L T LH78.4 L L L L LH78.4 L L L L LH78.4 L L L L LH78.		ER OUT 12	84.5	84	80.5	75,	92	69	84 . 5	74.5	•	86	80.5	11	. 70	81					
FLOWRATES Ib/h ft ² L G L G L G L G L 1478.4 252 1478.4 1491 21478.4 1792 21478.4 1792 21478.4 1792 21478.4 1792 21478.4 1792 21874.4 1515 1874.4 1515 21874.4 1529 21874.4 1529 21874.4 1529 21874.4 1559 21874.4 1553 21874.4 1553 21874.4 1553 21874.4 1553 21874.4 1553 21874.4 1553	•	L T L	119	122	122	118	133	: 113	109.5		106	OTT		. 801	104	125.5					
FLOWRATES Ib/h ft ² L G L G L G It78.4 551 1478.4 1491 1478.4 1792 1478.4 1792 1478.4 1792 1478.4 1792 1874.4 1792 1874.4 1515 1874.4 1515 1874.4 1515 1874.4 1529 81574.4 1559 81574.4 1559 21574.4 1553 21574.4 1553	1	. טן בו	1.74	° 1,54	1.20	56 * 0 *	1.97	0.83	1.59	, 1 . 24	1.08	6 † •T	1.22	1.10	1.03	1.2					
FLOW] FLOW] IL IL IL IL IL IL IL IL IL IL IL IL IL		ATES ft ² G	j€ 851 [.]		1230	1491	1750	1792	1179	1515		1262.	1529	1699.8	1814.3	1563,					
		L LD/h	, 1478.4	1478.4	1478.4		£ 1478.4	1478.4	1874.4	1874.4	1874.4	1574.4	1874.4			1874.4					
		RUN No.	378	379		381			1138		. 386	387		-	•						

				•														
	ζþ	I.W.G.	ft	.0.683	0.20	0.956 *	0.956 *	\$ II6.0	0.276	0.329	0.533	0.742	0.16	0.978 *	0.422	1*0*1	1.60	
		ANCE	ц ц	0.73	0.61	0.58	0.59	0.58	0.52	0.47	64.0	9•0	0.48	0.56	0.60	0,64	0.67	
	TOWER	PERFORMANCE	្ក្នុ	0.514	0,433	0.753	0.766	0.728	0.514	0.58	0.667	0.743	0.455	0.817	0.395	0.593	0.621	• •
	ŕt			54	54	. 62	62	57	54	54	54.	54	54	64	54	54 [.]	54	
	Ka g lb per	D. 4	per atm.	403	200	538	570	487.	20.5	236	290	381	168	560	227	611	532	
	1	EAL- I	0,0	-2.0	1.5	-1.7	0.22	2.1	6.3	5.7	5.7	· 1	4.8	5.0	2.06	3°3	1.8	
	:	Г. ж	ч/ч т	16.4		41.8	38	35	26.2	33.4	37.5	37.5	29.8	36.1	26.6	40.8	44.5	·
			twbl	06	103	35 [°]	93	95	108	109	106.5	105	. 011	67	102	103	12.7	
	•			163	165]	169	162	168	166 1	167.5 1	169 1	170 1	161 1	171.5	164 . 1	162 1	165.5	
	О	AIR	twbl	72	95	88	. 98	88	102	104	. IOI	66	106	91,3	89 . 5	92.5	90°5	*, fr
	TEMPERATURES		t _{wb2}	53°.5	62.5	62.5	63	64	66.5 1	36.5 1	66,5 1	66.5	62.5 1(65	60	60	58.5	
	TEMPER		t ²	63	23	69	. TL	72	72.5	72.5	72.5	72.5	72.5	74	70.5	70.5	11	
		ER	ч. Ч. С	67.5	88	72 .	71.2	745 2	92	06	:85	80	30	72.5	۰ ، 98	78.3	75	
		WATER	י צרק קרק	77	107.5	loi	3 3 3 3 3	100.8	119	123	122	119	124	106	103	105	102	
		-1	ი	1.13	2.04	0.51	0.93	1:07	2.30	1.94	1.5 1.5	1.25	2.57	1.08	2.04	1.53	1.36	
	ATES	ft ²	ົບ	1654.4	920	2056	2012	1753	814.3	964	1244	1487	730.6	1737	111.6	1482	1663.6	
	FLOWRATES	r/dI	н.	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1974.4	1874.4	2270.4	2270.4	2270.4	•
1	· .	RUN	No.		393		395	396	. 397	80 00 00	399	400	TOH	402	403	40n	SOS	
				۰,				·:, ·		· .	5 1		1 1 4	1.1	·. ·	· · i .	1 N. (11)	

¢Ρ	I.W.G.	ft	0.178	0.356	0.60	0.62	0.933 *	0.956 *	* II6.0	0.222	0.342	0.56	0.804	0.169	0.978 *	0.469
•	NCE	ដ	0.53	0.52	0.64	0.63	0.69	0.69	0.46	0.056	0.55	0.58	0.69	0.56	0.65	0.67
TOWER	PERFORMANCE	ដ្	0.356	0.487	0.580	0.605	0.661	0.672	0.672	114.0	0.496	0.596	0.643	0.393	0.724	0.361
. 12	IN		2#	54	54	54	57	64	58	54	54	54	54	54	64	24
· •	rer ft ³	per atm.	101	. 278	416	4.93	592	629	629	184	228	319.7	393	184	635	254.
HEAT BAL-	ы	بغ	7.6	6.3	1.4	-Ó.43	0.26	-1,1	0.23	2.4	3.6	3.1	2.3	1.6	4° †	0.5
. Å	1	1b/h	16.6	. 28.6	38.2	38.1	39.0	38.7	36.8	30.8	36.8	42.3	7.44	36.6	36.9	33.4
• `	:	twbl	104.5	12.7	66	67	95.2	94.8	94.8) OII	109.3	106	104.5	112.6	96.7	164.5 164.5
· ·	TUO	t t	165	167	169	163.5	170	171	170	164	163	164	165	164	169	164.5
0 ¹	AIR	twbl	63.3	54 5	63	. 16	89.2	87.3	87.3	105	105	102	100.5	011	92	63
TEMPERATURES	22	t _{wb2}	- +9	• 64	63.5	63.5	63.5	63.5	63.5	66.5	66.5	67	67	62.5	65	61
TEMPE	NI	4	72 .	72	72,	72.	72	72	72	72.5	72.5	73	73	72.5	44	74.5
	ER OUT	13	63	87.5	80.5	78	75.2	74	74	85	94.5	88	84.5	3:65	75.5	88.5 74.5
	WATER IN	ч н	109	109.8	104	100.2	• 86	95.5	95.5	120	122	119	116	124	103	104
	- 1 -	U	3.4	2.36	1.51	1.37	₄ 1,25	1.15	1.20	2.78	2.3	1.74	1.56	3.02	1.36	2.4 .
LATES	ft"	ບ	662	960	1501	1656.5	1812	1983	1885	16818	166	1305	J459	- 753	1668	1128
FLOWRATES	lb/h ft	. н	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2692.8
- , .	RUN	No	406	407	408	504	#10	IL4	412	413	111	415	416	417	418	6 17 1

266.

											•						
	Δp	I.W.G.	ft	1.04	.164	0.276	0.378	0.613	0.658	0.187	0.978 🗞	°.978 *	0.556	1.31	1.667	0.307	0.373
		ANCE	цц	0.71	0.72	0.68	0.70	0.72	0.74	0.64	0.71	0.75	0.68	0.74	0.80	0.73	0.73
	TOWER	PERFORMANCE	, ^អ ្	0.511	0.506	0.394	0.435	0.512	0.60	0.398	0.632	0.629	0.297	0.465	0.415	0.285	0.356
	12	INI	•	54	54	54	54	2#	54	54	23	64	54	54	54	54	211
Ka	lb per	n Per ft 3		455	520	255	291	398	564	188	635	689	250	527	533	217	281
HEAT		ANCE	o₽.	1.3	1.7	5°2	3.5	3.1	2.8	3.1	3.7	1.8	0.25	3.5	0.04	44.0	1.1
	M	Ч	h/dI	11	† ††	25.6	31	36	0.04	34	017	36	35	45	43	. 26	34
			twbl	105.5	101.5	109	108	105	103.5	113	97.3	96.5	103.4	105	102	107	108.1
	, ,	0117	цт цт	164.5	160	168	168	169	171	165	, 170	168	160.5	162	157.5	167	167
	° F	AIR	twbl	95	90.5	102.5	101	66	97	1 011	176	92.5	94	96	52	99.4	102
,	ATURE		twb2	61	54.5	66	66	. 66	66	62.5	55	65	54.5	54.5	52.5	66	66
	TEMPERATURES	TN	t 5	74.5	67	72.5	.72.5	72	72	72.5	73.5	73.5	67	67	62.5	72	72.5
		WATER	р Н	82.5	Ĵ,	54.5	92	87	82	102	52	78	05	81.5	L.67 .	00	35
		WA	i H	105	100	FIT	211	109	106	123	103	100	105	105	66	108	III
		цį	U	1.89	1.7	ື່.	ເລີ້. ເ	2.2	1.80	ຜ ຕ	1.69	1.75	2.77	2.19	2.09	3.73	3.2
	ATES	1 1 1 1	U	1428	1585	144	978	1210	1463	101	1596	1685	1144	1449	1517	843 8	650
	F.LOWKATES	lb/h ft	T.	2692.8	2692.8	2692.8	2652.8	2652.8	2552.8	2392.8	2692.8	269s.8	3163	3163	3158	3163	3158
		RUN	No.	420	421	422	423	424	425	426	427	428	u29	H30	TEN	• ં ्:	е е т

11

Table (23) Experimental Data and Results

												•					
	Δp I.W.G.	ft	0.667	0.8715	0.196	1.02 🎄	1.02 å	0.51	1.367	1.667	0.307	0.387	0.658	0.924	0.20	1.07 #	
	INCE	ц ц	0.79	0.73	0.66	61.0	0.81	0.72	0.81	• *** 0	0.78	0.78	0.8	0.79	17.0	0.84	
	TOWER	и ц	0.447	0.513	0.310	0.556	0.589	0.219	0.372	0.352	0.278	0 . 348	0.400	0.432	0.281	0.496	·
	Z		54	54	54	60	66	54	54	54	54	54	54	54	54	99	
	Ka E per ft I	per atm.	004	572	207	692 .	798	234	545	549	233	345	445	532	221	759	
	H L H	4 8	2.3	1.8	2.9	2.2	2.5	-0.2	3.1	0.07	1.5	1.7	1.7	1.1	3.5	1.6	
•	고 포	h/d1	38	41	35	33.2	35	26	11	43	29	37	38	011	34	34	
	•	twbl	105.5	103.9	109.5	96	96.4	100	102.5	102	109	109	106.5	104	II3	.96	
• •	LUO	цт Г	169	170.5	167	170	171	157.5	158°5	158.5	167 ·	170	. 771	177	163	171	
	or AIR	twbl	11°6 6	38	105	68	90.2	. 68	e e e e e e e e e e e e e	92.5 .	102	103	66	96 •5	, oll	05	
· ,	TEMPERATURES IN	t _{wb2}	99	66	62.5	67	67	52.5	52.5	52.5	66	66	55	66	63	66.3	
	TEMPER	t 2	72.5	72.5	72.5	74	74	62.5	62.5	62.5	.73	<u>ר</u> א	74	74	74	74	
ults	ER	72 2	89.5	. 85	102	64	78.5	88	82	82:	98.5	95	06	87	104	80.5	
and Res	WATER	н н	108.5	105	OII	.94	62	98 %C	99 ° 5	86	III	110.5	106	103	120	46	
(23) Experimental Data and Results	ы с	٥	2.57	2.24	4.52	1.92	1.88	3.4	2.7	2.55 s	4 • 33 j	3.5 a.c	2.57	2.57	5.4	2.21	
rimenta	TES t ²	с U	1234	1413-	TOL	1653	1682	1078 ₁	1361	: 1451 (3	85475	1028	254 - 2	OhtT	083	1669 .	• •
3) Expe	FLOWRATES 1b/h ft ²			3168	3168	3168	3168 🖓 🦼	3696 🛫 🖓 1078 🚲	3696	-**	- 10 -	÷	96 1254	3636			,
Table (23	, ,		434 31	435 31	436 31	437: 31	438 🛒 31	¥39 🚛 36	440 35	441 3695	442 3695	3 3695	444 8 3696	445 369	446. 3696	447 3635	
÷ H	P4 2	.	41) - 11, - 11	3	.	#	4	<u>,</u> ,	14	7		644	1	11	11	Ē	-

•							•						К					
NIIG	FLOWR	FLOWRATES	ľ		, .	TEMPERATURES	LATURE	. 0		· .	L M	BAL-	lb per h per	12	TOWER		Δp	
No.	ц Г Г	ູ ບ	1 0	TN T	WATER	t, IN	t twb2	AIR t _{wb1}	t 1	twb1	ų/qī	ANCE %	ft.3 Per 3	N	PERFORMANCE	ភ្ល ភ្ល ភ្ល	I.W.G.	
344	4171.2	1077	3.87	104	- 25	62.5	52.5	07		105	36	0.35	atm. 284	54	0.233	0.76	0.556	
51:1	4171.2		3.13	101	85	64	53	95	160	104°5	44	2.3	. 545	54	0.333	1.00	1.40	
450	2.171.2	1399	2.98	100	85.3	64	53	35	160.5	104	45	-0.5	538	54	0.313	0.866	1.64	
451	4171.2	136:5	4.39		98 . 5	73.5	66	103 °	170	109	35	0.01	273	54	0.261	0.81	0.35	
452	121.2 1210	1210	3,45	103	92.5	.73.5	66	102.5	172	, 107	43	2.4	484	54	0.384	0.82	0.71	
453	4171.2	1314	3.17	106	06	73.5	: 66	100	174	105	42	2.1	552	54	00,400	0.81	24.0	
454	4171.2	687	6.07	611:	105	74	63	110.5	163	113	35	2.7	230	54	0.25	0.72	0.213	
455	4171.2	1191,	2.59	95	82	74	.67	92	171	36 . S	37	1.9	874	66	454.0	0.89	1.11 *	
456	4546.4	(1159	00°†	102	6 0°3	64	23	.95.8	162	105.5	30	0.48	370	54	0.239	0.82	0.71	
.457	14646.4	1259	3.58	COL	98	64	53	95	163	105	43	2.0	570	54	0.298	0.87	1.44	
458	4.3434	1365	13.4	85	85.5	64	53	63	162	104	42	4*0	528	54	0.278	0.85	1.69	
459	4•9h9h;	TES	5.53	108	38	72.5	62,5	101.5	165 °	105	30	1.3	273	54	0.21(0.80	6:33	
1460	4-6464	3,953	4.83	601.	37	71.5	62	102	167.5	107	35	1.8	322	54	0.255	0.80	0.43	•
101	1 . 1 . 1 . 1	1174	3.55	105.5	31.8	71.5	62	100.2	163.5	104	41.5	1.95	463	54	0.315	0.85	0.73	269
							• ,										<u>م</u> ۱	

. .

\$5

																270
	Δp I.H.G.	ft	. 0.858	0.22	1.11 *	0.60	1.47	1.639	0.36	0.453	0.769	0.236	* ĨI''I	0.778	1.467	1.639
	ANCE	ц Б	0.88	0.77	0.98	0.83	0.88	05.0	0.86	0.88	0.87	0.81	05*0	0.87	0,90	0.94 0
	TOWER PERFORMANCE	а ^н	0.329	0.224	0.417	0.178	0.239	0.222	0.214	0.231	0.329	0.20	0.375	0.176	0.225	0.203
	I Z I		54	54	63	54	54	54	54	54	54	54	63	54	54	54
	K a lb per h per ft 3	per atm.	572	204	852	307	489	498	313	362	634	261	765	340	514	564
	HEAT BAL- 1 ANCE	ു ം '	1.65	2.2	3.0	-0-6	0.4	#°T-	7.4	0.22	3.8	1.8	1	6°0-	0 • 4	-1.2
	цк Г	ų/41	4 Z	35	34	32	40.6	₩•.LH	31.6	39	42	34	34	36.7	41	37 5
		twbl	102.5	113	99 . 5	103.5	104.5	104 E	107	107	104	112	100	106	105	103
			170.5	163	173	162.3	163	162.6	168	169	171	165	173	162.4	163	162.5
	°F AIR	twbl	66	OTT	95	92.5	4•46	64	101.5	103	100.5	109	67	96 .5	36	92.5
•	TEMPERATURES	twb2	62	62.5	68	53	53	53	62.5	62.5	62.5	62.5	63	55.5	55.5	55.5
	TEMPER	t2 t3	71.5	72.5	73	19	64	64	72	72	72	72.5	73	67	67	67
	LER Ott	-1 G	05	104.8	85.5	06	88	88	97.5	97.5	16	104.5	30		06	87
	WATER		103.5	117	38	63	66	86	107	108	105	115	100	101	100	35
	니니	ი	3.74	6.74	a. 9	4.77	1.4	3-94	5, 94	5.14	4.39	2.43	4.15	5.21	t. 0.4	4.46
	ATES ft ²	U	1234	724	1406	CSOT	1256	1307	866	1002	£211	692	1241	1090	1223	1273
	FLOWRATES 15/h ft ²	ч	4545.4	4646.4	4646.4	5148	5148 👌	5148	5148	5148	5148	5148	5148	5676	5576	5676
	RUN	No.	452 °	463 1	1 191	165	465	467	17 168	rt 69	H70 5	12.H	472 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	474 5	40 10 10 21
ĩ			· ; '	· ` .					÷.,• • ,		۰, -	÷ .,	÷.,			

-<u>y</u> I.W.G. Å₽, 1.156 1.556 0.253 1.644 0.391 0.476 0.849 ţ 0.711 1.622 0.778 0.137 0.257 01.0 0.34 14.0 16.0 0.88 0.90 0.95 0.92 0.86 0.84 0.89 0.94 0.95 0.47 0.45 ដ 043 PERFORMANCE TOWER 0.168 0.4.90 0.159 0.158 0.189 0.313 0.146 0.179 0.187 0.306 0.367 0.348 0.541 0.2 ្កំអ 54. 54 54 54 5 54 54 65 54 30 36 36 36 54 NI 2 1b per ้ซ ม ม per 868 atm. h per ft 3 194 365 331 · 156° 587 282 502 386 546 152 235 362 290 ANCE > HEAT 0.32 BAL-· 6°0--1.2 -0.8 t.5 ربر) درم -2.1 3.7 1.5 3.7 2.6 6.6 7.3 -1.7 2.1 ;; £ ~ 35.7 27.4 16.6 प/दर 42.1 10 , J M 32 46 ဓ # ň So 16 16 4 109.5 108.2 103.5 94.6 109.8 twbl 106 108 105 110 108 100 50 . E5-5 167 " TUO 169 ц Ч 166 168 167 153 153 154 153 163 173 167 101.5 169 169 77 78.3 97.8 98**.**5 101.5 101.4 102.4 19.4 AIR twbl 100 100 105 76 98 °. • TEMPERATURES 62.5 62.5 62.5 62.5 wb2 58. 51,5 51 53 68 20 58 53 21, 5 Z 68.5 68.5 68.5 68.5 72.5 63 . 5 . 61.5 61.5 61.5 61.5 n, t 73 22 22 72 97.8 77.5 5 D 06 5 73.5 95 102 **3**2 95 66 5 82 92 97 81 WATER T L 103.5 105.5 OTT 105 102 103 103 106 105 . 16 100 20 103 100 5.32 5.33 1.72 6.18 5:12 5.46 7.43 6.25 8:86 6.77 5.75 1.46 1.23 1.02 Ч I υ 1171.3 1217 1140 1168 997 703 835 , 168 6230.4 1008 1014 752 1075 636 1154 lb/h.ft² c FLOWRATES 6230 : 4 6230.45 6230.4 6230.4 6230.4 6230.4 6230.4 1095.6 1035,6 1095.6 6864 1095.6 6864 477 478 476 479 RUN 436 483 4.63 . 883 1 No. 480 187 482 184 485 :181

Table (23) Experimental Data and Results

			•	· .										·		
Δp I.W.G.	ft	0.433	0.507	0.70	0.96 *	• 496.0	× 05°0	0.433	1.60	2.30	0.967 ¥	0.93 *	0.933 *	* 2+6.0	1,013 *	,
INCE	ца ца	0.38	0.50	0.54	0.47	0.47	0.50	0.50	44.0	0.92	C4.0	0.45	0.44	0 . 44	0.43	
TOWER PERFORMANCE	មក	0.60	0.55	0.619	0.857	0.902	0.809	0.672	0.756	0.722	0.760	0.778	0.730	0.750	0.802	
ь 2	NI	36	36	36	46	52	40	36	36	36	77 77	116	0	42	. 52	
$ \begin{array}{c} K_{g} \\ g \\ Lb \\ per \\ h \\ per \end{array} $	ft ³ per atm.	324	356	458	874	1014	748	452	539	485	868	916	755	807	972	
	ANCE &	8.0	3.5	2.1	4°7	4.5	2.6	4.2	-1.7	-3.8	3.4	7.8	1.1	8.0	7.2	
л В	4/4I	20.4	10.4	10	18	18.8	15.4	39.6	51.9	50.7	34	30.6	31	31.2	32.6	
	twbl	32	85.7	84	87	86.2	98 .	106.5	105	104	95	91.5	33 . 3	92	33	
. . .	our t1	154	148	150	152.	152	152	160	160	157.5	162	153	153	152	152	
oF ATR	twbl	79	65	60	64	62.5	62	ر ب ب ب	50.5	87.5	64 .	74.5	78.	76.2	76	•
TEMPERATURES	N twb2	51	61	6 †	50.5	50.5	50.5	55.5	55.5	55.5	51	50	50	50	20	
TEMPE	t2	61.5	59	50	60.5	60.5	60.5	68.5	68.5	68 . 5	62	ÊO	60	60	00	
	T2	73	62.5	57	54.5	53	55	75	70	71.5	62.5	60	63 . 5	62	59.2	
	T L	106	79	70	78.5	75	74	115	115	113	66 6	95	100	93	98	
. г	ί Ω	0.935	0.837	0.703	0.507	0.48	0.53	1.16	0.78	0.72	0.72	0.703	0.77	0.74	0.65	
ATES ft ²	ບ	1711	1308	1559	2153	2275	2068	1276	1883	2053	2054	2104	1916	1997	2229 ***	
FLOWRATES	. <mark>,</mark> д	1095.6	1095.6	1095.6	1095.6	1095.6	1095.6	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1473.4	
RUN	No.	t; 90	154	492	664	161	495	136	464	1:98	664	200	201	502	S	· · ·
				۱. ب		< ```			: .	, · 			2. !			

	·.											-				
Δp I.W.G.	ft	0.117	0.153	0.28	0.42	0.52	0.62	0.727	1.00 *	1.06 *	1.0 *	1.033 *	0.933 *	1.033 ¥	0.217	
INCE	្ត ធ	0.53 .	0.54	0.51	0.50	0**0	0.59	0.53	0.56	0.54	0.51	0.49	0.62	0.68	0.47	
TOWER	ស័យ	0.275	0.293	0.378	0.421	0.544	0.468	0.553	0.703	0.714	0.712	0.729	0.627	0.703	0.362	
	NI	30	36	36	36	36	36	36	52	56	50	58	Th	56	36	
	ft] per atm.	156	182	265	308	376	428	486	936	026	948	619	805	255	211	
HEAT BAL-	4°°	3.8	1.7	6.6	5.8	11.5	1.6	3.0	4.6	2.7	4.7	4°4	-5.1	-1.1	6.7 .	
ML N	૫/વા	11.5	13.0	10.5	12.8	21.4	12.2	21.0	30.8	38.6	45	48	51.3	31.7	23.6	
·	twbl	1 16 .	66	80	88	92.5	87	16	94.5	96	66	98 • 5	102	92 .	103	
	t t	150	152	150	149	148	152	152	157	157	158	157	154	158	153	
s ^o f AIR	t wbl	82	79	70	70.6	80	64.5	73.3	79	82	86	86	91.5	75	3 3.5	
TEMPERATURES	t ^t wb2	, 149	6 17	ł; 9	64	64	51	51	56	56	54 .	54	54.4	54.4	54.4	
TEMPE	т 7	61	61	19	61	61	61.5	61.5	65	65	65	65	66		66	
WATER	00T T2	86	82	72	17.	75	61.5	63	. 67	63	69	68.5	74	63.5	95	
WAY	. T L	100	96	8 [.]	87	106	74.5	83	, 93	86	106	107.5	107	85	118	
14	ບ	2.51	1°34	1.63	1.36	1.22	1. 06	0.97	0.95	0.89	0.97	0.91	1.06	0.84	2.63	
FLOWRATES 1b/h ft ²	ប	290	161	010	1025	1212	1396.	1518	1 976	2100	1935	2060	1760	2244	741	
Ib/h	1	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1874.4	1874.4	1874.4	1874 .4	187.4	1874.4	1874.4	
RUN	No.	504	505	506	507	508	503	,510	511	512	213	514	515	516	517	

273.

`.

			•		-											
I.W.G.	, tt	0.473	0.58	0.753	0.40	1.067	2.267	0.84	0.32	0.937 *	1.00	1.05	0.93 *	.967.	0.45	
ANCE	ц ^ц .	0.58	0.61	0.71	0.52	0.55	0.58	0.53	0.47	0.46	0.49	0.52	0.52	0.54	0.58	
ERFORM	អ្ ម	0.415	0.486	0.515	0.417	0.605	0598	0.5066	0.381	0.735	0.679	• 654	0.654	0.647	0.330	• •
I NI	-	36	36	36	36	36	36	36	36 J	50	64	54	11	11 11	36	;
n per ft ³	per atm.	384	538		290	539	583	572	251	818	5 th B	959	826	821	276	
ANCE	ф, ʻ	5.1	6.7	3.1	1.6	-1.0	-6.1	6.1	6.3	5.4	6.9	7.2	7.6	7.0	-1.9	
- 1	म/पा	18 . 8	18.8	21	31.7	51	51•Ģ	32.5	22.0	50.7	÷ 21	33	37	37	ee.	
•	twbl	68	87.	85	101.5	104	101	92	94.2	100.5	67	95	36 . 5	96 . 4	102	
LOO	ч Ч	128	126	126	158	160.3	160	125	128	152:5	154	153.5	155	155	160.5	
AIR	twbl	78.5	75.5	74	06	93 [.]	83	80	88.5) 16	84	80	62.2	82.5	ບິ	
N	t _{wb2}	52	52	52	52.5	52.5	52.5	22	52	56.5	61	61	6 1	6 17	52.5	
н	t t	64	64	19	65	65	65	65	65	65	59	59	59	29	. 65	
TER	5 13	76	70.5	63.	0 80	76	· 74	75	88.5	72	. 67	64	67	67	58 8	
WA IN		63	88	85	IIO	112	106	105	TIT	115	105	86 ·	TOT	100	101	
д] (פי	1.71	1.51	1.35	1.65	1.15	0.99	ָרָ י זיינ	2.06	1.02	0.95	0.926	1.03	1.06	1•00	
1 1 1	ບຸ	1096	1242	1378	1136	1619	1885	7444	606 -	1837	1948	2025	1821	1775	1175	
4/q1	н	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1674.4	1874.4	1874.4	1874.4	1874.4	1874.4	2270.4	· ·
RUN	o.	518	219	520	. `		523	524					~			•
	ID/N FT L WATER AIR · L · PERFORMANCE · ANCE FT N PERFORMANCE	ID/h IT L WATER AIR AIR AIR AIR PERFORMANCE $-\frac{1}{6}$ IN OUT IN OUT IN OUT t_1 t_{wb1} $1b/h$ & per E_r E_h t_1 t_2 t_2 t_{wb2} t_{wb1} t_1 t_{wb1} $1b/h$ & per E_r E_h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ib/h ff L WATER AIR AIR DUT DUT	Ib/h ffLWATER INAIR INAIR OUTAIR NoANCE f_1^3 IN FPERFORMANCE FLGGT1T2 t_2 t_{wb2} t_{wb1} Ib/h t_6 $perpert_7<$	Ib/hft L water in in in inAIR outAIR outAIR outAIR in in inAIR in in inIn in in in inIn in in in inIn in in in in inIn in in in in in inIn in in in in in in inIn 	Ib/h ft L WATER AIR UUT UIT UIT UUT UIT	Ib/h ff L MATER AIR OUT L MATER AIR OUT L MATER Er PERFORMANCE L G T_1 T_2 t_2 t_{wb1} t_1 t_1 t_2 t_{wb1} t_1 t_1 t_2 t_{wb1} t_1 t_1 t_2 t_1 t_2 t_1 t_1 t_2 t_1 t_2 t_1 t_1 t_2 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_2 t_2 t_2 t_2 t_2 t_1 $t_$	LD/n ft L MATER AIR OUT AIR OUT L MATER FF PERFORMANCE L G T T T T T T T T E L MATER MATER MATER L^{0} MATER L^{1} T L^{1}	Image: The first indication of	Ib./h. ft L MATER AIR OUT L $L_{\rm M}$ <t< td=""><td>Implant L MARCE MARCE</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	Implant L MARCE MARCE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

				•										۰,	
Δp Ι.₩.G.	ft	i.667	2.267	0.34	0.467	0.613	0.88	0.987	0.193	1.02 *	1.033	1.033 *	1.053 *	1.067 *	1.013 *
INCE	ц ц	0.67	0.64	0.51	0.56	0.55	0.62	0.63	0.53	0.54	0.61	0.61	0.65	0.64	0,65
TOWER PERFORMANCE	ц <mark>и</mark> ц	0.495	0.512	0.355	0.346	Tttt • 0	0.522	0.512	0.268	0.67.	0 . 583	0.581	0.600	0.632	0.575
	NI	36	36	36	36	36	36	36	36	50	45	118	52	57	4:5
	ft' I per atm.	588	643	278	311	423	667	674	. 46T	185	143	888	1030	1123	922
HEAT BAL-	46	-3.6	-6.5	5.7	3.2	5.1	6.4	4.6	3.4	7.3	6.6	5.2	5.2	5.5	5.1
R L	µ/dנ	t 7	9†	26	26	36.6	32.3	31.8°	20.7	47.	37.6	37.9	27.0	29.9	29.4
	t _{wb1}	104	lol	61	100	102	66	93 °3	103	102	96.4	95.5	90.4	91.8	33
	our t1	159	158	130	157	157	156	157	159	158	154:	157	150	153	154
0 AIR	twbl	06	83	63	86.5	92	86	84	16	16	83	82	75	- 22	- 10
TEMPERATURES	r twd2	52.5	57	52	52	52	54	54	54	57	64	49.5	51,	51	51
TEMPEI	t ²	65	69	. 65	65	65	66.5	. 66.5	66.5	65.7	59°	62.5	61	61	61 َ
WATER	our T2	78	- 79	62	86	85	76	75	35	74.5	63	69	65	65	03
WAJ	, L T	103	100	114	104	TTT	. 00T	. ' 16	110	OTT	57	36	86	89	.16
• 	ן ט	1.37	J.25	2.48	2.11	1.89	1.63	1.54	3.09	1.30	1.28	1.22	1.15	1.10	1-25
ATES ft ²	ט	1660	181	617	1076	1204	1395	1475	134	1746	1773	1855	1982	2056	ciş1
FLOWRATES 1b/h ft ²	ы	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4	22730.4
RUN	No.	232	533	534	535	536	537	538	539	540		542	C # 3	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
	5.7	*	, `		(· .	,		• • •	

				•										·	270.
e e	I.N.G.	1.04 *	0.467	1.733	2.3	0.227	0.38	144.0	0.693	0.88	1.037	1.033 *	1.067 *	1.06 *	1.10 *
	ANCE .	0.52	0.64	0.70	0.72	0.54	0.63	0.58	0.56	0.61	0.63	0.64	0.70	0.66	0.67
TOWER	PERFORMANCE E	0.661	0.287	0.423	644.0	0.262	0.282	0.352	0.446	0.464	0.462	0.63	0.526	0.545	0.568
t	I NI	52	36	36	36	36	36	36	36	36	36	20	611	. 43	60
Ka g	h per ft ³ per atm.	899	292	583	661	211	345	361	493	582	604	7447	6101	666	1056
	ANCE	5.8	-2.4	-4.3	-5.0	т • г	2.9	t.9	6.3	5.5	3.3	6.6	4.87	6.48	5,36
	л" 15/h	52.7	34 . 4	50.4	tt° 6tt	24.	18.2	29.7	42.1	42.5	42.8	49.6	30.1	35.4	0.14
	t Wbl	101.5	104	103.5	103.3	105	61	102 .	105	104	102	102	63	95 .	36
:	our t1	159	160	163	159	154	151	04T	151	150	149	154	155	154.5	154
بیا 0	AIR t _{wb1}	91.7	63	63.	16	36.5	83	32	67	35	93	92.5	64	83	83
TEMPERATURES	N twb2	55	53	53	. 53	- 54	54	54	54	24	54	57	51	21	51.
TEMPE	t ²	. 65.5	64	64	64	64	64	64	64	64	64	65.7	61	.19	19
	WATER	74	9 1. 5	83	80	66	82	68	87.5	84	82.5	73	69	17	70
	T L MA	111	107		102	115	63	108	- 114.5	011	107	101	68	56	. 95
	ט ר	1.22	2.39	1.66	1.52	3.72	2.91	2.57	2.2	2.05	1.87	1.57	1.45	1.50	1.38
UATES	, 9 ,	. 598T	1127	1620	1766	. 724	926	1047	1226	1315	1439	1720	1855	197	1651
FLOWRATES	4/qr	2270.4	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8
ч. ^с	RUN No.	546 v	547	548	549	. 550	551	552	553	554	555	555	557	558	559
· , .		· ·		19 a 1	÷.,					A 19	, [^] , [.]		·. ·		

Individuality Indity Individuality Individuality </th <th></th> <th></th> <th>•</th> <th>•</th> <th></th>			•	•													
ILONMATTS TENDEMATURES T TAT Kall IFFAT Kall ID FEAL ID FEAL TOWER 1 1 G T T T AT AT AT TOWER TOWER 1 T G T T T AT AT AT AT TOWER TOWER 1 G T T T T T AT AT AT AT TOWER TOWER 1 G T					* 3		٢.	•					*	-*		łt	
FLOFAMITS TELEVERATURES F HEAT KEAL Light per li	άΔ	I.H.G	ft	1.067	0.50	.1.80	2.333	ħ ħ •0	0.253	0.377	0.907	1.267	1.067	1.087		• 4	- 1
FIGHATES FIEM K_{a} <th< td=""><td></td><td>ANCE</td><td>ធ</td><td>0.73</td><td>0.69</td><td>. 0.77</td><td>0.77</td><td>0.66</td><td>0.70</td><td>0.66</td><td>0.69</td><td>0.72</td><td>0.702</td><td>0.69</td><td>*</td><td> </td><td></td></th<>		ANCE	ធ	0.73	0.69	. 0.77	0.77	0.66	0.70	0.66	0.69	0.72	0.702	0.69	*	 	
FIGHATES FIEM K_{a} <th< td=""><td>TOWER</td><td>ERFORM</td><td>ដ</td><td>0.521</td><td>0.25</td><td>0.354</td><td>0.33</td><td>0.308</td><td>0.225</td><td>0.288</td><td>0.395</td><td>0.443</td><td>0.510</td><td>0.49</td><td></td><td>5</td><td>2" 6.,</td></th<>	TOWER	ERFORM	ដ	0.521	0.25	0.354	0.33	0.308	0.225	0.288	0.395	0.443	0.510	0.49		5	2" 6.,
FLOFRATES FLOFRATES HEAT $K_{\rm EL}$ $K_{\rm EL}$ $K_{\rm EL}$ $K_{\rm EL}$ $K_{\rm EL}$ $K_{\rm $				5 †	36	35	36	36	30	36	36	36	50	61			
FLOHRATES TEMPERATURES 1 HEAT HAL HAL <td>*</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>÷.,</td> <td></td> <td></td> <td>4.5</td> <td></td> <td>*</td> <td>· 1</td> <td>:•</td> <td></td> <td></td> <td></td>	*			-			÷.,			4.5		*	· 1	:•			
FLOWRATES L TENDERATURES AIR AIR M. 11b/h ff2 L MATEN IN AIR OUT MATEN 11 C T1 T2 L MATEN IN OUT MATEN 11 C T1 T2 t2 t4b2 t4b1 t100 46:4 12692.81.1814.6: 1.443 100 75 61.5 52 89.2 155 100 46:4 12692.81.1814.6: 1.443 100 75 61.5 52 89.2 155 40:6 13168 12168 1.200 101 78 53 791 158 102.5 40:6 13168 12168 1.183 100 844.5 64 53 751 103 47.5 13168 12168 1.183 100 844.5 64 53 751 103 40.5 13168 12168 1.183 100 844.5 64 53 751 103 75.5 13168 1.733		h per ft ³	peratm	~	313	600	551	376	283	372	. 269	722	575	948			
FLOWRATES TEXPREMATURES AIR AIR AIR 11b/h ft ² L MATER IN AIR OUT 11b/h ft ² L MATER IN AIR OUT 11b/h ft ² T T T T MATER IN 11b/h ft ² T T T MATER IN AIR OUT 11b/h ft G T T T T T MATER IN OUT MATER IN OUT MATER MATER </td <td>HEAT</td> <td>ANCE</td> <td>4.0</td> <td>-0.35</td> <td>-1.5</td> <td>-4.5</td> <td>-7.2</td> <td>2.1</td> <td>2.1</td> <td>3.9</td> <td>4.2</td> <td>3.7</td> <td>, 9. 4</td> <td>ຕ. ຕ</td> <td></td> <td>•</td> <td></td>	HEAT	ANCE	4.0	-0.35	-1.5	-4.5	-7.2	2.1	2.1	3.9	4.2	3.7	, 9 . 4	ຕ. ຕ		•	
TLOMMATES TEMPERATURES TEMPERATURES T 1b/h ft ² C T_1 T_1 T_2 T_1 AIR OUT T_1 C G T_1 T_2 t_2 t_{wb2} t_{w11} T_1 T_2 T_1 T_2 t_2 t_{wb2} t_{w11} t_1 $I_2592.8I$ $IBI4.6I$ $I.448$ IOO 75 $6I5$ 52 89.2 $I55$ I_23168 $IvIO78$ 22.94 $IIO5$ 92 64 53 92 $I56$ I_33168 $IvIO78$ 22.94 $IIO2$ 8445 64 53 92 $I56$ I_33168 $IvIO88$ $E95$ $E95$ $E95$ $E05$ $E4$ $I100$ I_3168 $IvIO88$ $E95$ $E95$ $E05$ $E4$ $I575$ I_3168 $IvIO88$ $E95$ $E95$ $E05$ $E4$ $I575$ I_3168 $VIO28$ $E95$ $E05$ <	: :	ม	ų∕qt	11 8.11	. 33	47.5	48.6	26.4	15.5	16.7	30.2	34.4	46.8	51.7			
FLOWAATES TEMPERATURES TEMPERATURES AIR 1b/h ft ² L MATER NATER AIR "L G IN OUT NATER AIR "L G IN OUT Y Y X "L G IN OUT Y Y X X "L G IN OUT Y Y Y X X "L G IN OUT Y G Y Y X X #1205 S100 75 G1.5 52 89.2 92 93 93 #3168 Y 100 84.5 G4 53 92 93 93 #3168 Y 100 84.5 G4.5 53 93 93 #3168 Y 100 84.5 G4.5 53 93 93 #3168 Y 739 L4.25 93 93 93 93 93 93 93 93 93 93 <t< td=""><td></td><td></td><td>twbl</td><td>100</td><td>104</td><td>103</td><td>102.5</td><td>103</td><td>101.4</td><td>66</td><td>102.3</td><td>102</td><td>103</td><td>IOI</td><td>13</td><td></td><td>• *</td></t<>			twbl	100	104	103	102.5	103	101.4	66	102.3	102	103	IOI	13		• *
FLOWRATES L TAMTER TEMPERATURES 1Lb/h ft ² L G T T T T *L G T T T T T T *L G T T T T T T T *L G T T T T T T T T *L G G T	•	, LIC		155	160	158	158	160	158	157	157.5	158 ,	154	156.5	s	ŕ	z
FLOWRATES TEMPERATURES Ilb/h ft ² L WATER TEMPERATURES 'L G G IN WATER IN 'L G T T T Z twb2 'L G T T T Z twb2 'L G T T T Z twb2 'L G T T T Z twb 'L G T T T Z twb 'L G G T T T Z twb 'L G G G T T Z S </td <td>ь о</td> <td>AIR</td> <td>t</td> <td>89.2</td> <td>63</td> <td>92</td> <td>16</td> <td>16</td> <td>87.5</td> <td>, 84</td> <td>. 16</td> <td>16</td> <td>63</td> <td>91.5</td> <td>•</td> <td></td> <td></td>	ь о	AIR	t	89.2	63	92	16	16	87.5	, 84	. 1 6	16	63	91.5	•		
FLOWRATES L WATER 1b/h ft ² L WATER L G G IN L G T T 2592.89 1814.67 1.49 100 75 25932.89 1814.67 1.49 100 75 25932.89 1814.67 1.49 100 75 23168 251581 2.094 105 92 23168 251581 2.00 101 784 Calles 2739 2.97 100 844.5 Calles 271068 2.97 100 844.5 Calles 271068 2.97 100 84.5 Calles 271068 2.97 100 84.5 Calles 2739 4.25 93.5 84.5 Calles 21220 2.101 785 84 Calles 21220 2.59 100 82.5 Calles 2123 2.29 100 78.5 Calles 21273 1.97 105 80.5 Calles <td< td=""><td>ATURES</td><td></td><td>4</td><td>52</td><td>23</td><td>53</td><td></td><td></td><td>60.5</td><td>e0.5</td><td>60.5</td><td>60.5</td><td>57</td><td>52</td><td>•</td><td>2.1</td><td>·</td></td<>	ATURES		4	52	23	53			60.5	e0.5	60.5	60.5	57	52	•	2.1	·
FLOWRATES TLOWRATES ILD/h ft ² L WATER ''' G I'' OUT ''' G T T ''' G I'' OUT 25692.8) IBIH46 I.49 IOO 75 J3168 JELO78 2.94 100 75 J3168 JELS81 2.00 IOI 84 J3168 JELS81 2.00 IOI 84 J3168 JELS81 2.00 IOI 75 J3168 JELS81 2.00 IOI 78 J3168 JELS81 JOO 2.99 100 84 J3168 JELS81 JOO 2.99 92 92 J3168 JELS20 2.29 JOO 82.5 84 J3168 JELS20 J.97 JOS 80.5 80.5 J3168 JELS20 J.97 JOS 80.5 80.5 J3168 JELS20 J.97 JOS 80.5 80.5 J3168 <thjels3< td="" th<=""><td>TEMPER</td><td>, T</td><td>t.</td><td>61.5</td><td>64</td><td>64</td><td>64</td><td>69.5.</td><td></td><td>.69.5</td><td>69.5</td><td>69.5</td><td>65.7</td><td>61.5</td><td>,</td><td>•••</td><td>· ·</td></thjels3<>	TEMPER	, T	t.	61.5	64	64	64	69.5.		.69.5	69.5	69.5	65.7	61.5	,	•••	· ·
FLOWRATES Ib/h ft ² L b/h ft ² C c ⁻ C	· ,	ATER	100	~ 75	. 92	†8	E 84 . 5	· 0.89.2	88	*		82.5	. 80.5	78.5	· . •		•
FLOWRATES Ib/h ft ² L Ib/h ft ² L ''.'L G G <		W	н Н	100	0105	101	iot.	102	96	93.5	TOT	100	105	104		•	
FLOWRATES Ib/h ft ² Ib/h ft ² c ² TL G c ² 2692.83 IB14.6 c ³ 268 c ³ 201068 c ³ 168 c ³ 2020 c ³ 168 c ³ 1220 c ³ 168 c ³ 1200 c ³ 160 c ³ 1200 c ³ 100 c ³		н			2.94		1.88	2:97	2.4.25	. 3.42		2.29	1.97	1.79	- - -		
	WRATES	h ft ²	ບ ເ	3.1814.(1078	1:1581		301068		Ž12926		\$1382	1603	C1773	۲ ۲ ۳۸.۲ ۲	~~~~	
	FLO	/वा	7.	3 2692.6		3168					3168	3168					
	 	RUN	No.								567	570			α · ·		

													,	. ,		278.
			*	**	**	` ≭ •					:		12.00	•	-3	.**
Cγ	I.W.G.	ft	1.107	1.127	1.033	1.133	0.683	1.933	2.433	0.42	0.347	0.54	0.86	1.053	1.1	1.147
	NCE	ч а	0.77	0.73	0.78	0.79	0.74	0.77	0.75	0.69	0.63	0.70	0.72	0.75	0.61	0.82
TOWER	PERFORMANCE	ដ	0.477	0.50	0.455	0.467	0.254	0.306	0.32	0.261	0.237	0.308	0.377	0.377	0.463	0.433
ŕ t	IN S		52	54	4:3	54	36	36	36	36	36	36	36	36	50	54.
Ka ganta	h per ft ³	per atm.	1100	1109	1038	1147	412	553	577	357	300	450	643	690	1611	1271
	BAL- ANCE	95	1.5	3.5	2.7	1.4	-0-89	-3.2	-2.9	3.5	3.7	3.1	14°146	2.6	3.6	2.4
:	ы з	h/dI	41.6	t:"It	30.1	29.1	33.5	45.5	46.5	24.4	22.3	31.9	34.6	34.45	43.7	30
		twbl	67 🤞	36	1 18	63	102.3	103	103	104.5	JOS	105	104.5	102.3	001	93
	TUO	Ha.	152.	153 . 5	155	155	160	161	160	159	159	. 091	160	158.8	155	155
یم o		twbl	80 92	84	79.5	77	16	92	6	64	66	96	÷ 116	16	89.5	78
TEMPERATURES	NI	twb2	52	52	54	54	54.7	54.7	54.7	60.5	60.5	60.5	60.5	60.5	57	2#
TEMPE		5. 4.	61.5	61.5	63. 5	63.5	67	67	67.	69.5	69.5	69.5	69.5	69,5	65.7	63.5
	TER	12 12	74.5	73	72	70	88.5	86.5	85.5	63	36	92	87	84.5	79	. 72
	WATER	н н	35	46	. 87	84	100	100.5	100	104.5	101	901	103	03 66 61	86	5 tra
	н -	ບ .	1.63	1.62	1.75	1.58	3.03	2.4 >	2.27	4.23	5.09	3.56	3.02	2.67	2.14	1.88
FLOWRATES	ft ² .	ັບ	1875	1955	1031	2003	1222	1540	1630	865	1726	1037	1222	1382	1726	1991
MOLI	15/h ft ²	1	3168	3168	3168	3168 Å	3595.2	3695	3696.2	3696	3696.2	3655	3695.	3695	3695	3676-2
***	RUN	No.	573	574	575	576	577	578	579	580	581	582	583	554	585	565

÷

			•			•				•					
		-::	-*	*					•		•,	**	**	« :	*
٩Þ	ft ft	1.047	1.08 ·	1.047	0.567	1.933	2.467	0.360	0.533	0.613	0.813	1.14	11.1	1.147	1.08
	ч в ч	0.84	0.70	17.0	0.75	0.80	0.83	0.71	0.75	0.74	0.75	0.30	0.77	0.79	0.78
TOWER	PERFORMANCE E	0.367	0.458	0.456	0.222	0.319	0.303	0.174	0.244	0.291	0.329	0.263	0.406	. 0.385	0.351
13	NI	42	47	43	36	36	36	36	36	36	36	50	43	53	tt 3
Ka g lb per	n per ft per atm.	1025	1 96	950	375	665	690	277	375	544	583	1077	1023	1084	64.7
HEAT BAL-	ANCE &	1.9	4.7	4.2	-1.5	-0.62	-3.26	1.8	2.7	3.7	3.4	3.7	4°°	0* †	4.7
	भूम भूम	25	48.8	52.8	38.6	48.84	49.7	14.8	23.7	28.3	35.1	46.1	46.7	37.2	36.4
	twbl	93.3	101	103	106.3	105	108	100	103	104	104.8	103	101.5	95	46
	our t1	155	156	155	162	162.5	156	157	158, 🖗	158 🧧	158	160	153.5	ከካፒ	146
с Ц	AIR t _{wb1}	78.5	90*5	55	96.3	95 .	, ⁸ 1	85.5	91.7	. 36	95	92.5	63	83	រ ទទ
TEMPERATURES	IN twb2	54	54	54	55.5	55 ° 5	55.5	60.5	60.5	60.5	60.5	57	53.5	21	51
TEMPE	t 1 7	63.5	63.5	63.5	68	68	. 89	69.5	69.5	69 . 5	69.5	65.7	63	ເວີ	29
•	T2	73	08	83	46	87.5	86.5	68	06	16	83	83	82	75	78.5
	WATER IN T_	84	102.8	107.5	105	102.5	JCO	° 32	66 [°] 5	103.5	103	IOI	101.5	. 06	116
	טוב	2.23	2.05	2.21	3.73	2.84	2.65	5,59	4.51	4,05	3.46	2.61	2.59	2.3	2.68
FLOWRATES	ft ² G	1654	1804	1671	1117	1457	1576	3 747	925	1031	1206	1598 ·	1608	1871	1559
FLOW	1b/h L	3696	3696	3596	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	1171.2
	RUN No.	587	588	583	250	165	592	293	594	595	256	537	238	233	0.79

																	•	
				**					•	**	**	*	*	*	**	*.		
	Δp	I.W.G.	ft	1.13	0.633	2.0	2.467	0.88	0.90	1.167	1.167	1.18	1.07	1.14	1.14	1.08	0.733	
		NCE	ц ц	0.76	0.79	0.82	0.84	0.80	0.75	0.81	0.78	0.76	0.79	0.80	0.8	0.77	0.86	
	TOWER	PERFORMANCE	ង្ខ	0,408	0.188	0.303	0.279	0.301	0.247	0.386	0.341	0.368	0.237	0.341	0.333	0.31	0.171	
	•	1 NI		50	36	36	36	36	36	50	51	55	0	94	8.1	41	36	
:	Lb per	h per ft ³	per atm.	10/1	364	615	67.5	677	456	1126	953	1006	738	983	903	762	433	
	HEAT	ANCE	96	0• †	-2.1	0.08	-2.2	2.7	2.3	t1 * 11	3.0	3°3	2.6	3.6	0.8	1.9	-2.4	
•	2	۲ ۲	4/41	50.1	37.4	47.9	48.4	36	31	20	T#	47.5	38	39.5	51.3	46.7	33.6	•
• •			twbl	100	106.	106	106.5	105	105	103	86	IOL	101.3	66	101.8	102.8	105	
•	. <i>.</i>	11C	t 1	147	162	162	159	158.5	157.7	157	154.7	157.4	158	153	.154	154 5	161	
	بن 0	AIR	twbl	16	96	96	95	95.5	26	63	86.5	90.5	16	88.5	92	63	15	
	TEMPERATURES		twb2	51	55.5	. 58	58	60.5	60.5	57	51	51	51	51	51	51	58	
	TEMPE	ŀ	5. F	59	08	17	77	69.5	69.5	65.7	60	60	60	60	60	60	63	
		ER	100 12	08	9 4 • 5	83	88	89.5	46	54	64	81	84.5	80	83	85.5	92	
	·	WATER	N H H	100	103.5	102.5	IOT	102	105	lol	93 . 5	98.5	608	96	65	TOT	66	
		11	IJ	2.32	4.23	3.24	3.07	3.86	4.62	2.95	2.62	2.6	3.33	2.83	2,63	2,99	4.57	
	FLOWRATES	ft ²	ບ	1798	1098	1433	1514	1204	1006	1576	1776	1788	1392	1541.4	5° 4921	1553	1127	
	FLOWI	lb/h ft ²	н.	4171.2	4645.4	4646.4	4646.4	4646.4	4646.4	4646.4	4546.4	4546.4	4646.4	4645.4	4645.4	4646.4	5148	
	L.	RUN	No.	109	602	603	504	605	ତେତ	607	608	603	610 4	611	612 4	613 4	614	

Ι

•

.

4

	. ·						*	*		*	**	2%	*			
da	I.W.G.	ft	2.05	2.47	11.1	0.66	1.2	1.107	1.08	1.16	1.2	1.16	1.1	0.67	2.0	2.47
	ICE	ч ц	0.84	0.85	0.82	0.77	0.85	0.82	0.82	0.83	0.85	0.8	0.79	0.85	0.86	0.87
TOWER	PERFORMANCE	۲ _م	0.221	0.214	0.294	0.207	0.349	0.283	0.239	0.286	0.308	0.304	0.33	0.167	0.214	0.214
1			36	36	36	36	50	42	0#	. ⁴ 5	21	t 1 th	47	36	30	36
K a g lb per	h per	per atm.	557	565	747	421	1156	856	619	016	1084	827	878	454	609	620
	ANCE	99	-2.7	0* 17-	3.5	1.0	3.7	. 6.1	0.23	1.4	1.0	1.2	1.0	-2.2	-1.6	-2.5
	ц ≋	५/५१	44.5	3°π'	37.9	31	50	42.1	40.0	39.6	42.1	50.5	59.7	37.1	0*##	46.7
		twbl	106	107.5	106	105	103	100.6	IOI	66	97.9	103	105.3	105	106	301.
• • .	10		162 .	162	158 . 5	158	157	153	154	155	155.4	151	153	162	163.5	162
بن 0	AIR	twbl	95	<u>94.5</u>	67	96 . 4	63	Τ6	16	87.4	85.	94	97.5	36	96 .3	96.5
TEMPERATURES		t Wb2	58	58	60.5	60.5	57	51	51	51	51	55	55	59 . 5	59.5	59.5
TEMPEI	N.F	t ²	63	68	69*5	69.5	65.7	60	60	60	60	66	66	72	72	71
	t	100 12	91.5	16	90.5	95	85	84	86	81	73	87	88.5	94	92.5	92.5
	WATER	2 H 1 H	IOT	100	103	101	COT	25	67	63	06	TOT	105	lol	101.5	101.5
	ы	9	3.63	3.45	4.35	5.02	3.29	3,35	3°6 .	3.03	2.73	3.16	3.02	4.89	4.23	4.01
FLOWRATES	ft ²	່ ບ	1399	1488	0811	1026	1563	1538	1431	1674	1687	1623	1706	1159.5	1343	1416
FLOW	u∕d1	1	5143	5148	5148	5143	5148	5148	5148	5148	5148	5148	5148	5676	5676	5676
	RUN	No.	. 615	919	617	618	619	620	621	622	623	624.	, 625	626	627	528
		. •					•	2.1.						2	с р.	

٠								·	v					2	282.
		水	**	*	*	~*	*	•		· .	*	**	*	*	•*
Δp .I.W.G.	ft	1.2	1.22	1.11	1.16	1.20	1.22	. 0.833	2.03	2.47	1.187	1.28	1.24	1.3	1.18
KCE .	ца ца	0.84	0183	0.84	0.84	0.84	0.82	0.88	0.88	0.87	0.77	0.81	0.84	0.85	0.84
TOWER PERFORMANCE	ង្គ	0.281	0.286	0	0.247	0.264	0.267	0.149	161.0	0.195	0.267	0.300	0.253	0.256	0.233
12	NI	49	52	01	42	49	6.1	36	36	36	42	54	4:9	60	10
Ka g h per	ft ³ per atm.	1031	1073	808	663	957	938	455	567	605	750	1065	936	1071	885
	ANCE %	2.8	2.0	2.5	2.5	1.9	2.0	-2.0	-1.9	-2.2	2.1	2.6	1.7	0.56	2.8
2 ²	५/५१	42.8	43.6	35.5	37.6	41.5	41.8	37.7	45.8	47.2	62.9	2 6°1	45.2	1th .2	38.6
	twbl	3 3 ° 2	88	66 ° 2	66	66	98	107.5	107.4	107.6	109.5	105	66°3	96	100
	our t1	158	158	157.5	157	156.8	156	164	164.6	164.5	152.5	170	155	154	156
0 F ATR	twbl	88	85.5	88	87	87	86	98.7	38	97	102.5	94.2	1.68	63	83.5
TEMPERATURES	t twb2	. 61	t9	48	48	.6 1	64	5°°2	59.5	59.5	51	51	611	61	6†
TEMPEI	t ²	59	59	58	58	59	59	77	17	11	61.5	61.5	59	59.	59
·	T2	81	79	83	81.5	18	80.5	96.5	64.7	93.7	95	85	83	78	83.5
	L L	93.5	16	93 ° 2	92.5	92.5	92	103	103	102	III	101	34.5	88	34 .
ы	10	3.37	3.04	4.10	3.73	3.35	3.25	5.82	tr .74	0 4° 4	4.14	3.38	3.60	3.05	4.2
LATES	υ	1686	1859	1335	1521	1692	1747.	1078	1314	1398	1505	1846	1732	2035	1478
FLOWRATES 15/h ft ²	ы	5676	5676	5676	5676	5676	5676	6230 . 4	#*0239.	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4
NIIä	No.	629 ,	630	631	632	633	634	635	63ô	637	638	639	C+9	641	642

FLOHENTES TEOPENTES TEOPENTES <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th></t<>													•				
ID/Initiation Interviewed				*	*	**	**	*	•*	-32	• 2	*				*K •	40
FLOHRATIES Image: second	đφ	1.H.I	4	121	1.27	1.2	1.23	1.26	1.13	1.16	1.18	1.23	1.05	2.27	2.50	1.26	1.31
FLOHRATES HEAD Late bare NL Late bare Latebare Latebare La		NCE	ط	0.85	0.56	0.81	0.82	0.81	0.82	0.82	0.82	0.82	0.89	0.92	0.89	0.85	087
FLOHRATES FLOHRATES TLOHRATES TLOHRATES MATEN TEMPERATURES MATEN MATEN <th< td=""><td>TOWER</td><td>PERFORMA</td><td>يع م</td><td>0.216</td><td>0.244</td><td>0,302</td><td>0.267</td><td>0.298</td><td>0.222</td><td>0.263</td><td>0.245</td><td>0.252</td><td>0.161</td><td>0.123</td><td>0.141</td><td>0.24</td><td>0.224</td></th<>	TOWER	PERFORMA	يع م	0.216	0.244	0,302	0.267	0.298	0.222	0.263	0.245	0.252	0.161	0.123	0.141	0.24	0.224
IL TLOHRATES TEMPERATURES *	11	NI		1111	51	61	50	61	0.4	42	1111	47	36	36	36	50	53
IEDOFFATES TEMPERATURES $h_{\rm L}$ h_{\rm L} $h_{\rm L}$		h per ft ³	atm.	839	696	1001	996	1082	213	867	816	205	562	519	520	1131	3101
FLOHTATTES TEMPERATURES T N 1b/h ft ² L MATTR AIR OUT - L G T T T T V - L G T T T V MATER AIR - L G T T V V VII VII - L G T T V VII VII VII - L G 93<83.5	HEAT BAL-	ANCE	0	0.37	0.06	2.6	3.I	3.1	1.3	3.0	1.5	2.0	-0.65	-3.0	-3.3	2.5	-0.2
IFIOHPATES IFIOHPATES N JUN JUN Lb/h ft ² L L AIR AIR T_1 T_2 T_1 T_2 T_1 T_1 T_1 T_1 T_1 T_2 T_1 T_2 T_2 T_2 T_{ND1} T_1	M		u/at	40.9	6.44	57.3	50.9	58,9	52.3	57	53.7	54	39	33	40.7	42.5	43.6
FLOMMATES TEMPERATURES TemPERATURES TemPERATURES AIR $1b/h$ ft ² L IN OUT IN AIR T L G T T_1 T_2 t_{wb2} t_{wb1} C L G 3.87 93 83.5 59 40 88 6230.4 1608 3.87 93 83.5 69 49 88 6230.4 1631 3.82 99.5 86 59 49 96 6230.4 1631 3.38 103 88.5 66 50 96.5 6230.4 1841 3.38 1001 85.5 59 490 94 6230.4 1841 3.38 105.5 93 66.5 50 96.5 6230.4 1861 1338 105.5 93 60.5 50 96.5 66.5 66.5 66.5 <td></td> <td></td> <td>Twbl</td> <td>93•8</td> <td>66</td> <td>105</td> <td>99°2</td> <td>τότ</td> <td>104.5</td> <td>106</td> <td>TOH</td> <td>102.5</td> <td>110.5</td> <td>101.5</td> <td>105</td> <td>98.5</td> <td>97.5</td>			Twbl	9 3 •8	66	105	99 ° 2	τότ	104.5	106	TOH	102.5	110.5	101.5	105	98 . 5	97.5
FIOWFATES TEMPERATURES N 1b/h ft ² L MATER TAMPERATURES • L. G G T_1 T_2 t_2 t_{mb2} • L. G G T_1 T_2 t_2 t_{mb2} • L. G 3.36 93 83.5 59 40 6230.4 1848 3.36 92 82.5 62 t_2 t_{mb2} 6230.4 1841 3.36 103 83.5 66 59 49 6230.4 1841 3.38 101 85.5 66 50 10 6230.4 1841 3.38 101 85.5 60.5 50 66.5 66 50 66.5 50 10 6230.4 1841 3.38 101.5 88 60.5 50 60.5 50 66.5 50 66.5 50 <		TUO	ц ц	155.5	156	155	145	147	148	149	152	154	164	159	163	155.3	156.5
FLOWRATES FLOWRATES L L L MATER TL G $\frac{1}{G}$ $\frac{1}{IN}$ WATER TL G $\frac{1}{G}$ $\frac{1}{IN}$ WATER TL G $\frac{1}{G}$ $\frac{1}{IN}$ $\frac{1}{IN}$ $\frac{0}{II}$ F230.4 1608 3.87 93 83.5 83.5 6230.4 1841 3.36 92 82 5 6230.4 1841 3.38 90 83.5 5 6230.4 1841 3.38 101 85.5 85 6230.4 1841 3.38 101 85.5 85 6230.4 1841 3.38 101 85.5 85 6230.4 1427 4.53 105 88 55 95 6230.4 1633 3.8 101 85 95 65 6230.4 1533 3.8 101 93.5 88 56 6230.4 <td>ы Ч</td> <td></td> <td>twbl</td> <td>88</td> <td>87.1</td> <td>96.5</td> <td>93</td> <td>94</td> <td>66</td> <td>100°4</td> <td>96.5</td> <td>95</td> <td>66</td> <td>06</td> <td>32</td> <td>86.4</td> <td>84.8</td>	ы Ч		twbl	88	87.1	96.5	93	94	66	100°4	96.5	95	66	06	32	86.4	84.8
FLOWRATES FLOWRATES L L L MATER TL G $\frac{1}{G}$ $\frac{1}{M}$ WATER TL G $\frac{1}{G}$ $\frac{1}{M}$ WATER TL G $\frac{1}{G}$ $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{M}$ FILOWRATES TL G $\frac{1}{G}$ $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{M}$ TL G $\frac{1}{G}$ $\frac{1}{G}$ $\frac{1}{G}$ $\frac{1}{T}$ $\frac{1}{T}$ FI 16018 3.35 3.87 93.55 88 83.55 6230.4 1841 3.364 1003 88.55 86 86 92 85.55 93 86 86 93.55 93 93.55 93 95 93 95 96 92 92 92 92 92 92 92 92 92 93.55 93 94 92 92 92 93.55 93 92 <td>RATURES</td> <td>N</td> <td>twb2</td> <td></td> <td>21</td> <td>55</td> <td>611</td> <td>617</td> <td>20</td> <td>50</td> <td>50</td> <td>50</td> <td>59°2</td> <td>57</td> <td>57</td> <td>51</td> <td>51</td>	RATURES	N	twb2		21	55	611	617	20	50	50	50	59 ° 2	57	57	51	51
FLOWRATES FLOWRATES L MATE ' 'L' 'L 'MATE ' 'L' 'G 'L ' 'L' 'G 'L' ' 'L' 'G 'L' ' 'L' 'G 'L' ' E230.4 1848 '3.35 '93 ' E230.4 1848 '3.35 '93 ' E230.4 1841 '3.35 '93 ' E230.4 1841 '3.36 '103 ' E230.4 1841 '3.38 101 ' E230.4 1427 '4.37 107 ' E230.4 1427 '4.37 107 ' E230.4 1532 '4.07 103 ' E230.4 1533 '4.07 103 ' E230.4 1533 '4.07 103 ' E230.4 1633	TEMPEI	н	t 2	59	62.5	66	59	59	60.5	60.5	60.5	60.5	71	71	11	62.5	62.5
FLOWRATES Ib/h ft ² L 'L G G 'L G G T _J 'L G G T _J 'L G 3.87 93 6230.4 1848 3.87 93 6230.4 1848 3.364 103 6230.4 1841 3.38 93 6230.4 1841 3.38 93 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1841 3.38 101 6230.4 1833 3.8 101 6230.4 1633 3.8 103 6230.4 1233		rer out	т 2	83.5	82	83.5	86	85.5	63	92	06	83	96	83	93.5	18	80.5
FLOWRATES FLOWRATES Ib/h ft ² . L. G 6230.4 1608 6230.4 1848 6230.4 1841 6230.4 1841 6230.4 1841 6230.4 1841 6230.4 1841 6230.4 1843 6230.4 1833 6230.4 11333 6230.4 1533 6230.4 1533 6230.4 1533 6230.4 11333 6230.4 1533 6230.4 1533 6250.4 1533 6		WA' IN	ч	63	92	103	66	TOT	105.5	107	103	101.5	103	93 . 5	3 6 . 5	16	63
FLOWRATE FLOWRATE . L. . L. . L. . 5230.4 160 . 5230.4 184 . 6230.4 171 . 6230.4 142 . 6230.4 142 . 6230.4 142 . 6230.4 163 . 6230.4 163 . 6230.4 163 . 6864 1270 . 6864 1271 . 6864 134 . 6864 134		110	9	3.87	3.36	3.64	3.82	3.38	4.58	4.37	4.07	3.8	6.3	5.4	5.1	3.85	3.56
N (223 3 3 3 3 3 5 2 3 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2	RATES	ft ²	ი	1608	1848	1712	1631	1841	1360	1427	1532	1639	0601	1276	1343	7771	1631
Z ·	FLOW	d/dt	1 1	6230.4	6230.4	6230.4	5230 . 4	6230.4	6230.4	6230.4	6230.4	6230.4	6864	6864	t 939	6564	6864
		RUN	NO.	. £†3	544	645	645	647	640	649							

283.

		*	*	-33	*	-55	*	40	*	*	**				
	∆p I.W.G.	1.28	1.27	1.27	1.27	1.29	1.31	1.13	1.18	1.27	1.27	0.18	0.45	0.59	1.07
	L P VCE	0.83	0.85	0.84	0.83	0.84	0.84	0.84	0.84	0.87	0.82	64.0	0.50	0.50	0.55
	TOWER PERFORMANC E E _r E _h	0.231	0.229	0.240	0.240	0.255	0.250	0.214	0.224	0.206	0.222	0.259	0.343	0.467	0.381
	Z NI	45	448	48	, 6 1 1	55	59	t4 0	1 4	ť; 8	ł 8	18	18	18	18
	Ka Bber h per ft per	1058	616	916	868	1002	985	776	808	466	006	233	468.5	750	717
	HEAT BAL- ANCE %	2.1	1.6	1.88	1.3	0.96	0.32	2.4	1.7	1.69	2.7	-2.0	1.6	3.0	0.7
	ч/qт Л ^Н	39.0	th et	55.3	57.1	61.4	60.6	51	58.8	31.5	39.7	28.2	22.4	31.3	31.2
	twb1	4°85	101.5	104	104	103.4	102.5	106.2	108	96	93	011	67	36	67
	our t ₁	157.	161.6	162.5	162.5	162.5	162	161.5	163	152	157	165	159	155.5	155.5
	°F AIR twh1	36	92.5	96	95.6	95	46	66	IOI	80.5	87	103	83	83.	85.4
	TEMPERATURES IN to tuno	51	50	50	50	50	50	617	64	48	413	52.5	52.5	49.5	t9 5
	TEMPER. IN	62.5	60	60	60	60	60	59.5	59.5	56.5	56.5	65	65	62	62
	WATER M OUT T 2	18	87	89.5	89.5	88	87.5	63	64	77	83	107	85	78	. 82
	T, WA'	- 06	68	102	102	TOT	100	105	107	84.5	66	126	102	EOI	102
	טןב	4.17	4°54	4.23	4,08	3.74	3.62	5.22	4.87	01.4	4.22	2.81	1.73	1.28	1.6
	RATES ft ² G	1647	1620	1604	1683	1834	1897	1313	1409	. E73I	1626	667	1034	1461.5	1424
tonte (na) avier	FLOWRATES 1b/h ft ² L G	6864 .	6864	6864	6864	6864	6364	5864	6864 .	6864	6864	1874.4	1874.4	1874.4	2270.4
ייידבי יי	RUN No.	657 6	658 6	659 6	660 6	561 E	652 6	663 5	654 6	6655 61	666 68	667 18	668 1{	669 18	:670 23
•			-			•	٠ ب	ş	3	G	9	° O	9	به د د ا	9

..

ч

·.

I.W.G. 0.267 0.307 0.287 0.567 0.653 1.493 0.573 0.307 0.26 0.52 0.52 1.09 1.03 ħ, ٩þ 1.44 0.60 0.53 0.55 0.54 0.59 0.63 0.65 0.66 0.71 0.67 0.70 0.80 0.74 0.75 .д ц PERFORMANCE 0.283 0.211 0.288 0.201 0.352 0.304 0.217 0.141 0.128 0.223 0.273 0.188 0.209 TOWER 0.133 ធ 18 18 18 18 18 18 18 18 18 18 18 18 18 18 NI 2 lb per h per atm. ft 3 per х в в 9111 276 788 822 515 278 311 462 315 563 805 915 692 39.3 BAL-ANCE HEAT -0.2 -2.0 -1.7 -3.0 -1.3 -2.0 -3.0 -3.6 -3.2 -2.6 -2.1 -3.2 -1.5 -1.7 96 26.8 28.9 46.6 28.9 24.8 41.8 46.94 42.8 32.7 27.5 28.8 50.7 31.3 ५/५१ ц Ч 34 108.5 108.5 159.5 twbl 100 105 101 103 112 50 101 109 102 104 101 • 152.5 151.5 159.5 TUO 157 160 162 158 153 155 158 161 156 157 162 Ч, 100.5 AIR twbl 87 102 ന 6 66 202 97 95 63 98 101 87 06 101 ы. С TEMPERATURES twb2 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 47 57 51 51 NI 74 74 62 3 62 62 62 62 57 19 19 61 61 64 1:9 54 104.5 88.5 93.5 $^{\mathrm{T}}_{\mathrm{2}}$ 5 0 0 06 102 105 go 46 66 32 104 85 000 103 WATER 113.5 105.5 114.5 T L 106 116 119 119 112 101 112 110 5 66 11 3.78 2.50 1.95 2.32 2.87 4.54 5.23 3.32 2.76 3.03 5.58 3.74 3.1 2.1 110 1078 728 714 1102 1364 1077 1384 698 706 1114 1338 1116 1379 697 1b/h ft² ပ FLOWRATES 2270.4 2692.8 2692.8 2692.8 2270.4 4171.2 4171.2 4171.2 3168 3168 3168 3696 3696 3636 -1 RUN No. 671 673 672 674 676 575 678 630 577 679 683 634 682 681

285

;

•

												•				
	Δp I.W.G.	ft	0.307	0.533	1.387	1.453	0.587	0.320	2.8	1.067	0*†0	0 . 4	1.00	2.67	· C†*0	1.267
	CE	р, Е	0.77	0.77	0.75	0.81	0.75	0.79	0.86	0.83	0.82	0.84	0.84	0.85	0.85	0.83
	TOWER PERFORMANCE	ដ	0.125	0.202	0.232	0.165	0.156	0.119	0.169	0.152	0.115	0.102	0.146	0.163	0.10	0.157
	N N		18	18	18	18	18	18	18	18	18	18	18	18	18	13
Ka	lb per h per ft3	per atm.	383	676	976	758	613	448	1050	779	797	054	766	1015	607	927
HEAT	BAL- ANCE	с% ⁹	-2.7	-2.3	-2.3	-4.7	-2.6	-1.8	-1.8	-2.7	-2.0	-2.5	-3.6	-2.4	₩° ͳ-	-1.1
	ыг	૫/વા	35.9	48.5	48.44	7.44	39.7	31.4	33,9	011	33.7	37.5	51.1	4.84	31.0	45.4
		twbl	114	111	107	106	107	110.5	100	105	110.5	112.5	III	011	III	211
	110	t 1	163.	1 64	162	163	162.5	163.5	156	160	164	166 .5	166	163	163	164
	AIR	twbl	108	105	99.2	97.5	56	104	06	67	104.4	106.5	103	66	100	100
	TEMPERATURES TN	t _{wb2}	53	53	53	53	53	53	53.5	53.5	53.5	53.5	54	54	55	55
	TEMPE	4 [.]	55	66	66	66	66	66	65	65	65	65	. 99	66	66.5	66.5
	WATER OUT	T2	109	102.5	94.5	96	66	105	88	95.5	104.4	106.5	lol	38	100	86
	WA	r H	117	115	107	104.5	107.5	112	35	103	III	112.5	109	104.5	105	105
1	니 	υ.	6.76	4.39	3.63	4.00	4.73	7.17	ፒቱ° ቱ	46° t	7.38	8.16	5.33	6*11	8.54	5.86
ATES	ft ²	ი	687	1059	1280	1284	0601	312	1287	64 11	769	754	1168	1273	504	1172
FLOWRATES	u/di	1.	4646.4	4646.4	#846 . 4	5143	5143	5148	5676	5676	5676	6230.4	6230.4	6230.4	6864	5284 .
	RUN	No.	685	685	687	638	663	065	169	632	693	634	695 6	696 6	697 6	863

•

.

286.

•

			-%	*	-16	**	-36	-34	-15		**	**	*	**	
		33		 0	~			~	'n	~	Ţ.				*
Δp Ι.Ψ.G.	ft	2.933	1.24	1.29	1.32	1.33	1.36	1°†	1.4	1.4	1.4	1.4	1.26	1.28	1.32
NCE	ц г	0*00	0.29	0.34	0.37	0.39	0.42	0,45	0.45	0.50	0.51	0.39	0.30	0.34	0.38
TOWER	ធម	0.149	0.668	0.612	0.582	0.537	0.506	0.462	0.377	0.434	0.399	0.487	0.671	0.628	0.587
ы	NI	18	33	33	33	33	33	33	33	33	33	33	33	33	33
Ka g lb per h per	ft der atm.	0411	857	952	975	066	1030	0101	1058	7011	1060	095	934	584	5101
HEAT BAL-	ANCE B	-2.6	5.7	6.8	6.8	6.1	. 6*3	4.3	5.7	† *†	3.6	6.3	6. 6	5.7	S.3
WL WL	ų∕qī	45.7	27.7	24.7	24.3	7	23.8	23.8	24	26.3	26	25	46	19.4	20.2
	twbl	III	84 • 9	84.2	84.3	84.3	84.7	84.8	85.5	85.2	85	92.5	76.5	77.3	78
	our t1	164	122.3	122	122.2	122.3	122.9	123	122	122.5	123	120	τοτ	103	103.3
°F AIR	twbl	98	73.7	72.4	72.3	72.1.	72.1	72.5	74.1	ገቱ	73	86	68	68	68
TEMPERATURES	t twb2	55	52.6	53.3	54.5	53 . 4	53.4	53 . 4	53 . 4	53.4	53.4	73	54	54	54
TEMPES	t t2	66.5	63.2	64	64	64	64	54	64	64	74	65	. 65	65.5	65.5
LE K	our . 12	95	63	69.5	70	70.8	11	72	73.5	73	73	83	65.5	66	66.4
WATER	II L	102	102	95	66	16	83	83	30.5	88	93	111.5	63	86.3	84
ц	10	5.49	0.565	0.706	0.784	0.878	66°0	1.074	1.19	1.28	1.36	1.29	0.54	0.62	0.71
FLOWRATES 1b/h ft ²	. ט	1251	2447	2431	2408	2364	2359	2382	2326	2325	2334	2152	2547	2571	2552
FLOWR 1b/h	터	6864	1386	1716	1887	2094	2343	2558	2772 .	2970	3168	2772	1386	1584	1815
RUN	Nc.	669	200	101	702	203	104	202	705	207	708.	203	710	111	212

.

Ka b per ft3TOWER IN m per atm.Ap h per ftAp h per ft1082330.5650.401.369er atm.5rErEhft1082330.5650.401.369er atm.330.5650.401.36948330.7840.261.4948330.7840.261.4948330.4160.661.4948330.4320.461.4948330.4320.461.4948330.4320.461.4948330.4320.461.4948330.4320.461.4951330.4320.461.4951330.5530.361.33951330.5630.361.33953330.5630.361.28953330.5630.361.28953330.6410.321.28953330.5580.381.29953330.5580.381.29953330.5580.381.29	6.3 918 33 0.792 0.25 1.19 *	987 33 0.732 0.31 1.20 *
Z TOWER IN PERFORMANCE IN Ex Eh 33 0.565 0.40 33 0.565 0.40 33 0.743 0.26 33 0.743 0.26 33 0.743 0.26 33 0.416 0.66 33 0.416 0.66 33 0.416 0.66 33 0.416 0.66 33 0.416 0.48 33 0.416 0.39 33 0.513 0.41 33 0.553 0.36 33 0.553 0.36 33 0.553 0.36 33 0.553 0.36 33 0.553 0.36 33 0.528 0.38	918 33 [.] 0.792 0.25	33 0.732 0.31
 Z TOWER IN PERFORMANN IN BERFORMANN BERFORMANN IN BERFORMANN IN BERFORMANN IN BERFORMANN IN BERFORMANN BERFORMANN	918 33 [.] 0.792	33 0.732
• • • • • • • • • • • • • • • • • • •	. 82 33 .	e e
	918	·
Ka B ft ³ ft ³ ft ³ ft ³ ger atm. 1082 948 948 948 948 948 951 951 971 951 971 971 971		987
	6.3	
HEAT BAL- BAL- BAL- ANCE ANCE 5.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2		5.4
WL Ib/h 19.5 19.5 18.9 18.9 18.9 18.9 18.9 18.9 18.9 33.3 32.5 33.3 32.5 33.3 32.5 32.5 27.8 27.8	24	13.5
twb1 77 77 77 77 77 77 77 77 77 77 77 77 89 89.5 89.5 81.2 83.4	60	81
00T tl 104 104 104 120.6 120.6 120.6 120.6 120.5	114.5	120
oF AIR AIR (wbl 66.8 67 67 81 81 81 81 81 78 78 78 78 78 78 78 78 78 78 78 78 78	67	67
TEMPERATURES IN t2 twb2 65.5 54 65.5 54 68 58 68 58	59.5	23*5
TEMPER TEMPER t t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t	69	63
ER 0UT 12 63.5 63.5 63.5 63.5 63.5 86 86 86 82 82 82 77 73.5 75 75	64.5	65
IN IN 11 11 11 10 10 10 10 10 10 10 10 10 10	83.5	80
L C C C C C C C C C C C C C C C C C C C	0.42	0.52
FLCWRATES 1b/h ft ² 1b/h ft ² 13 2553 13 2553 13 2553 13 2553 13 2553 13 2553 10 2594 01 2341 01 2341 01 2316 01 2382 01 2382 16 2317 16 2317	2427	4142
FLCWi 1b/h 1 2013 2013 910 910 3597 3597 3597 3597 3201 2910 2904 2904 2904 2904 2178 2178 2178 2178 2178 2178	1023	1254
RUN No. 713 714 717 715 717 716 717 718 719 720 721 722 723	725 .	125

ć 1

•

													·	289.
	*	-76	*	*	41	*	*	*	-2	*	*	*.	<i>**</i>	
Ap I.W.G. ft	1.27	1.31	1.27	1.27	1.28	1.27	1.27	1.27	1.27	1.2	1.24	1.26	1.27	1.27
ц В NCE	0.28	0.36	0.34	0.31	0.30	0.35	0.25	0.29	0.33	0.23	0.26	0.29	0.23	0.26
TOWER PERFORMANCE E	0.673	0.558	0.619	0.636	0.677	0.602	0.774	0.735	0.707	0.775	0.772	0.738	0.735	0.700
ZNI	33	33	33	33	33	33	33	33	33	33	33	33	33	33
K ^a Ib per ft ³	атт. 894	T15	978	912	636	957	793	886	1049	742	385	893	771	835
HEAT BAL- ANCE &	8.1	5 , 1	7.2	6.6	7.5	6.5	4.8	Ŋ	5.8	3.1	4°3	5.3	6.5	6*9
ч/qт ^Т м	12.7	29. 6	28.9	27.3	26.1	25.1	16.5	15.5	14°3	23.3	19.1	17.3	26.6	25.8
t wbl	84.3	84.7	84	83.5	82.3	81.5	80°t	80	79.6	79.5	80	tı.03	84.8	. 38
t our	115.5	121.3	121	121	122	107	121	i21.5	121	105	SII	611	611	126
°F AIR twbl	75	72.5	71.3	70.5	68	74	64	63	62.2	70	67	65	74	73
TEMPERATURES IN to twho	ۍ ع	51	52	51	50	54.5	54	54.4	54.2	54.2	54.2	54.2	55 . 3	55.3
TEMPER IN	S	63	64	63.3	62.7	66.7	64 . 3	65	65	64.6	64.6	64.6	66	65
ER OUT T2	70	70	63	67	54	71	19	61	60.3	64.5	62.5	62	63	69
MATER IN C	105	94	16	32	93 . 4	96	85	. 61	75	100	30.6	84	107	TOT
בי † ט	0.61	0.77	0.68	0.61	0.51	0.75	0" 034	0.422	0.50	0.354	0.372	0.424	0.461	0.53
FLOWRATES 1b/h ft ² L G	2419	2443	2461	2455	2547	2408	2496	2500	2503	2469	24,84	2492	2435	2432
L ND	1485	1881	1683	1492	1287	1815	858	1056	1254	875	924	1056	1122	1287
RUN No.	. 727	728	723	730	131	732	733	734	735	. 736	737	736	133	0112

·

															290	, (
		*	**	**	*	**	*	**	~:	*	*	*	*	**	*	
Δp	I.W.G. ft	1.31	1.31	1.333	1.333	1.333	1.02	1.11	1.18	1.23	1.30	1.32	1.04	1.107	1.15	
	ксЕ Е ^р	0.32	0.29	0.343	0.374	0.301	0.246	0.33	0.408	0.416	0.480	0.506	0.291	0.343	0.418	
TOWER	PERFORMANCE E	0.658	0.583	0.611	0.576	0.600	0.708	0.615	0.478	0.463	0.398	0.360	0.675	0.606	0.448	
13	NI	33	33	33	33	33	22	22	22	22	22	22	22	22	22	
Ka g lb per	ft 3 ft 3 per atm.	616	982	663	166	828	959	6111	1120	1155	1212	1232	1065	1077	1146	
HEAT BAL-	ANCE %	6.6	9.6	6.7	6 . 4	6.9	.6.9	6.4	4.7	5.5	3°3	3.4	· 3.4	S	3.8	
. M	۹/۹۲	22.8	24.1	22.7	21.4	35.5	21.1	20.2	28.9	36.3	36.3	36	18.5	19.5	19.2	
•	twb1	84.8	85	84.3	84.5	90.5	88	88.2	92.5	36	96	36	86	87.5	88	
	our t	124	125	123	124	125	127.5	129.4	130.8	131	ISI	131	122.8	127.8	130	
or	AIR t _{wbl}	11	4.17	71	70.5	80.4	76	75.2	82.5	88.	88	87.5	75	75	75	
TEMPERATURES	N twb2	55	55	55	55	55	58	58	58	58.2	58.2	58.2	53	59	59	
TEMPEI	t2	65	65	.65	65	65	66	66	66	66.4	66.4	66.4	67	67	67	
	ER our T ₂	61	63	63	63	77	72	73	81.5	86	.87	87.5	. 22	73.2	74.5	
	WATER IN C T ₁ 7	63	96	16	33	OTT	105	67	103	011	106	104	66	95	30.5	
	10	0.61	0.62	0.71	0.79	0.8	0.54	0.75	1.22	1.47	1.785	2.60	0.61	0.74	0.1	
LATES	ft ^c	2442	2453	2430	2421	2322	1955	1958	1864	1794	1794	1827	1965	1966	. Ther	
FLOWRATES	lb/h ft ⁻ L G	1485	1518	1716	1914	1848	1056	1467	2277 .	2640	3201	3630	1188	1452	1914	
	RUN No.	741	742	743	ከክሬ	745	746	747	748	749	750	, 751	752	753	.754	

			**	*						•							
ζÞ	I.W.G.	ft	1.20	1.27	0.64	0.63	0.73	0.79	0.81	0.83	0.89 .	0.95	1.00	1.07	. 71.1	1.32	
	ICE	ц ц	0.469	0.518	0.250	0.294	0.439	0.361	0.382	0.430	0.462	0.485	0.556	0.605	0.642	0.675	
TOWER	PERFORMANCE	<mark>ہ</mark>	8448	0.407	0.456	T##*0	0.278	0.371	0.339	0.333	0.307	0.273	0.276	0.252	0.212	0.199	
13	NI		22	22	18	18	13	18	18	18	18	18	18	18	18	18	
Ka g. lb per	h per ft ³	per atm.	1186	1314	540	630	506	734	735	168	927	\$ 168	#111	1290	1269	1390	
HEAT BAL-	ANCE	9 0	2.9	2.7	Q	5.7	-7	3.7	2.9	3°8 3	3.6	2.7	2.7	2.8	2.0	2.2	
A.	-1 -	५/५१	19.2	19.1	22.5	24	25.8	27.7	26.6	24.8	22.7	22.4	23.1	22	21.5	21	
• • •		twb1	88	88.4	92	92.8	88 . 6	89.6	88.6	87.5	86 . 4	85.8	86	85.2	8.48	85	
·	1110	t 1	130.8	131	125.5	125.5	OIT	109	60T	103.4	108	104.5	103.5	103.4	102.3	12.7	•
, сц о	AIR	twbl	75	75	Bıt .1		83.4	85	1.43	£2 . 8	8.18	81	82	81	80	80	
TEMPERATURES	:	twb2	59	. 65	55	55	51.	51	51,	51	51	51.3	51.3	51.3	51.3	51.3	
TEMPE	•	t 7	67	67	65.7	66.2	63.3	63.3	63.3	63.3	63°3	64.5	64.5	64.5	64 . 5	64.5	
	WATER	100 12	75	35	. 16	90.5	06	06	06	87	36	86	84	82.5	82	81.5	
	LAW.	N H	88	85	121.2	118.5	105	113	011	105	101.5	66	96.5	93	90.3	63	
	그	U	1.18	1.4	1.04	1.21	1.27	1.45	1.55	1.74	1.94	2.15	2.34	2.76	3.2	3.68	
FLOWRATES	ı ft ²	U	1935	1929	1239	1232	1351	1354	1358	1359	1325	1307	1312	1327	1293	1257	
HOTI	५/५१	д .	2277	2706	1287	1485	1716	. 246T	2112	2375	2574	2805	3069	3630	4125	4620	
	RUN	No.	755	755	757	758	759	760	151	762	763	764	765	766	767	763	ť

•

		. 1														
	ď۵	I.W.G.	ft	0.353	0.375	0.787	0.607	0++0	0.41	0.48	0.55	0.59.	0.64	0.36	0.36	
		ICE	ч ц	0.228	0.311	0.710	0.217	0.353	0.406	0.458	0.531	0.547	0.606	0.199	0.313	
	TOWER	PERFORMANCE	អុ	0.411	0.33	0.129	0.553	0.277	0.264	0.243	0.210	0.185	0.189	0.473	0.323	
	2	NI		18	18	18	18	18	18	18	18	18	18	18	18	
K a	1b per	h per ft ³	per atm.	370	457	647	702	471	604	. 680	717	141	930	370	323	
HEAT	BAL-	ANCE	¢%	6.0	6.8	1.0	8.2	4,9	5.8	4.7	2.9	3.4	t, 3	9.5	0.5	
	M	ц Д	u∕d1	13.9	13.1	16.8	23.3	13.8	14.1	1,5.6	16.6	14.8	14.7	13.0	12.6	
			twbl	89.2	06	11. 63.44	92.5	16	91.5	16	63	92.1	93.8	88	88.3	
;• •		TUO	t	126 .	126	129	125.5	126.3	126	126.8	126.8	127.8	128.1	124	125	
	s or	AIR	twbl	80	80.2	15.5	. 418	81.4	82	8°.	84.5	84 .1	85	78	79	
	TEMPERATURES ^O F	IN	twb2	54.7	54.7	54.7	55	547	54.7	5 4 • 7	54.7	54.7	54.7	54.5	54.5	
	TEMPE	н	t 2	63	63	63	65.7	63	63	63	63	63	63	66.4	66 . 4	
		WATER	12 ·	92	16	88.5	85.5	92.5	16	90 . 5	90.5	50°4	83	88.5	06	
		TAW IN	ч	118	109	93 . 5	125.5	: 101	104	102	ICO	<u>98.5</u>	97	511	107	
	I	ц (ع	1.03	1.71	5.73	0.834	2.1	2.65	3.0	3.47	14.41	5.2	6.0	1.18	
FLOWRATES	6	lb/h ft	ღ	465	871	885	1266	832	881	617	416	832	787	932	987	
FLON		1/41	.	1023	1485	5115	1056	1848	2343	2739	. 3168	3630	4092	836	1056	
		RUN	• •	769	770	111	772	773	174	775	776	777	778	611	750	

:

E.1.3. Three Inch Sphere Diameter

•

· · ·

Table (24) Experimental Data and Results

.

.

۶

5

.

ΦĮ	I.W.G. ft	0.067	0.133	0.217	0.417	0.758	1.025	1.12	0.067	0.142	0.23	0.43	0.792
	ER MANCE E _h	0.46	0.32	0.36	0.38	0.34	0.34	0.32	0.57	0.52	0.52	0.54	0.53
	TOWER PERFORMANCE E _r E _h	0.546	0.689	0.723	0.800	0.915	.0.915	0.912	h##.0	0.557	0.612	0.698	0.813
Ľ	NI NI	72	72	72	72	72	72	72	72	72	72	72	72
Ka lb per	n per ft ³ per atm.	123	189	231	361	622	1260	667	129	195	25 1	393	594
HEAT	BAL- ANCE %	н° ц	5,9	4.9	2.55	3.9	-1.0	-0.5	3.1	6.2	2.3	2.5	2.9
	м ^г лм	29	1t	34	36	38.8	#9 *	#* 8Ħ	31.3	31.3	35	37	36.6
	twbl	OTT	111	102	61	. 96	86	100	11.5	105	102	.97	35
	our t ₁	161	165	161	155	158	158	154	162.5	160	160	154	158
S oF	AIR t _{wbl}	104	105	92 .	86	· 83 • 11	.83	83	105.5	67	92	85	83.4
TEMPERATURES ^O F	IN twb2	52	52.3	53	50	53	50.5	61	52	52.5	53	50	53
TEMP	9 ⁴	. 63	63	63	61	63.5	62	58.5	63	63	63	61	63.5
	WATER OUT T2	87	80	72.5	63	58.2	56	55	92	81.5	76	66	58.2
	NI TI TI	129	141	123.5	115	115	115	117	124	118	112	103	114
	ں ۲	1.66	1.22	0.88	0.67	0.55	0.49	0.48	2.26	1.59	1.19	0.908	0.77
FLOWRATES	ft ² G	656	.902	1242	1636	1998	2252	2270	654	929	11244	1627	1926
FLOWF	lb/h ft ² L G	1095.6	1095.6	1095.6	1095.6	1095.6	1095.6	1095.6	1478.4	1478.4	1478.4 🚶	1478.4	1478.4
	RUN No.	181	782	783	784	785	786	787	788	789	064	161	792

•

Δp I.W.G. 1.053 0.468 0.825 0.083 0.067 0.842 0.167 0.267 0.617 ţ 1.13 0.15 0.25 0.50 1.17 PERFORMANCE 0.52 0.48 0.68 ца ш 0.64 0.64 0.67 0.67 0.71 0.71 0.70 0.72 0.76 0.73 568 TOWER 0.385 0.818 0.421 0.276 0.587 0.414 0.458 0.592 0.825 0.519 0.512 0.617 0.70 ៳ឣ 0.60 NI 72 72 72 72 72 72 72 72 72 72 72 72 72 72 N 1b per h per ft3 per atm. ж В 278 212 657 632 144 430 610 130 246 301 445 573 641 601 HEAT ANCE BAL-0.22 1.45 0.64. 0.39 3.84 0.98 0.77 2.0 2.9 -0.5 3.3 1.4 1.6 2.4 d;3 1b/h 35.2 45.3 44.2 33.3 32.5 32.0 36.4 40.1. 25.7 30.7 3 5 37 11 31 96.5 96.5 95.4 twbl 113 105 50 83 Tot 96 96 96 101 97 66 162.5 ь Ч Lno 157 155 155 160 155 159 155 158 158 156 160 163 157 107.5 82.5 91.2 AIR TEMPERATURES °F 84.5 twbi 80 8 8 83 83 55 95 ŝ 18 83 84 wb2 50.5 52.5 53.5 50.5 61 1:0 52 53 53 53 S 53 20 52 NI 58.4 63.5 63.5 58.8 ۳₄ 62 63 63 63 61 63 54 63 5 62 59.5 68.4 65.3 19 H 59 32 03 78 79 5 48 17 63 66 67 WATER 94.5 92.2 105.5 102 122 00T 105 NHH 104 110 37 101 93 :15 5 2.89 0.69 0.68 1.16 3.36 2.39 1.97 1.51 1.01 1.84 1.44 1.26 1.14 1.14 10 ч 2165 643 FLOWRATES lb/h ft² 2143 954 675 1244 1614 1864 948 1234 1985 1581 1800 1984 υ 1473.4 1478.4 1874.4 1874.4 1874.4 1874.4 1674.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 4 793 795 754 796 RUN 798 799 **0**08 797 806 No. 801 £02 803 804 805

Table (24) Experimental Data and Results

					۰.										
	Δp Ι.W.G.	ft	0.083	0.167	0.267	0.533	0.875	1.125	1.175	0.033	0.183	0.283	0.55	0.20	1.14
	ER .	En En	0.75	0.75	0.78	61.0	0.81	0.80	0.78	0.76	0.77	0.81	0.84	0.84	0.85
	TOWER	PERFORMANCE E En	0.258	0.337	0.389	144.0	0.505	0.506	0.533	0.242	0.299	0.341	0.386	9 ## 0	0.456
	ы	NI	72	72	72	72	72	72	72	.72	72	72	72	72	72
м а	1b per h per 3	rt per atm.	139	234	324	9 4 4	574	586	630	149	233	334	473	583	656
	HEAT BAL-	ANCE &	0.5	2.4	0.69	0.37	.0.27	-0.62	0.04	1.45	2.3	0.76	0.19	1.2	10.01
	` _झ न	५/५ा	32	29.8	32.3	33.7	35.3	39.1	45.4	34	33	33	35	35.3	41.3
		twbl	112	104	102.5	96.5	35	97	38°2	113.5	106	101.5	97	67	38
. '		our t	162.	161	161	156	157	159.5	156	163.5	162	161	156	158	091
	s ^o f. Air	t wbl	106	95	92.2	85	84	83	86	108.5	27	05	86	84.5	84.7
	TEMPERATURES	TH twb2	52	52.5	53	50	53	50.5	6 1	52	52.5	53	20	53	50.5
	TEMPI	^ю ц	62	63	63	61	63.5	62	58.5	63	63	63	61	63.5	62
	ER .	T12	99 . 5	87.	87	73.5	71.5	70	70	102	06	82	75.5	73.5	72
	WATER	IN 1	116	104.5	36	92	th • 03	05	h 5	118	106	97	91.5	06	06
	ц	10	4.13	2.9	2.2	1.73	1.54	1.42	1.41	t, 9	3.41	2,56	2.07	1.88	1.73
	ATES	ft ⁴ G	653	-935	1235	1558	1747	1897	1916.2	646	930	1238	1532	1693	1834
	FLOWRATES	15/h1	2692.8	2692.8	2692.8 1	2692.8 1	2692.8]	2692.8]	2692.8 1	3168	3168	3168 I	3168 1	3168 1	3168 1
	RUN	No.	807 26	s 808 26	809. 26	810 26	811 26	612 26	.613 26	614 31	815 31	816 31	817 31	818 31	15 618
			2										- ,	4	

	I.W.G.	1.18	0.052	0.192	0*30	0.585	0.925	1.158	1.2	0.0917	0.20	0.317	0.638	0.942	
	TOWER PERFORMANCE E n	0.83	0.80	0.80	0.83	0.86	0.83	0.87	0.89	0.81	0.83	0.87	0.89	0.92	
	TO1 PERFOI F	0.461	0.206	0.257	0.309	0.333	0.385	0.395	0.402	0.175	0.224	0.267	0.258	0.345	
	Z	72	72	72	72	72	72	72	72	72	72	72	72	72	
× Åa	lb per h per ft per atm.	622	156	231	351	461	603	618	701	151	239	367	495	663	
	HEAT BAL- ANCE	0.2	1.2	1.3	1.5	0.3	0.8	CO £6	1.0%	0.8	0.4	0.15	0.08	0.73	
	м г 1b/h	45.5	32.9	33.9	33.0	35	35.8	41.6	11 (2)	30.4	34.6	33	36.3	37.2	
	tubl	56	112	107	101.5	86	97.5	56	93 . 2	011	107	102	98.5	86	
	our t1	157	164	164	162	156.5	159	160	157	162.5	164	161	156	159	
	ES ^O F AIR twb1	. 87	107	- 66	06	87	86	36	88	104.5	4°66	16	88	87	
	TEMPERATURES ^O F AIR IN t ₂ t _{wb2} t _{wb1}	6 11	52	52.5	53	50	53	50.5	6 17	52	52.5	53	50	. 53	
	TEMP t	58.5	63	£3	63	61	63.5	62	58.5	63	63	63	61	63 • 5	
	ER . OUT . Z	73	102	63	83	78	76	75	75	101.5	115	84.5	79.5	77.5	
	WATER IN OI T	93.5	115	107	96.4	92	4-06	16	92,5	112	106	96	92	4.02	
	, מוה	1.72	5.69	4.0	2.99	2.47	2.26	2.1	2.09	6.36	4.52	3.38	2.85	2.62	
	FLOWRATES Ib/h ft ²	1844	650	924	1238	1498	1639.	1763	1768	656	. 922	1236	1463	1531	
	L L L	3168	3696	3696	3696	3696	3696	3695	3696	4171.2	4171.2	4171.2	4171.2	4171.2	
	RUN No.	820	821	822	823	824	825	826	827	828	829	830	831	832	

Δp I.W.G.	ft	1.16	1.2	1.0	11.0	0.33	0.625	0.967	1.16	1.2	II.0	0.217	0.367	0.658 .
TER	En En	0.89	0.92	0.82	0.86	16.0	0.91	0.92	0.92	0.92	0.81	0.86	0.91	0.88
TOWER	PERFORMANCE E	0.353	0.337	0.161	0.220	0.233	0.262	0.312	0.314	0.290	0.142	0.202	0.209	0.241
17	NI	72	72	72	72	72	72	72	72	72	72	72	72	72
Ka B h per 3	ft per atm.	635	694	163	272	379	487	627	656	629	147	269	376	4:37
HEAT BAL-	ANCE	0.3	-0.7	1.4	.5.1	3.8	-0-4	1.1	0.05	0.05	0.9	1.3	-0.7	0.5
R M	h/dl	L• ht,	42.5	27.2	37	34.7	37	39	45.2	36.3	27	37.1	34.7	39.5
	twbl	66	36	108	108.5	102.5	65	33°2	100	95.5	108	108.5	102.5	100
	our t	159	156	162	165	161	156.5	159.5	161.5	155	161.3	164	161	157
S ^o F AIR	twbl	88.8	37	TOT	τοτ	92	88.5	88	. 05	83.5	101.3	IOI	92.2	90.2
TEMPERATURES ^O F AIR	IN twb2	50.5	. tt	52	52.5	53	50	53	50.5	6 11	52	52.5	23 .	50
TEMPI	, ^t u	62	58.5	63	63	63	61	63.5	62	58.5	63	63	63	61
 X	100 H	78	76.5	66	36	86	81	. 79.5	80	76	100.5	36	.87	83
WATER	N H H H	63	90.5	108	101	36	92	91.5	93.5	87	108°4	107	96	33 . 5
ц.	ט (ו	2.46	2.43	6.99	5.06	3.80	3.2	3.02	2.84	2.78	7.76	5.61	4.27	3.64
FLOWRATES	ft ² G	1696	1720	664	618	1222	3445	1541	1635	1674	664	. 918	1207	1416
FLOW	•ग. ५/पा	4171.2	4171.2	4646.4	4646.4	4646.4	4646.4	4646.4	4.646.4	4646.4	5148	5148	5148	5143
RUN	No.	833	834	635	836	837	828	839	840	Th3	842	843	1148	845

297.

•

															•
	ΔP I.W.G. ft	0.983	1.225	1.24	0.117	0.217	0.383	0.683	0.1	1.22	1.24	0.117	0.233	0**0	
	TOWER PERFORMANCE E _r E _h	0.70	16.0	0.95	0.82	0.89	0.95	0.95	0.95	0.93	0.93	0.85	0.89	0.95	
	TO' PERFOI	0.262	0.256	0.262	0.15	0.168	0.193	0.213	0.196	0.247	0.256	0.112	0.149	0.169	
	Z	72	72	72	72	72	72	72	72	72	72	72	72	72	
К В	lb per h per ft per atm.	758	551	679	176	258	435	576	634	627	639	147	246	403	
	HEAT BAL- ANCE \$	-0.5	0*3	-0.6	2.0	0.08	-0.5	-0.8	0.6	0.8	0.96	0.008	-0.3	-0-9	
	M L Ib/h	39.5	36.5	40.1	30.9	37	36.4	t+0	38	41.2	43	29	37.2	36.4	
	twbl	100	97.5	86	110.5	109	103	100	. 001	55	6 6 -66	011	108.5	103	
,• [•]		.091	158	158.5	163	164	163	157	091	159	158.5	163	165	162	
		83	85	87	105	IOL	ħ6	16	89.3	83	89.5	104	101	ħ6 [.]	
	TEMPERATURES ^{OF} AIR IN t ₂ t _{wb2} t _{wb1}	53	64	61	52	52.5	53	50	53	6 1	49	52	52.5	23	
	TEMF	63.5	61.5	61.5	63	63	63		63.5	61.5	61.5	63	63	63	
	WATER 0UT 12	81	78	78.5	103	97	88.5	84	82.4	81	.81	103.5	85	. 89.5	
	WAJ IN T_	16	88	83	. 211	106	97	93.2	92	91.5	92	011	301	67	
	ч о	3°†	3.2	3.16	8.67	6.19	68.41	t, 09	3.89	4.09	3.88	9.45	6.79	5.36	
	FLOWRATES 1b/h ft ² G	1508	1603	1630	655	618	1162	1387	1461	1536	1570	653	618	1162	
	FLOWR Ib/h L	5148	5148	5148	Ş776	5676	5676	5676	5676 .	5676	5676	6230.4	6230.4	6230 . 4	
	RUN No.	845	847	643	643	850	851	.852	853	854	855	356	557	853	
		:									,	2			

5

TOWER TOWER FERFORMA	0 161-0	0.225 0
Z NI	72	72
K a g h per ft atm.	480	643
HEAT BAL- ANCE	0.02	0.7
н г лb/h	38.7	100.5 38.9
t Wbl	TOT	100.5
t 1 L	157	159
SS OF AIR tubl	16	90.5
TEMPERATURES [°] F AIR IN t ₂ t _w b2 t _w b1	20	53
TEMP	61	63.5
Results WATER OUT	85.4	†8 %
and F IN TL	94	8 6
tal Data L G	4.605	4.33
<pre>() Experimen FLOWRATES Ib/h ft² </pre>	1353	1424
Table (24) Experimental Data and Results FLOWRATES RUM No. L G G T_1 T_2	6230.4 I353	6230.4 1424
.Table RUN No.	859	860

									•						
Δp I.W.G.	ft	0.71	1.0	1.22	1.25	0.133	0.25	0.433	0.742	1.03	1.23	1.26	0.044	1.556	tun.0
ER	Eh Eh	0.93	0.96	£0.0.	0.58	0.87	0.50	0.97	0.95	0.98	0.95	0.95	0.48	0.65	0.33
TOWER	PERFORMANCE E Eh	161.0	0.225	0.205	0.209	1 60°0	0*140	0.154	0.171	0.195	0.193	0.20	0.470	0.517	0.823
И	NI	72	72	72	72	72	72	72	72	72	72	72	2#	54	54
lb per h per 3	ft per atm.	480	643	547	673	154	428	471	483	695	585	614	131	239	539
HEAT BAL-	ANCE	0.02	0.7	-0-6	-0.8	-0-3	-0-1	0-1-	-0.6	0.2	0.3	0.5	1.7	-9.1	2.5
a 1	५/५ा	38.7	38.9	43	11 th	26.3	38	37	39	38	42.5	42.8	26	24.4	45.6
	twbI	TOT	100.5	100.5	100	107	109	104	101	IOI	IOI	001	109	98.5	-65
	our t ₁	157	159	159.5	159	161	165	164	158	159	159	159	161.5	160	156
es ^o f Air	twbl	16	90.5	90,.7	90.5	. 001	101.6	95	91.5	TE	92	16	IOI	86	88
TEMPERATURES ^O F AIR	twb2	20	53	64	6 †	52	52.5	23	50	53	6 17	64	50.6	50.6	47.3
TEMP	tu tu	61	63.5	61.5	61.5	63	63	63	61	63.5	61.5	61.5	19.	61 .	58.4
ER -	TUO 2.	85.4	-84	178	63	100	58 ° 2	90.5	86.5	\$5.2	85.3	84 . 2	06	74	50.5
WATER	AL L	16	63	86	92	105	106	97.3	94	63	45	63	125	66	122
ч	נ ו ט ו .	4.605	4.33	4.19	11.4	10.3	7.5	6.02	5.14	5.00	5.14	5.00	1.72	1.05	0.63
FLOWRATES	ft ² G	1353	1424	1485	1517	667	916	0411	1334	1372	1418	1469	637	1039	1732
FLOW	lb/h ft ² L G	6230.4	6230.4	6230.4	6230.4	6864	6364	6864	6364	6364	6364	6864 ⁻	1095.6	1095.6	1095.6
RUN	No.	859	860	861	862	853	864	865	866	867	86\$	869	870	871.	1 E72

			*	*:	ود.										
					**		•					-4	*		4
	ΔP I.W.G. ft	0.611	006*0	0.778	0.956	1.311	0.056	0.133	0.267	0.489	0.656	0.978	0.833	0.844	1.356
	TOWER PERFORMANCE E Eh	0.32	0.26	0.30	0.30	0.29	0.58	0.51	ħħ*0	0.52	0.50	0.43	0.47	0 . 44	0.47
	TO' PERFO'	0.847	0.893	0.868	0.913	0.917	0.366	0.504	0.683	0.704	0.73	0.791	0.786	0.819	0.317
	2 NI	54	56	60	61	54	54	54	54	54	54	56	60	61	54
	Kga lb per h per ft ³ per atm.	595	786	625	798	708 .	134	217	1106	546	. 230	707	714	756	723
	HEAT BAL- ANCE	2.4	2.0	0*+-	6*0-	0.3	1.0	2.1	3.3	0.8	0.6	+•0-	-2.9	-0.3	h *0
	W L lb/h	11 11	51.1	51.7	41.7	47.7	25.9	35.2	47.1	43.6	42.7	52.5	4°84	46.9	54.2
•	twbl	97.7	98	67	66	9,8.2	011	107	105	86	. 97	66	96	<u>95</u>	98.5
	t 1	155.5	157.5	158	148	157	163	163	159	157	155	157	156	151.5	154.
	ES ^o F AIR tubl	85.7	86	83	78.5	83	101	85	97.5	87	85.5	88.4	82	19	83
	TEMPERATURES	:0 4	tt6	4,8	49.5	52	50.6	50.6	50.6	47.3	46	47	1,8	49.5	52
	t t2	56.5	58	56	59	63	61	61	13	58.5	56.5	58	56	59	63
sults	ER OUT ¹ 2	57.5	55.7	57.5	55	57.5	46	. 85	74	65	62.5	19	60	.59	61.5
.and Re	WATER IN OU T	121	128	120	113	311	119	120	124.5	107	106.5	114	104	102	104
Table (24) Experimental Data and Results	210	0.556	164.0	0.458	0.419	0.464	2.372	1.578	1.092	0.866	0.783	0.702	0.629	0.581	0.661
perimen	FLOWRATES 1b/h ft ² . G	1936	2229	2393	2612	2353	623	937	1354	1703	1839	2107	2349	2543	2238
(24) Ex	FLORR 15/h	1095.6	1095.6	1095.6	1035.6	1095.6	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4
Table	RUN No.	873	874	875	876	877	878	879	880	881	882	833	584	385	855
	· · ·													41.1.1.1.1.1	care de la de

300_.

•

							*	**	*						
	Δp I.W.G. ft	0.067	0.156	0.30	0.52	0.71	1.044	0.856	0.944	1.40	0.067	0.156	0.322	0.567	0.657
	TOWER PERFORMANCE E	0.66	0.59	0.56	0.64	0.63	0.61	0.57	0.6	0.60	0.72	0.66	0.63	0.67	0.66
	TC PERFC	0.300	0.435	0.537	0.59	0.623	0.676	0.632	0.718	0.717	0.258	0.375	0.455	0.462	0.50
	NI	54	54	54	54	54	67	59	. 09	54	54	54	54	54	54
К. 8	Ч	147	242	350	543	629	723	578	807	726	157	256	338	438	507
	HEAT BAL- ANCE 3	-0.4	2.8	0.8	0.5	0.1	-0-3	e* t	-0.7	0°03	-0.3	1.9	-0.7	-1.0	1.0
	H L M	26.4	34.6	42.7	37.3	41.6	7.44	45.2	42.7	45.3	27.7	35.2	40.6	36.4	37.1
	t wbl	108	107	103	97	97	67	95.5	95	97.5	OIT	107	103.6	96.5	95.5
. ·	Tuo Tuo	159 .	163	160	156	155	157	158	153.5	155	161	163	160	155	154
	ES ^{OF} AIR twb1	100	97.5	94.2	85.4	85.5	85	81	78	84.	103.2	88	<u> 6</u> , 6	84	83
	TEMPERATURES ^O F AIR IN t ₂ t _{wb2} t _{wb1}	50.6	50.6	50.6	47.3	46	47	148	49.5	52	50.6	50.6	50.6	47.3	46
	TEMI t2	60.6	19	61	58.5	56.5	58	57	59	63	60.6	61	61	58.5	56.5
4	ER our ¹ 2	95	87	79.5	68.5	66	64	66	61.5	65	98	68 8	63	73.5	70.5
מויח וומ	WATER IN OU T ₁ T	114	115	EII	66	99.4	99.5	97	92	38	114.5	112	011	36	95
וומד המר	ы I О .	2.84.	2.0	1.37	1.1	1.02	0.92	0.814	0.774	0.878	3.68	2.42	1.67	1.36	1.26
namr.radx	FLOWRATES 1b/h ft ² G	. 660	585	1363	1690	1839	2040	2303	2421	2136 4	213	637	1360	1670	
abte (24) experimentat vala and neour	FLO L	1874.4	1874.4	1874.4	1674.4	1874.4	1874.4	1874.4	1874.4	1874.4	2270.4	2270.4	2270.4	2270.4	2270.4
TOPT	RUN No.	. 887	683	883	890	168	892	893	534	835	.969	897	868	663	005

.

٠

.

Table (24) Experimental Data and Results

. .

ř,

۰.

301.

•

		•							v					302.
	*	*	~*	**							*	**		
Δp I.W.G. ft	60°T	0.522	0.978	1.422	0.067	0.178	0.333	0.622	113.0	1.189	0.944	0.289	1.44	0.057
TOWER PERFORMANCE E Eh	0.71	0.64	0.71	0.69	0.74	0.72	0,69	0.72	0.74	0.74	0.71	0.64	0.73	0.78
PERFOI	0.585	0*2#0	0.62	0.655	0.237	0.326	0.390	0.388	0.436	0.495	0.534	0.56	0.573	0.214
Z IN	55	28	. 63	54	54	54	54	54	54	54	59	61	2#	54
K a Ib per h per ft ³ per atm.	727	564	847	726	160	271	355	426	562	670	742	923	814	175
HEAT BAL- ANCE &	-0.3	-3.1	-1.5	1.7	-0.5	1.07	-1.0	-2.1	-0-3	1.2	0.02	-1.6	2.6	0.17
м Т 15/h	42	Ľ ^Ħ .	38.6	43.6	30.3	36.3	39.9	36.9	36.9	39.1	44.7	£ 3	¥3.1	33.4
twbl	25	1 6	63	98.2	113	107.5	103.6	97	36	27	95.5	94.2	55	115
our t	157	157	152	156	162	163	160	156	155	157.5	156	153	158	162
ES ^O F AIR ^t wb1	85	80	76	84	107	66	4•45	85	84	85	82	79.5	54 ° H	60
TEMPERATURES	11 13	48	49.5	52	50.6	50.6	50.6	47.3	46	48	418	49.5	52	50.6 109
TEMPI	58	57	59	63	60.6	61	61	58.5	56.5	58	57	59	63	60 . 6
to 2.	67.5	5*89:	63	č66.5	102	16	•85	76.5	772.5	11	63.5	66	69.5	104
WATER IN OU	95	92.6	85	94	118	110.5	107	95	63	93 . 5	92	87	63	118.5 1
0 1 44	1.16	1.02	0.95	1.11	4.27	2.88	2.00	1.64	1.55	1.48	1.24	1.17	1.35	5.24 1
ATES ft ² G	1953	2224	2391	2056	631	534	1344	1639	1741	1816	2168	2311	1988	6G4 ⁻
FLOWRATES 1b/h ft ² L G	2270.4	2270.4	2270.4	2270.4	2692.8	2692.8	2692.8	2692.8]	2652.8]	2652.8]	2692.8 2	2692.8 2	2692.8 1	3163 (
RUN No.		902 2	503 2	804 Z	905 2(906 21	507 2(508 26	503 26	910 26	911 26	912 26	913, 26	914 31
· · · · · · · · · · · · · · · · · · ·	5,	0,			0	ιų.	0,	0	ທີ.	CD .	σ	(C)	с л	[6, ·

.

								*	ş							
	Δp I.W.G.	Ţ	0.178	0.356	0.656	0.867	1.233	0.967	1145-0	1.467	0.078	0.20	0.389	0.700	0.92	1.269
	TOWER	ผ่	0.76	0.74	0.78	0.78	0.80	0.77	0.74	0.77	0.82	0.79	0.80	0.79	1.00	0•80
	TO PERFO	ដ	0.274	0.355	0.335	0.37	0.418	0.488	0.48	0.506	0.183	0.244	0.286	0.318	0.333	0.378
	Z		54	54	54	54	54	59	61	54	54	54	54	24	24	54
K g	1b per h per ft ³ ber	atm.	270	414	443	534	661	833	658	832	178	290	388	14 90	565	659
	HEAT BAL- ANCE	. 619	1.0	-0.2	-2.7	+•0-	t† ° O	1.1	6•0-	2.7	-0.6	0.5	-2.1	-0.5	0.5	2.4
	и г		36.7	43.1	40.4	37.7	39.2	45.8	42.7	43.3	34.6	36.7	42.5	. 4. 04	38.5	38.6
		twbl	108	104	86	96.5		36.5	96	66	115.5	108	103.5	39.5	25	38
• •	our	ц Ч	163	160	156	155	158	157.2	156	153	162	163	161	157	156	158
	S ^O F AIR	Twb1	99.2	35	87	84.5	. 98	83	81	85.5	TTT	99.2	95	88 • 5	86	86.5
	TEMPERATURES ^O F AIR IN	tub2	50.6	50.6	47.3	46	48	148	52.5	52	50.6 1	50.6	50.6	47.3	94	48
	TEMP	¹ 4	61	19	58.5	56.5	58	57	63.5	63	60.6	61	61	58.5	56.5	58
	WATER	" N	63	9.9	19	75	74	70	.71.5	72	106.5	94	88	80.5	77	76
	MAT IN	ы Ч	109	105.5	95	52	92.7	16	83	92.5	611	108	103	36	92.5	63
	ы I с	C	3.40	2.37	1.98	1.83	1.81	1.5	1.39	1.65	6.18	3.95	2.81	2.36	2.27	2.20
	FLOWRATES 1b/h ft ²	U	933	1334	1596	1682	1747	2118	2281	1922	598	333	1317	1564	1631	1677
	TLOWF	ġ.	3168	3168	3168	3168	3168	3168	3168	3168	3696	3696	3696	3696	3696	3695
	RUN No.		. 515	515	116	918	616	920	921	522	923	924	925	927	927	928

303.

۱

					۰.										•	304.
			**	*			•					-%	*			
	Δp I.W.G.	ft	1.01	1.044	1.489	0.089	0.20	0.433	tı#7.0	0.989	1.31	0,989	1.04	1.50	0.089	0.222
	TOWER PERFORMANCE	ц ^ц	0.83	0.81	0.82	0.84	0.82	0.85	0.83	0.82	0.821	0.86	0.84	0.36	0.85	0.84
	T(PERF(ی ^د	0.405	0.472	0.439	0.154	0.213	0.255	0.262	0.298	0.337	0.342	0.411	0.383	0.146	0.192
		NT	53	64	54	54	54	54	54	54	54	59	67	54	54	54
K a	~	per atm.	803	927	834	172	294	614	468	559	653	769	305	826	186	292
	HEAT BAL- ANCF	49	-1.1	0.5	2.4	-1.8	-0.3	-2.1	-2.0	1.03	2.1	-2.6	-0.1	1.65	-1.2	-0-5
• .	r N	મ∕વા	45.8	45.7	6.44	36.5	37.1	42.0	41.2	38.3	1.14	45.7	46.3	43.7	37	38.8
		twbl	. 97	86	39.5	116.5	108	103.5	100	86	6 6	96.6	98.5	lol	711	109
•	Ino	t, H	157	157	156	163 [.]	162.5	161	157	155.5	157	157	158	157.2	163.5	163
	S ^O F AIR	twbl	84	83.4	87.3	112	3 °°6	35	83	87	88.3	84	84	83	112.4	• .
	TEMPERATURES ^O F AIR	twb2	48	52.2	52	50.6	50.6	50.6	47.3	4.6	43	48	52.5	52	50.6 J	50.6 101
	TEMP	ч ⁰ н	57	63.5	63	60.6	61	61	58 . 5	56.5	58	57	63.5	63	60.6	61
	ER	н ⁰	73	72	75	103.5	95	88.5	82.5	19	78.5	75	±74	. 77	109	. 72
	WATER IN OU	$^{\mathrm{T}}_{\mathrm{l}}$	06	89.4	63	. 611	107	101.5	35	63	1 6	83	83	92.5	611	. 201
	니니	ບ	1.78	1.64	2.02	6.85	4.48	3.20	2.74	2.63	2.59	2.02	1.91	2.35	7.65	5.01
	FLOWRATES 1b/h ft ²	ი	2073	2253	1834	603	932	1303	1520	1557	1613	2069	2183	1771	607	. 826
	FLOW	ក	3695	3695	3656	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2 2	4171.2 1	4646.4	. 7°9797
	RUN		929 3	е . Осб	63 1 3	932 H	933 4	934 H	935 H	936 4J		938 41	639 HJ	[# 0#5	9th Th5	942 46
,			б ,	ດ	01	σ	თ	თ	01 •	0	UN I	o , °	ິດ	ហ	ប៉	ö.

. 304.

	*										•					505.
	•					*	*							*	*	
dγ	I.W.G.	ft	ħħħ* 0.	0.800	1+0°T	1.022	1.039	1.5333	0.089	0.22	0.489	0.856	1.12	1+40° I	1.09	1 • 544
	TOWER PERFORMANCE	ц ц	0.88	0.85	0.85	0.86	0.88	0.89	0.86	0.87	0.87	0.83	0.88	0.37	16.0	05*0
	PERFO	ی ⁴	0.219	0.247	0.271	0.293	0.355	0.333	. 0.13	0.166	0.202	0.246	0.232	0.262	0.324	0.296
		NT	54	24	54	59	67	54	54	54	54	54	54	23	. 67	54
Ka g 1b per	h per ft ³	per atm.	436	507	583	683	345	834	175	288	415	593	582	652	966	8.11
HEAT	BAL-	49	-2.5	-1.0	1.0	-3.0	-0.8	0.74	-1.4	-1.5	-1.8	0.6	0.95	-2.8	-1.3	0.8
	ᇩᆆ	५/५ा	ħ°℃ħ	42.5	39.8	45.2	46.3	1.44	38.5	0.04	6.04	42.8	32.9	45.8	46.3	43.7
		twbl	102.5	100	- 66	97.5	†° 65	101.4	118	109.5	103.5	TOT	67	66	66	102
	OUT	нн 1	160	157	156.6	156.6	156.4	155	163	164.5	161	158.5	156	156	155.4	153.3
S oF	AIR	twbl	93.3	05	83.	84	. 84	89	113.5	102	11 ° 116	h. 12	84	85	84.8	89.3
TEMPERATURES	IN	twb2	50.6	47.5	4t G	448	52.5	52	50.6 113.5	50.6	50.6	47.3	47	48	52.5	52
TEMP		n ^{ut}	61	58.5	56.5	57	63.5	63	60.6	61	61	58.5	58	57	53 . 5	63
	ER	н ^с .	88	83.5	18	77	75	79	TIT	98 . 5	05	84	78.5	79	76.5	80.5
	WATER IN OI	Ч	98.5	95.4	94	83	88	92.5	120	103	100	36	88	06	83	92.5
	нļ	ບ	3.58	3.14	3.11	2.27	2.13	2.71	8.51	5.57	4.03	3 . 59	3.50	2.57	2.41	3.11
PT-MGUO.TT	1b/h ft ²	U	1299	1481	1495	2046	2183	1713	605	925	1279	1435	1471	2006	2136	1655
ELO.		-1	4646.4	4646.4	4646.4	4646.4	4646.4	4646.4	5148	5148	5148	5148	5148	5148	5148	5143
	RUN	NO.	643	1115	345	546	247	948	545	650	551	952	953	954	655	. 956

			~*		• .			-*	*	ş						.#	
	٩Þ	I.W.G.	0.039	0.233	0.511	115.0	1.167	1.089	1.089	1.58	111.0	0 . 244	0.533	0.967	1.20 .	1.10	
	TOWER	PERFORMANCE EE_	а 0.87	0.086	05.0	06*0	0.89	0.90	0.89	0.91	0.88	0.88	16.0	16.0	0.91	6*0	
	TO	PERFO	r 0.115	0.185	0.190	0.210	0.209	0.238	0.274	0.298	101.0	0.160	0.186	0.175	0.182	0.214	
	12	NI	54	54	54	54	54	23	67	S4	54	54	54	54	54	59	
K 8	1b per h per		175	348	457	837	592	717	205	921	172	339	497	516	574	688	
	HEAT	BAL- ANCE	-1.6	1. 00	-1.5	-0.22	0.6	-2.9	-0.2	2.7	6.1-	-0.2	-0-6	-1.3	-0.1	-2.3	
	м	L 1b/h	38.8	42.1	43.0	42.6	34.8	46.4	46.1	44.7	39.6	44.2	4 S	41.8	35.8	45	
		t K	118.4	112	, 1 01	102	98.5	86	66	103	118.4	113	105	102	65	98.5	
• • •	•	our t	163.	165	160	159	157	158	156	156	163	164.5	162.5	160	157	158.5	
	SS OF	AIR	114	103.6	36	92.3	86.4	86	.85.4	16	114.4	104.5	97	92.5	88	86	
	TEMPERATURES	IN tubo	50.6 114	50.6 103.6	50.5	47.3	47	48	52.2	52	50.6	50.6	50.6	47.3	47	, 84	
	TEME	ئ ل ب	60. 6	. 19	61	58.5	58	57	63 . 5	63	60.6	61	61	58.5	58	57	
		WATER OUT T	112	65	16	86	81	-80	78	81.5	113	100.5	92	87.5	83.	81	
		WA. T,	120	011	100.5	96 ° 3	05	80	89	†5	120	011	101.5	96	91	05	
		ں ا ت	9 . 41	6.18	4.52	4.1	3,98	2.89	2.73	3.55	10.35	6.70	5.02	4.62	4.51	3.27	
	FLOWRATES	h ft ² .	603	619	1257	1383	1426	1966	2076	1600	602	929	1242	1349	1381	1905	
	FLOI	1b/h 1.	5576	5676	5676	5676	5676	5676	5676	5676	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	
		RUN No.	957	958	959	095	195	362	963	964	965°	202	.732	663	696	970	
			•														

.

Table (24) Experimental Data and Results

JU6.

			**							**	*					
	Δp I.W.G.	ft	1. 089	1.59	111.0	0.257	0.556	0.989	1.23	1.14	1.14	1.6	0.05	0.15	0.233	0.483
ι.	TER	Eh Eh	0.93	16.0	06.0	0.91	0.92	0.93	06.0	0.93	0.92	0,91	0.39	0.58	0.32	0.30
	TOWER	PERFORMANCE E En	0.296	0.25	0.100	0.14	0.179	0.181	0.181	0.202	0.25	0.221	0.481	0.487	0.753	0.807
	13	NI	67	54	54	54	54	54	56	59	67	54	36	36	36	36
Ka g 1b per	h per	ft per atm.	1131	803	200	354	556	, 617	584	772	416	735	161	301	527	658
	HEAT BAL-	ANCE %	0.6	1.6	-1.2	6.0-	0.2	. 8*0	1.1	-1°5	-0-3	1.3	2.5	-1.4	5.5	0.8
	*1 *	ų∕qt	46.8	43.3	40.3	45.5	6. µ4	1.44	38.6	45.5	45.7	43.2	31.8	16.0	42.3	47.7
		t _{wb1}	66	103	611	. 112	105.5	103	IOL	98.5	66 ° 2	102	114	545	104	TOT
		t 1	155	157	163	164	161	160	157	157	158	154	159	156	159	158
0	ES F AIR	μ	86	16	115	105.5	. 79	94	90.5	86.7	86	92	101	74.5	92.2	8
	TEMPERATURES [~] F AIR	IN twb2	52.5	52	50.6	50.6	50.6	47.3	9.4	48	52.5	52	51	51	61	50
	TEMP	°4	63.5	63	60.6	61	51	58.5	58	57	63.5	63	64	64	62	63.5
	ER	our 2	78	33 ° 2	· EII	101.7	92	88	85.5	81.5	80	85.5	96.2	70	68.5	64.5
	WATER	N L	88.7	46	120	OTT	101	67	94	06	68	95	138	83	128	125 .
	ы	10	3.02	4,03	11.43	7.41	-3.60	5.18	5.12	3.71	3.40	4.58	1.78	1.02	0.80	0.60
	FLOWRATES	ft' G	2062	1547	601	926	1224	1325	1340	1851	2015	1498	617	1074	1377	1822
	FLOW	प/दा	6230.4	6230.4	6864	6864	6654	6864	6864	6364	6864	6864	1095.6	1095.6	1095.6	1095.5
	RUN	No.	179 .	972	973	479	. 975	976	677	978	979	630	186	982	683	t:86 ·

			*	*						*	*	-10	-11		
Δp I.W.G.	•	0.67	0.867	0°-00	°, 95	0.067	0.167	0.267	0.517	0.70	0.933	0.933	0.933	1.60	0.067
TOWER	ដី	0.26	0.27	0.19	0.30	0.50	0.69	0•#5	0.43	0.43	0.39	0.29	0.30	0.32	0.62
TO	៳	443.0	0.879	0.896	. 0.905	. 0.388	0.395	0.548	0.691	0.739	0.778	0.818	0.82	0.794	0.277
Z		38	41	† ††	45.	36	36	36	36	38	42	45	45	36	36
K a g lb per h per ft ³ per	atm.	746	920	929	973	187	336	389	636	770	852	866	908	767	176
HEAT BAL- ANCE	d'ø	2.8	-1.1	3*t	2.8	3.6	-3.3	1.3	1.0	0.8	0.04	1.4	1.9	0.97	0.277
ч Г Ч		45.8	47 . 6	54 •0	56.3	27.7	19.5	29.4	46.2	T•44	45.2	58.9	54.0	51.9	26.0
	t _{wb1}	66	98	68	102	011	97	101	100	98	97	100.5	105	τοτ	109.5
TUO	ч <mark>н</mark>	157	158	155	151	156	158.5	158	155	156	157	159	150	151	159
	twbi	84.6	81.3	84.	84	102.5	79	87	87.5	18	80.6	86.2	83.4	86	102
TEMPERATURES ^O F AIR IN	twb2 t	51	52	54	54	51 .	51	6†	50	51	52	52.3	54	55	49.5
TEM	⁰ 4	61	63	. 65	65	64	64	62	63.5	61	ຍ	63	65	179	61.5
WATER	^μ α.	62.5	60	62	61.5	96.2	74	17	69.5	66	64	65	65	68	66
WA7 IN	1 1	124.5	118	131	132.5	124.8	89	III	113	108.5	105	122	3115	811	118
н I -	U	0.518	0.438	0.407	105.0	2.36	1.39	1.05	0.82	17.0	0.596	0.562	0.531	0.60	3.12
FLOWRATES 1b/h ft ²	U	2114	2505	2689	2803	627	1063	1403	1796	2083	2481	2629	2762	2454	600
FLOW	1	1095 . 6	1095.6	1095.6	1095.6	1478.4	1478.4	1478.44	1478.4	1473.4	1478.4	1478.4	1478.4	1478.4	1478.4
RUN		985	986	587	888	686	066	166	665	666	1166	366	695	665	805

÷

308.

.,

ĺ
BAL- 3
-
AIR
WATER
1
c
RUN

•																
	• 1					**	*	*	**						*	**
Δp	I.W.G.	ft	0.15	0.277	0.55	0.77	0.97	0.97	1.017	1.683 ⁻	0.083	0.15	0.300	0.60	0.317	0.933
	PERFORMANCE	្ដ្	0.55	0.51	0.58	0.55	0.52	0.42	0.42	0.45	0.66	0.60	0.58	0.64	0.64	0.59
Ē	PERFOI	и ^н ш	0.40	0.475	0.577	0.639	0.689	0.723	0.745	0.713	0.255	0.336	414°O	0.510	0.560	0.610
r		NI	36	36	36	33	ľ‡	45	61	36	36	36	36	36	38	42
Ib per	n per ft ³	per atm.	287	404	682	815	927	886	176	831	198	292	430	721	864	686
HEAT	BAL-	AN CE	0*†0	0.475	-2.2	0.02	-0.8	-0.5	1.51	-0.2	0.5	ħ*0	9•0	-0.4	-1.3	-0.3
•	בי אין אין	4/dI	35.1	38,9	43.6	41.7	42.3	57.2	51.8	52.1	29.5	33.9	39 ° 2	41.9	43.0	42.0
·		twbl	107	102	66°2	、 86	67	. 100	105	102	113	107	103	66	98.3	96.5
	Oth	5 + ¹	161.5	160	159	157.5	158	158	150	153	162	160	. 191	159	157	158
res ^o f	AIR	wb2 twb1	61	83.5	86	83	80	85.7	83	87	105	36	06	85	54	79 . 4
TEMPERATURES ^O F	IN		5,	. 61	50	51	52	52.3	54	55	49.5	51	49	50	51	52
TEN		54	64	ô2	63.5	61	63	63	65	64	61.5	64	62	63.5	61	63
	WATER	н ^о	06	81	72	68.5	66	68	67	70.5	102	91.5	83	73.5	71	68
	WA	E H	116	011	102	66°2	67	109.5	105	109	120	112	107	98	96.5	93
	니	U	1.95	1.36	1.04	0.913	0.766	0.723	0.745	0.794	3.84	2,34	1.643	1.27	1.12	0.93
FLOWFATES	1b/h ft ²	U	964	1379	1800	2053	2447	2591	2742	2360	592	972	1377	1783	2032	2438
FLOI	1/पा	́,	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4	2270.4	2270.4	2270.4	2270.4	2270.4	2270.4
	RUN	• ON	ι. 666	1000	TOOT	1002	1003	1004 1	1005	1006 1	1007 2	1008 2	1009 2	1010 2	1011 2	1012 2

309.

٠

													•	
	**	*							. *	*	-::			
Δp I.W.G.	1.00	1.05	1.767	0.83	0.167	0*30	0.667	0.817	1.00	10.1	1.03	1.77	0.067	0.167
ER MANCE	⁴ ћ 0.51	0.47	0.55	0.69	0.65	0.62	0,66	0.67	0.66	0.57	0.54	0.59	0.73	17:0
TOWER PERFORMANCE	۲r 0.65	0.674	0.634	0.226	0.297	0.368	0.426	464.0	0.546	0.566	0.600	0.588	0.205	0.263
Z NI	115	50	36	36	36	36	36	38	45	61	54	36	36	36
K a g h per ft per	atm. 918	365	873	189	318	544	635	832	666	888	619	046	211	353
CE AT	°. 0,05	2+5	-1.2	-1.7	ħ*0	.8*0	-0.1	-0.3	-0-8	-1.2	1°4	2.0	-1.6	0.13
M L Jb/h	54.5	51.3	55.5	38.1	34.3	40.3	39.8	42.9	42.4	55,6	53.8	53.4	39.9	35
	1dw7	66	102	120	107	103.5	66	66	96 . 5	66	95	103.5	120.4	101
100 +	_1 155	154	160	167	160	191	159	158	158	156.5	147	160	166.5	160
ES ^o F AIR	WbI 84.5	83	83	113.3	96.4	16	81	84	79.5	85	184	83	ħTt	6
TEMPERATURES	~₩D2 52.3	54	55	49.5	51	617	50	51	52	52.3	54	55	49.5	21
TEMP +	5	65	64	61.5	54	62	63.5	61	63	63	65	64	61.5	64
ER OUT	70	69.5	73.5	109	92.5	85	76.4	73.5	69.5	73	72	. 75	109.5	. 80
WATER IN O	1 102.8	101.5	105.5	126.4	011	301	36	95.5	30 . 5	100	66	103.5	125	103
រ	0.878	0.836	1.01	4.533	2.773	1.978	1.54	1.33	01.1	1.05	1.005	1.248	5.176	3.27
ATES ft ²	G 2584	2415	2243	594	116	1368	1752	2C24	2448	2562	2680	2158	612	909
FLOWRATES RUN FLOWRATES No. 1b/h ft ² - IN OUT G T T	L G 2270.4 2584	2270.4	2270.4	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.9	26.92.8	3168	3168
RUN No.	1013 2	1014 2	1015 [.] 2	1016 2	1017 2	1018 2	1019 2	1020 2		1022 2		1024 2		1026 3
· · ·		-		,				- -	• • • •	12	9-1 9	4 - 4 		· · · · ·

Table (24) Experimental Data and Results .

310.

•

	. 1			*	*	-2	*	•					r,	*	- ¥
Δp T.W.G.	ft -	0,333	0.70	0.883	1.01	1.05	1.083	1.867	0.083	0.20	0.333	0.75	1.00	1.03	1.1
TOWER	Eh E	0.66	0.71	0.72	0.70	0.61	0.59	0.70	0.79	0.71	0.71	0.75	0.75	0.70	0.66
TOV	PERFORMANCE Er Eh	0*330	0.367	0.448	0.48	0.52	0.534	0.533	0.161	0.246	0.291	0.326	0.388	0.438	0.447
13	NI	36	36	38	45.	51	54	36	36	36	36	36	38	45	59
K a Ib per h per	ft ³ per atm.	472	652	912	1005	950	016	1092	219	340	505	. 869	205	957	925
	BAL- ANCE	0.84	6.0-	0.6	-0.6	0.10	0•6	1.1	-1.9	-0.2	ħ*0	-0.9	0.5	-0.9	-1.1
ж ^а	ग/पा	4.14	40.7	43 . 2	42.8	55.6	55.8	54.7	34.7	44.8	42.7	μŢ	43.3	54 .	56.4
·	tkbl	104	1 7° 66	66	67	66 °2	38	103.5	117	113	104	100	100	100	103
	t t	161	159	159	158	156.5	153	156	165	162	160	160	159	160	154
RES ^O F	AIR 2 tubi	92	85	85	80	85.5	85	16	109.5	104.5	63	85	85.3	86.2	86
TEMPERATURES	IN t _{wb2}	tt 9	50	51	52	52.3	54	55 .	£9.5	51	64	50	51	52	52.3
TEM	th _c u	62	63.5	1.9	63	63	65	64	61.5	. 479	62	63.5	61.	63	63
	WATER	86.5	78.5	. 75	71.5	74.5	74.5	76.5	107	100	88	80	. 11	77	77
	T L	105	33	94.5	89.5	98.5	38	τοτ	. 8II	116	104	94 •5	. 93.5	. 96.5	67
	טןב	2.33	1.832	1.605	1.31	1.25	1.185	1.537	5,99	3.91	2.743	2.17	1.92	1.573	1.47
FLOWRATES	/h ft ² G	1357	1729	1973	2415	2541	2674	2050	617	446	1346	1703	1926	2349	2519
FLC	15/h	3158	3168	3168	3168	3168	3168	3168	3596	3636	3696	3696	3635	3636	3696
,	RUN No.	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040

÷

			•													
		*						*	*	*	~*					
	Δp I.W.G. ft	1.1	1.9	001.0	0.200	0.35	0.75	1.00	1.05	11.1	1.15	1.95	01.0	0.20	0.383	
	ER AANCE En	0.64	0 •83	0.78	0.75	0.75	0.76	0.76	0.71	0.71	0.63	0.79	0.80	0.77	0.79.	
	TOWER PERFORMANCE E E E	0.482	0.478	0.156	0.219	0.255	0.306	0.349	0.403	0.412	0.434	0.433	0.145	0.181	0.228	•
	NI Z	54	36	36	36	36	36	33	45	50	54	36	36	36	36	
r X	lb per h per ft ³ ztm.	1017	IIII	228	352	507	726	879	954	1003	1023	1165	236	320	525	
	HEAT BAL- ANCE	0.7	1.75	-0-5	-0-7	-1.0	-0.7	0.7	- 0-9	-1.4	0.2	2.0	-0-8	2.0	-1.3	
	W L Jb/h	56.7	54	35.6	45.5	44.5	48	43.3	60.2	57.8	56.7	54,5	38.7	46 . 0 .	45.5	
	twbl	66	104.5	118	113	195.5	103	100	102	85	100	301	120	114		
		151	156	164	163	161	160.5	160	101	156	15 8	158	164	164	161.5	
	ES ^C F AIR twb1	85.5	91.5	III	105	94.7	90.3	. 86	89.2	87	86	63	114	105.3	95	
	TEMPERATURES IN t2 twb2 t	54	. 22	49.5	51	, 64	50	51	52	52.3	54	55	49.5	51	6,4	
	TEMI t	65	64	61.5	64	62	63.5	19	63	63	65	64	61.5	64	62	
sults	DUT OUT	76	7.8.5	109	IOI	06	84	79	80.3	78	77.5	80.5	111.5	103	90.7	
.and Re	WATER UN OU T	96.5	100	120	. 311	104	66	t16	4.62	96	32 ° 2	100	122	114.5	103	
Table (24) Experimental Data and Results	리이	1.39	1.84	6.95	.4.42	3.1	2.49	2.20	1.81	1.68	1.59	2,18	7.84	4,93	3.49	
periment	FLOWRATES 1b/h ft ² . G	2653	2013	600	943	1341	1675	1894	2310	2484	2614	1161	592	148	1332	
(24) EX	FLOWRATES 1b/h ft ² L. G	3595	3696	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4646.4	4546.4	4646.4	
Table	RUN No.	.THOT	1042	1043	TOT	1045	1045 4	1047. 1	1048 4	1C49 4	1050 H	1051.4	1052 4	1053 4	1054 4	
											•					

Run Lumber Run Lumber			. 44	• •	. ·										
Intermeting the part of the p			**	-75	•3	**	~					**	*	**	*
FLOWANTES TEXPERATURES C Value Table Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value <th< td=""><td>ΔΡ Ι.W.G</td><td>0.80</td><td>1.03</td><td>1.06</td><td>1.1</td><td>1.18</td><td>1.96</td><td>0.10</td><td>0.20</td><td>0.4</td><td>0.817</td><td>1.03</td><td>1.1</td><td>1.16</td><td>1.18</td></th<>	ΔΡ Ι.W.G	0.80	1.03	1.06	1.1	1.18	1.96	0.10	0.20	0.4	0.817	1.03	1.1	1.16	1.18
FLOWANTES TEMPERATURES F	ER	Е _ћ 0.77	0.80	0.75	0.74	0.72	0.79	0.81	0.78	0.80	0.79	0.84	0.30	0.77	0.74
FIOWRATES TEXPERATURES TEXPERATURES T T															

313.

•

																914.
		1						**	*	*	*	,				
	Δp I.W.G.	ţţ	2.02	0.100	0.217	0.417	0.85	1.00	1.16	1.18	1.18	2.05	0.117	0.217	0.45	0.883
	TOWER	PERFORMANCE E _r E _h	0.79	0.83	0.82	0.82	0.84	0.83	0.81	0.79	0.77	0.87	0.85	0.82	0.84	0.84
	TO	PERFO	0.359	0.117	0.164	0.185	0.23	0.279	0.304	0.320	0.325	0.264	0.097	0.159	0.168	0.23
	2	NI	36	36	36	36	36	40	45	52	62	36	36	36	36	36
a a	1b per h per	ft per atm.	7047	228	383	523	803	661	IIOL	1065	597	1027	220	407	: 540	. 837
	HEAT BAL-	ANCE	3.1	-1.1	-1.6	-1.3	-1.5	0.5	-1.5	6 . 0-	+1°T-	-1.6	-2.0	-0.5	-1.4	0.15
	W.T.	५/५१	53	0.04	50.1	58.7	52.7	47.5	61.6	58.1	58.4	7.44	40.9	48.7	58.9	52.4
		twbl	108	121	. 311	106.5	104	IOI	103	IOI	101	106.5	123	115	106.5	105
		our t1	162	165	165	101	159	160	161.5	159.5	159	160	167	166	161	162
	S ^O F AIR	twbI	94	115.2	108	36	94	88	16	88	87.5	89	311	107	96.4	54
	TEMPERATURES A	twb2	55 .	49.5	51	61	50	51	. 52	52.3	54	57	49.5	51	49	50
	TEMPI	°4	64	61.5	·64	62	63.5	61	63	63	64	65	61.5	64	62	63.5
·	:	our 2	84.5	113.5	104.5	86	88.5	82	84	. 81	, 8 1	83.5	115	104	93 . 5	88.5
	WATER	T L	IOI	122.	115	103	JOO	94	. 86	94.5	64	63	122	114	102.5	100
	Ч	10	2.87	9-64	6.03	4.38	3.52	2.97	2.55	2.35	2.25	3.14	10.6	6.59	4.8S	3°83
	ATES	ft ² G	1796	539	. T+6	1295	ILJI	606T	2229	2415	2522	1805	587	644	1284	1603
	FLOWRATES	lb/h ft ² L G	5148	5576	5676	5676	5675	5576	5676	5676	5676	5676	6230.4	6230.4	6230.4	6230.4
	RUN	No.	1069	1070	101	1072	- T073	1074	1075	1076	1017	1073	1079	1080	1081	1082

.

.

.

.

-;; •% ** × I.W.G. -7 쏬 -2 0.483 0.117 0.217 đ۵ ť 1.02 1.25 1.24 2.07 0.92 1.08 1.23 1.23 1.13 2.10 1.2 PERFORMANCE 0.86 0.89 0.86 ៳៝ 0.82 18.0 0.77 0.87 0.85 0.88 0.87 0.86 0.89 0.79 0.82 TOWER 0.278 0.274 0.296 0.313 0.089 0.160 0.274 0.144 0.275 0.194 0.273 0.257 0.247 ដ្ 0.25 ç 36 36 ç 45 54 36 36 62 36 36 45 54 62 NI N Ka B per h per ft³ 429 1150 1076 1119 588 1035 1108 196 793 1148 1088 1104 1150 per 1081 atm. 0.03 HEAT ANCE. BAL--1.0 1.6 -1.3 4°0 -1.9 -0.8 -0.8 1.0 1.4 -0.6 0.8 -1.1 -1.7 49.3 46.9 60.5 60.8 42.2 58.6 60.5 \$7**.**6 44.2 47.0 60.2 44.5 4/q1 ت م 52 58 102.5 102.5 **L**dw 101 101 107 123 115 105 102 103 103 107 101 107 158.S 159 160 161 159 **166** 166 160 158 161 161 162 161 160 LTO0 107.5 36.5 88.8 87.5 94.3 90.5 AIR TEMPERATURES ^{OF} t WDI 88 117 83 16 S 5 83 83 wb2 52.3 49.5 52.3 52 5 51 57 57 64 20 5 52 ភ្នំ 57 NI 61.5 63.5 юц 66 63 63 66 51 64 64 62 5 63 63 5 84.5 104.5 ഗ 81.5 83.5 93.5 69.5 84.5 81. 116 82 833 83 85 82 7 CC WATER 122.5 94.5 93.5 54.5 113.5 93.5 е б 102 66 97 5 90 5 ដ៍ត N N H H 11.75 2.85 2.60 3.56 7.28 3.31 5.38 3.75 3.15 2.79 2.51 4.37 2.50 3.99 10 Ч 1884 2187 2395 2484 1751 584 943 1277 1572 1829 2177 2364 2462 1721 FLOWRATES lb/h ft² C 6230.4 6230.4 6230.4 6230.4 6230.4 6854 6864 6864 6864 5864 6864 6864 5854 6364 Ļ 1083. 1084 1085 1086 1087 1088 1089 0601 1091 1092 1093 1095 1034 1095 RGN No.

Table (24) Experimental Data and Results

	∆p T ⊎ C	• • • • • •	ft	0.067	0.147	0.307	0.633	0.867 *	1.067 *	1.067 *	1.267 *	0:080	0.16	0.23	0.647	0.933 *	1.00 *
	IER .	MANCE	ц ц	0.56	0.50	0.42	0.38	0.24	0.21	0.16	41.0	0.63	0.35	0.38	0.33	0.38	0.32
	TOWER	PERFORMANCE	ណុង	0.313	0.375	0.617	0.674	0.768	0.789	0.737	0.771	0.264	0.367	0.551	0.582	0.655	0.675
	2	TN	5	18	18	18	18	20	22	23	. 3I	18	18	18	18	20	22
Ka B	h per	ft 3	per atm.	265	114	783	916	1019	1196	864	1033	353	328	658	850	1087	1210
		BAL-	49	-5.0	-1.0	1.6	2.5	1.8	1.4	-2.1	-2.3	-2.7	3.5	2.9	2.4	ħ°0-	1.8
	14		u/qT	0.11	10.5	22.7	22.8	39.0	43	55	58	14.41	22.3	37.5	32.6	37.4	37.8
			twbl	94	60	95	63	96.5	63	63	92.5	86	66	101.5	96.5	96	16
		our	¹	153	151	155	153 .	154	148	150	150	156	154	156	154	154	147
c	ч.	AIR	twbl	75	63	75.8	11	80.5	77	19	77.5	81.5	85	83	79.5	80	74.5
	TEMPERATURES ^V F	NI	twb2	50	50	50	20	51	47.5	45.5	45.5	50	51	6 tt	50	51	47.5
	TEMPE	н	⁴ 64	60.5	60.5	62	62	60	57	09	. 03	60.5	62	60	62	60	57
	· ·	R OUT	F.G	78	70	68	64	67	63	63	66	82	91.5	80	73	70	66
		NATER IN OU		38.5	82	97	63	120	121	135	135	93 . 5	115	118	105	106	104.5
		н I	ບ .	1.394	1.014	0.718	0.57	0.480	0.397	0.368	0.32	1.94	1.45	1.02	0.794	0.656	0.537
	ATES	ft ²	U	786	1801	1527	1922	2232	2763	2978	342I	762	1023	344S	1861	2253	2751
	FLOWRATES	1b/h ft ²		1095.6	1095.6	1095.6 1527	1095.6	1095.6	1095.6	1095.6	1095.	1478.4	1478.4	1478.4	1478.4	1478.4	1478.4
		RUN	No.	1097 .	1098	. 650T	. 0011	IOII	3 TI02	1103	1104	1105	9011	1107	1108	1109	OTIT
				•	,									.	n ar		الدينية

.

.316.

Results
and
Data
Experimental
able (24)

H

	•											-			
đ	I.W.G. ft	1.167 *	1.33 *	· 1.467 *	1.533 *	1.60 *	0.08	0.20	0.353	0.687	0.967 *	1.13 *	1.267 *	1.533 *	1.533 *
	TOWER PERFORMANCE E Eh	0.26	0.23	0.18	0.18	0.18	0.58	0.45	0.43	0.45	0.44	0+0	0.33	0.33	0.27
	PERFOI	0.676	0.70	0.727	0.747	0.763	0.233	0.315	0.387	0.516	0.536	0.630	0.583	0.624	0.643
	NI	25	33	36	. 46	51	18	18	18	. 18	20	. 24	27	35	37
Ka Ib per	h per ft per atm.	1079	1150	1066	1167	1296	270	366	528	619	1276	1245	1011	1275	.1170
HEAT	BAL- ANCE	-1.3	-2.4	4.0	1.3	1.6	-4.6	0.5	-1.2	2.6	-0.8	0.8	0.6	-2.5	-1.0
	Ч г ЛЪ/ћ	54.3	57.7	57.5	56.8	53.8	23.8	. 27.0	35	31.7	35.3	45	51	57	54
	t _{kb1}	33	32	63	9 1. 5	16	III	104	τοτ	96	95	96	94 . 5	92.5	93
		147	149	147	147	147	162	159	157	154.5	154	156	148	150	150
No So∵	AIR.	79	77	62.	76	74.5	67	16	86.8	61	78.5	03	78	77	78
TEMPERATURES	IN twb2 t	45.5	. 45.5	50	50	51.5	55	. 51	6 17	50	51	52	45.5	45.5	50
TEMP	<i>י</i> י+	09	60	59	62	63	63.5	62	09	62	60	62.5	60		59
	н 12 12	69	67.5	71	68.5	67.5	66°2	94.5	87	73.5	73.5	72	. 72	69	72.5
	WATER IN OU T ₁	118		127.	123	.611	113	114.5	III	. 3 * 8 6	33. 5	106	109	108	113
	ט ה	0.502	0.434	0.411	0.376 .	0.355	2.56	1.91	1.30	1.01	0.83	0.68	0.64	0.557	0.522
FLOWRATES	ft ²	2945	3406	3595	3936	4165	732	035	1438	1864	2259	2741	2920	3363	3591
	Ib/h	1478.4	1478.4.	1478.4	1478.4	1478.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4	1874.4
	RUN No.	. 11.11	1112	1113	#TIL	3115	1116	1117	1118	6111	1120	1121	1122	1123	1124

-22 * * I.W.G. 1.667 0.080 0.373 1.567 0.173 0.727 1.067 1.633 1.733 Å₽ ţ 1.20 1.33 1.53 1.53 0.53 0.25 0.68 0.24 0.50 0.49 0.30 0.46 111.0 0.38 0.33 0.33 PERFORMANCE 0.31 ឝ TOWER 0.685 0.170 0.500 0.694 0.284 0.533 0.579 0.432 0.542 0.568 0.331 0.611 0.64 ผ่ผ 46 50 18 18 20 18 18 54 36 52 NI 27 38 91 N K a Ib per h per ft³ 1358 1347 285 400 966 1163 1218 per 504 1292 1373 1245 1372 1478 atm. HEAT ANCE BAL-0.03 -5.0 -1.9 -2.4 2.1 1.2 1.1 0.5 0.9 0.7 0.9 1.7 -1.1 4/97 37.6 بر ۲ 56 56 56 18 g 31 38 ŝ ţ 58 57 58 t wbl . 92 106 92 106 102 96 95 93 30 ဗ္ဗ 93 92 92 50 **1**4 150 150 159 150 150 162 158 153 145 .150 150 150 154 AIR TEMPERATURES °F t wbl 75.5 4.68 76.3 78 76 ы **#6** 79 78 78 78 76 77 **k**b2 51.5 45.5 47.5 48.5 51.5 NI 20 55 54 50 51 51 50 50 63.5 62 63 80 62 60 62 60 60 62 63 57 59 • : • 91.5 96.5 71.5 10 F. 20 20 416 75 . 72 74 72 73 れ 74 WATER 113.5 114.5 112.5 106.5 104.5 h H 112 102 5 100 102 107 101 97 0.453 0.482 0.589 0.637 0.555 3.05 1.59 2.34 1.22 0.84 0.78 0.68 1.01 ч 10 1b/h ft² FLOWRATES 745 3892 4134 179 1423 1868 2246 2696 3853 4039 2921 -3349 3564 1874.4 2270.4 2270.4 1874.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 2270.4 1 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1137 1135 1135 RUN No.

Table (24) Experimental Data and Results

319**.**

٠

•											,					^
						r	- *	*	*	*	**	-30	*			
	Δp I.W.G.	ft	0*080	0° 30	0.413	0.773	1.00	1.167	1.267	1. 533	1.533	1.667	1.80	0.080	0.313	0.413
	IER	FERFURMANCE E E E	0.70	0.56	0.52	0.57	0.53	0.48	0.46	14.0	0*†0	0.37	0.36	0.73	0.59	0.57
	TOWER	EKEUR	0.163	0.244	0.283	0,393	0.433	0.476	0.500	0.487	0.539	0.559	0.583	0.176	· 0.226	0.263
	13	NI	18	18	18	18	20	25	29	36	39	46	52	18	18	18
K a	lb per h per 13	rt per atm.	336	415	529	1047	1126	1308	1358	1250	1402	1507	1559	455	9 11 12	580
	HEAT BAL-	ANCE	-3.2	-1.5	-2.8	3.1	0.3	-0.2	-1.5	-2.8	6°0-	0.4	₩ • 0	-0.7	-0-9	-3.0
	ы Т	-	13	33	38	30	37	47.2	52.7	59 °3	53	55	60	19	46	01
		twbl	106	108	103	. 35	96.	46	96	91.5	91.5	06	90.5	301	109	104
			159	162	158	152	153	143	138	140	140	140	140	159	163	158,5
	RES ^O F AIR	2 ^t wb1	16	36.8	06	78	79.6	80	. 81	78.5	78.2	76	77	91.5	<u>38</u>	#*1 6
	TEMPERATURES ^{'O} F AIR	IN twb2	55	21	119	50	51	47.5	817	45.5	50	50	51.5	55	51	61
	TEM	4 ⁴	63.5	62	60	62	60	56	58	60	59	62	. 63	63.5	62	6 0
	WATER	00T 72	93.5	66	92	75.5	76.5	75	75	75	74	72.5	73	92.5	100	86
	WA	T I	lol	114.5	109	92	36	100	102	103	102	IOI	103	100.5	#11	TC8
	ы	10	3.61,	2.78	1.91	1.46	1.21	10.1	0.92	0.81	0.76	0.70	0.66	4.26	3*39	2.25
	FLOWFATES	h ft' G	. 740	963	1411	1841	2231	2664	2913	3323	3535	3834	4082	145	196	1407
FLOWE	FLO	ग∕ता 1	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	2692.8	3168	3168	3168
	RUN	No.	1138	1139	0hII	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151
			•				•					• • • •				

Table (24) Experimental Data and Results

.

·

4

														. 3	20.
			*	· ·	*	**	**	*	*				*	*	*
ďΣ	I.W.G. ft	0.813	1.07	1.27	1.33	1.53	1.60	1.80	1.80	0.093	0.227	0.433	0.893	1.13	1.27
f	ANCE Eh	0.61	0.59	0.52	0.5	0.45	0.43	0.43	14.0	0.76	0.63	0.60	0.64	0.63	0,55
0.110 H	PERFORMANCE E Eh	0.338	0.372	0.423	0.442	0440	0.48	0.510	0.537	0.145	0.202	0.241	0.313	0.359	0.388
1	NI C	18	20	26	29	36	04	91	52	18	18	18	46	20	26
Ka g h per	n per ft per atm.	1077	1152	1329	1347	1328	1400	1641	1716	452	164	662	1155	1676	1.390
HEAT	BAL- ANCE \$	1.1	-1.2	-0-8		-1.7	-0-3	0.2	-0.1	-1.1	-0.7	-1.5	1.8	-0.5	0.2
:	ч/чт Л	30.1	57.7	617	53	58	53	55	60	51	36	011	31	30 30	51
	t _{wb1}	95	96	95	96	91.5	91.5	06	90.5	106	109	104	96	36	. 95.5
		152.	154	146	136	140	140	140	140	160	163	158	154	155	149
ES ^o F	AIR twbi	78	80.4	81.6	81	78.2	78.2	, 76	77	91.5	66	32	. 79	81.8	82.3
TEMPERATURES ^O F	IN twb2	50	51	47.5	84	45.5	50	50	51.5	55	51	54	50	21	47.5
TEMI	۳ <mark>4</mark>	62	60	56	58	60	59	62	63	63 . 5	62	60	62	60	56
• •	WATER	76.5	78	77.5	77	76	76	73	73.5	63	100.5	63	77.5	79	19
	TAN TN T	06	46	99 • 5	100	100	100	67	66	66°2	113	107	06	t+6	66
	н I О	1.72	1.44	1.20	1.10.	0.957	0.902	0.829	0.781	95°4	3.84	2.63	2.03	1.68	1.41
FLOKRATES	lb/h ft ²	1841	2206	2637	2904	3312	3514	3821	4058	745	196	1405	1824	2199	2624
	L 1b/	3168	3168	3168	3168	3168	3168	3168	3168	3636	2696	3693	3596	3696	3536
	RUN No.	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165
		•													

. ÷-

								•			•				
		*	*	**	*	**	•				*	*	*	- #.	**
	Δp I.W.G. ft	1.33	1.53	1.67	1.80	1.87	0.133	0.24	0.487	0.947	1.167	1.267	1.60	1.73	1.87
	ier wance e _h	0.52	0.48	0.48	0.45	0.45	0.79	0.68	0.64	0.67	0.63	0.58	0.52	0.51	0.51
	TOWER PERFORMANCE E En	0.406	0.422	0.442	0.478	h64.0	0.114	0.180	0.211	0.288	0.314	0.337	101 [•] 0	0.413	0.435
	Z	30	36	011	46	52	13	18	18	18	20	27	42	01	7t C
K 8a	lb per h per ft per atm.	1467	1463	1553	1752	1829 .	405	514	670	1220	1250	1328	1664	1634	1 856
	HEAT BAL- ANCE &	6°0	0.9	-0.5	1.9	1.2	-2.3	-1.2	-2.5	1.8	-0.1	-1.3	1.4	0.2	6°0
	и Г Л	51	148	55.7	56.5	56.1	19.7	37.1	4 1. 8	31.8	017	52	53	55	54
	twbl	95 <u>,</u> 5	91.5	92.5	16	16	106	OTT	104	96.5	97	96	6 3	. 63	. 26
	t1	744	4tT	144	144	. 144	101	163	159	154	155	149	150	150	150
	oF MIR	19	77	73	76.3	76	92	1 00	63	80	82	. 82.8	78	79	76
	TEMPERATURES	118	20	50	50	51.5	55	51	611	50	21	47.5	48	50	20
•	15M	58	55	65.	62	63	63.5	62	60	62	60	57	5ġ	59	62
	WATER 0UT TZ	76.5	76	76.5	74	73.5	+6	TOT	94	78.5	80.5	18	76	77	412
	T. T.	. 96	95	97.5	96	95	66	112	106	06	116	、 86	35	30	92.5
	טןה	1.27	1.12	1.06	0.977	0.917	5.61	4.35	2.98	2.33	1.92	1.59	1.27	1.21	11.1
	FLOWRATES 1b/h ft ² . G	- 2917	3297	3477	3784 2.	160 ⁴	743	958	1400	1793	2175	2622	3287	3456	3769
	FLOWR 1b/h L .	3696	3693	3696	3696	3696	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2	4171.2
	RUN No.	1166	1167	1168	1169	1170	ίλιι	1172	1173	1174	.1175	1176	1177	1178	6/11

;

•

24L •

•

													-			322.
	• 1		**					*	**	*	*	¥	*	**		
	Δp I.W.G.	T T	1.93	0.18	0.307	0.493	1.067	1.2	1.33	1.6	1.8	1.8	1,93	0.18	0.32	0.60
	TER MANCE	щ	0,49	0.82	0.70	0.67	0.73	0.67	0.61	0.55	0.53	0.55	0.54	0.85	0.73	0.72
	TOWER PERFORMANCE	ผ่ห	0.47	0.114	0.158	0.179	0.231	0.282	0.313	0.363	0.389	0.405	0.42	0,093	0.145	0.164
	Z NI		52	18	18	18	18	20	27	. 42	64	46	52	18	18	18
Ka g 1b per	h per ft ³ per	atm.	2010	478	515	635	1120	1328	1395	1643	1702	1928	1981	194	552	678
		040	1.9	-1.5	-1.6	-3.4	-1.0	0°0	-1.0	0.5	1.0	0.5	0,06	-2.1	-1.5	-3.2
	и Т ЛЪ/ћ		53	20	37	42.5	33	33.2	52.4	52.6	54,9	56.5	58 . 3	20	37	42.5
•	•	wb1	92	106.5	011	105	61	94.5	96	16	16	06	06	106.5	011	105
	+ our	ŗ	150	162	163	159	155	153.5	150	131	150	150	150	162.5	163	159
RES ^O F	AIR		76	63	100	93.3	81	78	83	78	79	77	77	63	100	6
TEMPERATURES	N	, wb2	51.5	55	51	611	50	52	47.5	48	50	50	31 °2	55	21	617
TEN	•	~	63	63.5	62	60	62	62.5	57	59	59	62	63	63.5	62	60
	WATER	2	73.5	94	101.5	95	80	77.5	81.5	77	77.5	75	75	1 15	TOT	. 56
	T. T.	-	63	66	III	105	83	87.5	67	93.5	<u>9</u> 2	92	92	98	109.5	104
	טוה	1	н. С	6.37	4.85	3.32	2.62	2.12	1.77	1.41	1.36	1.25	1.17	7.06	5.37	3.78
	tLURKATES 1b/h ft ²	•	3994	729	958	1399	1775	2196	2620	3287	3428	3714	3966	729	958	1363
FLOWRATES	1b/	4	4171.2	4646.4	4646.4	4.646.4	4646.4	4646.4	4646.4	#646.4	4646 . 4	4646.4	4646 . 4	5148	5148 .	5148
	RUN No.		1180	1311	1182	1183	1184	1185	1186	1187	1188	1189	0611	1611	1192	£611.

ILONGATES ILONGATES					۰.			•							•																																																																																						
FLOHEMATES FLOHEMA				*	**	::	**	*	*	•				*	*	*																																																																																					
ILONRAFITES TEXPERANTURES INTACT TEXPERANTURES INTACT INTACT <th colspa<="" td=""><td></td><td>Åp I.W.G. ft</td><td>1.15</td><td>1.20</td><td>1.40</td><td>1.67</td><td>1.80</td><td>1.93</td><td>2.0</td><td>0.18</td><td>0.33.</td><td>0.573</td><td>1.00</td><td>1.267</td><td>1.4</td><td>1.67</td></th>	<td></td> <td>Åp I.W.G. ft</td> <td>1.15</td> <td>1.20</td> <td>1.40</td> <td>1.67</td> <td>1.80</td> <td>1.93</td> <td>2.0</td> <td>0.18</td> <td>0.33.</td> <td>0.573</td> <td>1.00</td> <td>1.267</td> <td>1.4</td> <td>1.67</td>		Åp I.W.G. ft	1.15	1.20	1.40	1.67	1.80	1.93	2.0	0.18	0.33.	0.573	1.00	1.267	1.4	1.67																																																																																				
ITIONTATTES TEXPERATURES TEXPERATURES VATER, TEXPERATURES VEXATINES VEXATINES <th< td=""><td></td><td>ER MANCE F</td><td>0.73</td><td>0.69</td><td>0.63</td><td>0.59</td><td>0.57</td><td>0.58</td><td>0.56</td><td>0.86</td><td>0.77</td><td>0.77</td><td>0.74</td><td>17.0</td><td>0.65</td><td>0.61</td></th<>		ER MANCE F	0.73	0.69	0.63	0.59	0.57	0.58	0.56	0.86	0.77	0.77	0.74	17.0	0.65	0.61																																																																																					
ITENTERFAND Γ Γ Γ Γ Γ Γ Γ Γ \Gamma \Gamma <th< td=""><td></td><td>Tow Perfori E</td><td>0.218</td><td>0.260</td><td>0.289</td><td>0.356</td><td>0.365</td><td>0.378</td><td>0.405</td><td>0.094</td><td>0.138</td><td>0.167</td><td>0.221</td><td>0.235</td><td>0.278</td><td>0.318</td></th<>		Tow Perfori E	0.218	0.260	0.289	0.356	0.365	0.378	0.405	0.094	0.138	0.167	0.221	0.235	0.278	0.318																																																																																					
TERMERATURES oF TERMERATURES oF IEMI- ID/In ft ² L TEMMERATURES oF IEMI- ID/In ft ² L IEMI- ID/In ft ² L IEMI- ID/In ft ² IEMI- ID/In MARE L L C T T AIR OUT AIR OUT ID/In IEMI- ID/In IEMI- ID/In IEMI- ANC S1U48 L1748 2.055 89 80.5 79 62 79 81.2 ID/In MAC S1U48 L1748 2.055 89 80.5 79 62.5 79 79 32.4 0.09 S1U48 2.058 L1.55 89 77 59 133 132.4 0.09 S1U48 3333 L1.55 91 73.5 133 131 1 1 1 S1U4 3333 L1.55 93 133 1 1 1 1 1 <th1< th=""> 1 1 <!--</td--><td></td><td>Z</td><td>18</td><td>21</td><td>29</td><td>42</td><td>42</td><td>46</td><td>53</td><td>18</td><td>18</td><td>18</td><td>18</td><td>21</td><td>. 23</td><td>0#</td></th1<>		Z	18	21	29	42	42	46	53	18	18	18	18	21	. 23	0#																																																																																					
TEOMERATURES or IDATES TAPPERATURES or IDATE TAPPERATURES or IDATE TAPPERATURES or IDATE<	K 8 8	1b per h per ft ³ per atm.	1151	1342	1436	1857	1788	2045	2146	539	612	842	1330	1328	IthSI	1818																																																																																					
FLOWRATES TEMPERATURES ⁶ F ID/h ft ² L MATER AIR OUT L G T T T T AIR OUT AIR OUT L G T T T T T AIR OUT AIR AIR OUT S148 L G T T T T Abb T OUT OUT <td></td> <td></td> <td>60°0</td> <td>-0.2</td> <td>-1.0</td> <td>1.3</td> <td>0.5</td> <td>0.2</td> <td>1.1</td> <td>-1.4</td> <td>-1.6</td> <td>-2.3</td> <td>0*9</td> <td>-0.7</td> <td>tı • 0</td> <td>0.5</td>			60 ° 0	-0.2	-1.0	1.3	0.5	0.2	1.1	-1.4	-1.6	-2.3	0*9	-0.7	tı • 0	0.5																																																																																					
FLOWRATES Tarmer and and out the form the form and the form the form and the form a		и л Ль/АІ	32.4	\$6 .3	54	55.4	55.7	57	58	20	38.5	t1 t1	33.1	37.3	55.1	55.3																																																																																					
FLOWRATES TEMMPERATURES TEMMPERATURES T 1b/h ft ² - - IN NIT AIR 1b/h ft ² - - IN NT AIR 5148 1748 2.95 89 80.5 79 62.5 79 79.5 5148 2187 2.35 88.5 79 62.5 79 79.5 5148 2187 2.355 88.5 79 62.5 79 79.5 5148 23556 1.58 93 77 59 447.5 83.2 5148 23556 1.51 94 79 79 79 5148 3393 1.51 94 79 79 79 5148 3393 1.51 94 79 79 79 5148 3393 1.51 94 79 79 74 5148 3933 1.51 94 75 76 77		twb1	97	95	96	63	1 16	94.5	94	105.5	011	105	97	96	97.5	16.																																																																																					
FLOHRATES TEMPERATURES Lb/h ft ² L NATER IN L G G T Y Y L G G T Y Y Y 5148 1748 2.95 89 80.5 79 Y Y 5148 2187 2.35 89.5 79 62.5 79 5148 2187 2.35 89.5 79 62.5 79 5148 2187 2.35 89.5 77 59 48 5148 3393 1.52 94 78.5 62 51.5 5148 3393 1.52 94 78.5 63 51.5 5148 3393 1.52 94 75.5 62 50 51.5 5148 3935 1.31 91 75 53 51.5 51.5 5148 3935 1.31 91 75 53 51.5 <td< td=""><td>• .</td><td>our ^t</td><td>155.5</td><td>155</td><td>147</td><td>134</td><td>150</td><td>160</td><td>160</td><td>162</td><td>162.5</td><td>160</td><td>157</td><td>156</td><td>146</td><td>136</td></td<>	• .	our ^t	155.5	155	147	134	150	160	160	162	162.5	160	157	156	146	136																																																																																					
FLOWRATES TEMPERATURN Ib/Ih fft ² L IN TATER IN Ib/Ih fft ² - IN NATER IN L G - - IN Nater L G S B S T Y SI448 L197 S B S T Y T S1448 2187 Z.35 B S T T T S1448 2256 1.53 93 T T T S S S1448 23556 1.53 93 T T T S S S S1448 33933 1.52 93 T T T S S S		cs ^o F AIR twb1	81	79.5	83.2		80	77 .5	17	69	TOT	55	81	80.5	84	79																																																																																					
FLOWRATES L WATER 1b/h ft ² - IN OUT L G G T1 T2 5148 1748 2.955 89.5 79 65 5148 1748 2.955 89.5 79 65 5148 2187 2.355 88.5 79 65 5148 2333 1.52 94 73.5 65 5148 3333 1.52 94 73.5 65 5148 3333 1.52 94 75.5 65 5148 3333 1.52 94 75.5 65 5148 3935 1.31 91 75.5 65 5148 3935 1.31 91 75 65 5148 3935 1.31 91 75 65 5148 3935 1.31 91 75 65 5676 1359 4.118 103 94 66 5676 1789 3.17 95 66 96 <		ERATURI IN twb2	50	52	47.5	48 1	51.5	50	51.5	55	51	611	50	52	47.5	14.8																																																																																					
FLOWRATESIb/h ft ² L L G		TEMP	62	62.5	57.	59	62	62	63	63.5	62	60	62	62.5	57	59																																																																																					
FLOWRATES 1b/h ft ² L L G T L G G T L G G T L G G T Jb/h ft ² - G T L G G T Jb/h ft ² - G T L G 1.91 96 5148 2187 2.35 88 5148 2187 2.35 88 5148 3393 1.52 91 5148 3698 1.35 91 91 5148 3698 1.35 91 91 5148 3698 1.35 91 91 5148 3693 1.35 91 91 5148 3935 1.35 1.31 91 5148 3935 1.35 1.31 91 5676 1359 4.18 103 96 5676 2184 2.177 96 96 <tr td="" to<=""><td>. (</td><td>our 21</td><td>80.5</td><td>79</td><td>82</td><td>77</td><td>78.5</td><td>75.5</td><td>. 75</td><td>93,5</td><td>TOT</td><td>64</td><td>80</td><td>80.3</td><td>82.5</td><td>78</td></tr> <tr><td>FLOWRATES 1b/h ft² L G L G 5148 1748 5148 2187 5148 2187 5148 2187 5148 2187 5148 2618 5148 3393 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5676 1359 5676 2184 5676 2184 5676 2613 5676 3248 5676 3248</td><td></td><td>WAT TN T</td><td>83</td><td>88,5</td><td>96</td><td>63</td><td>t16</td><td>T6</td><td>16</td><td>97.5</td><td>60T</td><td>103</td><td>88.5</td><td>83</td><td>36</td><td>92</td></tr> <tr><td>FLOWF L 5148 5148 5148 5148 5148 5148 5148 5148</td><td></td><td>טןב</td><td>2.95</td><td>2.35</td><td>1.97</td><td>1.58</td><td>1.52</td><td>1.39</td><td>1.31</td><td>7.79</td><td>5.86</td><td>4.18</td><td>3.17</td><td>2.60</td><td>2.17</td><td>1.75</td></tr> <tr><td>L 55676 55776 55776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 577777777</td><td></td><td>WRATES h ft² G</td><td>1748</td><td>2187</td><td>2618</td><td>3256</td><td>3393</td><td>3698</td><td>3935</td><td>729</td><td>969</td><td>1359</td><td>1789</td><td>2184</td><td>2613</td><td>3248</td></tr> <tr><td>RUN No. 1194 1195 1196 1197 1198 1198 1198 1209 1200 1203 1204 1205 1205 1206</td><td></td><td>Ib/i</td><td>5148</td><td>5148</td><td>5148</td><td>5148</td><td>5148</td><td>. 84TS</td><td>5148</td><td>5676</td><td>5676</td><td>5676</td><td>5676</td><td>5676</td><td>5676</td><td>5676</td></tr> <tr><td>•</td><td></td><td>RUN No.</td><td>1194</td><td>1195</td><td>95TT</td><td>1197</td><td>1198</td><td>66TT</td><td>1200</td><td>1201</td><td>1202</td><td>1203</td><td>1204</td><td>1205</td><td>1206</td><td>1207</td></tr>	. (our 21	80.5	79	82	77	78.5	75.5	. 75	93,5	TOT	64	80	80.3	82.5	78	FLOWRATES 1b/h ft ² L G L G 5148 1748 5148 2187 5148 2187 5148 2187 5148 2187 5148 2618 5148 3393 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5676 1359 5676 2184 5676 2184 5676 2613 5676 3248 5676 3248		WAT TN T	83	88,5	96	63	t16	T6	16	97.5	60T	103	88.5	83	36	92	FLOWF L 5148 5148 5148 5148 5148 5148 5148 5148		טןב	2.95	2.35	1.97	1. 58	1.52	1. 39	1.31	7.79	5.86	4.18	3.17	2.60	2.17	1.75	L 55676 55776 55776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 577777777		WRATES h ft ² G	1748	2187	2618	3256	3393	3698	3935	729	969	1359	1789	2184	2613	3248	RUN No. 1194 1195 1196 1197 1198 1198 1198 1209 1200 1203 1204 1205 1205 1206		Ib/i	5148	5148	5148	5148	5148	. 84TS	5148	5676	5676	5676	5676	5676	5676	5676	•		RUN No.	1194	1195	95TT	1197	1198	66TT	1200	1201	1202	1203	1204	1205	1206	1207
. (our 21	80.5	79	82	77	78.5	75.5	. 75	93,5	TOT	64	80	80.3	82.5	78																																																																																						
FLOWRATES 1b/h ft ² L G L G 5148 1748 5148 2187 5148 2187 5148 2187 5148 2187 5148 2618 5148 3393 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5148 3698 5676 1359 5676 2184 5676 2184 5676 2613 5676 3248 5676 3248		WAT TN T	83	88,5	96	63	t16	T6	16	97.5	60T	103	88.5	83	36	92																																																																																					
FLOWF L 5148 5148 5148 5148 5148 5148 5148 5148		טןב	2.95	2.35	1.97	1. 58	1.52	1. 39	1.31	7.79	5.86	4.18	3.17	2.60	2.17	1.75																																																																																					
L 55676 55776 55776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 57776 577777777		WRATES h ft ² G	1748	2187	2618	3256	3393	3698	3935	729	969	1359	1789	2184	2613	3248																																																																																					
RUN No. 1194 1195 1196 1197 1198 1198 1198 1209 1200 1203 1204 1205 1205 1206		Ib/i	5148	5148	5148	5148	5148	. 84TS	5148	5676	5676	5676	5676	5676	5676	5676																																																																																					
•		RUN No.	1194	1195	95TT	1197	1198	66TT	1200	1201	1202	1203	1204	1205	1206	1207																																																																																					

.

-

		•												204
	4:	*	-#					-X	**	-10	ĸ	*	** .	
Δp I.W.G. ft	.1.80	1,93	2.07	0.147	0.333	0.573	1.07	1.30	1.40	1.67	1.93	2.03	2.03	0.187
ER ANCE En	0.58	0.61	0.61	0.80	0.80	0.75	0.75	0.73	0.69	0.64	0.64	0.62	0.62	0.80
TOWER PERFORMANCE E_r E_h	0.429	0.358	0.371	0110	0.132	0.167	0.182	0.227	0.238	0.284	0.309	0.325	0.355	0.0476 0.80
Z II	43	47	53	18	18	18	18	21	29	, O 4	43	47	53	18
Ka lb per h per ft per atm.	1720	2143	2295	419	683	, 106	1178	1443	1531	1765	1161	2110	2368	310
HEAT BAL- ANCE 8	0.3	0.6	10.0	-2.1	-1.2	-0-6	+• °0-	-0.2	-0.7	-0.5	-0-5	0**0	0.63	-2.0
ж г ЛЪ/ћ	58.1	58.3	60.5	L* 414	38.5	42.8	33	39	45.8	54.2	56,3	57.9	53°9	16.4
twbl	63	16	16	123	OTT	105	97	97	716	96	94 • 5	63	63	100
	140	140	140	168	162.5	160	157.5	157	147	136	150	150	150	154 154
ES ^O F AIR twb1	81	78	78	311	TOT	3th 5	. 81.3	81.5	80	80	80.5	78	78	98
TEMPERATURES IN t2 t _{wb2} t	51.5	50	51.5	55.5	51	611	50	52	811	4,8	51.5	50	51.5	50
TEMI 2	62	62	. 63	66	62	60	62	62.5	59	59	62	62	63	60.5
our 12	80	76	75.5	911	100.5	94	81.5	81	80	79.5	79.5	77	76	06
WATER IN OU T	94.	90*5	06	123.5	108	103	88.5	89.5	06	92	92	06	89.5	92
ы U	1.70	1.55	1.45	9.33	6.43	4.64	3.54	2.88	2,395	1.95	1.87	1.71	1.60	9 . 51
FLOWRATES 1b/h ft ²	334I	3666	3926	668	969	1344	1971	2166	260 1	3196	3331	3639	3889	722
FLOW 1b/h	5676	5676	5676	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	6230.4	6864
RUN No.	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221
				· · · ·						• ,		# * *		

•

Table (24) Experimental Data and Results

'

324.

ς,

•

						*	*	**	*		*
	Δp I.W.G.	ff	0. 32	0.57	1.13	1.3	1.47	1.70	1.93	2.07	2.2
			0.77	0.75	0.78	0.75	0.69	0.67	0.64	0.79	0.64
	TOWER PERFORMANCE	ผ้	0.132	0.159	0.159	0.213	0.227	0.271	0.279	0.291	0.320
	ы	NI	18	18	18	22	30	42	64	Ltr.	53 .
Ka	h per fr ³	per atm.	707	242	1240	1526	1564	1944	1825	2057	2296
	HEAT BAL-	ANCE \$	0.13	60*0	+•0-	0.0	-0.3	0.07	01.0	-0.5	0.32
	л Ч	५/५ा	37.6	42	34	110	50	55.8	54.4	59.2	59 ° 2
•		t _{wb1}	OII	105	86	67	96	116	94.5	93 . 5	63
		T T T	162.5	160	157.5	157	147	150	150	150	150
(WATE	twbI	100	94	82	82	82	80	80.3	78.5	78
		IN tub2	51	119	50	52	48	148	51.5	50	51.5
		μ ⁴⁴	62	60	62	62.5	59	59	62	62	63
		0017 12	100.5	4 45 :	82	81.5	82	19	80	78	77
		z r	108	102.5	88.5	69 • 5	92	90.5	16	89.5	68 .
		10	.07	2.1	3.94	3.19	2.67	2.17	2.07	1.90	1.78
	FLOWRATES	5 tt.	126	I347	1744	2152	2569	3166	3320	3507	3863
	FLON	L C C	6864	6864	6864	6854	6864	6864	6864	6864	6864
	RUN	No.	1222	1223	1224	1225	1225	1227	1228	1229	1230

APPENDIX F.

.

í. . .

•

FINITE-DIFFERENCE APPROXIMATION TO DERIVATIVES.

When a function U and its derivatives are singlevalued, finite, and continuous functions of x, then by Taylor's theorem,

$$U(x+h) = U(x) + hU'(x) + \frac{1}{2}h^2U''(x) + \frac{1}{6}h^3U'''(x) + \dots$$
 (17)
and

$$U(x-h) = U(x) - hU'(x) + \frac{1}{2}h^2U''(x) - \frac{1}{6}h^3U''(x) + \dots$$
(18)

Addition of these expansions gives

$$U(x+h) + U(x-h) = 2U(x) + h^{2}U''(x) + 0(h^{4})$$
(19)

where O(h⁴) denotes terms containing fourth and higher powers of h. Assuming these high powers to be negligible in comparison with lower powers of h it follows that,

$$U''(x) = \left(\frac{d^2 U}{dx^2}\right)_{x=x} = \frac{1}{h^2} \left\{ U(x+h) - 2U(x) + U(x-h) \right\}$$
(20)

with a leading error on the right-hand side of order h².

Subtracting equations (17) and (18) and neglecting terms of order h^3 leads to:

$$U^{*}(x) = \left(\frac{dU}{dx}\right)_{x=x} = \frac{1}{2h} \left\{ U(x+h) - U(x-h) \right\}$$
(21)

with an error of order h^{2(211,212)}

NOMENCLATURE.

The nomenclature in use throughout the thesis is given in the following list. Special symbols which appear from place to place are defined where they occur.

A	-	Cross sectional area ft ² .
a	-	Interfacial area per unit colume ft ² ./ft ³ .
a _H	-	Interfacial area per unit volume for heat transfer.
.a _M	-	Interfacial area per unit volume for mass transfer.
^{, a} P	-	Surface area of particle (in2. or cm2.)
с ^г	 '	Specific heat of water B.T.U./lb.°F.
CP	-	Humid heat B.T.U./lb.dry air ^o F.
C _{Pa}	-	Specific heat of air B.T.U./lb.°F.
D	-	Water vapour diffusivity ft ² ./h.
đ.	-	Thermometer bulb diameter (in. or ft.)
d _P	-	Particle or sphere diameter (in. or ft.)
₫÷	-	Tower diameter (in. or ft.)
F		Driving force correction factor dimensionless.
f	-	Friction factor dimensionless.
G	-	Air flowrate lb./h.ft ² .
G _{mf}	-	Minimum fluidization velocity lb./h.ft2.
g	-	Gravitational constant (lb.mass) (ft.)/(lb.force)(sec ² .)
Ha	-	Enthalpy of air B.T.U./lb. dry air.
Ham	-	H _a At the tower mean position B.T.U./lb. dry air.
H _{ai}	-	Enthalpy of air at interface temperature B.T.U./lb. dry air
\mathbf{H}_{W}		Enthalpy of air saturated at water temperature B.T.U./lb.dry air.
H _{Wm}	-	H_W At the tower mean position B.T.U./lb. dry air.
ΔHm	=	F(H _{Wm} -H _{am}) B.T.U./lb. dry air.
hg	· -	Heat transfer coefficient in the air phase. B.T.U./h.ft ² .°F.
h_{L}	-	Heat transfer coefficient in the water phase.B.T.U./h.ft ² .°F.

h_{R}	-	Radiation heat transfer coefficient, h _{Rt} evaluated
		at t _S B.T.U./h.ft ² .°F.
hs	-	Static hold-up (ft3./ft3. or gm. or lb.)
ht	_	Total hold-up (ft3./ft3. or gm. or lb.)
ĸg	-	Overall mass transfer coefficient lb./h.ft2.atm.
K a	-	Overall volumetric mass transfer coefficient lb./h.ft ³ .atm.
k	-	Thermal conductivity of moist air, k _t evaluated at
		t _f B.T.U./h.ft.°F.
k	-	Thermal conductivity of wet hygroscopic plate
		B.T.U./h.ft.°F.
\mathbf{L}	-	Water flowrate lb./h.ft ² .
Le	-	Lewis number $\frac{h_g}{R_g C_P}$
lm	-	Log mean
e	-	Length ft.
Ma	-	Molecular weight of air.
M _W ·	-	Molecular weight of water.
m	-	Film thickness (cm. or in.)
N	-	Number of deck.
Na	-	Number of transfer unit.
Pr	-	Prandtl number $\frac{c_{Pa}\mu}{k}$
P	-	Total pressure atm.
Pg	·	Partial pressure of water vapour atm.
PW	-	Partial pressure of water vapour in saturated air and
		in equilibrium with water at water temperature atm.
ΔP	-	Pressure drop (I.W.G./ft.or lb./ft ² .)
ΔP ₄	-	Pressure drop through the support screen.
ΔPo	-	Pressure drop across the orifice plate.
q	· _	Rate of heat transfer B.T.U./h.ft ² .
đC	-	Rate of heat transfer by convection B.T.U./h.ft ² .
-		

^q D	-	Rate of heat transfer by evaporation B.T.U./h.ft ² .
R	-	Perimeter ft.
r	-	Radius (in. or cm.)
Re	-	Reynolds number $\frac{\rho U d}{\mu}$
R _G	-	Overall mass transfer coefficient B.T.U./h.ft ² . (enthalpy unit) or lb./h.ft ² . (humidity unit)
Rg	-	Mass transfer coefficient in the air phase lb./h.ft ² . (enthalpy unit).
S	-	Vertical spacing of decks ft.
s _F	- 	Vertical free fall of water drops = $\frac{S}{S_R}$
s _R	-	Deck plan solidity fraction.
T	-	Water temperature °F.
TA	11	T ₁ -T ₂ deg F.
Τ _S	-	Absolute temperature of surface surrounding psychrometer °R.
т _{Wb}	÷	Absolute temperature as indicated by wet bulb thermometer °R.
t	-	Dry bulb temperature of air ^o F.
.t _a	-	Temperature of the hygroscopic plate °F.
t _f	-	Film temperature °F.
ti		Air temperature at interface °F.
to		Datum temperature = $32^{\circ}F$.
ts	-	Temperature of surface surrounding psychrometer °F.
twb	-	Wet bulb temperature of air ^o F.
t_{m}	-	Time
U	-	Air velocity ft./h. or ft./sec.
υ _C	-	Overall heat transfer coefficient B.T.U./h.ft ² .°F.
UD	-	Overall mass transfer coefficient lb./h.ft ² .(humidity unit) or B.T.U./h.ft ² .(enthalpy unit).
\mathtt{v}_{F}	-	Air velocity at flooding point lb./h.ft ² .

		•
Ui	-	Air velocity at interface ft./h.
UL	-	Air velocity at loading point lb./h.ft ² .
Umf	-	Minimum fluidization velocity ft./h.
v		Packed tower volume per unit ground area.
v _H	-	Humid volume ft ³ ./lb. dry air and its associated water vapour.
v _P		Volume of particle (ft ³ . or in ³ .)
x	-	Humidity lb. water/lb. dry air.
Xa	-	Humidity evaluated at ta.
xw	- .	Humidity evaluated at water temperature.
X _i	- .	Humidity evaluated at t
Y	-	Coordinate along the surface.
Z	-	Packing height ft.
Za	-	Height of transfer unit ft.
Z _{mf}	-	Packing height at incipient fluidization point ft.
α	-	"Thermal diffusivity = $\frac{k}{\rho c_{Pa}}$ ft ² ./h.
ρ	-	Density of air, ρ_{f} evaluated at t_{f} lb./ft ³ .
$ ho_{a}$	-	Density of moist air.
$ ho_{ m L}$	-	Density of water lb./ft ³ .
$\rho_{\rm S}$		Density of solid.
€	-	Bed voidage.
$\epsilon_{ m h}$	-	Effectiveness.
•r	-	Efficiency.
٤ _{mf}	-	Bed voidage at incipient fluidization point.
ϵ_{WD}	-	Emissivity of wet bulb dimensionless.
μ	-	Air viscosity, μ_{f} evaluated at t_{f} (lb./h.ft. or lb./sec.ft.)
$\mu_{ m L}$	-	Water viscosity.
λ	-	Latent heat of evaporation evaluated at to B.T.U./1b.
λο	-	·Latent heat of evaporation evaluated at t Wb

•

•

330.

•

.

`

φo

Subscripts.

- 1) Condition at the top of the tower.
- 2) Condition at the bottom of the tower.

REFERENCES.

1) Public Health Amendment Act, Section 17, 1890. 2) GO. SSAGE, W. B.P. 7267/1836. 3) CLEGG, S.J. "Treatise On the Manufacture of Coal Gas", Weale, London, 1868 Edition. 4) PASS, A.C. B.P. 262/1869. 5) CUNNINGHAM, W. B.P. 4441/1875. 6) HART, P. J.S.C.I. V.6, p.11, 1887. 7) HERRING, W.R. "Construction of Gas Works", Hazel, Watson and Viney, London. 1892. 8) KLEIN, J. B.P. 11246/1890. 9) KLEIN, J. B.P. 2452/1895. CAPITAINE, E. 10) B.P. 4420/1891. 11) KLEIN, J. B.P. 9941/1897. ITERSON, F.K.T. Von. 12) B.P. 108863/1917. - Chem.Eng. V.66, p.106, 1959. 13)

14) DOUGLAS, H.R., SNIDER, I.W.A., and TOMLINSON, G.H. Chem. Eng. Prog. V.59, p.85, 1963.

- 15) DOUGLAS, W.J.A. Chem.Eng.Prog. V.60, p.66, 1964.
- 16) CHEN, B.H., and DOUGLAS, W.J.M. Can.J.Chem.Eng. V.46, p.245, 1968.
- 17) MERKEL, I. V.D.I. p.1, 1925.
- 18) NOTTAGE, H.B. Trans.A.S.H.V.E., V.47, p.429, 1941.
- 19) LEWIS, W.K. Trans.A.S.M.E., V.44, p.325, 1922.

20) LEWIS, W.K. Mech.Eng., V.55, p.567, 1933.

- 21) GROSVENOR, W. Proc.A.I.Chem.Eng. V.1, 1908.
- 22) CARRIER, W.H. AM. Soc. H.V.E. V.24, p.25, 1918
- 23) ROBINSON, C.S. Refrig.Eng. V.10, p.20, 1923.
- 24) GEIBEL, F. Z.V.D.I. 1922.
- 25) HENSEL, S.L., and TREYBAL, R.E. Chem.Eng.Prog. V.48, p.362, 1952.
- 26) KOCH,J. V.D.I. No.404, 1940.
- 27) LONDON, A.L ., MASON, W.E., and BOELTER, L.M.K. Trans. A.S.M.E. V.62, p.41, 1940

28) NIEDERMAN, H.H. et.al.

HT. PIP and Air Condit. V.13, p.591, 1941.

- 29) SIMPSON, W.H., and SHERWOOD, T.K. Refrig.Eng. V.52, p.535, 1946.
- 30) TOW, D.J. Brit.Chem.Eng. V.5, p.191, 1960.
- 31) FULLER, A.L., KOHL, A.L., and BUTCHER, E. Chem.Eng.Prog. V.53, p.501, 1957.
- 32) HUTCHINSON, W.K., and SPIVEY, E. Ind. Chemist, V.18, p.83, 1942.
- 33) HUTCHINSON, W.K., and SPIVEY, E. Trans. nctn.Chem.Eng. V.20, p.14, 1942.
- 34) BOELTER, L.M.K. and HORI, S. Trans.A.S.H.V.E. V.49, p.309, 1943.
- 35) SPURLOCK, B.H. Trans.A.S.H.V.E. V.59, p.311, 1953.
- 36) KELLY, N.W. and SWENSON, L.K. Chem. Eng. Prog. V.52, p.263, 1956.
- 37) PIGFORD, R.L., and PYLE, C. Ind.Eng.Chem. V.43, p.1649, 1951.
- 38) TREYBAL, R.E. Mass Transfer Operation, p.190, 1955.
- 39) LICHTENSTEIN,J. Trans.A.S.M.E., V.65, p.779, 1943.
- 40) SUROSKY, A.E., and DODGE, B.F. Ind.Eng.Chem. V.42, p.1112, 1950.

41) SPALDING, D.B.

2 1

Chem.Eng.Sci. V.11, p.183, 1959.

42) SPALDING, D.B.

Inter.J.Heat Mass Transfer, V.7, p.3, 1964.

- 43) MERKEL,F. Z.V.D.I., V.70, p.123, 1926.
- 44) WOOD, B., and BETTS, P. The Engineer, V.189, p.337, 1950.
- 45) AGNON, S.E., and SPURLOCK, B.H. Trans.A.S.H.A.E., V.61, p.495, 1955.
- 46) CAREY, W.F., and WILLIAMSON, G.J. Proc.Inst.Mech.Eng. p.41, 1950.
- 47) JACKSON, J. The Engineer, V.189, p.140, 1950.
- 48) JACKSON,J. Cooling Towers, 1951.
- 49) STANFORD, W., and HILL, G.B.,Cooling Towers Principles and Practice, 1967.
- 50) SMITH,L.G., and WILLIAMSON,G.J. Proc.Instn.Civil Eng. V.5, p.86, 1956.
- 51) GARDNER,G.C. Inter.J.Heat Mass Transfer V.10, p.763, 1967.

52) SHERWOOD,T.K., and REED,C.E. Applied Mathematics in Chemical Engineering, New York, p.134, 1939.

53) BUTCHER, E. Unpublished Information The Fluor Corporation, Ltd.

54) McKELVEY,K.K., and BROOKE,M. Cooling Tower, 1959.

55) GURNEY, J.D. and COTTER, I.A. Cooling Tower, 1966.

- 56) FULLER, A.L. Petroleum Refiner, V.35, p.211, 1956.
- 57) WALKER, W.H., LEWIS, W.K., McADAMS, W.H., and GILLILAND, E.R. Principles of Chemical Engineering, New York, 1937.
- 58) McADAMS, W.H., POHLENZ, J.B., and St.JOHN, R.C. Chem.Eng.Prog. V.45, p.241, 1949.
- 59) YOSHIDA, F., and TANAKA, T. Ind.Eng.Chem. V.43, p.1467, 1951.
- 60) JACKSON, J. Brit. Chem. Eng. V.3, p.598, 1958.
- 61) MICKLEY, H.S. Chem.Eng.Prog. V.45, p.739, 1949.
- 62) THOMAS, W.J. and HOUSTON, P. Brit.Chem.Eng. V.4, p.160, 1959.
- 63) HOUSTON,P. Ph.L.Thesis, University of London.
- 64) TAKAMATUS, T., HIRAOKA, M. and TANAKA, K. Inter.J.Heat and Mass Transfer V.7, p.631, 1964.
- 65) CRIBB,G. Brit.Chem.Eng. V.4, p.160, 1959.
- 66) CRIBB,G.B., and NELSON,E.T. Chem.Eng.Sci. V.5, p.20, 1956.
 - 67) AUGUST, A.D. Physics, V.5, p.65, 1825.
 - 68) MAXWELL,A. University Press, Cambridge,1890.
 - 69) ARNOLD, J.H.

Physics, V.4, p.255, 1933.

70) ARNOLD, J.H.

Physics, V.4, p.334, 1933.

- 71) AWBERY, J.H., and GRIFFITHS, E. Proc. Phys. Soc. V.44, p.132, 1932.
- 72) HIMMELBLAU, D.M. Basic Principles and Calculation in Chemical Engineering, 1962.
- 73) TAYLOR, G.J. Applied Physics, 1923.
- 74) WHIPPLE,F.J.W. Proc.Phys.Soc. V.45, p.307, 1933.
- 75) GOFF,J.A. Trans.A.S.H.V.E., V.55, p.459, 1949.
- 76) THREKELD,J.L. Thermal Environmental Engineering, 1962.
- 77) CARRIER, W.H., NEWARK, N.J., and LINDSAY, D.C. Am.Soc.Mech.Eng. V.46, p.739, 1924.
- 78) DROPKIN,D. Cornell University Engineering Experiment Station No.23, p.1, 1936.
- 79) DROPKIN,D. Cornell University Engineering Experiment Station No.26, p.1, 1939.
- 80) McADAMS, W.H. Heat Transmission, p.260, 1954.
- 81) CARRIER, W.H., NEWARK, N.J., MACKEY, C.O., and ITHACA, N.Y. Trans.Am.Soc.Mech.Eng. V.59, p.33, 1937.

82) BROOKS, D.B. and ALLEN, H.H. J.Wash.Acad.Sci. V.23, p.121, 1933. 83) WEXLER, A., and RUSKIN, R.E.

Humidity and Moisture (Measurement and Control in Science and Industry), V.1, 1965.

- 84) CARRIER, W.H. Trans.Am.Soc.Mech.Eng. V.33, p.1005, 1911.
- 85) MOLLIER,R. V.D.I. V.67, p.869, 1923.
- 86) MOLLIER,R. V.D.I. V.73, p.1009, 1929.
- 87) GRUBENMANN,M. Tafeln Feuchter Luft, 1942.
- 88) GOODMAN,W. Air Conditioning Analysis, 1943.
- 89) NOTTAGE, H.B. and OHIO, C. Trans. A.S. H.V.E. V.56, p.411, 1950.
- 90) CARRIER, W.H., and NEWARK, N.J. Trans.Am.Soc.Mech.Eng. V.59, Pro.59, 1937.
- 91) MIDDLETON, W.E.K., and SPILHAVS, A.F. Meteorological Instruments, 1953.
- 92) POWELL,R.W. Proc.Phys.Soc. V.48, p.406, 1936.
- 93) MONTEITH, J.L. Proc. Phys. Soc. V.67, p.217, 1954.

94) DOE,P.E.

Int.J.Heat and Mass Transfer, V.10, p.311, 1967.

95) BAKER, T., CHILTON, T.H.m and VERNON, H.C. Trans. Am. Instn. Chem. Eng. V.13, p.296, 1935.

96, MULLIN, J.W.

Ind.Chem. V.33, p.408, 1957.

97) NORMAN, W. S.

Trans.Instn.Chem.Eng. V.29, p.226, 1951.

- 98) MULLIN, J.W. Brit.Chen.Eng. V.2, p.603, 1957.
- 99) MAYO, F., HUNTER, T.C., and NASH, A.W. J.S. Chem. Ind. V.54, p.375T, 1935.
- 100) GRIMLEY, Trans.Instn.Chem.Eng. V.23, p.228, 1945.
- 101) WEISMAN, J., and BONILLA, C.F. Ind.Eng.Chem. V.42, p.1099, 1950.
- 102) SHULMAN, H.L., and DEGOUFF Jr. J.J. Ind.Eng.Chem. V.44, p.1915, 1952.
- 103) SHULMAN, H.L., UIRICH, C.F., PROULY, A.Z., and ZIMMERMAN, J.O. A.I.Chem.Eng.J. V.I, p.253, 1955.
- 104) PRATT, H.R.C. Trans.Instn.Chem.Eng. V.29, p.195, 1951.
- 105) WILLIAMSON, G.J. Trans.Instn.Chem.Eng. V.29, p.215, 1951.
- 106) NOTTAGE, H.B., and BOELTER, L.M.K. Trans.A.S.H.V.E., V.46, p.41, 1940.
- 107) NORMAN,W.S. Absorption,Distillation, and Cooling Towers, 1961.
- 108) CARMAN, P.C., Trans.Instn.Chem.Eng. V.15, p.150,1937.
- 109) COULSON, J.M. Trans.Instn.Chem.Eng. V.27, p.237, 1949.
- 110) FURNAS, C.C., and BELLINGER, F. Trans. Am. Instn. Chem. Eng. V. 34, p. 251, 1938.

- 111) CHILTON, T.H., and COLBURN, A.P. Ind.Eng.Chem. V.23, p.913, 1931.
- 112) SHERWOOD, T.K., and PIGFORD, R.L. Absorption and Extraction p.238, 1952.
- 113) HOBLER,T. Mass Transfer and Absorbers p.381, 1966.
- 114) LEVA,M. Chem.Eng.Prog. V.43, p.549, 1947.
- 115) CHAND,P. Brit.Chem.Eng. v.14, p.239, 1969.
- 116) ERGUN,S. Chem.Eng.Prog. V.48, p.89, 1952.
- 117) BLAKE, F.E. Trans. Am. Instn. Chem. Eng. V.14, p.415, 1922.
- 118) KUNII, D., and LEVENSPIEL, O. Fluidization Engineering, 1952.
- 119) DAVIDSON, J.F., and HARRISON, D. Fluidised Particles, 1963.
- 120) STEWART, P.S.B., and DAVIDSON, J.F. Powder Technology, V.1, p.61, 1967.
- 121) ANDERSON, K.E.B. Chem.Eng.Sci., V.15, p.276, 1961.
- 122) HAWKSLEY, P.G.W. Some Aspects of Fluid Flow, 1950.
- 123) ROWE, P.N. Trans.Instn.Chem.Eng., V.39, p.175, 1961.
- 124) PERRY, R.H.

Chemical Engineer's Hand Book, 1963.

125) MORRIS, G.A. and JACKSON, J.

Absorption Towers, 1953.

- 126) LEVA,M. Chem.Eng.Prog. No.10, p.51, 1954.
- 127) JOHNSTON, H.F., and SINGH, A.D. Ind.Eng.Chem. V.29, p.286, 1937:
- 128) MOLSTAD, M.C., ABBEY, R.G., THOMPSON, A.R., and McKINNEY, J.F. Trans.Am.Instn.Chem.Eng. V.38, p.387, 1942.
- 129) NORMAN,W.S. Trans.Am.Instn.Chem.Eng. V.29, p.226, 1951.

130) - Brit.Chem.Eng. V.5, p.225, 1960.

- 131) LEVSH, I.P., KRAINEV, N.I., and NIYZON, M.I. Inter.Chem.Eng. V.8, p.311, 1968.
- 132) LEVA,M. Fluidization, 1959.
- 133) DAVIDSON, J.F., and HARRISON, D. Fluidization, 1971.
- 134) SARCHET, B.R. Trans.Am.Instn.Chem.Eng. V.38, p.283, 1942.
- 135) BERTETTI, J.W. Trans.Am.Instn.Chem.Eng. V.38, p.1023, 1942.
- 136) BAIN, W.A., and HOUGEN, O.A. Trans. Am. Instn. Chem. Eng. V.40, p.29, 1944.
- 137) LERNER, B.J., and GROVE, C.S. Ind. Eng. Chem. V.43, p.216, 1951.
- 138) JESSER, B.W. and ELGIN, J.C. Trans.Am.Instn.Chem.Eng. V.39, p.277, 1943.

139) ZENZ,F.A.

Chem.Erg. V.60, p.176, 1953.

- 140) SHERWCOD, T.K., SHIPLEY, G.K., and HOLLOWAY, F.A.L. Ind.Eng.Chem. V.30, p.765, 1938.
- 141) WHITE, A.H. Trans.Am.Instn.Chem.Eng. V.31, p.390. 1935.
- 142) BAKER, T.C., CHILTON, T.H., and VERNON, H.C. Trans. Am. Instn. Chem. Eng. V.31, p.296, 1935.
- 143) UCHIDA,S., and FUJITA,S.J. Soc.Chem.Ind.Japan, V.39, p.886, 1936.
- 144) GARNER, F.H., ELLIS, S.R.M., and GRANVILLE, W.H. Appl. Chem. V.5, p.105, 1955.
- 145) HOWKINS, J.E., and DAVIDSON, J.F. A.I.Ch.E.Journal, V.4, p.325, 1958.
- 146) LEVA, M., LUCAS, J.M., and FRAHME, H.H. Ind.Eng.Chem. V.46, p.1225, 1954.
- 147) FENSKE, M.R., TONGBERG, C.O., and QUIGGLE, D. Ind.Eng.Chem. V.31, p.435, 1939.
- 148) SHULMAN, H.L., UILRICH, C.F., and WELLS, N. A.I.Ch.E.Journal, V.l, p.247, 1955.
- 149) FALIAH, R., HUNTER, T.G., and NASH, A.W. J.Soc.Chem.Ind. V.12, p.369T, 1934.
- 150) LYNN,S., STRAATEMEIER,J.R., and KRAMEFS,H. Chem.Eng.Sci. V.4, p.49, 1955.
- 151) Ibid., p.58
- 152) Ibid., p.63
- 153) DAVIDSON, J.F., CULLEN, E.J., HANSON, D., and ROBERTS, D. Trans.Instn.Chem.Eng. V.37, p.122, 1959.

- 154) DAVIDSON, J.F., and CULLEN, E.J. Trans.Instn.Chem.Eng. V.35, p.51, 1957.
- 155) DAVIDSON, J.F. Trans.Instn.Chem.Eng. V.37, p.131, 1959.
- 156) MALCOR,R. Ann.Ponts Chauss, V.127, p.473, 1959
- 157) SATTERFIELD, C.N., PELOSSOF, A.A., and SHERWOOD, T.K. A.I.Ch.E.Journal, V.15, p.226, 1969.
- 158) TURNER, G.A., and HEWITT, G.F. Trans.Instn.Chem.Eng. V.37, p.329, 1959.
- 159.) BIRD, R.B., STEWART, W.E., and LIGHTFOOT, E.N. Transport Pnenomena 1966.
- 160) STOKES, G.G. Trans.Camb.Phil.Soc. V.9, p.8, 1851.
- 161) OSEEN, C.W. Ark.Matematik Astr.Fys.V.6, No.29, 1910.
- 162) LAMB,H.

Hydrodynamics, 1932.

- 163) LAMB,H. Phil.Mag. V.21, p.112, 1911.
- 164) PROUDMAN, I., and PEARSON.J.R.A. J.Fluid Mech. V.2, p.237, 1957.
- 165) GOLDSTEIN,S. Proc.Roy.Soc. A,123, p.225, 1929.
- 166) TOMOTIKA,S., and AOI,T. Quart.J.Mech. V.3, p.140, 1950.
- 167) PEARCEY, T. and McHUGH, B. Phil.Mag. V.46, p.783, 1955.

168) KAWAGUTI,M.

Rep.Instn.Sci. Tokyo, V.2, p.66, 1948.

169) Ibid, Vol.4, p.154, 1950.

170) KAWAGUTI,M. J.Phys.Soc. Japan, V.8, p.747, 1953.

171) PRANDTL,L. Uber Fluss.Bei Sehr Kle.Rei. 1904.

172) BLASIUS,H. Gren. Fluss.Kle. Rei. 1908.

173) SCHLICHTING,H. Boundary-Layer Theory, 1955.

174) ROSENHEAD,L. Laminar Boundary Layers, 1963.

175) COULSON, J.M., and RICHARDSON, J.F. Chemical Engineering, V.I, 1966.

176) JENSON, V.G., and JEFFREYS, G.V. Mathematical Methods in Chemical Engineering, 1963.

177) THOM, A. Aero. Res. Coun. Rep. Memor. p.1194, 1927.

178) FOX,L. Quart.Appl.Math. V.2, p.251, 1944.

179) FOX,L. Pro.Roy.Soc. A,V.190, p.31, 1947.

180) FOX,L. Quart.J.Mech. V.1, p.253, 1948.

181) FOX,L. and SOUTHWELL. Phil.Trans. V.239, 419, 1945. 182) ALLEN, D.N., de G. and DENNIS, S.C.R. Quart.J.Mech. V.4, p.199, 1951.

- 183) ALLEN, D.N.de G. and SOUTHWELL, R.V. Quart.J.Mech. V.8, p.129, 1955.
- 184) LISTER,M. Ph.D.Thesis, London, 1953.
- 185) JENSON, V.G. Proc, Roy. Soc. A, V.249, p.346, 1959.
- 186) BRAILOVSKAYA,I.YU., KUSKOVA,T.V., and CHUDOV,L.A. Inter.Chem.Eng. V.10, p.228, 1970.

187) KUSKOVA,T.V.

A Difference Method for Calculation Viscous Incompressible Fluid Flows, 1967.

- 188) WILKINS, G.S. and THODOS, G. A.I.Ch.E.Journal, V.15, p.47, 1969.
- 189) ACETIS, J.D., and THODOS, G. Ind.Eng.Chem. V.52, p.1003, 1960.
- 190) YOSHIDA,F., and KOYANAGI,T. Ind.Eng.Chem. V.50, p.365, 1958.
- 191) EVNOCHIDES, S., and THODOS, G. A.I.Ch.E.Journal, V.7, p.78, 1961.

192) GALLOWAY, T.R., and SAGE, B.H. Inter.J.Heat and Mass Transfer V.10, p.1195, 1967.

193) HUGE,T. A.S.M.E.Journal of Heat Transfer V.82, p.215, 1960.

194) GOLDSTEIN, M.E., YANG, W.J., and CLARK, J.A. Trans.A.S.M.E. Journal of Heat Transfer, V.89, p.185, 1967.

346.

195) BRIAN, P.L.T., and HALES, H.B. A.I.Ch.E.Journal, V.15, p.419, 1969. 196) Flow Measurement, B.S.1042, 1963 B.S.1365, 1951 197) - Thermometers, 198) - Humidity of the Air B.S.1339, 1965 199) - Heat Exchanger, B.S.1500, 1960 200) KERN, D.Q. Process Heat Transfer, 1950. 201) ROSS, T.K., and FRESHWATER, D.C. Chemical Engineering Data Book 1958. 202) ROWE, P.N. Paper presented at Leeds University 1963. 203) ENGEL, F.V.A. Engineer, Lond., V.206, p.479, 1958, 2014) ENGEL, F.V.A. Engineer, Lond., V.198, p.637, 1954. 205) DAVIES, 0.L. The Design and Analysis of Industrial Experiment. (Edinburgh: Oliver and Boyd Ltd.) 206) DAVIES, O.L. Statistical Methods in Research and Production (Edinburgh: Oliver and Boyd Ltd.) 207) DRAPER, N.R., and SMITH, H.

Applied Regression Analysis, 1966.

208) RICKMER, A.D. and TODD, H.N. Statistics, 1967.

209) BURINGTON, R.S., and MAY, D.C.

Handbook of Probability and Statistics with Tables.

210) Private Communication.

211) JENSON, V.G., and G.V.JEFFEREYS, Mathematical Methods in Chemical Engineering, 1963.

212) G.D.SMITH., Numerical Solution of Partial Differential Equations, 1965.