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SUMMARY 

AStudy of Mass Transfer from Large Oscillating Drops 
  

TARIQ SADIK AL-HASSAN Ph.D. 1979 

A laboratory apparatus containing many novel features has been con- 
structed for the study of the mass transfer rate from single oscillating 
drops ascending through water, where the overall transfer rate is con- 
trolled by diffusional resistance of solute in both phases. The transfer 
rate of acetone from toluene or n-heptane droplets to a saturated aqueous 
phase during counter-current operation was determined by the Messinger 
iodoform method (193). 

Photographic techniques were developed to record the frequency of 
droplet oscillation, area change, amplitude and vertical velocities with 
high speed cine photography. 

High concentrations of acetone were employed in the dispersed phase, 
i.e. up to 25% w/w because acetone has widely different effects on physical 
properties of the systems. This enabled an extensive examination to be 
made of different parameters on the mass transfer rate, frequency and 
amplitude of oscillation. 

A number of computer programms have been written to evaluate the 
actual instantaneous area of the droplet, its frequency and amplitude of 
oscillation and the mass transfer coefficients. Also the established 
metheds for oscillating droplets, variance, mean and the general trend of 
the above parameters were calculated. In addition, empirical correlations 
were developed for the amplitude and the mass transfer coefficient. 

Studies under mass transfer condition showed that the velocity and 
the mass transfer ratewre significantly different fram those. predicted by 
hydrodynamic and molecular diffusion criteria. However, the discrepancies 
between observed and predicted values do not appear to be related to an 
easily measurable physical property. 

An extensive examination for the theories and empirical correlations 
(110,111,113,79,80) for predicting overall mass transfer coefficients 
showed a large deviation from that observed. The deviation might be due 
to one or more of the following effects: 
Chan ging oF 

1. f amplitude which is the intensity of mixing inside the drop, 
ae The formulation of the models are not consistent. 
Se The wake which is inter-related with the behaviour of the drop. 
4. The behaviour of the interface between drop and the continuous phase. 

Fair agreement has been obtained for small oscillating droplets and for 
low concentrations of solute. 

The period of oscillation was longer than that of Lamb (2) and that 
of Shroeder and Kintner (59). The oscillation rate for large drops is not 
uniform and does decay with time and solute transfer. 

It has been found that mass transfer rates for high concentrations 
of solute during drop formation and release deviate significantly from most 
predicted correlations. This might be due to the large scale interfacial 
movement in growing drops (154). 

The frequency of oscillation and amplitude proved to have an important 
role on the mass transfer rate for oscillating droplets. 
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CHAPTER ONE 

INTRODUCTION 

The study of drops behaviour is important for a 

better understanding of the mechanisms of heat and mass 

transfer, in liquid-liquid extraction and direct contact 

heat transfer between immiscible liquids. In these 

processes a high rate of mass transfer is essential. 

Liquid-liquid extraction is an important mass 

transfer operation in the manufacture of many chemicals 

ranging from petroleum products to food stuffs.* It is 

classified as an indirect mass transfer operation since 

it utilizes a solvent to achieve the desired separation. 

However, an understanding of the effect of each variable 

on the behaviour of a drop is necessary before an 

understanding can be achieved of the normal operation of 

the process in which streams or clouds of drops exist in 

the equipment. Thus, since liquid-liquid extraction is 

a diffusion controlled operation fom or to droplets, it 

is necessary to establish the conditions of high mass 

transfer and it is advantageous to study the transfer of 

solute out of large oscillating rane 

~ Separation based upon the non-equilibrium distribu- 

tion of the substance to be separated (the solute) 

between two immiscible phases (toluene or n-heptane and 

distilled water), and this varies with the passage of 

the drops through the equipment. Thus, there are
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different stages in the life of a drop, The dispersed phase 

enters through a nozzle or distributor where the drops 

are formed. The droplets break away from the nozzle and 

accelerate to a final velocity of rise or fall and finally 

coalesce at a liquid-liquid interface. Two effects are 

of importance in order to obtain a high mass transfer 

rate. These are large interfacial arew per unit volume 

and high transfer coefficients. Essentially these two 

requirements are contradictory because small drops have 
per unit mass 

a large interfacial areatwhereas the transfer coefficients 

increase with increasing drop size. In most chemical 

engineering operations easy coalescence of the dispersed 

phase after the mass transfer has been completed is also 

necessary. A number of physical properties and process 

conditions determine these behaviours and, therefore, 

fundamental knowledge of the behaviours of drops in so 

called ideal conditions is essential. 

A knowledge of the behaviour of the droplet during 

formation is important for two reasons. First, a con- 

siderable amount of extraction can occur during forma- 

tion due to the generation of a large new surface area. 

More important, the surface area which will be availa- 

ble during the rise or fall of the drop is determined by 

the size of the droplet which separates from the nozzle 

during formation. Unfortunately there is little agree- 

ment between various workers on the prediction of the 

overall mass transfer coefficient during drop formation, 

and this is due, in part, to the difficulty in establish- 

ing a suitable experimental technique, and also to the
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difficulties accounting for the effects of interfacial changes. 

Drops rising or falling show several interesting 

phenomena as they pass freely through the continuous 

phase. They may remain stagnant, they may possess inter- 

nal circulation, or deform and oscillate. The terminal 

velocities and the mass transfer rates are both related 

to these phenomena. When a drop in a swarm of drops 

falls through a gravitional field in such a manner that 

other drops do not hinder its fall , its velocity increases 

and continues to increase until the accelerating and 

resisting forces are equal. When this point is reached 

the drop velocity remains constant during the remainder 

of its fall unless the balance of forces is upset. The 

ultimate constant velocity is called the terminal 

velocity. The shape of a drop while travelling through 

the continuous phase depends upon a difference between 

the hydrodynamic pressure exerted by the drop relative 

to the continuous phase and the surface forces which 

tend to induce the drop to retain a spherical shape. 

That is, the distortion and hence the shape of a fluid 

droplet is determined by the forces acting on the droplet 

surface. These forces are a result of non-uniform 

pressures inside the droplet, which are exerted as a 

result of the motion of the dispersed and continuous 

phases. The pressures are related to the interfacial 

tension and radii of curvature. The drag coefficient 

and terminal velocity are functions of the shape of the 

moving drop and any distortion has a marked effect on 

its motion. Also such distortion has an effect on the
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surface area and thus on the rate of mass and heat 

transfer. The distortionsare of two basic types; those 

of an equilibrium nature and those of an oscillating 

nature about an equilibrium position (1). As the drop 

size is increased, a size is reached at which the drop 

flattens and assumes a generally ellipsoidal shape. 

Such a shape is unstable in fields of low viscosity and 

the drop begins to oscillate. To study the changes in 

shape of the droplets, "eccentricity" is applied and is 

defined as the ratio of the major to the minor axis... 

The oscillations are affected by the shape of the drop, 

the inertial effects caused by the motion, the inter- 

facial tension and the two phases parameters. The 

complexity of the interaction among these factors has 

often restricted the analysis to certain limiting cases 

like a spherical drop at rest in an inviscid fluid (2). 

Such calculations are of limited applicability and have 

failed to explain many of the observational details. 

Wakes in liquid-liquid extraction are interesting 

phenomena in their own right. Wakes have been shown 

an important role in the mechanisms of extraction in 

spray columns (4). 

Droplet oscillation is a major factor affecting 

mass transfer. The influence of the wake is difficult 

to separate from that of the oscillations of the drop, 

and it is claimed that the wake diminishes with the 

distance travelled and does not follow the drop closely. 

This work isconcernwith the effect of drop oscillation on 

the transfer of solute out of drop with concentrations of 

solute up to 3.75 g mol/l of drop phase.
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CHAPTER 19 0 

DROPLET MECHANICS 

In this study mass transfer taking place during 

the ascent or descent of a large droplet through the 

continuous phase will be considered. Since mass transfer 

is always dependent upon the hydro-dynamics prevailing 

and therefore both the fluid mechanics and the diffusion 

characteristics must be discussed. 

Previous workers found that Reynolds number is 

insufficient to explain the difference in the behaviour 

of drops during their flow through the continuous liquid 

phase and the complex interaction and other properties 

characteristics had to be considered in addition to the 

Reynolds number, These included the Webber and Strouhal 

numbers or other groups of physical properties. There 

appears to be no systematic approach to the analysis of 

drop motion since different workers have used different 

properties to explain the behaviour of droplets. In 

this Chapter a review of the work on droplet phenomena 

of pure systems is discussed and this is followed by 

consideration of the effects of surface active materials 

on droplet behaviour.



2.1 STAGNANT DROPLETS 

Nearly all droplets falling or rising through a 

continuous phase tend to circulate internally due to the 

viscous shear at the droplet interface. Certain drops, 

which are very small, or droplets which travel ina 

high viscosity continuous phase, will show only a slight 

internal circulation. This is when the drop Reynolds 

number is very low: 

Re = Vac i (2.1) 
He 

and the internal liquid is stagnant and the drop maintains 

a spherical shape so that the terminal velocity can be 

estimated from the equations of motion of solid spheres. 

Stokes (6) solved the equations of motion for a rigid 

sphere in a Newtonian field-fluid (Figure 2.1). The net 

drag force obtained from this solution is given by: 

F = 3ildu.v (222) 

Two-thirds of total drag force is a result of shear 

stress exerted by the continuous phase fluid at the 

surface and the remaining one-third is due to form drag. 

The drag coefficient is defined as: 

= ee 
D tPev2 cae 

and from equations 2.1 and 2.2 this gives: 

24 

po dvpo/e 

s oo (2.4)
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Equation (2.4) has been shown experimentally to be 

valid. for Reynolds numbers upto 0.2(1). However, in 

most practical problems the droplet Reynolds number is 

much greater than 0.2.° 

For spherical drops of a fluid with a fully mobile 

uncontaminated interface, the terminal velocity may exceed 

that predicted by Stokes law, because internal circula- 

tion within the drops reduces the velocity gradients at 

the interface and this reduces the hydrodynamic drag. 

By consideration of this transfer of momentum across the 

liquid interface, Hadamard (7) and Rybezynski (8) and 

later Boussinesg (9), obtained the following relation for 

the drop terminal velocity in laminar regime, for a drop 

whose interface is mobile, 

Ug + 

Ha * 0.67u, Ystokes (2.5) 

It is easily seen that if Ugs<tg, as for a gas 

bubble rising in a liquid or an oil drop moving through 

glycerol that v approaches 1.5 v if Ug = Yee then 
stokes’ 

ve1.2 ¥ and if Wg?rty (as for liquid drop falling 
stokes 

through a gas), then wy These velocity 
‘stokes’ 

relations have all been confirmed experimentally for 

drops of moderate size moving fairly slowly. 

2.2 CIRCULATING DROPLETS 

If the system is sufficiently pure, circulation 

should occur in all fluid particles moving in a liquid 

medium, however small the dispersed particle may be.
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There is a considerable amount of qualitative evidence 

demonstrating internal circulation of the liquid in drops 

(1). Direct observation by motion pictures and still 

photography have established the circulation patterns (11). 

The Hadamard (7) and Rybezynski (8) concept of fully 

circulating fluid sphere has been the basis for com— 

parison of all work published since their analysis was 

presented. Circulating drops move more rapidly than the 

equivalent solid sphere (7,8,114). Garner and Skelland 

(10) reported that a trace of impurities which are surface 

active may inhibit internal circulation (18), but this 

effect can be partially overcome by the presence of 

diffusing solute being miscible in both phases. Garner 

et al (12) in an earlier work reported the Reynolds 

number for transition from stagnancy to circulation 

within a droplet, but in a later work they (13) related 

the deformation of a drop to the initiation of circula- 

tion. Linton and Sutherland (15) claimed that all 

solvents gave circulating drops if the solvent and water 

were very carefully purified, but the purification 

required depended on the size of the drop. The smaller 

the drop the greater the purification required. Also 

Linton et al (15) confirmed the observation of Garner 

et al (10) that the higher the interfacial tension the 

less readily the drops circulate. 

Garner and Haycock (16) made quantitative measure- 

ments of the velocity of drops falling through glycerine 

solutions and they found that no circulation was possible 

until the fall velocity exceeded 0.5 cm/sec. (
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Kintner et al (11) using a tapered tube followed the 

behaviour of the system, by recording the semi-vectorial 

velocities. They found that internal circulation was 

slowly damped out as the interface changed its character 

and became more contaminated. Later Horton et al (17) 

indicated that streamlines leave the interface over the 

entire rear hemisphere of the drop as circulation is 

damped. This was claimed to be due to the accumulation 

of minute amounts of colloidal impurities at the inter- 

face. Harriott (18) has found that the circulations 

velocity increased with the diameter of the drop, with 

the ratio of external to internal viscosity and also 

that droplets of a given system do not circulate below 

a certain size. Bond and Newton (19) presented a 

relation for the critical size at which circulation 

begins, while Garner and Skelland (10) developed a 

correlation for the Reynolds number that must be exceeded 

in order that circulation was present, for limited 

droplet viscosities and interfacial tension ranges. 

2.3 VELOCITIES OF MOVING DROPS 

The terminal velocity of drops has been measured by 

many workers, but owing to the difficulty of obtaining 

accurate data there is some conflict between the measure- 

ments of these different workers. There is uncertainty 

about the value of the Reynolds number at which the 

character of droplets changes; for instance, when 

oscillation starts, or when vorticesare detached and when
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the drop is deformed. Thus, changes in the state of 

the motion cannot be decided by the value of Reynolds 

number alone. Satapathy and Smith (21) and Kintner (1) 

confirmed this and suggested that the interfacial 

phenomena must be considered. It is important to know 

the kind of motion the drop experiences for this 

eritically affects the rate of mass or heat transfer 

between the phases. However, there is little mention 

of the droplet’s velocity when mass transfer is taking 

place, 

Any quantitative hydrodynamic consideration of a 

drop moving in liquid field starts with Navier-Stokes 

equations of motion. For a rigid liquid sphere the 

equations reduce to: 

a2 

‘stokes ~ T8u, (gq - 0.8 eae 

and for a spherical drop moving in a liquid field where 

the boundary is not rigid is represented by equation (2.5). 

Chao (20) gave an expression for the flow field inside 

and outside a fluid sphere with fully developed internal 

circulation at large Reynolds numbers. His theoretical 

expression was in agreement with observations for the 

behaviour of air bubbles in low viscosity liquids, but 

there was doubt as to its applicability for liquid-liquid 

systems. Typical plots of terminal velocity of rise or 

fall of a drop of oil in water is shown in Figure 2.1. 

For very carefully purified systems, the relevant curve 

is ABCD, with poor internal circulation of the smallest 

drops (region "A') due to minute traces of surface-active
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impurities. At "B" and "C" the drop fluid is circulating 

freely internally, and the drop moves considerably faster 

than a rigid sphere. After "C" the velocity decreases 

due to oscillations and deformation. 

2.3.1 DRAG 

In liquid extraction the drop behaviour is far above 

the limits of application of the preceding equations 

(2.5 and 2.6). A drop moving through a liquid at such a 

velocity that the viscous forces could:! be termed 

negligible cannot exist. Most real situations involve 

both viscous and inertial terms, and the Navier-Stokes 

equations cannot then be solved. Hence, Kintner (1) 

presented the drag coefficient for a liquid sphere in the 

form: 

Cy = 

C
o
l
 

es
 d ey) (2579 

in which "d" is the diameter of the sphere or in case of 

oblate or prolate ellipsoidal drops the axis parallel to 

the line motion would replace "d". A typical plot of 

the drag coefficient versus Reynolds number appears 

in Figure 2.2. In this plot the length term used is the 

equivalent spherical diameter in both the drag coefficient 

and the Reynolds number. The drag coefficient is less 

for a rigid sphere than for that of liquid drop of the 

same size and density. This is the result of the 

mobility of the drop surface, that is carried from the 

forward stagnation point to the rear by shear, and also
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to the drop contents that are circulating internally. 

Hu and Kintner (22) correlated the terminal velocity 

of nine water-organic systems, covering a range of 

Reynolds numbers from 10 to 2200. The resulting correla- 

tion is a single plot of "log (Cy We p0-15 )" where "Pp" 

is a dimensionless physical property group. Actually "P" 

is the cube of the reciprocal of the group employed by 

Hughes and Gilliland (23). 

  

2 igo) 6 3 Re (2.8) 
Ps es F 4 

iam) Ao Gy) We 

Calderbank and Korchinski (53) showed that Hu and 

Kintner correlations are limited in applicability to 

systems in which the viscosity of the continuots:; phase 

is lower than SeP. Johnson and Braida (24) proposed an 

additional parameter mtigy® M4 to be multiplied by 

"log (Cy We p0-15)n to er er ere ce 

correlation to continuous phase viscosities of 20cP. 

Licht and Narasimhamurty (25) conducted a similar study 

to Hu and Kintner (22) and a comparison of their data 

indicates that Licht et al (25) found higher fall 

velocities, which might be attributed to different physical 

properties of the liquids used. Also Lichts et al data 

was checked against the correlation of Hughes and 

Gilliland developed their correlation by assuming that 

density and viscosity ratios were unimportant. This is 

reasonable for liquid drops falling through gases, but 

not for liquid-liquid systems. 

Investigations conducted by Garner et al (10) and 

Haberman and Morton (27) revealed that droplet motion
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depends not only on the size and bulk fluid properties 

but also on interfacial behaviour. Thus, Johnson and 

Braida (24) reported that the effect of density on fall 

velocity is greater than the effect of surface tension. 

Winnikow and Chao (28) presented a study of droplets 

behaviour falling through water at Reynolds number ranging 

from 138-971. They used a property parameter developed 

in a previous analysis by Chao (20). They (28) reported 

that the presence of a dye alters the interfacial 

characteristic and therefore does not give an accurate 

result in studying droplet wakes and other related 

phenomena (3,29). The boundary layer separation ‘angle 

measurements tend to increase with Reynolds number up to 

a point concurrent with the minimum drag coefficient, 

and beyond which there is a decrease until oscillation 

sets in (28). Attempts at theoretically predicting the 

location of the boundary layer separation were made over 

the drop surface by Elzinga and Banchero (31) but they 

were unsuccessful, They used the normal procedure for 

predicting separation from rigid surfaces, i.e. the loca- 

tion where the shear stress at the wall vanished. The 

analysis of Chao (20) and Moor (126) later, on boundary 

layers on bubbles led to similar expression for both 

external and internal velocity fields. 

The peculiar upturn of the drag coefficient curve 

(Figure 2.2) at a certain value of Reynolds number is 

also exhibited by rigid two and three dimensional 

bodies (28) and by air bubbles which do not oscillate in 

very viscous liquid (26). The Reynolds number and
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manner by which drag coefficient of solid bodies increases 

depends primarily on the body shape. For freely fall- 

ing discs this occurs at Re=100 and is accompanied by 

unsteady motion as for long circular cylinders it occurs 

at Re=150 and for solid spheres at Re=5000. The very 

rapid increase of the drag coefficient is due to the 

combined effect of drop oscillation and pressure drag 

increase as consequence of the change in the wake 

structure (28). Lee Sy (32) using boundary layer 

techniques and inviscid flow theory explained that the 

minimum in the drag coefficient-Reynolds number relation 

results from an increase of eccentricity and not the 

onset of oscillation. 

Satapathy and Smith (21) reported that drop 

deformation was noticed as Reynoldsnumber increased 

above 50, Thorsen et al (33) presented terminal veloci- 

ties for high interfacial tension systems for the range 

of Reynolds number from 40 to 900, and reported 

the following formula to estimate the rate of fall of 

oscillating drops: 

o epee Gl ypreemn teenie 
G tegreets ergo) 

a 

/ va (2.9) 

Their (33) experiments were carried out with 

mutually saturated phases. But Edge and Grant (115) 

reported that(v'd) is proportional and not a con- 

stant as proposed by Thorsen et al, and they suggested 

the following equation to predict the terminal velocity 

of oscillating droplet.
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wde _ (ote) des a 
v vt 13 + 182(Ap/04) (2.10a) 

where 

—- = Ag. : a 13 + teat) (2.10b) 

This was arrived at by assuming that Strouhal number is 

constant for a given system. 

Most recently Mekasut et al (116) reported that 

Vignes (117) correlation best fitted their results for 

terminal velocities of drops of carbon tetrachloride 

falling through aqueous continuous phase with iodine 

transferring to the droplet phase. The Vignes correlation: 

2 a 
vos sy eer (s8 (CL = fo (2.41) 

Also they found that the above correlation gave good 

agreement with terminal velocities of droplets measured 

in presence of teepol in continuous phase (0.05 em?/1), 

and it shows better prediction than that obtained from 

Hu and Kintner (22) and Klee and Treybal (46) correla- 

tions. 

A number of workers found that Hu and Kintner 

correlation gave lower velocities than that observed and 

they attributed this to the presence of surface active 

agents in the systems used by Hu et al unintentionally. 

But Edge and Grant (118) reported that Hu and Kintner 

correlation predicts droplet terminal velocity in 

presence of gross concentration of surface active agent 

in the continuous phase.



-17- 

Droplets travél in helical spirals when the Reynolds 

number is above 300, (21). This is due to the induction of 

alternate detachment of vortices at the rear of the 

drop, and this deviation will be less for large drops. 

Nekovar and Vacek (119), in their work on single 

oscillating drops falling through a stationary liquid 

as the continuous phase, presented-an equation to calculate 

the terminal.velocity of thedroplets, They applied the Luiz 

(120) equations of steady velocity of an oblate or 

prolate spheriod. Assuming that the velocity of oscillat- 

ing drop at every moment equals the velocity of a 

spheriod with the same volume and ec: 

to+T 

i ie é 5 V.dt (2.12) 
5 

ty 

Amax where e = —Se- 1 (22S) 
Ao 

V, = v F(E)/F(e(t)) (2.14) 

tot 
E = & S  E(tjat (2.15) 

fo 

= Gee -_€ arcsin Cee et 
ee 2.0.5 Sore core aresin (1-£%)"*~ - — (1+€")~" 

(2.16) 

2 0.5 
F(e) = (e*-1 Ms agecosh J # rea 

arccosh € ~ rie a”



18 

2.3.2 WAKES FORMATION AND HYDRODYNAMICS 
  

Drops moving in a continuous medium, carry along 

wakes of the continuous phase. These wakes are usually 

invisible and many workers tended to neglect their 

existence. A small number of studies have stressed the 

contribution of the wake on thé drop to the mechanisms of mass 

transfer (44,121). The contributiomof the wake to the 

drag coefficients of drops were studied in greater 

depth (28,21). 

The influence of interfacial mobility and droplet 

oscillation on the wake configuration and the inter- 

relation between the drag coefficient and wake structure 

are of considerable interest. Magarvey and Bishop (3,29) 

reported wake configuration behind chlorbenzene and 

carbon tetrachloride droplets through water. The 

wakes were made visible by the scrubbing of an aniline 

dye from the drops as they passed through the continuous 

phase. Since such procedure inadvertently alters the 

interfacial behaviour, it is doubtful if their observa- 

tions would be applicable to the original systems. 

Magarvey et al (3) classified wakes into six classes 

according to ranges of Reynolds numbers. Hendrix et al 

(5) reported that volumes of continuous phase trans- 

lated in the non-oscillating drop wake were independent 

of distance of drop travel and they were reproducible. 

While for oscillating drops the wake volumes were 

erratic and non-reproducible because of the shedding 

of the wake to the surrounding continuous phase and the



~19- 

drop then accelerates picking another wake as the drop 

travels its course. 

Winnikow et al (28) in contrary to Magarvey et al 

(3) reported that the nature of the trail depends not 

only on the Reynolds number but also on the properties 

of the continuous and dispersed phase fluids. They 

classify wakes into two classes; one for non-oscillating 

droplets which characterized by periodic discharge of 

vorticity. Garner and Grafton (34) in their work of 

mass transfer in fluid flow from solid sphere reported 

a toroidal vortex exist for Reynolds number less than 

"150", which is in agreement with Winnikow et al (28) 

observation for liquid droplets without mass transfer 

taking place. 

Yeheskel et al (122) used the same technique of 

Hendrix et al (5) designated three significant ranges 

of Reynolds number viz (a) Re<150, where the only 

shedding of wake is into the trail; (b) Re=150-800, 

where wake shedding is cyclic, from alternate sides 

of an oscillating wake without the oscillation of the 

droplets themselves, and (c) Re>800, where random 

shedding occurs with oscillation of the droplets. They 

(122) reported that the ratio of attached wake to 

droplet volume (WR) is within the range 1.5-3.9 and this 

ratio is a linear function of (Ap/e,)> for Re = 150-800. 

The same workers extended this work to a study of 

verticle and horizontal assemblages of droplets (123). 

It was found that the relative wake volume, (WR), was 

about one-third of that for single droplets for vertical
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assemblages, and about two for horizontal assemblages. 

Recently Anderson et al (124) confirmed the results of 

Hendrix et al (5) and Yeheskel et al (122) for Re<150-200 

and Re>150-200 respectively. 

2.4 SHAPES OF MOVING DROPS 

The problem of determining theoretically the shape 

of a single droplet freely suspended in an unbounded 

incompressible liquid undergoing a shearing motion is 

very complex and no general solution is available at 

present. The theoretical prediction of droplet defor- 

mation under the action of hydrodynamic forces has been 

attempted by several investigatiors in the creeping 

flow region. 

At low Reynolds numbers Saito (35), using the 

equations of motion, observed that dropswill remain 

spherical for all values of Webber number, as long as 

the interia terms can be neglected in the flow field 

both inside and outside the drop and that deformation is 

proportional to the square of the terminal velocity of 

drop. However, by considering only the case of slightly 

non-spherical particle, Taylor (36,37) was able to show 

that, the drop should deform into an ellipsoid. 

Taylor (37) also investigated this phenomenon experi- 

mentally, and observed that his theoretical expression 

for the drop deformation agreed with the experimental 

data only for small values of non-dimensional shear 

rate. Following Taylor's, numerous authors became
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interested in the subject, of particular interest is the 

experimental work of Rumsheidt and Mason (38), who studied 

the deformation of liquid droplets in hyperbolic and 

simple shear flows, and the theoretical analysis by 

Chaffey and Brenner (39), who improved Taylor's result 

by introducing a better approximation for the drop shape 

in a steady simple shear flow. Recent developments on 

the subject are due to Cox (40), and to Torza, Cox 

and Mason (41), who studied both theoretically and 

experimentally the influence of time effects on deforma- 

tion. Barthes-Biesel and Acrivos (43) proceeded on the 

basis of Frankel and Acrivos (42) analysis, which was 

an extention of the earlier work by Barthes-Biesel (43) 

deriving anequation for the determination of drop shape, 

which is always nearly spherical with a large inter- 

facial tension system. 

Garner and Tayeban (44) estimated the area of non- 

oscillating oblate drops using the eccentricity (E) of 

ellipsoidal drop by: 

aa ee ded 2 A = 5 (d) + ait In (E + Y(B“-1)) (2.47) 

where 

Es (2.18) 

oi
 

Thus, the ratio of the area of an oblate to that Of & 

sphere of equal volume (44): 

A 4 £ 2 
z = 2(E* + 1In(E + /(E°-1)) (2.19) 
As El yp--1 )
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The area ratio of equation (2.19) does not exceed 

unity by a large amount until eccentricity of 1.5 is 

attained. Winnikow et al (28) using dimensional 

analysis reported that the physical properties influencing 

droplet deformation, are the modified Webber number 

(Wwe' = (va Ap)/o), Froude number (Fr = Ved.) and the 

fluid property parameter while, Klee and Treybal (46) 

in their study of eleven liquid-liquid systems showed 

that the eccentricity was related to the quantity 

Choo 
/o). Oscillating droplets eccentricity varies. 

The use of an average eccentricity for an oscillating 

droplet has been attempted (48), but results are in 

considerable scatter about any correlation (48,23). 

Wellek et al (47) correlated empirically by introducing 

the Webber number, Eotvos number and viscosity ratio, 

which enabled the prediction of eccentricity of non- 

oscillatind drops with mutually saturated phases. 

2.5 WALL EFFECTS 

The terminal velocity of a liquid drop in a vertical 

tube is a function of the mode of descent of the drop. 

A drop of specified volume may not have the same type 

of motion in cylinders of different diameters. If the 

drop is small enough it will be spherical in shape and 

its velocity in the absence of a wall effect will be 

that of an equivalent rigid sphere, as it is shown by 

the plot of drag coefficient versus Reynolds numbers 

(Figure 2.2). If the drop is somewhat larger, deformation
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takes place and the drop is no longer spherical. A 

small drop of low density shows little in mode of 

descent as the boundary is brought nearer. But if the 

annular space between drop and cylinder wall is small 

enough, the drop will start to oscillate (49). Storm 

and Kintner (49) reported that the wall effect is one 

of the factors accounting for the scatter of some data 

reported in literature. 

There are many equations for the creeping flow range 

derived previously for fluid sphere to account for wall 

effects and summarized by Kintner (1). Storm and Kintner 

presented a correlation for large drops travelling 

through stationary continuous phase based on experi- 

mental data, the equation is: 

U 2 de, 2.1.43 
o, Goa (2.20) 

2.6 OSCILLATION OF DROPS 

When a droplet reaches a certain size it begins to 

oscillate about an ellipsoidal shape. The cause of the 

onset of this oscillation is not yet fully understood. 

However, Gunn (50) suggested that oscillations would 

ensue when the periodic force produced by the detachment 

of wake eddies had the right frequency to self excite 

vibrations. Alternatively interaction of surface 

tension and hydrodynamic pressure leading to a surface 

instability was proposed by Hartunian and Sears (51) in 

their work on small gas bubbles moving in low viscosity 

liquids. Oscillations may be initiated by the tearing
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away of the droplet from the forming device or by 

intermittent shedding of vortices from the droplet wakes 

(31,23). This conflicts with the suggestion made by 

Winnikow et al (28) who reported that droplet oscilla- 

tion started some distance from the nozzle, and this 

distance decreased as the droplet size increased. They 

attributed the start of oscillation might be due to 

the discharge of the first vorticity. Garner and ~ 

Tayeban (44) found that for a given droplet size, the 

extent of oscillation is greater for a system with a 

low value of the continuous phase viscosity. Garner 

and Haycok (16) pointed out that the period of oscilla- 

tion for liquid-liquid system is dependent on the 

physical properties of the system, in particular the 

densities. Schroeder and Kintner (59) in their study 

on oscillation of drops for mutually saturated systems 

concluded that there is no oscillation, at Reynolds 

numbers less than 200 (53). 

Hartunian et al (51) suggested a critical Webber 

number (Wes1.59) to-distinguish between non-oscillating and 

oscillating gas bubbles. While a Weber number of about 

two and a half times that of Hartunian et al were 

reported for liquid drops (28). Hu and Kintner's (22) 

value of the Weber number for drops is in fair agree- 

ment with that of Winnikow et al (28). Thus, the 

frequency of droplets oscillation and the shedding 

frequency of the vortices in the wake of the moving 

drop can be correlated using Strouhal number defined by 

(52)¢ 

epee oe G2)
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It appears that drop oscillations are a result of the 

combined effects of wake vortex shedding and the 

inherent tendency of the ellipsoidal drop to show damped 

oscillation about a mean shape in a medium of low 

viscosity. Hydrodynamic forces tend to flatten the 

drop, while the interfacial tension tends to pull it 

into a spherical shape. Critical drop Reynolds number 

and diameter for the onset of oscillation and deforma-— 

tion have been studied by number of workers and by 

choosing the most important variables, they have fitted 

power low relations to the experimental results. Thus, 

the drop Reynolds number for the onset of oscillation, 

at a maxiumum velocity, as given by the empirical 

correlation of Hu and Kintner (22): 

Re = 22(0, 0? /|Aoleus)?*?® (2.22) 

This shows that the viscosity of the drop phase is 

not important, though a high internal viscosity requires 

a larger drop if obvious oscillation is to occur, however. 

Whenever oscillations are taking place their frequency 

is not greatly affected by the viscosity of the drop 

phase. Later work by Terjesen et al (33) suggested 

that for a highly purified system, the mean numerical 

factor for a range of oils in water should be 20 rather 

than 22 in equation 2.22. On the otherhand Klee and 

Treybal (46) proposed the following empirical correla- 

tion for the drop diameter at which the maximum terminal 

velocity is reached:
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The problem of predicting the period of an oscil- 

lating drop was first solved mathematically by Rayleigh 

(55) and by Webb (56), using different mathematical 

techniques. These original sohutions were for a drop 

at rest in a gas of zero density. Rayleigh determined 

that it was sufficient to consider only axisymmetric 

motion, and one may represent the shape of the drop in 

spherical coordinates (7,98,) as: 

r=R+2 ay Po (Cos 6) (2.24) 

where Py is the nth order Legendre polynomial. The 

surface free energy Se, available to drive the oscil- 

lation is given by: 

Se = 9 (A ~ A,) (2.25) 

By assuming potential flow and only small distortions 

from a spherical shape, Rayleigh was able to express 

the kinetic and potential energies as functions of the 

a's. Using Lagrang's method, for which the a's, become 

the generalized coordinates, he then obtained the result 

that fay * bh Cos wt, where b, is some amplitude and 

w? = nina1 (rede (2.26) 

Pg Ma 

where n is the mode of oscillation, when n = 0,1
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corresponded to rigid body motion. The fundamental mode 

corresponds to n = 2. Recently Foote (125) using a 

computing method (which is an extension of Marker and 

Cell method) found a good agreement with Rayleigh's 

theory for small amplitude oscillations, and by taking 

the same amplitude for each mode, he described the four 

lowest normal modes of vibrations, Figure 2.3. Lamb (2) 

modified the solutions of Rayleigh (55) for the general 

case of a continuous phase fluid of any density, and 

obtain: 

wt = “Caney FaD TR (2.27) 

He also reported that for a small viscosity, the viscous 

effect will gradually reduce the amplitude of oscilla- 

tion, but the period will not be changed. 

Chandrasekhar (57) made an analysis of the 

oscillations of a viscous globule under the influence 

of self gravitation forces but ignored the effect of 

the continuous phase viscosity. Reid (58) showed his 

solution for oscillating drops remain valid if the force 

which tends to produce the spherical form is due to 

surface tension. Chandrasekhar (57) and Reid (58) used 

perturbation techniques, which included higher order 

terms than that of Lamb (2). All of these derivations 

dealt with small oscillation about a spherical shape. 

Schroeder and Kintner (59) in their work on droplet 

oscillation studied nineteen liquid-liquid systems and 

derived a modification of ‘the Rayleigh-Webb-Lamb
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equation to include amplitude effects. They pointed out 

that the discrepancy between their results and that 

predicted from Lamb (2) was not due to wall effects, 

viscosity, or velocity of fall, but they attributed it to 

the amplitude of oscillation. They reported that the 

oscillation did not damp out, contrary to that observed 

by many workers (62,60,2). Their modification is an 

empirical function of the amplitude expressed: 

a a Gmax = dmin (2.28) 
20 ave 

The authors (59) gave the empirical correlation for 

"b" as: 
4 
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be oto (2.29) 

and the frequency of oscillation expressed as follows: 

iy +1) (n-1 Fc a neha (n+1) (n-1) (n+2) (2.30) 

{ (ntl)ogtne,) 

They also claimed that a necessary condition for oscil- 

lation is the presence of a vortex trail which they 

suspected to be the driving force for oscillations. 

Apparently, the frequency of vortex shedding is often 

quite close to the natural frequency of oscillation of 

the drop. Possibly the two are linked, the drop 

oscillations having some triggering effect on the 

shedding of the vortices, as well as vice versa; leading 

to the two phenomena in phase with each other. However,
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unless the drop can oscillate naturally at about the 

same frequency, the vortex shedding will not affect 

it greatly (5 2). But Edge and Grant (118) reported 

that Schroeder and Kintner (59) correlation predict 

frequency of oscillation of droplet for systems in 

presence of surface active agent better than for that 

of pure systems. 

Experimental work shows that the frequency of 

oscillation and the frequency of wake vortex shedding 

approach each other quite closely at high Reynold 

numbers (28,52). 

Recently Miller and Seriven (60) presented an 

analysis for small oscillations of a droplet, with the 

terminal velocity approaching a small value. When they 

considered the rate of damping of the oscillations 

Valentine, Salher and Heideger (61) used Lamb's (2) 

method to obtain an expression for the damping rate when 

both interior and exterior liquids were of low viscosity. 

However, Miller and Scriven (60) reported that Valentine 

et al's expression underestimates the damping rate, 

because of the slip that takes place at the interface 

cannot account for boundary-layer flow near the inter- 

face. Also Subramanyan (62) considered damping of 

oscillations, in his work on oscillating droplets at 

low Reynolds and Webber numbers, such that the deforma- 

tion is small. He considered interfacial tension, 

terminal velocity and viscosities. His analysis was 

confined to the familiar Lamb's oscillation modes where 

the surface distortion is expressed in terms of
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Legendre polynomials. 

Finally Edge and Grant (115) in their study, 

using saturated phases for the drop frequency of 

oscillation, reported that the transition to oscillation 

occurs at Webber numbers 4.08 and 3.58 respectively. They 

used Ohnesorge number to predict the transition 

diameter: 

a = — 0.162 _ (2.30) 
t  che/p4)°°? 

Also they reported that Lambs (2) and Schroeder et al (59) 

equations (2.27 and 2.30) respectively gave higher 

predictions of oscillation compared with their observa- 

tion, and the experimental results correlated best by 

the empirical equation: 

dey 
= = (2.32) hoa) 

Cw*=w), 

where ae predicted from Lamb equation (2.27) and 

0.8 
(o*-w), = 26.5 Ga cycles/sec (2.33) 

But it should be mentioned that these experiments were 

carried out in a short test section. 

2.7 EFFECTS OF SURFACTANTS 

Much of the experimental data on droplet behaviour 

reported in the literature is of very doubtful value, due
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to an absence of complete specification regarding the 

purity of and correct physical constants for the chemicals 

used. In recirculating system (31) which involves 

aluminium tanks or piping, or packed pumps and gaskets, 

the equipment itself can supply enough to change the 

results. Kintner (1) showed a comparison of data of 

several authors (24,25,22,63) for the rate of fall of 

drops of carbon tetrachloride through water. It was 

noted that there is a fair agreement among the data for 

very small spherical drops and for very large drops, but 

in the intermediate region, which includes the range 

of studies by workers, the disagreement is greatest. 

This is because of the presence of surface-active agents 

that segregated near the surface. This causes some sort 

of surface viscosity which inhibits circulation and 

causes the drops to act more like rigid bodies. 

The amount of surface-active agents present may 

be so small that no measurable change in any physical 

property, can be detected. This is particularly true 

if the agent is a finely divided solid (31). lLindland 

and Terjesen (63) showed that, after a definite but 

small concentration of surfactant had been used, 

further additions caused but little change in 

terminal velocity. The surface viscosity effect on 

terminal velocity results in a calculated drag curve 

that is closer to the one for rigid spheres (64). The 

deep dip exhibited ty the curve in Figure 2.2 for drops 

in pure liquid fields is replaced by a smooth transition 

without a deep valley. Even a few parts per million
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of the surfactant are sometimes sufficient to cause a 

very radical change on mass transfer to or from drops (1). 

Linton and Sutherland (15) reported that the maximum 

surface pressure which a substance can exert when it is 

absorbed at an interface depends only on its concen- 

tration, whilst the average surface pressure gradient 

on a drop depends on the circumference or size of the 

drop. Thus, Lochiel (65) studied the influence of 

surface-active agents on movements of drops and on mass 

transfer, it was found that internal circulation strongly 

retarded, and the absolute quantity of surface active 

agent necessary to cause the effect is very 

small. Also the influence of surface-active agent 

decreases with increasing viscosity of the continuous 

phase.
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MASS TRANSFER BETWEEN DISPERSED PHASE DROPLETS AND A 
  

CONTINUOUS LIQUID PHASE 

There are numerous mechanisms by which mass trans- 

fer can occur (66): 

i. Ordinary diffusion, which results from a gradient 

in the concentration; 

25 Thermal diffusion, which results from a gradient 

in the temperature; 

25 Pressure diffusion, which results from a gradient 

in the hydrostatic pressure; 

a, Forced diffusion, which results from different 

external forces acting upon the different species 

present; 

5. Mass transfer by forced convection, which results 

from the overall motion of the fluid; 

6. Mass transfer by free convection, which results 

from the overall motion of the fluid, the motion 

being produced by inequalities in the density of 

the fluid; 

KG Turbulent mass transfer, which results from the 

motion of eddies through the fluid; 

8. Interface mass transfer, which results from a non~ 

equilibrium situation at an interface. 

The development of the theory describing the various 

mechanisms of mass transfer in flow consists of the
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following steps. First, the basic differential equations 

for fluid systems with diffusion must be established. 

These are the so-called "equations of change", which 

comprise the equations of continuity for each chemical 

species, the equations of motion, and the equation of 

energy balance. These relations provide the starting 

point for study of diffusion in laminar-and turbulent- 

flow systems and for simultaneous heat and mass 

transfer. For mass transfer studies the equations of 

continuity are the most important, Solutions of the 

diffusion equations for systems of engineering interest 

is done depending on the system. For simple systems 

analytical solutions may frequently be worked out. For 

somewhat more complex systems the basic differential 

equation may be solved by semianalytical approximation 

procedures or by numerical methods. And for very complex 

systems dimensional analysis, coupled with experimental 

data, has to be employed. The fundamental starting point 

for solution of the problem is the set of equations of 

change. 

3.1 FUNDAMENTALS OF MASS TRANSFER 

The mass transfer rates cannot be predicted directly, 

and usually the mass transfer coefficient (k) is 

correlated. This is defined by: 

(3.1)
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The mass transfer coefficient includes the characteristics 

of the laminar-and turbulent-flow regions of the fluid 

and the molecular and eddy diffusivities, in any 

proportions they may occur. Several different mechanisms 

have been proposed to describe conditions in the 

vicinity of interface, some of which will be considered 

below. 

3.1.1 THE TWO-FILM THEORY 

This theory, developed by Lewis (67,69) and 

Whitman (68) assumes that turbulence in the two phases 

dies near the interface, and the entire resistance to 

transfer is contained in two fictitious films on either 

side of the interface, in which transfer occurs by 

molecular diffusion. It was suggested that equilibrium 

concentrations at the concentration gradients in the 

films are established in a time so short compared to the 

total time of contact that steady state diffusion may 

be assumed. It is postulated that the resistance to 

mass transfer in the two phases, is measured by the 

reciprocal of k's, and the resistances are additive: 

i. (3.2) a a ae 
Ka Kg kK 

Equilibrium at the interface means equal values of 

chemical potential in the liquids at the interface, and 

consequently, no resistance to transfer across the 

interface. This theory is also called the two-resistance
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theory, although it was originally proposed in terms of 

the film theory. 

3.1.2 PENETRATION THEORY 

This was proposed by Higbie (70), who applied it 

specifically to the rate of solution of a gas bubble 

rising in a liquid. However, the principle is general. 

He supposed that turbulent eddies travel from the bulk 

of the phase to the interface, where they remain for 

a short but constant time before being displaced back 

into the interior of the phase, to be mixed with the 

bulk fluid. Solute is assumed to penetrate into a 

given eddy during its stay at the interface by the 

process of unsteady-state molecular diffusion. By the 

integration of Fick's second law, the instantaneous 

rate of mass transfer is: 

Ni. = ea AC, (3.3) 
AO 

For a continuous process, it is imagined that the 

operations described arerepeated many times, with 

thorough mixing of the liquid between exposures. When 

applied to certain simple processes, equation (3.3) 

yields average fluxes, with other than (1) under the 

radical sign, depending upon the circumstances. Also 

the time-average Sherwood number for a droplet system 

which approximates the above description as: 

Shy = Kael. Ae (3.4) 
D
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Brunson and Wellek (79) reported that it could be 

shown mathematically that equation (3.4), describes 

internally stagnant, non-oscillating droplets fairly good 

when(T-1) is less than 40° Angelo et al (80) extended 

the penetration theory to allow for stretching surfaces. 

Ruckenstein (71) presented a modification to the 

penetration theory for mass transfer in the vicinity 

of a fluid-liquid interface by accounting for the 

effect of velocity distribution within the eddies during 

the penetration by the solute. 

3.1.3 THE THEORY OF PENETRATION WITH RANDOM SURFACE 
  

RENEWAL 

This theory was derived by Danckwerts (72) for 

liquids in turbulent flow. He proposed that eddies 

of uniform solute concentration are continually swept 

to the surface. There they remain for a short time and 

undergo steady-state penetration of solute by molecular 

diffusion, before being swept away, to be replaced by 

other eddies. This leads to the equation: 

N, = vD,S ac (3.5) 
A A 

Where (S) is the fractional of the surface renewal. This 

shows that the mass transfer coefficient is directly 

proportional to the square root of the molecular 

diffusivity, this can also be noticed from equation (3.3)
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3.1.4 THE FILM-PENETRATION THEORY 
  

It represents a combination of the three earlier 

theories reviewed above. It was developed by Toor and 

Marchello (73). They considered that the entire 

resistance for mass transfer lies in a laminar surface 

layer of certain thickness. Surface renewal occurs by 

eddies which penetrate the surface from the bulk of 

the phase. Thus, transfer through young elements of 

the surface obeys the penetration theory (kavD), 

transfer through older elements follow the film theory 

(kaD), and transfer through elements of intermediate 

age combines both mechanisms. 

3.1.5 THE MASS-FLOW OR CONVECTIVE-TRANSFER THEORY 

In contrast with the theories described above 

Kishinenskii and co-workers (74,75,76,77) proposed a 

surface-renewal mechanism, which postulates that 

transfer into an eddy at the interface occurs predominantly 

by convective mass flow and not by molecular diffusion. 

The authors also dispute the suggestion that the 

probability of replacement of a surface element is 

independent of its age. King (78) proposed another 

model for turbulent liquid phase mass transfer to and 

from a free gas-liquid interface. The model requires 

the evaluation of three parameters and involves concepts 

of surface renewal in which surface tension exerts a 

damping effect upon the smaller eddies. Allowance is
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made for a continuous eddy diffusivity profile near the 

free interface, thereby avoiding the postulate of a 

film or discontinuity in transport properties as required 

by film-penetration theory. 

3.2 DROP FORMATION 

In mass transfer, the drop size is of primary 

importance because it determines the surface area over 

which transfer occurs. Investigations on drop formation 

in the absence of mass transfer will not provide the 

exact information required in design, as uncertainty 

exists on the mutual influences of the variables, such 

as concentration, density, viscosity and especially 

interfacial tension. On the other hand it does provide 

one with an idea of order of drop sizes involved in such a 

situation, 

Humphrey et al (97), in recent paper, studied the 

enhancement of internal circulation on mass transfer 

rate in forming drops. They found that drop formation, 

circulation and tangential convection depended on the 

ratio of the drop height from the nozzle exit to drop 

apex at time (t). The viscous forces in continuous 

phase will either reduce or slightly increase it, but 

the continuous phase viscosity may reach limiting values 

above and below which it has no additional effect. 

Circulation also depends on the momentum of fluid 

entering the drop relative to its size (97). But 

Lochiel (65) reported that extremely high values for
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mass transfer during drop formation, caused by instabilities 

resulting from high value of the concentration difference 

rather than the mechanism of drop formation (86). 

Hayworth and Treybal (81) developed a semi-empirical 

equation, based on a force balance, by expressing the 

various contributing forces acting on the drop as frac- 

tions of the total drop volume. This procedure is not 

wholly justified since the exact instant at which the 

forces act is not known,nor is their quantitative con- 

tribution to the total volume known. Null and Johnson (82) 

based their model on the geometry of the drop during 

the formation process. They neglected the effect of 

viscosity of the continuous phase which was found to be 

important in Hayworth and Treybal's equation. Null and 

Johnson found the maximum average errors of 94% and 377% 

when compared experimental data with their analysis and 

that of Hayworth and Treybal, respectively. 

Izard (96) claims that his method to predict the 

drop volume in immiscible liquid-liquid systems reduced 

empiricism. He carried his experiments under the 

conditions of no mass transfer. Earlier Halligan et al 

(98) in similar study to Izard, determined the shape of 

a growing drop by means of pressure balance for a 

static drop with an additional term added to account for 

the pressure on the interface due to the fluid motion 

within the drop. They also measured their data from 

mutually saturated fluids, so the interfacial tension 

was considered constant during the entire growth. 

A widely used correlation presented by Scheele and
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Meister (93) for calculating the drop volume at low 

velocities of dispersed phase into a stationary 

continuous phase. They correlated drop diameter as 

a function of injection velocity and nozzle diameter 

using the Harkins and Brown (91) correction factor. 

They tested their correlation by using mutually saturated 

phases and low concentrations of solute transfer. The 

experimental results deviated by an average of 11.0%, 

when the percentage error was calculated by dividing 

the deviation from the experimental volume by the smaller 

of the two values. Using the same method the percentage 

error for Hayworth-Treybal and Null-Johnson (81,82) 

predictions had deviation of 83.3 and 139.5% respectively. 

Several investigators (87,127,128) reported that 

transfer during drop formation to account for from 10 

to 50% of the total solute transferred. But much of 

the published experimental work has lacked a good 

technique for direct measurement of mass transfer during 

drop formation and has been confined to very large 

formation times (2 to 50 seconds). Thus, Heertjés et al 

(48) found that the measured transfer rates of 

isobutanol into water drops and vice-versa were two to 

five times the value predicted by their model with 

formation times 0.24-1,18 sec. Most recently Brounshtein et al 

(129) reported that a good prediction of mass transfer 

rate during formation could be obtained by sampling 

close to the nozzle and when the limiting resistance is in 

either the continuous or the dispersed phase. 

Popovich et al (83) surveyed the previous techniques
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employed as well as proposing a new mechanism. They 

found that Ilkovie expression (84) 

Ke ede 28 (Dg/tt,)* (3.6) 

best fitted their experimental results on transfer of 

sodium iodide into isobutyl alcohol. Walia et al (130), 

also found that equation (3.6) gave a better prediction 

than any other model available in the literature, 

and they presented a new model. Many workers (48,90,131) 

have used equations similar to equation (3.6), with a 

constant different to that of 1.13. 

The most used technique (48,87,86,85) to obtain 

the amount of mass transfer during formation and release, 

has been to extrapolate the total mass transfer to 

zero column height. Also drop withdrawal after formation 

has been used by several workers (83,132,133,134). How- 

ever, it causes a dynamic situation which is different 

from that of drop formation only and therefore, seems 

to be unsatisfactory. a 

Heertjes et al (88) presented a study at slow 

formation rates, and found that a fresh surface model 

(90) provided the best fit of their data on transfer 

of water into growing isobutanol drops. At the same 

time Rao et_al (89) developed a correlation based on 

a two stage drop formation process. In the static 

stage the drop was assumed to expand until the bouyancy 

force balances the interfacial tension force. The drop 

volume at the end of the static stage is given by
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equation of Harkins and Brown (91). During the second 

stage, when the drop is detached from the nozzle, the 

drop continues to grow. In an early work by Rusin (92) 

it was found that the dominating factor affecting mass 

transfer during formation was the tangential flow 

around the drop. He employed a photographic technique 

for the extraction of picric acid from a drop of 

toluene forming in water. 

Skelland and Minhas (94) reported that their 

measured rate of mass transfer was higher than that 

predicted by Ilkovic (84) and Heertjes et al (88) 

models, and they presented their own correlation with 

26% deviation from the experimental values. 

In a limited practical study on small nozzle 

diameters, Rajan et al (95) used a binary system, where 

the mass transfer was controlled by the continuous phase 

resistance. They reported that the mass transfer 

coefficient was initially very large but rapidly falls off 

and this was obseryed most often for small drop sizes. 

But this could be explained because of the high 

difference of driving force at start. Also they (95) 

mentioned that the dispersed phase flow rate was as 

important as that of the continuous phase in 

determining the mass transfer rate during drop forma- 

tion. Their experimental results compared well with 

that predicted from the surface stretch model and fresh 

elements model for the largest nozzle.
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3.3 THE CONTINUOUS PHASE MASS TRANSFER COEFFICIENT 
  

The continuous phase mass transfer coefficient may 

be evaluated in terms of the resistance in the film 

surrounding the drop through which the transfer takes 

place by molecular diffusion and the mass transfer 

coefficient becomes: 

Elem —o C37) 

where x, is a continuous phase fictitious film thickness. 

A great number of investigators have derived theoretical 

or empirical correlations for the continuous phase heat 

or mass transfer coefficients, put it is impossible to 

present all these correlations; hence only the well 

known correlations will be discussed. Summaries of 

theoretical predictions and experimental correlations 

can be found in the work of Linton and Sutherland (14), 

Sideman and Shafrai (102) and Griffith (100). All of 

the theoretical expressions have been derived for Stokes 

flow. In the case of higher Reynolds numbers, the 

theoretical expressions are for the portion of the 

droplet surface which is a head of the separation point, 

i.e. the point where the droplet wake begins. An 

assumption for the interfacial area is implicit in all 

expressions and the usual choice is a sphere of an 

equivalent volume if the droplet is deformed.
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3.3.1 STAGNANT DROPLETS 

The basic relation for mass transfer in the con- 

tinuous phase is given by the dimensionless equation: 

we + pVC ; yc (3.8) 

This equation cannot be solved unless the velocity 

distribution is known, and this depends on the state of 

internal circulation or oscillation of the droplet. 

The velocity distribution is known for sphere of 

Reynold numbers less than one. The analysis, using 

poundary layer theory, over the front half of a sphere 

at high Reynolds numbers has been correlated by (135): 

Sh, = c Re™ sc" (3.9) 

where C, m and n are constants. 

3.3.2 CIRCULATING DROPLETS 

Most experimental and theoretical studies (44, 85, 

101) have indicated that the continuous transfer 

coefficient is increased when circulation occurs inside 

a droplet and this is explained by the reduction in 

the boundary layer thickness. 

Hadamard (7) postulates that the drag onthe 

surface of a fluid droplet moving in a fluid medium 

causes internal circulation; thus droplets should fall



~47~ 

more quickly than solid spheres in the same fluid medium 

since the resistance to motion is less as there is less 

drag. Boussinesq (9) modified this theory, in that 

two surface layers on the drop are present. The 

surface viscosities cause a resistance to motion of the 

surface and the velocity of internal circulation is 

also reduced. It is noted according to Hadamard that 

there is no laminar layer on either side of the 

interface, so that the two film theory (3.1.1) would 

not apply. Boussinesq's theory states that there will 

be a difference in velocities on both sides of the 

interface, so there would be slow moving through which 

diffusion would probably be slower. Thus both theories 

postulate circulation in fluid droplets in all 

circumstances. 

Boussinesq (9,99) and Ruckenstein (136) using the 

velocity distribution for potential flow, found the 

average Sherwood number to be: 

Shs —— Re Sc. (3.10) 

This expression assumes that there is no boundary layer 

separation. West et al (87) introduced a correction 

factor, fc, into equation (3.10): 

Sh = — Re“ Sc,” C344) 

The value of, fy, was found to depend on the properties 

of the dispersed phase. Garner and Skelland (12)



~438- 

reported that circulation takes readily only when a 

solute is present and only above certain Reynolds number. 

They noted that the transitional Reynolds number is 

dependent for a given size droplet, on: 

(a) the viscosity of the continuous phase, 

(b) the viscosity of the dispersed phase, 

and, (c) the character of the interface, the lower the 

interfacial tension, the lower is the Reynolds 

number required to give internal circulation. 

The most widely used correlation is that developed 

by Garner and Tayeban (44) from experimental data taking 

into account the influence of the wake. Their correla- 

tion is: 

Sh, = 0.6 Re°*® Se (3.12) 

which is similar to that proposed by West et al (87). 

Heertjes et al (48) suggested that a function (h) is 

necessary instead of the constant in equation (3.12): 

: 0. 
Sh = bh Re Se, (3513) 

where h, is a function of (ug/g tg) ) and varies from 

0.1 to 0.95 while (u,/Gigtty)) varies from zero to ten. 

Garner et al (45) in their study on partially 

miscible binary liquid-liquid systems of low interfacial 

tensions, observed that the exponent of Schmidt group, 

for fully circulating potential flow, is one-half and 

for stagnant drop is one-third. Hence they believed
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that the exponent of Schmidt number for a circulating 

drop should be between one-half and one-third. They 

proposed the following correlation: 

o° soe *? (3.14) Sh, = -126 + 1.8 Re 

However, these investigators employed data for both 

oscillating and non-oscillating droplets in order to 

obtain the coefficient of equation (3.14). Transfer 

rate for an oscillating drop is much greater than that 

of circulating drop (13). Also Fujinawa et al (137) 

reported that the mass transfer from droplets in 

liquid-liquid systems where solute is contained is 

different, in mechanism, from the heat transfer from 

droplets in liquid-liquid systems where no solute is 

contained. Also, the method of Colburn and Welsh (27) 

(in which, in order to obtain the data on individual 

coefficients, two pure liquids of limited solubility 

are contacted in the absence of a third solute) cannot 

be applied to the study of mass transfer from droplets 

137 ju 

Garner and Skelland (13) showed deficiencies in 

the application of Higbie equation (3.4) to the parti- 

cular case of transfer from a falling or rising droplets. 

They reported that when the drop possessed a wake, 

hypothetical elements of surfacecannot move from the 

front pole of the drop to the rear point, but will be 

destroyed at the separation zone. The penetration 

theory (3.1.2) is not strictly intended to accelerating
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surfaces. 

Griffith (100) presented a relationship, for 

Reynolds numbers greater than unity the continuous 

phase film coefficient with the ratio of the actual 

interfacial velocity to the interfacial velocity cal- 

culated from potential flow as a factor. 

At droplet Reynold numbers above 4 (21,3), a 

boundary layer separation can be observed giving rise 

to a wake which travels behind the droplet. Initially 

an unsteady build up of solute in the wake occurs due 

to the transfer from the rear of the droplet and from 

the boundary layer surrounding the outside of the wake. 

Eventually, a steady state condition is attained and 

solute transfer occurs from the wake to the boundary layer 

surrounding the wake and then into the continuous phase, 

The high initial rates of mass transfer were attributed 

to the presence of the wake. Elzinga and Banchero (30) 

working with heat rather than mass transfer correlated 

data for circulating drops by: 

3.47 “pe 0.056 p Se » (3.15) 
ee Big*Big ug? 

but found that oscillations produced values of Sherwood 

number that were higher by as much as 45 per cent. 

Drop oscillation and interfacial turbulence produce higher 

coefficients than that of stagnant and circulating 

droplets (107). 

In contrast to other investigators Thorsen and 

Terjesen (106) claimed that the large continuous phase 

film coefficients for circulating drops can be explained
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neither by thinning of the boundary layer nor interfacial 

turbulence, and that internal circulation and mass transfer 

are two different and largely unconnected phenomena 

associated with the fluid boundary. They presented a 

correlation which they claimed is applicable to circula- 

ting as well as non-circulating drops. This indicates 

that internal circulation does not affect the specific 

mechanisms of mass transfer in pure liquid-liquid systems. 

Their correlation is (106): 

5 Sh, = 178 + 3.62 Re’? s (3.16) ures 

They stated that the rapid increase in the con- 

tinuous phase mass transfer coefficient with increasing 

Reynolds number was due to the combined effect of an 

increased disturbance intensity around the separation 

point and a forward movement of the separation point. 

Recent study (116) on the transfer of iodine from 

aqueous continuous phase to carbon tetrachloride drops, 

(the resistance to mass transfer assumed to be solely in 

the continuous phase). Sherwood number was correlated 

to Galileo number for drops less than (0.26 cm) in 

diameter: 

2 (3.17) Sh, = 1.04 Ga?-4 
ec 

For high viscosity of continuous phase (200 cP), Harris 

(105) claims that his correlation predicted the extrac-— 

tion efficiency for liquid-liquid systems, with a drop
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in Reynolds number between 58-450. 

3.3.3 OSCILLATING DROPLETS 

It is noticed that in all correlations for the 

continuous phase transfer coefficient, a sphere or 

equivalent sphere is used to characterize the liquid 

drop. The characteristic length term in the Reynolds 

number is the diameter of a sphere of the same volume 

as the droplet. However, in the calculation of mass 

transfer the significance of distortion is primarily 

that of surface area which increases rapidly with 

increase in distortion. In order to include the distor- 

tion of droplets, investigators have used different 

criterias for the characteristic length in predicting 

droplet phenomena. This has been summarised by Skelland 

and Cornish (108). These characteristic lengths which 

have been used previously are the diameter of a sphere 

of the same volume as the particle, the diameter of 

sphere of the same surface area as the particle, the 

length of the minor axis of the particle, the average of 

the axis lengths parallel and verticle to the flow, the 

sphericity multiplied by the diameter of a sphere of the 

same volume as the particle, the axis normal to the flow 

and the length from the total surface of the particle 

divided by the perimeter of the maximum projected area 

perpendicular to the flow. (D3) 

A number of workers (113,85,112) have used 

correlations, developed for drops with turbulent internal
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circulation, to predict mass transfer rates for oscillat-— 

ing drops, but the effect of oscillation is larger than 

the effects of circulation (44,111). The best known 

correlation, presented by Garner and Tayeban (44) for 

the continuous phase oscillating drop mass transfer 

coefficient is: 

Sh, = 50 + 8.5 x 10° (3.18) 

They reported an exponent of more than (0.5) for 

Schmidt number because, for oscillating drops, there is 

less dependence on diffusivity. Later lochiel and 

Calderbank (109) suggested the use of the equation 

proposed by Boussinesq (99) for transfer around spheres 

in potential flow, for oscillating drops between 

oblate and prolate forms, the equation: 

E 0.5 Sh, = 1.13 Pe (3.19), 

Angelo et al (80) presented a model developed from 

the penetration theory depending on surface stretch for 

oscillating droplets. They assumed that penetration 

theory applies with the same characteristic lifetime 

for both phases, i.e. the time of oscillation. 

Brunson et al (79) showed that correlation of the 

mass transfer coefficient developed using low inter- 

facial systems gave a greater deviation when applied to 

high interfacial systems. They recommended the use of 

equation (3.18) for oscillating drops, but approved
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of Rose and Kintner (111) use of equation (3.12) for 

circulating drops as the later equation gave a 

fractionally better result. Yamaguchi et al (110) 

proposed an empirical correlation for mass transfer in 

the continuous phase around oscillating drops and 

concluded that the transfer mechanisms of a solute in 

both phases were almost the same. Yamaguchi et al (110) 

proposed a correlation for the continuous phase, but 

the maximum deviation of the data from that predicted 

is approximately +20%. The relation in the form: 

0.5 Bho = 1.4 (he)°” Be (3.20) ¢ ¢ 

where Ré, a modified Reynolds number: 

2 
- _ pwd, 

Re = 2c _e (3.21) 

Ue 

and this neglects the drop velocity. 

A new approach was used by Mekasut et al (116) 

by correlating Sherwood number with Galileo number to 

predict the mass transfer coefficient for drops, above 

(0.26 cm) in diameter. But their results were erratic 

and also limited. They reported the following 

correlation, ignoring the affect of the frequency 

of oscillation of the drop which takes place in the range 

studied: 

Sh, = 6.74 Gav" (3.22)
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3.4 THE DISPERSED PHASE MASS TRANSFER COEFFICIENT 
  

Studies of the mechanism of mass transfer inside 

droplets in liquid-liquid systems during the free fall 

have compared experimental rates of mass transfer to 

rates predicted by various mathematical models. In 

many cases the value of the experimental rate has been 

above that predicted by the model (112,85,44,101). The 

different models have been presented in the form of 

an extraction efficiency, Ey or an internal mass trans-— 

fer coefficient, kg and the basic assumptions, common 

to all models are that the droplet is spherical and of 

constant volume and that the solute concentration is 

sufficiently dilute for the physical properties to be 

essentially constant. In addition the fluids are 

Newtonian and incompressible. When the major resistance 

to mass transfer is in the dispersed phase, the overall 

transfer rate will be controlled by the transfer 

mechanism inside the drop and this is influenced by 

the hydrodynamics of the system. 

3.4.1 STAGNANT DROPLETS 

This is a limiting case which will hold for small 

drops with no internal circulation and molecular 

diffusion is considered to be the dominant mechanism. 

Newman (103) developed a correlation for the drying of 

porous solids with negligible resistance to transfer in 

the continuous phase, the equation proposed is:
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and the mass transfer coefficient based on a linear 

concentration-difference driving force is (107): 

2an?Dg 
Go eorsa (3.24) 

Vermulen (104) found that Newman model could be 

closely approximated by an empirical expression by 

taking the first term in equation (3.23) and neglecting 

the ratio (6/1). Thus for n=1, 

2 
= Cl = exp(— pat) )°-® (3.25) 

which for values of EL less than 0.5, reduces by a 

series expansion neglecting higher order terms to: 

E, = "(ary (3.26) 

The analogous problem for heat transfer has been 

solved by many investigators before Newman applied his 

equation to mass transfer. Groeber (139) is credited 

with considering the effect of a finite continuous 

phase resistance for the rigid sphere in the following 

expansion: 

pee e 2 says 
Ka =e in{6 oT A, exp(-A7 —s-)} (3.27) 

where Aye An are functions of ky (30). The above equations
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could be applied to drops when surface-active agent 

suppresses circulation in the drops. 

3.4.2 CIRCULATING DROPLETS 

Experimental studies indicate that the rate of mass 

transfer is greater when circulation occurs. As a 

result of circulation the mixing inside the drop can 

be through laminar and turbulent circulation. 

3.4.2.1 LAMINAR CIRCULATION IN DROPLETS 

The accepted equation for this type of circulation 

is that derived by Kronig and Brink (101). They 

derived a relation for droplets with internal circulation 

described by Hadamard-Rybezynski (7,8) flow patterns. 

These flow patterns were established from the equation 

of motion in the stokes flow regime (Re<1) and the 

derivation assumes that the time of circulation is small 

compared to the time of solute diffusion, also the 

solute diffusion is in a direction perpendicular to the 

internal streamlines, and that the continuous phase 

resistance is negligible. They obtained the expression: 

za 1 An expt-A, ee (3.28) oa 

Heertjes et al (48) presented values of AL and 

A, for values of n from one to seven. However, liquid- 
n 

liquid systems with low interfacial tensions are more
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likely to exhibit internal circulation similar to the 

Hadamard prediction. 

Since Kronig and Brink presented their formula 

many workers have made a number of modifications to 

their model. Early work by Heertjes et al (48) and 

by Garner et al (16) indicated that up to Re=10, the 

flow pattern resembles that at low Reynold numbers and 

Kronig et al derivation could be applied. However, 

Johnson and Hamielec (85) found that in some cases 

equation (3.28) can be used for higher values of Reynold 

numbers and when the circulation has been completely 

developed the mass transfer amounts to about five times 

that for a rigid sphere. Elzinga and Banchero (30) 

presented an extension of Kronig and Brink solution 

to that case of finite continuous phase resistance. 

Their final expression is in the same form of equation 

(3.28) except that AL and x are fractions of the 

continuous phase resistance. Values of the constants 

for n=1,2 and 3 are given in their article. 

Calderbank et al (53) suggested using a constant 

effective diffusivity equal to 2.25 time that of the 

molecular diffusivity in Vermulen equation (3.25). 

This compares very closely to the Kronig and Brink 

model. The equation: 

En = {1 - exp(-1 2 RDgt A Sega i se (3.29) 
r2 

where R, the dimensionless correlation factor of the 

molecular diffusivity, is equal to 2.25. R is usually
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defined as the ratio of the effective diffusivity to 

the molecular diffusivity. For a value of En less 

than 0.5 and so equation (3.29) is reduced to: 

RDgt 0.5 
es) 3) (3.30) 

& 

  

Finally Johns and Bechman (140) presented a 

numerical solution for the mass transfer occurring in 

the whole regime of flow and for continuous phase 

without resistance. 

3245252 TURBULENT CIRCULATION IN DROPLETS 

Recently Thornton et al. (141) proposed a method 

to determine the solute concentration inside droplet. 

Thus by treating the droplet as a lens so that an 

object viewed through the droplet will be refracted to 

an extent dependent upon the drop profile and the 

refractive index. The method assumed that free 

circulation is always present inside so that the 

interior may be considered perfectly mixed at any time, 

and that the droplet profile at the verticle axis can 

be described by the equation of an ellipse. The above 

method has the defficiencies of limited Reynolds number, 

so that the drop shape is uniform, and also the fact of 

the drop has a uniform refractive index so perfect that 

it can be treated as a lens. 

Handlos and Baron (142) proposed a dispersed phase 

mechanism within spherical droplets, which predict 

mass transfer rates much greater than that predicted 

by either the Newman (103) stagnant drop model or the
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Kronig and Brink (101) laminar circulation model. 

Their model (142) is frequently described as applying 

to turbulent non-oscillating and to oscillating 

droplets (112,107,143). However, photographic studies 

of oscillating droplets carried out in this department and 

by Rose and Kintner (111) indicates that toridal 

circulation postulated by Handlos and Baron deviated 

from reality. The violent oscillation of droplet 

causes complete mixing. Thus it has been suggested 

that this model could be used in the high Reynolds 

numbers, non-oscillating region. Johnson et al (85) 

found that the effective diffusivity for the systems 

studied could be as great as 52 times the molecular 

diffusivities. Handlos and Baron assumed a streamline 

circulation within the drop, with superimposed random 

turbulent radial motions due to the oscillatory 

vibrations of the drop. Assuming, further, one random 

displacement of each element of fluid in the drop during 

the time required for the liquid to circulate in a 

streamline flow, they finally calculated a mass transfer 

coefficient given by: 

ky = 0.00375v/(1+(ug/u,)) (3.31). 

or in dimensionless group form: 

Shy = 0.00375 Pes/(1+(ug/u,)) (3.32) 

Equation (3,31) shows clearly that, on these simple



~61~ 

assumptions, eddy diffusion is controlled and ka does 

not depend on the molecular diffusivity Dy: 

Handlos et al (142) recommended that when resistance to 

mass transfer exists in the continuous phase, the 

Higbie (70) relation should be assumed for kt 

ap
s 

Sk
? (3.33) 

Ke is combined with ky to obtain an overall mass 

transfer coefficient by means of the two resistance 

theory. 

Johnson et al (85) used the expression of Handlos 

and Baron converted to a ratio "'R", between the mass 

transfer rate into a drop whose interior is mobile and 

the rate into a stagnant drop of equal volume. Thus, 

at low Reynoldsvalues, the ratio "R" is about 3, but 

for drops with turbulent circulation "R" is much 

greater. Using equation (3.31), they found that: 

R = Peg/(2048(14u4/u,)) (3.34) 

and since Pe, includes the product (dv), it is clear 

that it should increase proportionally to Re in the 

turbulent regime. Skelland and Wellek (112) studied 

the resistance to mass transfer inside droplets for 

organic-water systems using Colburn and Welsh technique 

(27). The mass transfer rates for circulating drops 

falling in a stationary continuous phase were somewhat 

higher than predicted by Kronig and Brink model, while 

oscillating droplets exhibited much higher rates of
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transfer. They presented their results in a dimension- 

less correlation for the dispersed phase Sherwood 

number. The correlation for a circulating droplet is: 

-9.338 
Sh, = 31.4 7 

m 
4 70 125 wel: 371 Seq . (3.35) 

Great deviations occur in using Handlos and 

Baron's model for short contact time, because in working 

out the theory, the authors have only used the first 

term of series which appear in themathematical 

evaluation (144). Thus, a correction is suggested by 

Olander (144) for the calculation of the actual Ka from 

the kop of Handlos and Baron by means of: 

a iz (3.36) De 0.972 Kup + 0.075 

For the general case where the continuous phase 

resistance exists, Patel and Wellek (145) presented a 

numerical solution to be cooperated with Handlos and 

Baron model (142). 

It is worth mentioning that Davies (52) reported 

that Handlos and Baron theory does not hold when the 

drop oscillates and there is a third component trans- 

ferring in or out of the drop, and that the onset of 

visible droplet oscillations R (equation 3.34) increases 

sharply by a factor of two. When a strongly developed 

oscillation is present it leaves no room for any 

predictable circulation, and a sharp distinction should 

be made between droplets with turbulent internal
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circulation on the one side and oscillating drops on 

the other side (145). 

3.4.3 OSCILLATING DROPLETS 

The different theoretical models will be presented 

first according to their importance and later the 

techniques used and empirical correlation will be 

considered. 

3.4.3.1 ROSE AND KINTNER MODEL 

Rose and Kintner (111) applied a variation of the 

film theory (3.1.1) to mass transfer within oscillating 

droplets. They modified the film theory expression 

for the mass transfer coefficient by assuming that the 

film (or interfacial resistance zone) varies with time 

due to droplet oscillation. This was qualitatively 

justified from the results of their photographic 

techniques. They also reported the break-up of the 

internal circulation stream-line pattern during oscilla- 

tion; and suggested a type of turbulent internal 

mixing due to large amplitude oscillations. They 

observed from their work on five mutually saturated 

organic-water systems with the continuous phase 

stationary that the droplet oscillations were from 

spherical shape to an oblate and back to spherical, 

or from oblate to more oblate. However, it was found 

that for larger droplets in some oscillation cycles
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the drop profile passed through prolate shape. But 

this does not take place periodically. 

The Rose-Kintner concept was based on the following 

assumptions: 

i Resistance to mass transfer for both the continuous 

and dispersed phase lies only in a thin film near the 

interface. Further, during each oscillation, the 

interface must be expanded locally in certain regions, 

thereby thinning the surface region across which there 

is a concentration gradient. This thinning is 

particularly significant at the poles of the flattened 

drop, leading to faster mass transfer in these regions. 

The zone thickness at the major axis ends is the original 

thickenss xe and is thinned to a maximum value at the 

end of the minor axis. 

2. Volumes of the zone of transfer resistance and the 

drop are constant. 

3s The drop oscillates from a spherical shape to an 

oblate ellipsoid and back to the spherical shape in 

one period of oscillation (Figure 3.1). This kind of 

oscillation occurs for droplets of small sizes, i.e. in 

transition from non-oscillation to oscillation, while 

for vigorous oscillations the droplets have many 

different shapes (Figure 3.2). Further, they assume 

that the interface would be renewed during each drop 

oscillation and the drop shape is symmetrical at the 

major axis. So there are two criterias for the inter- 

face that the film theory applies as well as surface 

renewal,
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FIG.3.1 : One Period of the Oscillating Spheroid Mass 
Transfer Model (111)
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4, The oscillation is of sinusoidal type so that the 

amplitude is related to the major axis by the following: 

a = a + a, |Sin w't| (3.37) 

where w' is one half the frequency predicted from 

equation (2.30). 

Big The core of the drop is well mixed. Hence one 

value can be used to represent the core concentration 

as in Figure 3.1. 

The equation for unidirectional mass transfer 

across a stagnant interface is: 

AC aNa AC 
ax at pe (3.38) 

where Ny is the total number of moles of component A. 

Clearly from the above equation if the area is increased 

and AX is decreased the rate of mass transfer will 

increase by a large amount. The oscillatory motion 

causes an interfacial area stretch and this is 

accompanied by variation in the term AC/AX. 

The instantaneous value of X, as the drop oscillates 

will vary between X, and X as shown by the following 

equation: 

2. 2 2 
(abo - (@07-X,) COOK 2abX,+ bE, _ 

X= = £,(t) 
2 2 

ane 2aX, + XS (3.39) 

  

where b is predicted from: 

b= pe (3.40) 
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So that only (a) the major axis is estimated from the 

cine film. This might be because the values of b 

will not be in agreement with the assumption of 

symmetrical oblate. The continuous film thickness was 

predicted by applying Garner et al (44) correlation to 

evaluate Le for circulating drops: 

kd uw davp.0.5 = = sta SAE Dy 0.6(55 i } (3.12) 

and then the inside film thickness was estimated by 

using the penetration theory concept with contact 

time equal to the time of one oscillation. Hence: 

ky = 0.45(D4w)°"? (3.41) 

Finally they calculated the overall dispersed phase mass 

transfer coefficient applying: 

ee ee ee (i) 
Ka Ka Ky 

Po ee and Ka x (3.420) 

where Dp = (fraction of resistance in dispersed 

phase) Da te 

(fraction of resistance in continuous 

phase) D, (3 42b) 

To evaluate the fractional extraction rates, they used 

the equation for constant volume of drop, based on the
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dispersed phase: 

By Sos 2% A(c~c*) (3.43) 

with the boundary equation: 

(3.44) 

c= Cy ‘= te 

which results 
t ne 27DR f 3V. \7 1 i+ 

Reke 1-exp{-—> ‘eh Oy (Ge +55 in = + Wi) at} 

(3.45) 

where 

W = (3v/4qw)? a = W = _(3V/40W)” (3.46) 
W 

and 

; 2 
Wo= (a, + a,|Sin o't]) (3,47) 

The fractional extraction rates calculated by 

equation (3.45) gave higher prediction than the 

experimental values, but it was observed that it gave 

better accuracy when all the resistance lies in the 

continuous phase (111). Also Rose and Kintner reported 

that equation (3.45) is not valid for drops with 

oscillation frequency , which is the practical 

case where mass transfer is taking place between 

oscillating drop and a continuous phase (54).
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3.4.3.2. ANGELO, LIGHTFOOT AND HOWARD MODEL 

Angelo et al (80) extended the penetration theory 

(3.1.2) approach to include a velocity component 

perpendicular to the interface as a result of the 

stretching of the surface. They expressed the periodic 

change of the surface area for an oscillating droplet 

  

as: 

2 A = AQ + sin” wt) (3.48) 

where € = ‘max +i (2, 18) 
oO 

It should be mentioned that equation (2.13) has not been 

presented in the original article of Angelo et al, but 

quoted from Brunson et al (79), and supported by the 

value used in article of Angelo et al (146). Equation 

(3.48) allows an analytic integration of the resulting 

mass transfer relations and yields the following rela- 

tion for the time average mass transfer coefficient for 

one oscillation (wt=1): 

2 
Vv 4Dgw(1 2S + # 67) (3.49) 

when the resistance of the continuous phase exists 

and if one assumes that the penetration theory applies 

to both phases with the same characteristic life time 

for both phases (specifically the time for one cycle 

of oscillation) then the overall mass transfer 

coefficient is given by:



Ti 

1 

1+m/Da 
De 

K = k a id c (3.50) 

These equations (3.49) and (3.50) are correct only for 

an integral number of complete oscillations. Equation 

(3.50) gave good prediction for the rate of transfer of 

benzoic acid to or from single drops of various organic 

liquids dispersed in water (52). But because of the 

difficulty and ambiguity of some factors in Angelo et al 

model, Rose and Kintner is more appealing. But it is 

worthwhile mentioning that in both models (3.4.3.1) and 

(3.4.3.2) discussed above, the change in the area of the 

drop is not accurate as the drop shape is of a much more 

complex character than is supposed by spheriod 

approximation; it is much higher. 

3.4.3.3 ELLIS MODEL 

Ellis (147) divided an oscillating droplet into 

different regions of mass transfer according to assumed 

flow regions in the droplet (Figure 3.3). The 

toroidal section (T) was assumed to be in laminar flow 

even during droplet oscillation. The remainder of the 

droplet (the cylinderical core (C), outside layer (L) 

and polar end sections (E)) was assumed to be in 

various forms of turbulent flow. This division of the 

droplet is not in agreement with physical phenomena 

of drop oscillation and also the shape of the drop is 

not a sphere during oscillation. 

The estimation of the thickness of the outside
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FIG.3.3 : Geometrical Description of Layer-Core Model 

of Ellis (147)
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layer is obtained by means of instability analysis, the 

average frequency of mixing and surface renewal is 

approximated bythe frequency of oscillations. The 

above parameters are used to obtain an eddy diffusivity 

for the outer layer in conjunction with a type of 

film-penetration model (73). To calculate bulk flow 

parallel to the interface, the model employes stream 

velocities based on the Hadamard analysis. A somewhat 

analogous approach is used in the central core region. 

In order to determine the boundary conditions at the 

inner and outer surfaces of the toroidal region, an 

average of certain local mass transfer coefficients 

were determined from Kronig and Brink (101) analysis. 

Ellis (147) ignored mass transfer in the two end sections. 

A numerical solution presented postulated all 

droplet regions in order to obtain the mass transfer 

coefficient at the droplet interface, and the effective 

Sherwood numbers: 

  

: 2615 ape 0789 g0-692 9-603 
Shy = (7995+0.0ax) ‘Re-4Re) ee a S 

(3.51) 

where 

x = Hd 
Ue 

G = (We, + 2°88); 2 (3.52) 
d Pq 

2 and ARe = (Xt2)(0.1105+0.02325 exp(-(%-2.09)")) 
(0,000018X+0.00216)
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The above correlation was recommended for use in range 

(4<G<6) and the effective Sherwood number average 

error is 20% for the mentioned range. 

3.4.3.4 NEKOVAR AND VACEK TECHNIQUE 
  

Nekovar et al (119) studied the mass transfer 

rate of acetic acid from a water-dispersed phase to 

benzene as stationary continuous phase, and they showed 

that the actual variable area of an oscillating droplet 

should be incorporated into the mass transfer models. 

This is necessary as otherwise the values of mass 

transfer coefficient which are based on a spheroid 

approximation of the drop shapes will lead to large 

errors. It was reported that the maximum values of 

(€) in equation (2.13) decreases almost linearly with 

increasing concentration of solute transferring from 

the drop, whereas values of the minimum (e€) as well as the 

oscillation frequency remain almost constant. These 

comparison was not based on equal drop volumes but on 

the constant flow rate of the dispersed phase and one 

nozzle. It would be worth finding what is the effect 

of concentration of solute on drops of equal volumes. 

That is the exact volume and concentration of solute 

known after drop release rather than the dispersed 

phase displacement. 

The Nekovar et al concept is based on the following 

assumptions: 

ae The oscillating drop, as well as its surroundings
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are ideally mixed and the concentration inside and outside 

the drop are represented by Cy and Co respectively. It 

is well known that the concentration inside an oscillating 

droplet can be represented by one concentration, as 

turbulent mixing exists, but the continuous phase 

concentration depends on the flow characteristic. 

2 The drop is spherical and of constant volume, 

of radius ro and diffusion is radial so that the 

diffusion equation for a constant coefficient takes the 

form (148): 

2. p24 2 ay (3.83) at ‘ore r or i 

ThenNekovar et al used Crank (148) development of 

the diffusion equation for flow through a spherical 

wall where the surface r = Ty is maintained at concen- 

tration Cy and r = Lo at concentration Co, and the 

region ry<TSTg is initially at Cys then the concentration 

approaches the steady state distribution, according to 

the expression: 

rc ¥,Co-7,C. 2 © 
Ge tet - a2 711, zr Po(Co-C,) Cos nn-ry(C,-C,) 

5 r(rp-T,) rv n=1 

am(r-r,) _»,2,.2 2 
Sia 1 a Dn“ t/(%y-r,) 

  

(3.54) 

They further assume that ry<r<ro is initially at 

Cand. ¥ * =f assuming it as the film thickness 
2 ee 

exist at the interface of the droplet of radius To: so 

it is reduced to:



rc F.0.er, C. 2 @ PF (CL «C,.) Cos: Cam) fe wae ce ee a 

r ~r tr n=0 cr 

n (r-r,) 2.2. 2 
pein er 

Y (3.55) 

Then furthermore assumed Co=0, to obtain 

© 2.2 2 
ac ool fi ap et DIY) (3.56) or T=fpy ¥ Fy ger 

where T is the time of. drop oscillation and from the 

average interfacial flux 

titt 
aw ° eal ° ac 1a N(t)dt = @ J DA eee (3.57) 

t, t 2 
oO oO 

where 

A, = Aj + Sif(nt/T)) ts (3.48) 

the mass transfer coefficient can be calculated by: 

K = N/C,A (3.58) 

where 

mone t>+T 5 ; a 
a A.dt (3.59) 

They applied the interfacial film thickness relation 

used by Marsh et al (149) for circulating droplets.



es. 

These authors stated that they abstracted the correlation 

for the film thickness film from Bird et al (150). Thus 

(3.60) 

although it appears that in Bird et al the constant is 

26 and not 25. It is worth mentioning that Crank (148) 

had performed a graphical interpolation to define (y) 

as follows: 

y “= ODE (3.61) 

Nekovar and Vacek (119) claimed that their technique 

gave better prediction of the mass transfer coefficient 

than that of Angelo et al (80), Brunson et al (79), 

Skelland et al (112) and Ellis (147) correlations, but 

this comparison was made with insufficient data, which 

does not make a fair judgement, especially when they 

assumed that the diffusion through spherical shell is 

applied to an unsymmetrical oblate spheriod. 

3.4.3.5 BRUNSON AND WELLEK TECHNIQUES 
  

Brunson et al (79) developed correlations to fit 

the results of their experiments, and they concluded 

that the correlation developed earlier by Skelland et al 

(112) gave the best prediction of the mass transfer 

coefficient during oscillating droplet fall or rise. 

The following are some of Brunson et al relationships.
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is Following the assumption of Rose and Kintner (111) 

that the characteristic time in equation (3.4) may be 

approximated by the time for one oscillation: 

ese (3.62) 

and substituting this in equation (3.4) results in 

Sh, = yw 3.63 + 2D (S-6>) S
i
l
 

However this equation (3.63) did not give a good predic- 

tion to mass transfer coefficient. 

2. They then assumed that the entire oscillating 

droplet interfacial area becomes older according to the 

unsteady state Higbie theory (70) and taking this into 

account for the area variation with time represented 

by equation (3.48) resulted in a modified Sherwood number: 

2 
a“w 

v op (1+0.378e) (3.64) Sh il
o ' 

da 

This approach gave a fair prediction with the average 

absolute percentage deviation 32%. This method was 

originally developed by Licht and Conway (127) to predict 

mass transfer rate during droplet formation. 

3. Finally, they use Beek and Kramers (151) concept, 

which assumes that an expanding surface is not stretched 

at all, but an additional interface is formed in the 

course of time and is completely fresh and that there is 

no transfer of solute between surface element of
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different age. A contracting surface is the surface 

parts of which are disappearing in the course of time. 

Brunson et al (79) assumed furthermore that the first 

part of the time-variable surface to form would be the 

last to disappear. This required the flux to be 

averaged over the surface and also with respect to time. 

The above assumptions combined with Higbie expression 

(3.12) for instantaneous dispersed phase mass transfer 

coefficient gives the following: 

= 2, a0 (1+0.687¢) (3.65) = Tl 3D . € . 

The above relation gave the best prediction of mass 

transfer coefficient of all other relations proposed 

by Brunson and Wellek, with average absolute percentage 

deviation of 26%. Equations (3.64) and (3.65) are 

applicable only for an integral number of complete 

oscillations. However, when used for times greater 

than the time of three droplet oscillations, the effect 

of an oscillating period becomes negligible when 

calculating fraction extracted Ent 

3.4.3.6 EMPIRICAL CORRELATIONS 

Skelland et al (112) studied the resistance to 

mass transfer inside the droplets of four organic-water 

systems using the Colleurn and Welsh (27) technique. 

Their study was concentrated on mass transfer rates 

of circulating drops and they presented few results on
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oscillating drop mass transfer rates of two systems, 

even so they presented two empirical correlations for 

the dispersed phase Sherwood number. The correlations 

were: 

0.320 Dyes Re? 883 po-10 
Sh 3.66 ‘ (3.66) 

0.141 0 769 po 285 
and Sh 0.142 Th W u 63:67) 

where (P) is the physical property group used by Hu and 

Kintner (22) (equation 2.8) in correlating droplet-fall 

velocity. The data was used to correlate the above two 

correlations where the droplets of Reynold numbers 

ranged from 360-600. While Brunson et al (79) reported 

that equation (3.66) predicted the mass transfer coef- 

ficients better than other models for oscillating 

droplets; Nekovar and Vacek (119) reported that Skelland et al 

correlation predicts mass transfer coefficient with more 

than hundred percent deviation. 

Yamaguchi et al (113) presented a correlation for 

mass transfer rates for oscillating droplets using a 

modified Reynolds number which included the frequency 

of oscillation, as shown in equation (3.21). From their work, 

where iodine is used as a solute in low concentrations, 

to transfer from aqueous drop to organic continuous 

phase, and the resistance to mass transfer, assumed to 

be exclusively located in the aqueous phase. However, 

they further assumed that the experimental Sherwood 

number is proportional to 0.5 power of Schmidt number,
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then an equation is obtained by method of least squares, 

thus: 

-,0.56 
Sh, = 1.14(Re ) Se is ° (3.68) 0. 

d 

Finally it could be concluded that there is a need 

for a correlation which represents the physical phenomena 

of the oscillating droplet while mass transfer is taking 

place in or out of the droplet as well as a good 

prediction of the rates of mass transfer. 

3.5 INTERFACIAL TURBULENCE 

The various kinds of small flows generated at the 

interface and in the immediately adjacent layers are 

grouped together as interfacial turbulence. The 

importance of interfacial turbulence lies in the 

substantial increase it induces in the rates of mass 

transfer between two phases. Thus transfer rates may 

be much higher than predicted from a proper combination 

of single-phase rate coefficients on the assumption of 

a quiescent interface. 

The assumption in the correlations of the type 

expressed by equation (3.9) to estimate mass transfer 

coefficients between two phases, is that the hydrodynamic 

conditions close to the interface, are described by the 

Reynold number of the relevant bulk phase. In other 

words, the local value of the Reynold number at the 

interface is assumed to be represented by the bulk
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Reynolds number. Droplets Reynolds numbers are defined 

as, 

Re = G¥Pc (2.1) 
He 
  

to take into account the effect of the interface, and 

this is also used for the continuous phase side. 

The model expressed by equation (3.9) of transfer 

assumes that the interface does not interfere with the 

transport process or its affect is very small due to the 

presence of an interfacial resistance. Such a resistance 

is taken as constant in magnitude as it often happens 

when surfactantsare present. 

Interfacial phenomena can effect the rate of mass 

transfer in many ways: 

4. By changing the mass transfer coefficient; 

2. By changing the interfacial area; 

3. Retarding of internal circulation of the droplet. 

increases the drag. In some cases the interfacial phenomena 

is strong with mass transfer in one direction but 

completely absent when the solute diffuses in the 

opposite direction (160). Sherwood and Wei (152) showed 

that the most pronounced interfacial turbulence is 

observed when a chemical reaction is simultaneous with 

mass transfer, as in the extraction of acetic acid from 

benzene droplets by water containing ammonia. 

Measurements of amplitude of ripples on the surface 

of water as acetone was being absorbed from air, showed 

that the development of ripples was directly connected
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with the reduction in interfacial tension (153). 

Interfacial turbulence covers many aspects of 

interfacial films, e.g. interfacial gradient (Marangoni 

effect), or density gradient (Rayleigh effect) and 

cellular convection currents in the vicinity of the 

interface (154), but the influence of the interfacial 

tension gradient is studied most frequently. Thomson 

(155) was the first to observe the existence of spontaneous 

interfacial convection. Later Marangoni (156) observed 

that liquids of lower surface tension will spread on 

liquids of higher surface tension. This phenomenon was 

observed with miscible liquids as well as with 

immiscible and partially miscible liquid pairs and is 

referred to as the Marangoni effect. 

The early investigations which followed (137,152,172, 

164) were almost entirely qualitative. They were 

concerned with observations of the phenomena in mass 

transfer across flat interfaces and from pendant drops. 

Although they did not provide any direct information on 

the values of mass transfer coefficients, they categorised 

the phenomena and the conditions for their appearance. 

There are a great many cases where the effect of 

natural convection currents is in general greater than 

the Marangoni effect, in terms of the effect of 

interfacial turbulence on the mass transfer (157). How- 

ever, in the case of the Marangoni effect, the amount 

of solute transferred is proportional to square root 

of the contact time (158). Considerable research has 

been carried out on the theoretical aspects of interfacial
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turbulence (154,157,158,132), but until now there have 

been no studies done on the experimental aspects because 

of the difficulties of quantifying turbulence, the 

incomplete state of the data on interfacial tension 

in contrast to mass transfer rate data, and the dependence 

of interfacial turbulence on condition of flow within 

apparatus in the bulk phase. 

Sawistowski et al (132) reported from their work 

on drop formation, that in the turbulent regime the mass 

transfer coefficients increases almost linearly with the 

local decrease in the interfacial tension. This increase 

was claimed to be due to the surface being renewed at a 

faster rate than would be the case of drop formation 

alone, and they concluded that surface renewal due to 

interfacial turbulence may control the mass transfer rate 

in this regime. Furthermore, they reported that the 

mass transfer rate may be different in different parts 

of an extraction column depending on the position of 

a drop in the column and therefore, the prediction 

of extraction rates in extracting columns is difficult, 

because of the differences in the interfacial tension 

since the concentration in the solvent phase will change 

from one end of the column to the other. 

Theoretical studies of the Marangoni effect were 

presented by Pearson (159) and by Sternling and Scriven 

(160). Sternling et al (160) employed a simplified 

two-dimensional roll-cell model based on the following 

assumptions to develop a quantitative theory for the 

onset of instability:
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The two semi-infinite immiscible liquid phases in 

contact along a plan interface. The phases considered 

to be in thermal equilibrium; 

The concentration of solute was low enough for the 

fluid properties to be regarded as constant and the 

interfacial tension large enough so that the 

interface remains planer; 

The concentration gradients in the two phases 

are taken to be linear, thus implying a steady 

transfer of solute. 

The stability of a system with the above conditions 

was then examined by introducing a two dimensional 

infinitesimal disturbances. If the disturbances decay 

the system is said to be stable, if it grows the system 

is unstable. Sterling and Scriven's analysis suggests 

that interfacial turbulence is usually promoted by: 

i. 

Bs 

Solute transfer out of the phase of higher viscosity; 

Solute transfer out of the phase in which its 

diffusivity is lower; 

Large differences in kinematic viscosity and solute 

diffusivities between the two phases; 

Steep concentration gradients near the interfaces; 

Interfacial tension that is highly sensitive to 

solute concentration; 

Low viscosities and diffusivities in both phases; 

Absence of surface-active agents; 

Interfaces of large extent. 

Orell and Westwater (164) have confirmed some of 

these conditions, but there are many limitations to the
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work of Sternling and Scriven; mainly their analysis deals 

only with very small disturbances which is common to all 

linearized stability problems. Sawistowski (138), 

Davies (52,161,162) and Levich (163) presented an 

excellent review of the work done on interfacial phenomena. 

Marsh et al (165) presented a transient model which 

was very similar to that of sternling and Scriven (160) 

except that the equation of state, that is the con- 

centration profile was time dependent. In general, the 

transient model predicts a higher range of instabilities 

and larger values of the growth constant than the steady- 

state model but experimental evidence (138), shows that 

steady-state model predicts the occurrenceof instabilities 

better than the transient model. This might be due to 

some doubtful formulations in the latter. 

Bakker et al (154) classified the solutes 

quantitatively according to their ability to impede or 

promote movement of a free interface. Furthermore, they 

divided interfacial movement, induced by differences in 

interfacial tension into the categories of "macro" scale 

and "micro" scale. The occurrence of the first depended 

on the geometry of the interface and the flow conditions, 

the latter on the physical properties of the phases (160). 

Recently Brian, Smith and Ross (166,167,168) 

suggested that the Gibbs adsorption layer have a 

profound stabilizing influence on Marangoni convection. 

Their analysis incorporated the effect of the Gibbs 

adsorption hydrodynamic stability theory and are more in 

line with experimental observations (169), It is
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evident, however, that a great deal needs to be done 

before interfacial turbulence is well understood and 

the theory developed to the point where it is useful 

in engineering design (169). 

It was observed (170) that the presence of 

spontaneous interfacial convection in rising and falling 

drops will affect the drag coefficient in addition to 

the rate of mass transfer. Linde (170) investigated 

this problem by measuring drag coefficients for the 

systems benzaldehyde-acetic acid-water, water-acetic 

acid-benzene, and water-amylol-benzene. In figure 3.4, 

the variation of the drag coefficient with Reynolds numbers 

is shown for the benzaldehyde-water system under 

saturation conditions and with the transfer of acid in 

both directions. According to Sternling et al (160), 

the system shows stationary instability for the transfer 

from benzaldehyde into water. The drag coefficient is 

also highest in this direction of transfer; spontaneous 

interfacial convection reduces the extent of internal 

circulation in the drop and thus increases the form drag. 

If a pendant drop of water is formed in toluene - 

acetone solution, this drop will undergo violent, 

erratic pulsations or "kicks", each of which is rapidly 

damped out by viscous drag. The frequency of kicking of 

the drop diminishes with time, and ceases when all the 

acetone is distributed between toluene and water phases 

in accordance with the partition coefficient. 

Aluminium powder suspended in the liquids shows (171) 

that kicking of a drop is associated with greatly enhanced
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flowing of liquid near the interface, which in turn 

leads to mass transfer of the acetone or other third 

component at rates greater than expected. 

Haydon's (172) developed a theory implying that 

spontaneous interfacial turbulence should occur with 

transfer of solute in either direction. Maroudas and 

Sawistowski (173,174) found their experimental results 

agreed with Haydons theory. Also they concluded that 

Sternling and Scriven theory is too simple to give a 

reliable criterion of interfacial instability. This 

resulted from their finding that the intensity of inter- 

facial turbulence during the transfer of phenol and 

proponic acid between carbon tetrachloride and water 

was higher when the transfer was into the aqueous phase, 

in which the kinematic viscosity is higher and diffusivity 

is lower. 

Finally, Davies (52) reported an interesting 

quantitative result for the extraction of acetic acid 

from benzene drops rising through water, that the rate 

of mass transfer of acetic acid is faster by a factor 

of 5.9, if 5% butanol is initially present in the benzene, 

butanol causes spontaneous interfacial turbulence which 

accelerates the transer of acetic acid. With 10% of 

butanol in benzene, the acetic acid transfer is 8.8 

times faster than without the butanol (86).
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3.6 INTERFACIAL RESISTANCE DUE TO ADSORBED TRACE   

SUBSTANCE 

Trace amounts of surface-active substances, unknown 

in structure and concentration, are frequently present 

in commercial equipment. This leads to difficulties 

in interpreting the performanceof plant in terms of 

experimental and theoretical studies on drops. This 

surface-active materials can be surfactant, impurities, 

plasticizer from tubing used in the equipment, or 

metallic colloids from pipes and fittings. Even a 

monolayer of surface-active materials on the surface 

develops a structure which tends to immobilize the 

surface, reducing or eliminating fine-scale surface 

motion. The presence of a surface layer has important 

effects on the rate of mass transfer through the surface; 

it reduces and often eliminates the Marangoni effect 

while at the same time introducing a surface resistance 

to diffusion across the interface (the reduction in 

mass transfer rate can be large and this will introduce 

an additional resistance into the "resistance-additivity" 

equation). Thus the reduction in interfacial tension 

will become less dependent on solute concentration and 

the interface compressibility will also decrease, thus 

adversely affecting surface renewal (138). In addition 

surface viscosity will increase slowing down any movements 

in the interface. Berg and Acrivos (181) presented a 

theoretical analysis for the affect of the presence of 

surfactant by extending Pearson's (159) stability
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analysis of surface tension induced convection. 

Numerous theoretical and experimental work on the 

effects of surface-active agents on mass transfer between 

single drop and a continuous phase have been reported, 

but the formulation of a generalized expression to 

account for these effects is prevented by their specific 

dependence upon the structure and concentration of the 

surface active substances. Several forms have been 

suggested: 

an Retardation of internal circulation : The coefficient 

of mass transfer inside a droplet depends on the velocity 

of circulation of the liquid within. Frumkin and Levich 

(175) suggested that the adsorbed surface film reduces 

the internal circulation by being swept back towards the 

rear of the moving drop (called the cap), where it is 

concentrated until its spreading pressure forward just 

balances the hydrodynamic stress at the interface, 

Figure 3.5. This surface tension gradient opposes 

further flow in the plane of the surface, and the film- 

covered part of the surface is immobilized and there 

is no net stress so the drop circulation ceases in this 

region. Griffith (176) used a modification of Savic stream 

function (178) for predicting the mass transfer rate 

to or from drops contains surface-active substances, 

moving in creeping flow. He correlated the terminal 

velocity at low Reynolds number to the cap size and then 

to the type (52) and amount of surfactant. Also the cap 

size increases with increasing initial concentration of 

surface active agent in the continuous phase.



pe 

  
FIG. 3.5 : Influence of Surface Active Agents on the 

Internal Circulation within a Rising Droplet (52)
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The terminal velocities of the drops depend largely 

on the properties of the rear portion of the drop, while 

much of the mass transfer occurs into the newly formed 

interface at the front portion of the drop. Thus the 

terminal velocity would be expected to be reduced almost 

to (equation 2.6) when the cap size occupies all 
Ystokes 

the rear half of the drop. 

2. Surface rigidity : It has been demonstrated that 

surface active materials make droplet more rigid and 

cause the mass transfer rates to approach that of 

stagnant droplet (63,177,1,116,182,183). Thus, Garner 

and Hale (182) showed that the addition of small 

quantities of teepol (0.015% by volume) to water reduced 

the rate of extraction of diethylamine from toluene drops 

to 45% of its original value. An even greater reduction 

(68%) has been reported by Lindland and Terjesen (63) 

who worked on the effect of sodium olelyl-p-anisidine 

sulphonate on the extraction of iodine from an aqueous 

phase to a falling drop of carbon tetrachloride. It 

is interesting to mention that similar results (70%) 

have been reported by Holm and Terjesen (183) using a 

stirred liquid-liquid extractor. Huang and Kintner (177), 

in their study of mass transfer characteristics, showed 

that the surface film reduces both the extent of internal 

circulation and also the area of the interface being 

renewed, and confirmed that, in the limit of all the 

surface being immobilized by an adsorbed film, the 

rate of mass transfer approaches that for a stagnant 

drop. Recently Mekasut et al (116) carried out a
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study of the effect of different concentrations of 

teepol in continuous phase on the terminal velocity of 

drop and mass transfer rates for the transfer of 

iodine from aqueous continuous phase to falling carbon 

tetrachloride drops. They reported a decrease in the 

mass transfer coefficient of upto 58% due to the 

presence of teepol (0.5 em?/1), and this reduced, they 

claimed the frequency of oscillation upto 37%. 

on Blocking of the interface : It is known that certain 

materials e.g. cetyl alcohol, when spread as a mono- 

molecular film upon water, reduce the rate of evaporation. 

This has been attributed to a reduction of the area 

through which the water molecules must pass (107,169) 

i.e. a bartier effect, 

The first and second mechanisms suggested that 

surface-active agent influences the transfer of 

different solutes to the same degree. However, it has 

been reported that some solutes are more retarded in 

their transfer than others for a given surface active- 

agent (179). This has been proved experimentally by 

Hutchinson (180), who reported that the interaction in 

the film of the surface active-agent is responsible for 

the retardation of diffusion, related to the physico- 

chemical effects between the solute and the surface 

active agent. 

The effect of different surfactantson the mass 

transfer coefficients during drop formation (132), were 

studied by Sawistowski and James (133,134) for the 

transfer of acetic acid into water from 0.98M solution
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in benzene. The overall mass transfer coefficient is 

plotted against the concentration of surfactants, in 

Figure 3.6. In the case of teepol, lissapol, dodecylamine 

chloride and sodium lauryl sulphate, the addition of 

a small quantity of the surfactant reduced the mass 

transfer coefficient to a value equal to that obtained 

in the diffusional regime (i.e. stagnant drop) in the 

absence of surfactant (133,134,138). They showed that 

the action of these surfactant was entirely hydrodynamic 

in nature; that is they supressed interfacial convection. 

In the case of manoxol (sodium dioctyl sulphosuccinate) , 

there was also some evidence for the presence of a 

barrier effect. This barrier effect has been confirmed 

by Kishivenskii and Kornienko (184) for the transfer 

of benzoic acid from water to non-polar solvents. At 

low velocity, an adsorbed layer of benzoic acid was 

formed at the interface which acted as a barrier. At 

high Reynold numbers, the barrier was destroyed. 

Polar oils are known to be much less susceptible 

than are non-polar oils to the effect of small amounts 

of surface-active materials. The average of adsorption 

to the interface of any surface active materials is 

less if the oil is polar and desorption from the rear of 

the drop is faster. The more polar oils are thus more 

desirable in extraction equipment because of the 

maintenance of drop circulation, the mass transfer 

rates are always high (52,86). Thus it may be better 

to select in liquid extraction a dispersedphase as that 

offers the least resistance to transfer rather than that
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which is normally selected for having the larger volume, 

so the reduction of circulation within the drop by the 

presence of surface-active contaminants may then be less 

effective in terms of the overall resistance to mass 

transfer. 

Surface-active substances have a relatively slight 

effect on the position of the maximum in Figure 2.1. 

The drop size at which deformation and oscillation 

occurs is a little higher if the surface is contaminated 

(52,1) and the actual velocity of rise or fall of the 

oscillating droplet may be considerably affected. How- 

ever, Kintner (1) reported a fall of about 20% in the 

terminal velocity of oscillating drops of chlorobenzene 

falling through water when surface active materials were 

added, and Thorsen et al (33) reported a figure of only 

12%. The mass transfer rate to or from oscillating drops 

is also affected by traces of surface-active materials. 

This may be due to surface tension gradients and the 

rigidity of the surface inhibiting the surface movement 

of the drop as it oscillates (1,52). Unfortunately, 

there is not enough experimental work to predict the 

values of how much the surface agents affect the rate 

of mass transfer rate for oscillating droplets.
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CHAPTER FOUR 

EXPERIMENTAL INVESTIGATION 

The objectives of the experimental investigation 

were to evaluate the mass transfer rates from oscillating 

droplets for solutes concentration of up to 3.75 gmole/1l. 

The apparatus was designed to disperse a uniform stream 

of drops in a continuous liquid phase and to measure 

the change in concentration of solute in the drops as 

they traversed their path of motion. The apparatus 

should be simple to construct and operate and be suitable 

for the processing of corrosive liquids. In addition 

the temperature must be precisely controlled. 

The essential operating requirements were: 

(1) That the apparatus should be simply and thoroughly 

cleaned. 

(2) That a wide range of operating parameters; vis 

flow rates and temperature, could be studied. 

(3) The drop characteristics be followed by photographic 

methods. 

4.1 EQUIPMENT DESIGN AND CONSTRUCTION 
  

4.1.1 GENERAL ARRANGEMENT 

The equipment and experiments were designed for 

counter-current contact of the two phases in a column 

of 5.0 cm diameter and 100 cm long.
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A flow diagram of the experimental equipment is 

shown in figure (4.1) and a general arrangement of the 

apparatus in figure (4.2). It consisted of a Stuart- 

Turner stainless steel centrifugal pump, type No.12 

which was used to transfer the continuous phase from 

the reservoir (A) to the top vessel (B). The pump 

contained graphite and Viton HV170 seals, and was also 

used to saturate the continuous phase with the solvent 

by circulation of the liquid. 

The apparatus was constructed from glass, stainless 

steel, Viton and p.t.f.e. The continuous phase reservoir 

consisted of two vessels of 60 l. capacity and an 

intermediate vessel of 10 1. volume which was before 

the test section. A glass wool filter was placed before 

the test section in the continuous phase line to 

coalesce any micro size droplets that might be present. 

Dispersed phase was supplied from either a 5.i.or 

2.1. vessel to the test section. All the continuous phase 

vessels were connected together with an overflow system 

to ensure no overflow of liquid. 

4.1.2 CONTROLS” 

The flow rates of continuous and dispersed phases 

were controlled by p.t.f.e. control valves. Low 

dispersed phase flow rate was required to produce a 

single droplet. This was obtained by using a Mariotte 

bottle to supply the dispersed phase through a Rotoflow 

p.t.f.e. valve. The flow rate was measured by recording
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the volume of dispersed phase displaced during at least 

20 minutes flow. 

Continuous phase flow rates were controlled by a 

constant head vessel and a p.t.f.e. valve (1.75cm, QVF) 

was introduced. The flow rate could be observed by 

means of a small rotameter and was kept constant during 

the course of a run by adjusting this valve. The flow 

rate was measured by collecting the continuous phase 

over one minute. Great care was taken in the construction 

to maintain constant flow rates of both phases during 

each experiment. 

In order to maintain constant temperature for both 

phases, heating liquid was circulated via an external 

electric heater. The heating liquid reservoir was a 

20 1. vessel made from 300mm QVF pipe with stainless 

steel backed flanges. 

A Churchill chiller thermocirculator "05CTC/V", 

of the following operating parameters was chosen to 

control the temperature; working temperature range 

-15°C to 60°C; pump circulating rate 680 l/hr with 

zero head; maximum pump head for no restriction 4.75m; 

heating rate upto 1.5kW; nominal H.P. of refrigeration 

0.5. The heater was fitted with an overall temperature 

safety cutout device. 

The thermocirculator was chosen for its fine control 

(a control of +0.05°C could be achieved), simplicity 

of operation and safety. The control was achieved by 

setting the required temperature on the controller 

dial. The precise temperature was maintained by combining
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electronic and mechanical control techniques, which 

together produced a flexible system. 

Chilling was necessary since the lighting required 

to photograph the droplets heated the liquids. Stainless 

steel coils maintained the temperature in the continuous 

phase vessels as shown in figures (4.1 and 4.2), while 

a shell and tube glass heat exchanger was fitted for 

the dispersed phase before the test section. 

Comark's general purpose exposed junction's thermo- 

couples (K76p) were used to measure the temperature at 

different points (especially near the input, and output 

of the two phases and in such position that would not 

disturb the flow). Also, three thermocouples were 

positioned in the test section to measure the temperature 

at any time. The temperature was read from Comark 

electronic thermometers (type 1601), incorporated with 

a Comark thermocouple selector unit (type 1694F). 

The test section temperature was controlled by 

passing the heating liquid (distilled water) through the 

jacket. The temperature for all the experiments was 

set at 22°C. This was just above the highest temperature 

reached in the room. Also the equipment was enclosed 

in hard board and perspex cabinet and a flame and dust 

proof electric heater was fitted inside (air convector, 

of 1Kw capacity) to control its atmosphere. 

4.1.3 DESIGN OF TEST SECTION 

The test section consists of a 5,0 cmdiameter
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QVF column and 100.0 cm long as shown in figure (4.3). 

It was enclosed in a square jacket with two opposite 

sides made of 6 mm thick glass sheet, and the other two 

sides of polypropylene 6 mm thick backed by mild steel 

sheets 9 mm thick. This arrangement allowed droplets 

to be photographed without any appreciable distortion; 

when the square section was filled with the continuous 

phase. 

Nine sampling points were installed on the left 

side using a stainless steel compression fitting with 

a Viton gasket and p.t.f.e. cap, 6 mm in diameter. 

Sampling points were also constructed through the jacket 

by inserting stainless steel compression fittings and a 

Viton gasket. A hypodermic needle (17 gage) was used 

for sampling through the Viton gasket, and at the other 

end a three way polypropylene stopcock (type K-75a) 

containing a Luer fitting enabled a glass syringe to 

be used to withdraw the continuous phase sample. 

Additional sampling points were provided at the respective 

phasesinlets and outlets. 

The top and bottom of the jacket were constructed 

of polypropylene (6 mm thick) supported by stainless 

steel sheet of 6 mm thick. The seal of the four walls 

of the jacket was attained by securing them to the base 

and bottom, and with steel straps as shown in figure (4.2). 

Thus the glass sheets were placed in groves of the 

polypropylene, and p.t.f.e. sealant was inserted inside 

the groves. In addition Dow Corning Silastic (733RTV) 

was used as a seal on the outside of the column and
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inside the jacket, while Silastic (733 RTV) and Silastic 

(732 RTV) were used on the outside of the jacket. 

The heavy phase (continuous phase) was introduced 

into the column via two outlet stainless steel dis- 

tributors and a similar distributor was used for removal 

of the continuous phase. The distributors were connected 

to the column by p.t.f.e. insert, p.t.f.e. paste (RAS, 

ROCOL, pipeseal paste) and Viton gasket. 

Mirrors were installed in the jacket and were 

“ supported on a stainless steel shaft on the right side 

of the column as shown in figure (4.3). The mirrors 

were secured in a vertical plane by a shaft that could 

be rotated. Mirrors were adjusted so that they were 45° 

to the vertical plane passing through the longitudinal 

axis of the column. This position of the mirrors 

enabled the shape of the drop to be photographed from 

the side. The mirrors were silvered on both sides and 

were protected by a layer of quartz. 

4.1.4 NOZZLES 

The nozzles were constructed of either glass or 

p.t.f.e. This was necessary to accommodate the varying 

wetting phenomena associated with different solute 

concentrations in the dispersed phase. The dispersed 

phase wetted the inside glass walls by filling the 

dispersed phase line first. But with certain solute 

eoncentrations, depending on the nozzle size, the aqueous 

continuous phase crept down the inside wall of the nozzle.
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This prevented the production of equal size droplets 

and to avoid this p.t.f.e. nozzles were used in these 

situations. 

Glass nozzles of 0.6-7.6 mm internal diameters 

were used in the experimental work as shown in figure 

(4.4a). The minimum length of the outlet section of the 

nozzle was 7 cm to smooth the flow of dispersed phase 

prior to drop formation. The glass nozzles tips were 

ground so that the plane of the tip was at right angle 

to axis of the nozzle so that undesirable wetting of the 

outside of the nozzle by the dispersed phase could be 

easily detected. 

The p.t.f.e. nozzles varied in internal diameters 

between 4.0-12.0 mm. The dispersed phase wetted the 

tip of p.t.f.e. nozzles, and therefore the tip was 

tappered as shown in figure (4.4b). These nozzles were 

used when glass nozzles could not be used because of 

the creeping of the aqueous film as described above. 

Also, with p.t.f.e. nozzles there was a certain upper 

diameter limit and concentration of solute after which 

equal sized droplets could not be produced but this was 

greater than that for glass nozzles. 

4.2 SELECTION OF THE SYSTEMS 

A review of the factors necessary for the study 

of the extraction of solute from the organic phase 

revealed that density, viscosity and surface tension 

of the dispersed phase influenced the behaviour of the
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G2G3 G4 G5 G6 G7 G8 G9 GlO GU Gl2 Gl 

Inside Diameter (cm) 

= 0.057 G6 = 0.204 Gll = 0.511 

= 0.063 G7 = 0.247 G12 = 0.571 

= 0.067 G8 = 0.295 G13 = 0.700 

= 0.097 G9 = 0.348 Gl4 = 0.762 

= 0.163 Gid= 0.411 

a - Glass Nozzles 
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PT1 = 0.518 PT4 = 0.781 PT7 = 1.094 

PT2 = 0.625 PTS = 0.899 

PT3 = 0.703 PT6 = 0.977 

b - ptfe Nozzles 

FIG. 4.4 Nozzles Used



-109- 

drops. Though various dispersed phases were investigated, 

the organic liquids chosen were essentially insoluble 

in the continuous phase. Thereafter, the components 

should be available in a pure form and be relatively 

inexpensive, non-toxic and free of other hazards (185, 

186, 187). The continuous phase was water in all 

experiments. 

The systems toluene-acetone-distilled water and 

n-heptane~-acetone-distilled water were chosen for the 

investigation because of the following advantages: 

(a) The solubility data was available (187,188,189) for 

the systems, as shown in figures (A.1) and (A.2), 

Appendix A. 

(b) The interfacial tension of the systems is affected 

by the concentration of solute (acetone) in the 

dispersed phase, and a large range could be studied. 

However, interfacial tension increases as acetone 

is transferred from the dispersed phase, which meant 

a high coalescence rate. 

(c) The systems were selected in order that a com- 

parison might be made with previous work. 

(d) The solvent could be easily recovered and purified. 

(e) The acetone solution would reach equilibrium 

everywhere along the interface very rapidly (154). 

High concentrations of the solute have not been 

previously investigated. These reduce the tendency of 

any surface active agent present to make the interface 

rigid. This tendency disappears completely at very 

high concentrations (190).
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4.2.1 MATERIALS USED 

Materials of the highest grade available were used 

and no further purification was made. The following 

materials and grades were used, while the detailed 

specifications are listed in Appendix A : toluene, 

Analar grade; n-heptane, conforming to IP specifications 

for "Normal Heptane", and acetone Analar grade. 

Toluene and n-heptane solutions used in the 

extraction process were treated with excess of sodium 

thiosulphate to titrate the iodine (used as a dye), then 

washed thoroughly with distilled water. The washing 

was done by mixing distilled water with the solution 

by a Gallenkamp handilab stirrer (SS425); and this was 

repeated many times. Toluene or n-heptane was distilled 

by producing an azeotrope with water at 85.0 and 79.2°C 

respectively. Surface tension and interfacial tension 

were checked periodically by measuring, then mixing the 

solution with charcoal powder and shaking thoroughly. 

Following this the charcoal was filtered off and the 

surface and interfacial tensions were remeasured and 

if there were any discrepancies, the liquid was discarded. 

4,3 PHYSICAL PROPERTIES 

The physical properties were measured by preparing 

solutions of toluene and n-heptane with different con- 

centration of acetone and then saturated with water. 

Several determinations were made and the mean values
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have been reported. 

4.3.1 DENSITIES 

Water density at 20.5°C was quoted from "The 

Handbook of Chemistry and Physics" (187). The densities 

of solutions were measured using a specific gravity 

bottle at 20.5 + 0.1°C. These were corrected to the 

density of water quoted relative to that of distilled 

water used. The results are shown in figure (A.3), 

Appendix A. 

4.3.2 VISCOSITIES 

The viscosities were determined by timing the 

passage of the fluid through a capillary immersed in a 

constant temperature bath (22 + 0. 1°C) i.e. by Cannon 

Fenske Viscometer (type BS/IP/CF). The measurements 

were corrected to that of water at 22°C (187). The 

results are shown in figure (A.4), Appendix A. 

4.3,3 INTERFACIAL AND SURFACE TENSIONS 

Interfacial and surface tensions were measured 

with ring tensionmeter (torsion balance) at 20.5 2a 0.4°e. 

The measurement of the interfacial tension was done 

with water saturated with the solvent, and the recorded 

measurement was that taken within 60 seconds of the 

contact of the two phases. The results are shown in
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figure (A.5), Appendix A. 

4.3.4 DIFFUSIVITIES 

The diffusivities were estimated using Wilke-Chang 

(191) correlation for acetone diffusion in both phases 

at 22..0°C. 

The properties of the systems studied are summarized 

in Table (4.1) and (4.2). Also figure (A.6), Appendix A, 

shows the gas liquid chromatography test for the materials 

supplied after having been used and redistilled. It 

indicates excellent purity. 

4.4 CLEANING PROCEDURE 

Great care was taken to ensure that the equipment 

was always free of any adventitious contamination. 

Cleaning was initiated with a solution of Decon-90 

which is a phosphate free surface active agent of high 

pH value (54). However, it is widely accepted that 

surface active agents affect the mass transfer rates 

(52,107,175-177,182,183) as explained earlier, and 

therefore extra care was taken to make sure all the 

surface active agent was rinsed out of the equipment. 

The procedure was as follows: 

The whole system was filled with 2% solution of 

Decon-90 and this was then circulated throughout the 

system with the pump for about an hour, with the heater 

on bringing the temperature of the liquid up to 40°C.
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The system was left for at least 24 hours to soak, after 

which the Decon solution was circulated again and it was 

then drained. Following this the equipment was con- 

tinuously fed with hot filtered water for half an hour 

which circulated and drained through different drainage 

points in the systems (See Figure 4.2). Then, the 

equipment was filled with filtered water, which was 

eirculated by the pump and afterwards the contents were 

drained. This was repeated until the system was shown 

to be free of the surface active agent, by checking the 

surface tension. Then the equipment was filled with 

distilled water which was heated to 60°C and kept at 

about this temperature while circulating for an hour. 

The contents were then drained. Finally, the apparatus 

was rinsed with distilled water, and it was ensured 

that all sampling and draining points were well flushed. 

This cleaning was done before any experiments 

were performed, and repeated whenever it was thought 

necessary, especially when a different system was to 

be used. Between the tests the continuous phase side 

of the equipment was rinsed with distilled water, while 

the dispersed side was rinsed with pure solvent. Surface 

and interfacial tensions were checked regularly. 

Special care was taken in cleaning the nozzles. 

Glass nozzles were cleaned with chromic acid and then 

rinsed thoroughly with distilled water to ensure there 

was no trace of any chromic acid remaining (54). The 

p.t.f.e. nozzles were soaked for 48 hours in high con- 

centration of acetone solution to extract any plasticiser
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or additives soluble in the dispersed phase and then 

washed with Decon-90 solution and afterwards rinsed 

many times with distilled water. 
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CRAPPER FLVE 

MEASUREMENT TECHNIQUES AND EXPERIMENTAL PROCEDURES 

5,1 MEASUREMENT TECHNIQUES 

A review of the factors involved in mass transfer 

from oscillating droplets showed two important variables. 

First , the determinations of the concentrations of 

the solute in the two phases to evaluate the mass 

transfer rate and second , the frequency of change of 

the interfacial area of droplet which could only be 

studied photographically. 

5.1.1 CONCENTRATION DETERMINATION 

There are a number of methods available to determine 

the concentration of acetone in the dispersed and 

continuous phase. The most suitable method was chosen 

depending on the accuracy and practicality. Comparison 

of the different methods was done by testing known 

solutions of acetone, and the following methods were 

examined, 

5.1.1.1 GAS-LIQUID CHROMATOGRAPHY 

The Flame Ionization Detector was used with two 

columns (PYE 104, PEG 400) wee selected at a temperature
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of 90°C for the determination of acetone in organic 

and aqueous phases. The carrier gas was nitrogen and 

its flow rate was 45 ml/min. Several determinations 

were done for each sample, and the resulting areas were 

read from integrator. This method did not give 

reproducible results. 

5.1.1.2 INTERFACIAL TENSION AND VISCOSITY 

The measurements of interfacial tension shows a 

good fit to the curve shown in figure (A.5), Appendix A. 

However, the sensivity of the interfacial tension was 

not good enough to show small changes in the acetone 

concentration, 

The viscosity change or the time for the passage 

of constant volume of sample through a capillary with 

the change of acetone concentration were noticeable as 

shown in figures (A.4 and A.8), Appendix A, but because 

of different effects on the viscosity other than 

concentration of acetone, i.e. a small change in 

temperature gave a change in time required for the 

passage of the sample and hence viscosity, thus this 

technique was disregarded. 

5.1.1.3 REFRACTIVE INDICES 

The measurement of refractive indices did not give 

reproducible results and it was observed that the same 

sample gave a large difference in refractive index as
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shown in figure (A.7). However, it was difficult to 

make an accurate calibration curve for a three component 

system as any of the two components other than the 

solute can effect the refractive index. This was also 

reported in an earlier work (54). 

5.1.1.4 THE SP1800 SPECTROPHOTOMETER 

The SP1800 is an instrument capable of measuring 

the adsorption of light in solution, and may be used 

quantitively or qualitatively. The reading could be 

obtained from linear absorbance scale or from recorder. 

The wavelength at which maximum adsorption of 

acetone was neesuredi was set as the scale and the 

readout range adjusted to obtain the most sensitive 

reading. Following that standard samples were measured 

by filling one of the matched pair of glass cells with 

the standard and the other with water saturated with 

the solvent as reference. However, since the samples 

could not be measured during the experiment and it 

would give different readings if testing was done at 

a later time, this method could not be adopted. 

5.1.1.5 MESSINGER IODOFORM METHOD (193) 
  

This method gave very good accuracy for determining 

acetone concentration and was well within experimental 

accuracy. The Messinger method of determining acetone 

in solution depends upon the reaction of an alkaline
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solution of acetone with an excess of iodine to form 

iodoform, according to the equation: 

+ 4Na0H = CHst + 3Nal + CH,COONa + 3H,0 CH, COCH . + 3Iy 

PGE Bey | ull Fay oe dpaialellal (5.1) 

At the completion of the reaction, the unreacted 

iodine excess is liberated from the alkaline solution 

with acid and estimated with sodium thiosulphate. The 

procedure was as follows: 

The sample bottle was filled with 50 ml of distilled 

water and excess of 5N sodium hydroxide solution which 

was then weighed; 1 ml of solution was then added and 

the bottle was reweighed to obtain the weight of the 

sample. Excess of 0.2N iodine solution was added, and 

the bottle was thoroughly shaken and allowed to stand 

for at least one hour in a "black bag" and in ice 

water bath. A blank sample was prepared in the same 

way without the solution and was given the same treatment. 

After completion of the reaction an equivalent amount 

of 5N sulphuric acid to that of sodium hydroxide, 

was added with an excess Of 0.25m1, and then the bottle was 

vigorously shaken to liberate all the excess iodine. Then 

ae was titrated with 0.1N sodium thiosulphate, using 

starch as indicator. Finally the acetone was determined 

using equation (5.1).
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5.1.2 PHOTOGRAPHIC TECHNIQUES 

A significant part of this research programme was 

the development of the photographic techniques to follow 

the drop duringits travel in the test section. The 

data required from the film included: 

1. Sizes and velocities of rising droplet; 

2. Droplet interfacial area and volume changes; 

3. Droplet residence time. 

Liquid drops moving in a liquid medium are difficult 

to photograph due to the small differences in densities 

and refractive indices (11,17,21,24,54,59,93-97,111,146, 

192). 

The lighting presented a problem. The rising drop 

could not be photographed by motion pictures with good 

contrast unless a dye was used to improve the contrast, 

especially with high speed photography. Unfortunately, 

most of the dyes mentioned in the literature, when 

examined, were found to affect the interfacial tension. 

Thus, a dye was required which does not affect the 

interfacial tension, is not soluble in continuous phase 

and does not effect the other properties of the system 

under study. By an investigation of different dyes it 

was found that iodine is the most suitable; it has no 

effect on the interfacial and surface tensions and other 

physical properties in the range of concentrations 

required (20-30 ppm). However, acetone affects the 

iodine only by changing the colour from violet-brown 

to brown, and then to yellow, depending on the
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concentration. The fresh solution changed colour after 

two hours; therefore the iodine was added prior to the 

start of an experiment, In addition, the colour of 

the drop changes from light violet-brown to light violet 

as the acetone concentration decreases in the droplet 

during its rise. 

The position of the mirrors resulted in a greater 

light reading from the column than that from the mirrors. 

Accordingly, different lighting systems (11,146,191) and 
various colour glass filters, were placed in front of 

the lens but this did not solve the problem. This required 

the use of different coloured transparent plastic sheets. 
These were positioned on the side of the column with 

high light reading to bring it down to that of the mirror 

and the side of the column in front of the mirror. 
The most suitable colour was found to be dark 

violet. 

Two cine cameras were used to photograph the droplet, 
A Beaulien R16, which was used mostly and the other 

one was. Milliken DBM45. Both cameras were used with a 

special long focal length lens (360 mm), £5.5 and the 

cumera was mounted on a tripod at a distance of 15 ft 

from the front glass face of the column. The lens from 

that distance had a view of (8 x 10) om*, A Plus-Xneg 

7231, ASA 64 black and white, 16mm film was used, The 

camera was operated at 50 frames a second, with lens 

Opening of £8. The lighting was provided by four hundred 

watt photoflood bulbs at the back of the column and 

four 120V Jupiter lights of 650 watt and were arranged
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as shown in figure (5,1). The diffuser was 1.56 mm 

thick polypropylene sheet. 

Four transparent plastic scales were placed at the 

back of the square jacket at its full length, at different 

positions and also another two on the front of the jacket, 

one at each side. Three individual drops for each run 

were followed from drop formation at the nozzle tip to 

the top of the column by panning the motion picture 

camera on the tripod as the droplet ascended. In this 

way the complete droplet behaviour, during its entire 

ascent was recorded on film. Projection of the movie 

film onto a screen enabled the data to be read. 

The drop velocity was calculated using the vertical 

distance travelled in the measured time increment. The 

area and volume of drop while rising was calculated on 

the basis that the 'X' and 'Y' axes were the horizontal 

and vertical axes of the droplet in column and 'Z' the 

horizontal axis read from the reflection in mirror as 

shown in figure (5.2). 

The two dimensional photographs (X and Y) of the 

drops were filmed at 200 frames per second using 

Milliken DBM45. This frame rate was used to examine 

any oscillation phenomena which might not be detected 

by 50 frame/second rate. As viewing the object is not 

possible whilst filming, a tracking device, namely a 

strong beam of light, was positioned on the camera and 

aimed at the area adjacent to the column. The camera 

was mounted on a purpose built stand in order to film 

the rising drop from the same plane, i.e. by arranging
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the camera and the drop at the same horizontal line. 

5.2 PREPARATION OF PHASES 

Prior to an experiment the two phases were prepared 

20 hours before. The dispersed phase was prepared in 

a 101. QVF aspirator, which was sufficient for four 

experiments. The volume of solute was calculated to 

make 101.of the required dispersed phase according to 

data reported by Seidell (188), and then water was added 

until its quantity was just over that required for 

saturation. The solution was mixed with a Gallenkamp 

stirrer ($8530) and was then left overnight. The exact 

concentration was determined by titration. 

The continuous phase was mixed with an excess 

amount of toluene or n-heptane by circulation of liquids 

by a Stuart pump. The liquids were circulated for an 

hour to ensure complete saturation. 

5.3 OPERATING PROCEDURES 

5.3.1 MASS TRANSFER 

The cabine heater was turned on an hour before 

the start of an experiment. The valves on the heating 

liquid circulation line were opened and the Churchill 

heater turned on with asetting of 20°C. Following this 

the required volume of the dispersed phase was trans- 

ferred to the reservoir and mixed with iodine. Then 

the dispersed phase input line to the test section was
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filled to the tip of the nozzle to avoid any continuous 

phase creeping in the line. 

The test section was filled with continuous phase, 

and a flow rate was set by constant head and control 

valve, so that there was a constant level at the top 

of the column which was at the same level as the output 

of the raffinate phase. Thus, when the droplet reaches 

the top of the column, it will flow side way and be 

separated from the continuous phase, as shown in 

figure (5.3). However, an extra precaution was taken 

to avoid the effect of coalescence by introducing the 

continuous phase 15 cm lower than the coalescence phase. 

At this stage, the flow of dispersed phase was 

turned on and set by adjusting the needle valve, and 

this was considered the beginning of the experiment. 

The flow rate of the dispersed phase was adjusted 

regularly by measuring the time required for 20 drops 

leaving the nozzle. This was done by using a stop watch 

with a + 0.2 second accuracy. The flow rate could be 

adjusted to within + 1 second of the required value. 

The continuous phase flow rate was measured by collecting 

the output flowing to drain into a measuring cylinder 

for one minute with an accuracy of + 2ml per minute. 

Steady state conditions were assumed when the 

volume of the continuous phase which had flowed was 

three times the volume of the test section. After this 

sampling was started. The volume of dispersed phase 

fed was measured for a period of about 20 minutes. 

A minimum of seven samples of extract and raffinate
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phases were collected for periods of 4-5 minutes. The 

raffinate sample was treated with excess iodine and 

allowed to stand in a "black bag" and an ice batch, 

while the extract phase samples were kept in sample 

bottles. The titration of the excess iodine in the 

raffinate phase sample and determination of extract 

phase concentration of solute were carried out after 

the end of the experiment. 

After taking samples the filming of three individual 

droplets was performed, and the rate at which 20 drops 

left the nozzle were recorded. While the experiment was 

in progress the flow rates of dispersed and continuous 

phases, and the temperature of liquids at different 

points, were checked regularly. Also the level of 

continuous phase in the top vessel was checked and the 

continuous phase from reservoir was pumped, if required. 

At the end of the experiment the liquid flow and 

the heaters were turned off. The unused dispersed 

phase and the raffinate were collected together to be 

treated for reuse. 

Preliminary experiments were carried out in the 

same procedure as described above and in addition, 

samples were withdrawn from the continuous phase along 

the column at distances of 0.0, 5.0, 10.0, 15.0, 22.5, 

32.5,42.5,55.0,70.0 cm from the nozzle at intervals 

of 4-5 minutes. However, this method did not produce 

reproducible results due to the laminar flow of the 

continuous phase. 

Mass transfer evaluations, during drop formation,
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were determined by withdrawing droplets immediately after 

formation in the test section. 

5.3.2 HYDRODYNAMICS 

Experiments were carried out for the same systems, 

without any mass transfer taking place, for comparison 

of the effect of solute mass transfer on droplet 

oscillation. The procedure was the same as detailed 

in Section (5.3.1) above. The volume of droplet was 

checked by collecting the raffinate flowing for a 

certain period of time. This compared very well with 

the volume of drop calculated from the volume displaced 

in: the dispersed phase vessel.
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CHA PT ER 8 1% 

TREATMENT OF RESULTS 

The examination of different theoretical models 

(111,80) and empirical correlations (59,79,110,113) for 

prediction of oscillation frequency. amplitude and mass 

transfer rate are presented in this Chapter. Thus 

there are many different models that have been 

reported in the literature and these have already been 

discussed. The methods developed for oscillating 

droplets have been tested, and the assumptions examined 

according to the oscillation characteristic observed. 

6.1 DATA COLLECTION 

The cine films which are a permanent record of 

the droplet oscillation frequency and velocities found 

experimentally have been deposited in the Chemical 

Engineering Department and the data abstracted from 

the cine films are presented in Appendix B. 

Measurement of the three axes of the droplet and 

their change with frame number was obtained from the 

projection of the cine film. This gives the time 

and vertical distance which the droplet ascends and 

it enables the velocity and oscillation frequency to 

be calculated. The mass transfer data is presented 

in Table 6.1 and figure 6.1 illustrates some of the 

profiles of drops observed.
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6.2 TREATMENT OF DATA 

A number of computer programmes were written in 

Fortran ICL 1904, HP Basic and Basic 16 Languages 

using Aston University subroutines to evaluate the 

results. The main programmes and a sample calculation 

are presented in Appendix-C and Appendix-E 

respectively. 

6.2.1 DROPLET FREQUENCY OF OSCILLATION 

There are many different methods available to 

determine the frequency of drop oscillation. All 

of these necessitate estimating the variation of the 

different parameters with time. The parameters are: 

(1) The eccentricity 

5 = Sh (2.18) 

(2) The ratio of the area of an ellipsoid to that 

of a sphere of equal volume. This utilizes the 

equation proposed by Angelo et al (80): 

2 
A= A, +6 Sin” w't) (3.48) 

(3) The length "D3", that is the length obtained 

from the total surface area of the droplet 

divided by the perimeter of the maximum area 

perpendicular to the flow (104). 

(4) Deformation ratio, the ratio ((x-y)/(xty)) 

(197,195).
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However, in contrast to previous studies the 

change in the shape of the drop is more realistically 

assessed by examination of all three dimensions 

simultaneously as illustrated in figures 5.2 and 6.1. 

This enables an accurate prediction of the change in 

surface area to be made. Thus, the lateral area of 

an ellipsoid with semi-axes x, y and z (194) is: 

2 ail 2. 2 2 
A = Qi af {z°FI(1,®) + - EI(I,®)} 2° + yo hy (2°FI(1,%) + (x7-27) BI(T, 6) 

(661) 

where 

ie Agee ® = arc cos 2 C62) 
oa ete * x . 

and FI(I,®) and EI(1,%) are elliptic integrals of 

the first and second kinds (194) for O0<I<1.0. Using 

the area-velocity program presented in Appendix-C.1, 

the change in the lateral area of the droplet was 

evaluated with respect to time in addition to the 

length (D3), the volumne and the velocity. Further- 

more, the following parameters were also estimated, 

E from equation (2.18), XZ/Y , (y/x), (y/z), 

(x-y)/(x+ty) and the ratioof the area of droplet to 

the area of a sphere of equal volume. 

The statistical characteristic, i.e. the mean and 

variance of the above parameters were also evaluated 

and a straight line fit was obtained to show the 

general trend of these parameters with time. The 

results have been presented graphically and a typical 

output listing of area-velocity program is given in 

Appendix-D.1 and detailed listing in Appendix-I. 

Typical figures are shown in figures 6-2 to 11,
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and detailed in Appendix G and Appendix-H. 

The method developed by Rose and Kintner (111) 

for determining the frequency of oscillation was 

applied and it is presented in Appendix-C.2. It was 

based on measuring the major axis (x) followed by 

the calculation of the minor axis (y) from the droplet 

volume displaced assuming a symmetrical spheriod; 

thus 

pe (3.40) 

In addition, the parameters determined in the area- 

velocity program were also calculated in the symmetrical 

spheroid program, Appendix C.2 by assuming that the 

droplet is a symmetrical spheroid. Typical listings and 

figures are presented in Appendix-D.2 and figures 6.12-17 

respectively and detailed listings and figures in Appendix-k 

and Appendices G and H. 

6.2.2 DROPLET AMPLITUDE 

The amplitude was measured from the Rose and 

Kintner (111) equation 

a mex 6.3 ay . Xo (6.3) 

This could be applied to the y and the z axes. Further, 

the amplitude can be measured accurately from the 

Angelo et al (80) equation 

e = Amax — 4 (2,43) 

and the observed € is presented in Table E.3.
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However, the amplitude can be assessed by different 

parameters in a similar manner to that above. For 

example the parameters Y/X, Y/Z, XZ/Y, length (D3), 

and deformation ratio, The programme Appendix-C.3 

arranged the above parameters according to their 

values and enabled the calculation of the amplitude. 

This could be related to time and the number of times 

each particular parameter was observed. Typical output 

of the programme Appendix-C.3 is given in Appendix-D.3 

and the full listings in Appendix-J. 

6.2.3 DROPLET VELOCITIES AND DRAG COEFFICIENT 

The instantaneous velocity was determined by 

dividing the vertical distance travelled by the drop in 

an increment of time. These values were plotted against 

the average period of time. The average period of time 

is the time interval from moment the drop was released 

from the nozzle plus half the incremental period for 

the increment of distance travelled; see the area- 

velocity programme. ° 

The terminal velocity was evaluated by estimating 

the time taken for the drop to travel 20 cm after the 

drop travelled a distance of 40 cm above the nozzle. 

The average value of three drops was estimated for 

experiment and the results are presented in Table 6.1. 

The drag coefficient was also calculated using the 

method presented in Appendix-E, The results are presented 

in Table E.3.
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6.3 MASS TRANSFER RATE CALCULATION 

The mass transfer rate and the overall experimental 

mass transfer coefficient during droplet ascent was 

estimated by substracting the solute transferred 

during drop formation. 

6.3.1 MASS TRANSFER DURING DROP FORMATION 

A sample calculation and the results of the experi- 

ment is presented in Appendix-E. The Michel and Pigford 

(196) equation for the continuous phase mass transfer 

coefficient was incorporated with Sawistowski and 

Goltz (132) equation for the dispersed phase mass 

transfer coefficient to calculate the overall dis- 

persed phase mass transfdr coefficient (Kg). 

The values obtained are for the low concentration 

diffusional region (132). The high dispersed phase 

concentration gave a much higher overall dispersed 

phase mass transfer coefficient. Thus, the experimental 

overall dispersed phase mass transfer coefficient used 

to calculate the mass transfer rate. 

6.3.2 MASS TRANSFER DURING DROPLET ASCENT 

6.3.2.1 EXPERIMENTAL 

The overall dispersed phase mass transfer 

coefficient for the droplet during its ascent Kpexp’ 

was evaluated from:
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ce * 
Ny = Xp exp SCCpp- Cp) (6.4) 

on the basis of the initial driving force and the 

average interfacial area A; where 

A Gata, (6.5) 

and results of mass transfer rate calculations are 

shown in Table 6.1 and 6.2. 

6.3.2.2. PREDICTED 

The overall dispersed phase mass transfer 

coefficients predicted are presented in Appendix-L 

and Appendix-M and a typical listing is shown in 

Appendix-D.4. In calculating the mass transfer 

coefficient two alternative oscillation frequencies 

were used: 

(1) That predicted by Schroeder and Kintner (59) modi- 

fication of Lamb (2), for this case the coefficients 

were calculated for three different modes of 

oscillation, i.e. when the index n=2,3 and 4 

(see equation 2.27); 

(2) Frequency of oscillation observed. 

The following methods were used to calculate the 

mass transfer coefficient: 

(1) Rose and Kintner method as discussed in (3.4.3.1). 

The extraction efficiency predicted by this 

method is presented in Table 6.3 and comparison 

between the observed extraction efficiency and
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Table 6.3a Extraction efficiency calculated using 
Rose and Kintner method (111), for toluene- 
acetone-water systems 
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that calculated is shown in Figure 6.18. 

(2) Modified Rose and Kintner method (79) that 

introduces the Garner and Tayehan equation (3.18) 

for the continuous phase mass transfer coefficient 

for oscillating drops. The extraction efficiency 

is presented in Table 6.3 and shown in Figure 6.18. 

(3) Second modified Rose and Kintner. This utilized 

the Angelo et al (80) equation (3.49) for the 

continuous phase mass transfer coefficient. The 

extraction efficiency is presented in Table 6.3 

and shown in Figure 6.18.. 

In Table 6.3 the extraction efficiency for mode 

of oscillation other than n=2 is presented 

for comparison. 

(4) Angelo et al method which was discussed in 

(3.4.352). 

(5) Brunson and Wellek techniques discussed in 

(3.4.3.5). 

(6) Yamaguchi et al (113 and 110) empirical correla- 

tions discussed above in (3.4.3.6). 

The above calculations were carried out using 

the computer programme in Appendix-C.4 and HP Basic 

programmes. 

6.4 EMPIRICAL CORRELATIONS 

Most of the dimensionless groups and other parameters 

which are thought to have an effect on droplet oscillation 

and mass transfer rate and proposed in the literature
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were calculated when estimating the mass transfer coef- 

ficients and the frequency of oscillation and these 

are shown in the outputs of the computer programmes 

which are presented in Appendix-I to M. 

6.4.1 CORRELATION OF THE AMPLITUDE 

The realistic measurement of amplitude is by 

measuring the change in area of droplet during its 

oscillation, since area is the direct factor affecting 

mass transfer rate. The change of the three axes of 

the drop alone does not give a complete knowledge of the 

oscillations as can be noticed from comparison of the 

measured axes presented in Appendix-B and the respective 

results in Appendix-I. 

The change in area of the droplet with time gives 

an indication of the mixing intensity as the drops change 

from near spheroid to other shapes as shown in figure 6.1. 

The factors which have a direct and noticeable affect 

on area change and maximum area obtained for each 

experiment were: 

(1) drop Weber number 

(2) Weber number of continuous phase 

(3) Reynold number of continuous phase 

(4) drop Reynold number 

(5) viscosity ratio of continuous phase to 

dispersed phase 

(6) concentration driving force which could be 

represented by interfacial tension
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(7) property group (equation 2.8) 

(8) Ohnesorge number and 

(9) Strouhal number. 

The second step was the representation of the change in 

the area and eccentricity "e"' was found to be most ‘ 

suitable as it can be related to volume of the droplet, 

but not the area, 

The previous parameters were processed using ICL 1900 

statistical analysis package XDS3 and a typical programme 

is presented in Appendix-F. The regression analysis 

emphasises the significance of the parameters and shows 

which have an important effect on estimation of the 

area change. Also the great affect of acetone on the 

properties of the systems studied gave a limitation of 

the factors to be included, i.e. 

(1) the density of dispersed phase was increased 

by increasing acetone concentration in case 

of n-heptane while it decreased for toluene 

(2) the concentration of 23% w/w of acetone 

decreased interfacial tension by 75% and 

59% for n-heptane and toluene respectively. 

Thus, after trying different formulations for the 

representation of "ce" it was found that the simplest 

and best estimation of "ec" obtained correlating Strouhal, 

Weber numbers and interfacial tension ratio to the powers 

as follows: 

0.46 ao 0.11 
e = 0.434 Sr ~* W oy (6.6)



-164- 

      
. ce Gate, erie ge 
FIG. 6,19 COMPARISON OF THE OBSERVED ECCENTRICITY 

WITH THOSE PREDICTED BY EQUATION 6.6
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The average absolute deviation was 13% as shown in 

figure 6.9 which gives a comparison of the calculated and 

the observed values of "ce". This could be improved by 

introducing more factors, but this would make the cor- 

relation unwieldly. However, another correlation was 

obtained with viscosity ratio instead of that of 

interfacial tension with similar accuracy (average 

absolute deviation of 14%): 

e = 0.477 Sr 
-0.48 weno uee eo (6.7) 

R 

The first correlation was preferred on the second because 

of the small power of UR which shows its importance, 

6.4,2 CORRELATION OF THE DISPERSED PHASE MASS TRANSFER 

COEFFICIENT 

The experimental dispersed phase mass transfer 

coefficient was calculated by assuming that the continuous 

phase mass transfer coefficient developed by Garner 

and Tayeban (44) is valid. The amplitude and frequency 

of oscillation, area of droplet and the diffusivity are 

the main factors affecting the mass transfer coefficient. 

These are the properties included in most of the models 

developed for evaluation of the dispersed phase mass 

transfer coefficient and have been discussed in earlier 

chapters. 

The penetration theory was found to be the basis 

for the common approach applied by previous investigators 

(111, 80, 79, 113) and all are embellishment of the 

equation;
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ky = CyDgo (6.8) 

where C is a constant or a function of one or more of 

the factors mentioned above. The experimental dispersed 

phase mass transfer coefficient estimated in this investi- 

gation was found higher than those predicted by 

different models and correlations as will be seen in 

Appendices L and M and Tables 6.1 to 3. This necessitated 

examining the requirements for evaluating the term ''C" 

in equation (6.8) assuming that the continuous phase 

mass transfer coefficient presented by Garner and 

Tayeban (44) represents the process of mass transfer in 

the continuous phase. The factors which have been 

considered to be important in the evaluation of "C" 

are: 

nhs Eccentricity calculated from equation (6.6). 

2. The drop Weber number (SewPea) 

dePev 
3. Continuous phase Reynolds number (—€-¢ P v Sa 

depgv 
4. Droplet Reynolds number ( a 3) 

dev2p, 
Se Modified Weber number = ee 

6. Surface tension group (Re /Weg) 

2 
vs Eotvos number (inte) 

8. Schmidt number (   
Ug ) 

PqPa 

The above groups were considered to be a function of 

"Cc" of the form: 

dee (6.9) 
er 

C= Kx e* We, Reg Re§ Wey sir Eo 

and a regression analysis was applied to determine the 

significance of these parameters. It was found that
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eccentricity and Eotvos number were the most significant 

and the following correlations for toluene-acetone-water 

and n-heptane -acetone-water systems respectively were 

found the most suitable: 
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CHAPTER SEVEN 

DISCUSSION OF RESULTS 

Most theories (2,57,58,55,56) for the prediction of 

the frequency or amplitude of oscillation of a fluid 

sphere at rest in a stagnant continuous fluid assumes 

that the drop oscillation has a small amplitude. They 

further assert that the addition of an empirical 

factor (59,60,115) to the above is all that is required 

to account for the drop behaviour when it undergoes 

translation movement and, at present, no models are 

available to account of the effects of mass transfer 

of solute. This study was undertaken to assess the 

factors involved during countercurrent operation with 

solute transfer under steady-state condition from an 

oscillating drop,and experiments were conducted with 

the continuous phase velocity in the range of 0.04-0.40 

em/sec. In addition, the following conditions for the 

droplet were adhered to: 

Pe The continuous phase droplet Reynolds number was 

maintained between 400-1400 

2. The continuous phase Weber number varied between 

1.25-9.50 

3. The Sherwood number of the overall experimental 

dispersed phase mass transfer coefficient varied 

between 110-630, Appendix [| 

4. The Schmidt number varied between 610-330, Appendix L
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The correlations proposed for the dispersed phase 

mass transfer coefficient for a single oscillating 

droplet suggests that the mass transfer rate depends 

on amplitude in addition to the frequency of oscillation. 

The amplitude was determined from the actual area change 

of the droplet rather than from the change of one of 

its axis. This was done because the change in the 

droplet shape during an oscillation cycle is of a much 

more complex character than is supposed by spheroid 

approximation. 

‘The results of droplet amplitude will be considered 

first. 

7.1 DROPLET AMPLITUDE 

The results of droplet amplitude are presented in 

Table E.3 and are expressed in the form of the eccen- 

tricity "e" and the change in the X-axis of the drop. 

Other measurements of the amplitude could be extracted 

from Appendix J and for a symmetrical spheroid in 

Appendix K. The change in length in one axis of the 

drop is not sufficient to measure the change in area 

as can be seen from Table E.3, since for the same range 

of amplitude (a) the value of "ce" is different and 

accordingly the interfacial area is different. It was 

more often observed from the n-heptane-water system 

that there is a change in Z axis (which is measured from 

the reflection in the mirror) while the X-axis stays 

approximately constant.
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The assumption of a symmetrical spheroid is far 

from true for large oscillating drops, as can be seen 

in figure (6.1) and from the cine films. During this 

study only small drops (less than 0.55 cm in ad.) were 

assumed to be symmetrical because the accuracy of the 

limit set for the measurement was determined by the 

projection of the cine film. The projected frame was 

three times the actual size and the readings were taken 

to the nearest mm. It is believed, practically, that 

there is no ideal symmetrical spheroidal shape when the 

drop equivalent diameter exceeds 0.55 cm. 

The amplitude data obtained is scattered as shown 

in the tables, graphs and appendices. Generally it was 

found that the first half of the oscillation cycle is 

not a duplicate of the second half. However, examination 

of the amplitude change with time,.for intervals as 

small as 0.005 second, was found to differ. This observa- 

tion could be due to the rate at which the cine photo- 

graphics were taken, i.e. 50 frame per second, but this 

was not confirmed and it is believed that this behaviour 

is common to the droplet. This indicates that the 

droplet amplitude have a random distribution. 

It was observed that the eccentricity "ce" was 

greater for higher interfacial tension systems when 

there is no mass transfer. Furthermore, when com- 

paring different systems at the same solute concen- 

tration, the results obtained for the toluene-acetone- 

water droplet eccentricity were higher than those of 

the n-heptane-acetone-water eccentricity. This might
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be due to the particular concentration of the acetone 

which could damp the oscillation amplitude for the 

n-heptane-acetone-water system more than that of the 

toluene-acetone-water system. Also, the reduction in 

interfacial tension are 59% and 75% for each system 

as presented in Table 4.1 and 4.2. Fortunately, the 

amplitudes "ap" are higher for low interfacial tension 

systems which is in agreement with previous published 

results as shown in Table E.3. 

The deformation ratio (197,195) does not give a 

good indication of drop deformation as it neglects the 

third dimension, and therefore in this study, the 

deformation ratio (D.R.) was taken to be the ratio 

{(X-Y)/(X+Y¥)} since "X" is mostly the major axis with 

this ratio, the deformation ratio will be zero for a 

spherical droplet, but this is not always the case for 

large oscillating drops as the Z-axis might be less 

or greater than X, as shown in Appendix J. Furthermore, 

it was observed that for a prolate drop with a negative 

deformation ratio the drop was near break-up, although 

the value of deformation ratio was (0.3), rather than 

approaching (0.5) as reported by Goldsmith and Mason 

(197). Therefore, prolate drop break-up could occur 

at about half the value of the deformation ratio for an 

oblate droplet. That is there was no break-up observed 

for deformation ratios between (~0.27-0.58) for all the 

systems studied. 

The analysis carried out in this study shows that 

amplitude could not be represented by one of the axis
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of the drop, but more accurately by the interfacial area 

of droplet since this involves the three axes. The 

ratios of the axes did not give enough evidence to 

justify its application as a measure of the deforma— 

tion of an oscillating droplet. The length "D3" gave 

a better indication of the deformation of the droplet 

because of the use of the third axis in the calcula- 

tion of "D3". Nevertheless, the area eccentricity 

"e" was preferred as it gives a direct and practical 

measure of the droplet shape. In addition, "D3" is 

an absolute value, while eccentricity is a ratio which 

reduces the actual error of measurements if any exist. 

The symmetrical spheroid calculations which were 

carried out by the computer programme listed in Appendix 

C2 gave the results presented in Appendix K and 

illustrations in Appendix G and H. The results do 

not show the true shapes of the droplet and the Y-axis 

predicted from the volume is far from that observed, 

especially when the calculations give a prolate shape 

while an oblate shape was observed. 

In all the experiments of droplet equivalent 

diameter above 0.55 cm, the drops were deformed with 

shapes ranging from tubular, mushroom, heart shape (and 

some other shapes shown in figure 6.1) to almost 

spherical. Only in a few instances was the exact 

oblate and prolate spheroid shape observed and it was 

not seen in all cycles of the droplet. The observation 

of the eccentricity on the basis of the area suggest 

that the eccentricity changes with increase of droplet
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diameter in a similar manner to the terminal velocity, 

i.e. the "e" reaches a maximum for a certain equivalent 

diameter then it decreases but not as rapidly as it 

increases. 

The amplitude is affected by the interfacial tension 

and this should be included with other physical and 

hydrodynamic properties of the systems; e.g. for the 

same interfacial tension for different systems there is a 

difference of 28% in eccentricity. 

Finally the correlation proposed by equation (6.6) 

for the prediction of the eccentricity "ce" gave good 

agreement with that found for all the systems studied 

and with and without mass transfer taking place, as can 

be seen in figure (6.19). Furthermore, when correlat-— 

ing the same parameters for each of the systems 

toluene-acetone-water and n-heptane-acetone-water, the 

accuracy improved and the absolute mean deviations were 

10 and 8% respectively as illustrated in figure F.1. 

The observations confirmed that the amplitude of the 

droplet decayed during its ascent. Equation (6.7) 

confirmed previous observations that viscosity of the 

dispersed phase is not an important factor affecting 

oscillation of droplet. 

7.2 FREQUENCY OF OSCILLATION 

Droplets begin to oscillate immediately they are 

detached from the nozzle and for two to three oscilla- 

tion cycles the drop oscillates vigorously and then
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decreases to a steady oscillation rate. The amplitude 

and oscillation frequency for the first 20 cm above 

the nozzle were neglected afterwhich it was found that 

the oscillations were periodic throughout the whole 

column height and only two droplets out of (600) 

droplets studied did the oscillationscease momentarily 

in the column for about 0.04 seconds and then the 

oscillations started again. The cine film of experiment 

No.22 showed that the drop oscillated more violently 

when it reached the top of the column, that is when it 

came into contact with fresh continuous phase. This 

was most noticeable when a high concentration of solute 

existed in the drop. 

The oscillation frequency of small droplets was 

found to be higher than that of the bigger drops when 

the amplitude was larger. 

Many different parameters were considered to 

correlate the oscillation frequency as shown in 

Appendix G and H. These parameters were the droplet 

axes and their combination with other parameters as 

shown in Appendix I and K. It was noticed that the 

symmetrical spheroid calculations did not give a true 

representation of droplet frequency of oscillation. 

The ratio of the actual area to that of the surface 

area of the sphere of the same volume versus time was 

found to give the true representation of frequency of 

oscillation. Furthermore, the measurement of the three 

axes gave an accurate estimation of the area, even when 

the droplet is symmetrical, since there are six different
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symmetrical spheroid which are divided into two groups 

see the area-velocity programme in Appendix C.1. 

The average period for an oscillation of a droplet 

was found experimentally to be longer than that 

predicted from the equation of Schroeder and Kintner 

(59) which wasan improvement to account for the 

translatory motion of the drop on Lamb's (2) equation; 

as shown in figure (7.1). This apparently is due to 

viscous damping and to the transfer of solute. The 

frequency of oscillation is damped during droplet 

ascent and also with increasing concentration of solute 

inthe dispersalphase as can be seen from "ratio of areas" 

virsus time presented in figures of Appendix G and H. 

The oscillation period decreased as the droplet was 

ascending when transfer of solute is taking place. 

This was believed to be due to the interaction of the 

smaller rate of solute transfer and the increase of the 

interfacial tension which decreases oscillation period. 

It was found that frequency of oscillation is different 

from that of the same basic systems with no solute 

transfer. This was shown in the systems containing 

solute that lowers the interfacial tension and oscillates 

less frequently than the same system with a higher 

interfacial tension with no solute present. 

Finally, mention should be made that frame to frame 

examination of the cine film showed that the oscillation 

cycles are not identical for the same droplet. Neither 

half of the cycle period was found to be the same as 

the second half, and there was a scatter: in the
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frequency of oscillation results. However, they were 

much less than that observed in the amplitude estima- 

tions and it was found that the average oscillation 

frequency of the longest and shortest period only 

deviated by 5% more than that obtained by taking the 

weighted mean of all frequencies measured. 

The oscillation frequency observed during mass 

transfer experiments with drops of diameter larger 

than the critical diameter is more complicated than 

can be predicted by densities and interfacial tension 

alone, and the true shape of the drop, interial effects 

caused by the drop motion and the two phase parameters 

should be included in the correlations. This study gave 

a good agreement with previous studies on the signi- 

ficance of the continuous phase Weber number in the analysis of 

oscillating drops. The continuous phase Weber number 

was introduced to predict the on set of oscillation 

characteristic of droplets, but it was found that the 

droplet started oscillating at much lower values of 

the Weber number than those reported in the literature 

and discussed earlier in this thesis. 

7.3 MASS TRANSFER COEFFICIENT 

Overall experimental dispersed phase mass transfer 

coefficients were compared with those predicted by 

Rose and Kintner, Angelo et al, Brunson and Wellek 

and Yamaguchi et al (111,80,79,110,113) and in all 

cases it was found that the experimental values were



-179- 

higher than those predicted by the different models 

and empirical correlations. The experimental and 

calculated overall dispersed phase mass transfer coefficient are 

presented in Table 6.2 and Appendix M. The theoretical 

overall dispersed phase mass transfer was calculated 

using the frequency of oscillation predicted by the 

Schroeder and Kintner (59) equation, and the results 

are presented in Appendix L. 

The agreement between the theoretical and experi- 

mental dispersed phase mass transfer coefficient was 

found to be fair only for small oscillating droplets 

and for low concentrations of acetone for the toluene- 

acetone-water systems. The agreement was generally 

better for the n-heptane-acetone-water systems as shown 

in figures (7.2 and 3). This might be attributed to 

the following: 

(1) The predicted frequency of oscillation was 

larger than that estimated. 

(2) The effect of the solute on the physical properties 

and the hydrodynamics of the systems were not 

presented accurately. 

(3) The previous models were formulated for small 

oscillating droplets, i.e. droplet just bigger 

than critical size 

Table 7.1 presents the results of the extraction 

efficiency for different distances travelled by the 

drop for the n-heptane-acetone-water (system "H6") and 

it will be observed that a shorter column could have 

been used for extraction rates fractionally different



TABLE 7.1 

a, = 0.69' em; 

f_ = 425 ml/min, 
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The Effects of Distance Travelled on 
  

Extraction Rate 

Ca = 1.98 g mol, 

nozzle = PT5, 
te = 0.63 sec 

system "H6" 

  

  

        

Run . notyi mol 1 ere Mass Transfer 
No. x102 a8 (cm) out of Drop 

52 4.20 7.39 50 0.979 

53 8524 7.91 70 0.984 

54 1.80 @..9% 87 0.991       

TABLE 7.2 Extraction Rate for Short Column for 

Toluene-Acetone-Water Systems 

(More details about this experiment in Table E.1 and E.2) 

  

  

  

a. C Gr | RE™ x fo Mass Transfer R after travel|g mol/1 
aa emin gmol/1 Gf (28¢an) = ae m3 /min Out of Drop 

A 1.64 1.36 0.41 2.23 420 0.699 

B 1.88 1.55 0.71 2.24 432 0.542 

¢ 1.98 1.61 0.74 2.24 440 0.540 

D 3.35 2.37 1.10 3.61 444 0.536                  
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from those reported; and this would correspond to a much 

higher overall dispersed phase mass transfer coefficient 

because of shorter residence time. Table (7.2) gives 

the results for toluene-acetone-water systems 

processed in short column (28 cm) to calculate the 

extraction efficiency in relation to solute concen- 

tration in the dispersed phase. Thus, acetone in 

an n-heptane droplet requires less residence time to 

that required for extracting acetone from a toluene 

droplet. This explains why the extraction efficiency 

and the overall dispersed phase mass transfer coef- 

ficient for the toluene system resulted in a wide 

deviation from the calculated and theoretical values. 

Therefore, if a longer column (i.e. 120-130 cm) was used 

for n-heptane system and a column of length (150-160 

em) for toluene system the calculated and experimental 

extraction efficiency and the overall dispersed phase 

mass transfer coefficient would agree. This could be 

explained from the distribution of acetone between 

toluene and water and n-heptane and water phases shown 

in Table (4.1 and 4.2), and might be due to the acetone 

solution in heptane reaching equilibrium more rapidly 

than acetone in a toluene solution (154). 

In general, a fairly large deviation between the 

experimental and calculated dispersed phase mass trans- 

fer coefficient results was observed as shown in 

figures (7.4 and 5) when the observed frequency was 

used for the residence time shown in Table 6.3. The 

physical picture emerging from previous (1,3,4,5,28,
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29,44,52,62,121,122,123,124) studies and present 

observations is that the solute ies eeueterced from 

a completely mixed drop to a mixed wake while the wake 

is being formed, by shedding and renewal of elements 

of the wake during droplet travel. After the release 

of the drop, the concentration in the wake is the same 

as in the bulk of the continuous phase and this is 

lower than in the boundary layer,,and transfer takes 

place to the wake and to the surrounding continuous 

phase. At the same time transfer is also taking place 

from the rear of the drop to the wake. This starts at 

a high rate of transfer but the rate falls as solute 

accumulates in the wake and thereby reduces the driving 

force. As the concentration in the wake increases, 

the rate of transfer from the wake to the bulk of the 

. continuous phase also increases. The measurement of 

the X and Z axes of the oscillating droplet give an 

indication of the intensity of mixing in the wake 

and vortex shedding. 

The physical properties of the two phases change 

from one end of the column to the other, and thus mass 

transfer takes place by different mechanisms depending 

on the position of a drop in the column. The initial 

stage of droplet ascent showed that the transfer rate 

of solute from the front of the drop was in line with 

explanation offered by Bakker et al (154) who reported 

that the high rate was due to large scale interfacial 

movement. The prediction of the models and the 

empirical correlation together with their deviation
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from the experimental rate of mass transfer will be 

discussed separately. 

7.3.1 ROSE AND KINTNER MODEL 

This model has been examined extensively as it is 

recommended by many previous workers employing a 

numerical integration procedure to evaluate the 

extraction efficiency; as shown in figure (6.18). 

The deviation is very high, even with a high frequency 

of oscillation predicted from the Schroeder and 

Kintner (59) equation. Two modification (79) were also 

applied but this did not improve the results to a great 

extent as shown in Appendix M and L and Table 6.3. 

Although a higher index of the oscillation frequency 

(n=3 and 4) was employed in relation to the shape of 

the drop observed (125), it did not improve the 

prediction of the model. Table (6.3) shows that even 

for small oscillating droplets with low concentration 

of solute in dispersed phase, the fraction of solute 

extracted did not give reasonable predictions. The 

discrepancies could be due to: 

(1) The model is theoretically unsound. 

(a) The utilization of a circulating droplet 

continues phase mass transfer coefficient. 

(b) The application of the mass transfer through 

a stagnant film and surface renewal and 

surface stretch models all together.
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(2) The model depends mainly on amplitude and the 

assumption of a symmetrical spheroid shape which 

is far from true for large oscillating droplets. 

(3) The interface between the two phases was more 

complicated than that described by the penetration 

theory at high rate of eddies on the interface. 

7.3.2. ANGELO, LIGHTFOOT AND HOWARD MODEL 

This model gave better results than the Rose and 

Kintner model (111), but could not be claimed to be 

acceptable. The differences between the model 

prediction and experiment mightbe due to: 

(1) The change in area is more complex than that 

described by the equation: 

2 
A= AG + 6 Sin wt), (3.48) 

(2) The effects of the wake are ignored assuming that 

the mechanism of solute transfer is the same at 

the front and rear of the drop 

(3) The mass transfer in the two phases are assumed 

to have the same characteristic lifetimes. 

7.3.3 YAMAGUCHI ET AL EMPIRICAL CORRELATION 

Yamaguchi et al (110,113) correlations gave the 

nearest predictions to the experimental values, but 

in addition to the assumption of a symmetrical spheroid 

droplet shape, the examination of the experimental 

and theoretical background for their correlation made
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it unacceptable. The following were observed: 

(1) Their experiments were carried out in short 

column (40 cm), 

(2) The solute did not affect the physical and 

hydrodynamic properties of the systems which 

was different to this investigation. 

(3) The ambiguity in determining the mass transfer 

rate during drop formation, which does have an 

important part in extraction of solute from 

droplet. 

(4) The study was for unsteady state mass transfer 

rate and when the continuous phase was stagnant, 

Finally the Brunson and Wellek (79) correlations 

which are basically similar to Angelo et al (80) but 

with slightly different combination as discussed in 

an earlier chapter. The main reason for the defficiency 

of the above correlations is that the phenomena of 

mass transfer from an oscillating drop is different 

from that during drop formation simply because the 

drops are growing in volume during formation whereas 

it is constant during passage, but the area is changing. 

Correlations (equation 6.10 and 6.11) presented 

for the prediction of the dispersed phase mass transfer 

coefficient gave better results than those proposed 

earlier and takes into account the characteristics of 

the phenomena of mass transfer from a large oscillating 

droplet. The two-correlations could be combined 

together to predict the dispersed phase mass transfer 

coefficient for both of the systems studied by adding
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the Schmidt number to the correlation, thus: 

a 2582 21515 3-2.0 k = ‘d 1,588,747 « EO Ngo YD Qoxp C74) 

This correlation predicted the dispersed phase mass 

transfer coefficient with an average absolute devia- 

tion of 23% as shown in figure (7.6). 

7.4 TERMINAL VELOCITY AND DRAG 

Small oscillating drops ascend along a straight 

vertical path, but as their size increased a spiral 

path is developed. No correlations exist in the 

literature for determining the terminal velocity of 

single large oscillating aroplers when mass transfer is 

taking place. Terminal velocities reported in 

Table (6.1) in relation to the counter-current con- 

tinuous phase are the absolute terminal velocities and 

are the difference between the two phase velocities. 

The calculated terminal velocity was obtained from 

equations (2.9 and 2.11) under conditions of no mass 

transfer as listed in Table E.3. The predictions gave 

good agreement with systems in which there was no mass 

transfer (systems T1 and H1), but equation (2.11) failed 

completely when transfer of solute was taking place. 

Also equation (2.9) failed to give a reasonable 

prediction. 

The above equation gave predictions that were in 

good agreement with that observed for small oscillating 

droplets since these correlations have been developed 

from small size oscillating droplet observations.
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Drag coefficient values gave good agreement with 

the results of previous workers and showed that the 

oscillation frequency of the droplet increases the 

drag and also increase with droplet size. The 

calculated drag is presented in Table E.3, and takes 

into account the average area rather than assuming 

that the droplet is spherical, which would be unrealistic 

for large oscillating drops. This method showed that 

the transfer of solute increased the value of the drag. 

This is in agreement with previous observations (170) 

and discussed earlier. Figure (7.7) shows how the 

drag of equal size droplets increase as the solute 

concentration increases. The exception was experiment 

No.38 where it is believed that an error occurred in 

the measurement of the terminal velocity. Thus, the 

drag on a droplet with solute transferring out decreases 

as the droplet ascends through the column. Also the 

deformation or the eccentricity have an important 

effect on the terminal velocity and drag coefficient. 

Therefore, the correlation developed earlier for 

calculating the eccentricity is useful in improving 

the prediction of the terminal velocity and 

drag coefficient. Figure (E.2) presents values of the 

log Cy vs log of the continuous phase Reynold number 

and the data was obtained from Table E.3. Figure (7.7) 

shows that the drag coefficient vs. droplet equivalent 

diameter, calculated in the same manner as in Appendix E 

but the terminal velocity were corrected for the value 

of the continuous phase velocity. This suggests that
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the drag coefficient depends on the deformation and the 

oscillation of the droplet, and a minimum in the drag 

coefficient might be due to an increase of the 

eccentricity but not the onset of oscillation. 

7.5 MASS TRANSFER DURING DROP FORMATION 

Moderate times of droplet formation were used 

(0.58-1.03 sec) for the n-heptane-acetone-water systems 

and (0.74-1.60 sec) for toluene-acetone-water systems 

in this study. The transfer of solute is believed to 

take place by diffusion in accordance with the 

penetration theory for low concentrations of solute 

(less than 3% w/w) and it is independent of solute 

concentrations, see Appendix E. Changes in interfacial 

tension and other physical properties in this regime 

are not significant and the rate of surface renewal due to 

drop formation is more important than that due to 

turbulence. This confirms the findings of Sawistowski 

and Goltz (132). However, a higher concentration of 

solute produced a higher mass transfer coefficient, 

as shown in figure E.1. The mass transfer coefficient 

increased almost linearly with the increase of solute 

concentration in the dispersed phase. This increase 

might be due to the surface being renewed at a faster 

rate than would be for drop formation alone (132) and 

also to the presence of large scale interfacial move- 

ment in the growing drops (154). A long time for 

drop formation does not give as accurate an estimation
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of the mass transfer rate as for short and moderate 

time of formation when there is a high concentration 

of solute transferring. This is due to the non-linear 

decrease in concentration with time, and accordingly 

the correlations proposed from experiment with long 

time of formation will give a greater deviation in the 

prediction of the mass transfer rate for shorter time 

of formation. 

The volume produced from a nozzle when there is 

a high concentration of solute in the dispersed phase 

is completely different from that when there is no or 

a low concentration of solute since most physical 

properties are changing during formation.
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CeAP TERR BIGHT 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 
  

A study of mass transfer rate at steady-state 

from single large oscillating droplet under a constant 

temperature of 22°C has been undertaken. The dispersed 

phase flowed countercurrent to the continuous phase 

at velocities of 0.04-40 cm/sec. The effective 

contact distance between the phases was about 90 cm and 

results were obtained for two systems:- toluene-water 

and n-heptane-water with acetone as the solute trans-— 

ferring from organic dispersed phase of concentrations 

upto 3.75 g moles/1. 

A novel photographic technique was developed in 

this study that proved to be successful. The use of 

iodine in very low concentrations improved the contrast 

in the cine film and did not affect the properties of 

the systems, especially the interfacial tension. 

Therefore, the three-dimension measurement of droplet 

axes gave a more accurate estimation of the area, 

amplitude and frequency of oscillation than previously 

proposed parameters. 

8.1 CONCLUSIONS 

The main conclusions arising from this study 

are as:
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The shape of large oscillating droplet is of a much 

complex character than is supposed by spheroid 

approximation, and the droplet does not take a 

series of repeatable shapes during one mode of 

oscillation (figure 2.3), but mainly a mixture 

of the two mode and the three mode (n=2 and n=3) 

and rarely a shape where n=4. Some peculiar 

shapes were also observed. 

The frequency and amplitude of oscillation are 

affected by the transfer rate of solute out of 

the drop; they both decrease as the solute con- 

centration increases. 

The viscosity of the dispersed phase did not have 

an important effect on the prediction of the 

amplitude of oscillation and correspondingly the 

frequency of oscillation for the range of 

viscosities of the dispersed phase studied 

(equation 6.7). 

Steady-state droplet oscillation may not occur 

until the droplet has passed through two to 

three oscillation cycles. 

Lower values of Weber number were observed for 

oscillating droplet than that previously proposed 

for the start of oscillation. 

The frequency and amplitude of oscillation decay 

with droplet ascent. 

The measurement of the frequency of oscillation 

was represented accurately by the change of the 

actual area of the droplet vs. time. At present
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there are no correlations to give an accurate 

prediction of the frequency of oscillation of a 

droplet under practical conditions. 

Correlation (6.6) predicts the maximum inter- 

facial area of large oscillating droplet with 

13% average absolute deviation and it gives the 

main factors affecting the amplitude of oscillation. 

There was no break-up of droplets observed for 

values of deformation ratio {(X-Y)/(X+Y)} between 

‘(-0.27 to 0.58) and it is believed that prolate 

droplet break-up takes place at half the value 

of deformation ratio of that of _ the oblate 

drop. 

The frequency of vortex shedding of large oscil- 

lating droplet is apparently more complex than 

that of small oscillating droplets and it is 

believed that the frequency of shedding is higher 

than that of oscillation frequency. 

The period of oscillation was longer than that 

predicted from Schroeder and Kintner (59) (about 

twice), and the cycles are not uniform, i.e. 

first half is not a duplicate of the second; 

neither are the two halves of equal time intervals. 

The amplitude and frequency of oscillation have 

an important role on the mass transfer rate. 

The mixing in large oscillating droplet is 

vigorous and the solute concentration inside the 

droplet can be represented by one value. 

The mass transfer rate from droplets in liquid- 

liquid systems where the solute is diffusing is
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different in mechanism from that of a binary 

system. 

The transfer of solute out of large oscillating 

drops is more complicated than can be represented 

by molecular diffusivity and oscillation frequency 

alone. 

All the models and correlations examined in this 

study failed to produce an accurate prediction 

for the mass transfer coefficients, due to one 

or more of the following being mispresented: 

(a) Amplitude which is the intensity of mixing 

inside the drop and the proper parameter to 

evaluate the interfacial area for mass 

transfer. 

(b) The formulation of the models are not con- 

sistent. 

(c) The wake which is inter-related with the 

behaviour of the drop. 

(d) The behaviour of the interface between 

drop and the continuous phase. 

The results obtained were generally higher than 

predicted, which might be due to previously 

proposed models and correlations being compared 

with experimental results for small oscillating 

droplets. With large oscillating droplets with 

high solute concentration the difference is 

mainly due to: 

Ci) the large area available for transfer 

(ii) the mixing is more vigorous
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(iii) shedding of the vortex is more often 

Wake was believed to have an important part in 

transfer of solute from the rear of the drop to 

the bulk of the continuous phase and the volume 

of the wake can be determined more accurately 

from the X and Z axes and the change in these 

axes give an idea how intense is the wake 

mixing and vortex shedding. 

The proposed correlations (6.10 and 6.11) for 

predicting the dispersed phase mass transfer 

coefficient gave better accuracy than that 

presented previously. : 

Where mass transfer of solute is taking place 

which affects the properties of the system, the 

travel velocity and the rate of mass transfer 

are significantly different from that predicted 

by hydrodynamic or molecular diffusion criteria. 

The drag coefficient increases and terminal 

velocity decreases for large oscillating droplet 

with the increase concentration of acetone 

transferring out of droplet. 

The observed mass transfer rate during drop 

formation did not agree with that predicted 

from previous correlations when the solute. 

concentration was above 3% w/w. Thus the 

overall dispersed phase mass transfer coefficient 

during droplet formation increased almost linearly 

with the concentration of solute.
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RECOMMENDATIONS FOR FURTHER WORK 
  

Study further extractive systems at room temperature 

as well as different temperatures with solute 

transfer in and out of droplet in different columns. 

Study of drop formation under mass transfer condi- 

tions, varying the parameters involved. 

Study of the effects of solute transfer on the 

terminal velocity of droplet with different 

column heights and diameters, with simultaneous 

flow of continuous phase. 

Study of wakes chemasteristicd: 

Study of the continuous phase mass transfer 

coefficient for high concentration of solute with 

different continuous phase velocity and flow 

conditions, 

Study of the effect of surface active materials 

on amplitude and oscillation on the mass transfer 

coefficient for large oscillating drops.
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APPENDIX A 

A.1 SPECIFICATION OF MATERIAL USED 

A.1.1 Toluene “Analar" 

Wt. per ml at 20°C 0.863-0.866 g 

Refractive Index at 20°C 1.494-1.497 

Not less than 92 percent distils within 0.4°c in the 

range 110.0°-111.0°C 

Impurities Maximum Limit Percent 

Acidity 0.012 

Alkalinity 0.012 

Non-Volatile Matter 0.002 

Benzene 0.5 

Organic Impurities Passes Acid-Wash Test 

Sulphur Compounds 0.0003 

Thiophen Homologues 0.0002 

Water 0.03 

A.1,.2 n-Heptane (Conforms to I.P. Specification for 
"Normal Heptane") 

Minimum Assay (GLC) 99.5% 

Wt. per ml at 20°C 0.682-0.684 g¢ 

Refractive Index at 20°C 1.3880-1.3885 

Boiling Range Not more than 1°C 
between 979-990
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A.1.3 Acetone "Analar" 

Wt. per ml at 20°C 0.789-0.791 ¢ 

Boiling Range (95%) 56.0-56.5°C 

Refractive Index 1,3580-1.3600 

t Percent 
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Appendix B.1.1 Data read from the cine 
film for Run-l, at 50 frame/sec. 

Distance Drop (1) Drop (2) Drop (3) 
cm Frame Frame Frame 

0 0 0 0 
5 22 23 23 

10 43, 4s 4s 
15 66 68 63 
20 90 $2 86 
25 “108 119 WW 
30 139 146 137 
35 164 173 162 
4o 191 199 188 
45 216 225 215 
50 244 251 241 

55 270 278 267 
60 299 306 294 
65 326 331 B21 
70 352 353 347 
75 378 379 373 
80 404 40s 400 
85 430 432 47 
87 4h 442 436 

Appendix B.1.2 Data read from cine film 
for Run-2 at 50 frame/sec. 

Distance Drop (1) Drop (2) Drop (3) 
cm Frame Frame Frame 

0 0 0 0 
5 Ze 21 22 

10 38 37 33 
15 63 62 63 
20 86 85 87 
25 109 107 109 
30 132 si 133 

0 156 154 157 
40 180 179 181 
As 204 203 205 

50 227 227 229 
55 252 252 254 
60 276 277 279 
65 300 301 304 
70 324 325 328 
15 349 349 353 

80 372 374 378 
85 398 397 402 
88 413 4k 4A]
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Appendix B.1.3 Data read from .cine film for Run-7. It is the 
input for Soca selrc a! pre ane io Peace ac C.1 and programme 

sec 

      

             

   

   
Appendix C.2. 321° Rate rames 
frame distance X ¥ e frame distance xX ¥ z 

cm cm 
0, +90 2.20 30 3, 
Mw 0 2.39 87, 
3. 90 2.70 90, 
6, 50 2.50 91, 
i; 66 3,10 97, 
24, +70 2,40 98, 

29, 7 3,99 98, 
3S, 60 €,50 100, 
34, 65 2,50 191, 
37, 30 2,60 VO?, 

43, 40 09 Joa, 
as, 99 2.50 i43, 

2 1W7, 
124, 
125, 

0,09 130, 
0,00 ‘34, 
0,00 134, 
9,00 137, 
9,00 142, 
0,v0 16s, 2,20 
0,00 150, 2,20 
0,00 153, 2,30 
9,00 160, 2,90 
9,00 Tha, 2,20 
9,00 i7a, 2,70 
9,00 17S, 2,80 
0,09 j??, 2,99 
9,00 182, 0,00 
9,00 138, 9,00 
2,v0 Qo, 2,30 
9,00 2, a,v0 
9,00 6, 2.30 
0,u9 9 2,00 
B50 the 2.69 
2.70 148, é 3.00 
9,00 25, 2 2,20 
9,00 $0, 2 9,00 
9.00 40, 2 0,00 
3490 re, a 2,30 
2.99 47, : 2,30 
0,00 50, 2 0,00 
9.00 52, Es ¢,u0 
9,00 | 56, é 2.00 
0,00 60, 2 2,49 
0,00 e3, é 
9.09 ale 2 
9,u0 74, é 
230 7A, € 

a, 20 82, 3 
270 an, é 
2,50 94, 3 
a,v0 97, i 
9,00 oo, &. 
0.00 1s, 2 
0,u0 tas, z 

‘ 9,00 109, 3 
4 2,39 TH 3, 2 
1‘ 2,90 145, a 

2,59 122, 2 
: 2,40 125, 2 
© 2,70 TTA < 
<. 3,00 134, 2 
ce 2,90 164, ¢ 
ay 0,00 V6R, é 

e) 0,09 152, z 
e.50 m 9.00 US, é 

2.60 te 2,00 160, 2 
2.00 +i a0 2.89 16S, ac 
2.50 7.00 2,49 TAA, - 
200 1,90 avo 72, 
2.50 2.00 2,90 7A, 
2,50 3.90 2,20 Ves, 
2.30 2.90 2,09 eat, 
2.79 2.00 2.39 205, 
3.59 2,20 2449 09, 
2.29 + 1A0 2.00 17, 
3.50 2.30 2.39 248, 

2.69 +,50 2.80 <r, 
2.70 78 2,60 419,     
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Appendix 8.1.4 Data read from the cine film for 
Run-5. It is the input for area-velocity a 
programme Appendix C.1 and programme Appendix C.2. 
Scale 3.4:1, Rate $0 frame/sec. 4 

Frame Distance X Y z 
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Appendix B.1.4 (continued) 

76, 0.90 2,30 
78) 0,09 
27, 17.99 
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Appendix B.1.5 Data read from the cine film for Run 8. It is the input 
for area-velocity programme Appendix C.1 and programme Appendix C.2. 
Scale 3 :1, Rate 50 frame/sec 

             
Frame Distance xX % Zz 

(cm) 
0.90 76,92 2,10 2,00 0,00 
0,50 79 92 2,10 2,00 0,00 

79.72 2,25 1270 0,00 
80.42 2.20 1175 2,20 
81.45 2,20 Vets 0,00 
83.53 2.2 1170 2,20 
Bond 2,20 4170 2,10 
v.00 2,95 2,00 2,05 
a, 30 2,20 1,70 0,00 
0.40 2.90 2,00 2,00 
1.20 2,50 $550 2.20 
2.00 2.30 1,60 2,50 

2.20 2.40 1.50 2.40 
2,40 2.50 4,50 2.30 
3.40 2.20 1,70 2.00 
4.30 2.40 1,50 2450 
3.30 2.10 1,30 2,20 
2.55 2.10 1.90 2,20 
6.00 2,90 
7.00 2,10 

16.00 0,00 
13.90 9,00 
uno 0,00 

16.80 0,v0 
16.40 0,090 
419.90 0.00 
20.40 9.00 
20.30 2.20 0,00 
0.90 2,10 0,u0 

25.20 +2620 0,09 
26.90 2.20 0.00 
23,70 2.10 0,00 
25.88 2.30 o,u0 
26.65, 2.00 9,00 
27.00 2,20 0.00 
27.40 =  Zaee 0.00 
27.20 2.10 0,00 
26.40 2.30 9,00 

29.96 2.20 o,v0 
30.90 2.20 9,00 
346.70 2.10 v.u0 
35.90 2.20 9,00 
33.a0 2.70 9,00 
44.90 ee} 0,00 
44,40 2.20 0,00 
44.00 2,30 0.00 
42.00 2.10 9.00 

: 42.05 2.20 0,00 
36.a0 61.4 2.48 0,00 
38,90 $1.79 2.28 9.00 
32.40 62.90 2.20 9,00 
50.80 b2.R0 2.20 9.00 
$7.00 e. $6.90 2,10 0,090 
59,60 2.20 69.75 2.10 9.00 
St..90 2.20 74.72 card 2419 #0 2.10 72.93 2.20 2,20 
S700 230 72.98 2.15 9.00 
oy #420 72.42 2.10 0.00 

2nd 2.20 vend 2.10 9,00 
7h re ¢.20 aiias 2.20 9,00 
fs. 8? ete BY az 2.20 2.20 
#3),53 2.26 B2in8 208 25 
7h we 2,20 Re.g2 2.20 2.00 
72.42 2,30 83.42 2.10 2,00 
79,42 2,20 Bo.a5 2.10 0,v0 
70.48 19 v.00 2.00 2.90 
TNS 0,90 2.20 3 0,00 
77 ae 0.50 2,10 +195 2,00 
73.45 0.90 2,59 *,$0 2.350 

2.90 2,30 1170 2,50
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Appendix B.1.5 (continued) Appendix B.1.6 Data from cine film 
for Run-10, at 50 frame/sec 

Frame Di pence x Y 2s Distance Drop (1) Drop (2) 
tem cm Frame Frame 

44, 2.60 2.50 2430 
Ney 0.00 2.50 2,90 0 0 0 
19) $.70 2.20 2.20 5 28 30 
22, 6.40 2,30 2,50 10 55 56 
23, >.n0 2,15 2.15 15 80 81 
$2. 6.40 2.10 2,00 20 106 107 
36, 7.40 2.20 2,29 25 130 133 
4, 8.50 2.30 2.10 30 155 161 
42, 6 RO 2,30 2,20 35 182 188 
45; 9.40 2.29 2.20 40 209 213 
4b, 10.00 2.45 9,00 45 23h 240 
54, 10.45 2,20 0,00 50 258 266 
$4, 44.30 2,40 2,20 55 283 275 
58, 12.20 2.20 2.20 60 309 320 
61, 12,09 2.40 2,¢5 65 332 346 
65, 13,00 2,20 2,20 70 359 373 
6, 4ul no 2,50 9,00 5 364 399 
92, 20.00 2,30 2,10 80 42 42k 

97, 24,00 2,00 2,10 85 4h) 450 
98, 0.90 2.10 2.19 87 452 460 

400, 22,00. 2.30 2520 
164, 22.90 2,10 2.05 
167, 25.50 2.40 9,00 
140, 26,70 2.10 2,10 
443, 2hias 2.40 2.50 
147, 25.76 2.10 2.10 
120, 26.40 2.35 2.50 
124, 27.40 2.20 2.20 
126, 27.50 2.40 2.eu 
165, 35.40 2.20 2620 " 
170, 30.40 2.10 2,00 
173, 37.30 2-30 ae 
iu 4 S38 2.20 Appendix B.1.7 Data read from 
192. eh 86 2030 r20 cine film for Run-1l, at 
238, 54.00 2.20 2.10 200 fremee/eee 
260, 54.46 2.3 2.10 ° 

63, 52.90 2.30 2,00 Distance Frame 
247, 52.90 2.10 2.10 em 
250, 53.40 2,20 2,00 
52, 55.A0 2.20 2.70 0 ° 
e538, 54.10 2,20 2,10 5 93 

273, $8.20 2.20 2.10 10 178 
art, 59.00 2.40 2,10 15 271 
279, 59.40 2.20 2.10 20. 366 
280, 0.00 2.20 2.70 25 462 
264, 59. R0 S05 2.20 30 563 
82, 59,05 2.10 2.10 - 665 
283, 60.40 2.10 2.10 fo ee 
be, 60.40 2615 2.10 5 3 
265, 60.50 2,20 2.05 50 938 
286, 60.70 2.30 2.00 55-1027 
290, 61.40 2.20 2410 ) ng 
293, 62.90 2.25 213 5 1206 
296, 62.70 2.10 2.10 70 1292 
297, 62.00 2.10 2610 75 wn 
322, 66.40 2420 2610 
326, + 69.90 2.20 2.10 
326, 69.80 2.95 2.10 
327, 64.0 2.10 2.10 
334, 70.70 2.20 2,10 
334, 71,40 2,10 2.20 
383, 84.62 2.10 2,09 
3e5) B22 2.05 2,00 

387, 82.00 2,20 2.19 
589, 83,45 2,10 2.10 
390, 85.42 2.10 2,10 
394, 8440 2.10 2,05 
404, 86,90 2.10 2.10  
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Appendix 8.1.8. Data read from cine film Appendix B.1.10 Data read from cine 
for Run-13. It is the input for area-velocity for Run-14. It is the input for are: 

Scale 3.05:1, Rate 50 frame/sec velocity programme, Appendix C.1. 

   
programme. 

Frame pistance x y z Scale 3.0:1, Rate 50 frame/sec 

A cm 
. 9,09 2,4 & t « 0130 a) ioe Frame Distance X ¥, Zz 

8. 1.30 3160 490 0 oco0 
ei S00 2.505440 rs 1140 45 3,09 2,70 2340 ee 1" 70 
24, 3,90 3,00 1,80 aa ae see 5500 3189 tno pa oe 107, 22:30 31303700 bed ae 49 23,00 230 4360 ac a eoa, 43,00 7.49 t'20 ar al 

421, 46/00 +100 . 436, 43,30 2/00 a 
268, 59,80 2/00 +" 532, 63,00 1170 ae 
339, 69,60 +150 ae 363, 70,62 +730 ye 547, 71,62 +150 165 
553, 73,12 2140 TAB 362, 74.72 20 129, 

190, 
194 

102 
193, 
194. 
195, 
96 
297, 
98. 
$00. 
$02. 
303, 

Soa, 
505, 
40s, 
407, 

Appendix B.1.9 Data read from cine film eee for Run-6, at’50 frame/sec ie, 
9. 

Distance Drop (1) Drop (2) Drop (3) a2, cm Frame Frame Frame ae 
0 0 0 ° MUG 5 29 28 28 aa 10 53 52 54 ees 

15 73 76 80 weet 
20 105 102 106 ee 

133 130 132 ‘ 
30 160 159 137 noe 
35 188 186 182 ae 
ho 216 215 206 oe 
45 239 2hh 232 AG fi 50 265 272 258 ae 

55 292 299 284 age! 60 314 32h 309 a 65 But 39 336 ree 70 365 374 361 37, 
75 395 400 383 34a. 80 420 428 i038 eet 

85 Shy 451 436 aa 
87 455 462 4g ie 

379, 
580, 
Sa2, 
390, 

Soe, 

394, 
SOR  
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Appendix 8.1.16 Oata read from the cine film for Run-9. 
tt is the input for area-velocity programme Appendix C.1 
Frame Distance x ¥ z Seale 3 :1, rate 50 Frame/sec. 

Appendix 8.1.17 Data read from the cine Film 
for Run.Z5 it is the input for area-velocity 
programme Appendix C.1 
Scale 3.1:1, rate 50 frame/sec.      

     

    

    

    

z 
1.80 
2.00 
1.40 ny Frame Distance x y Z 

2139 oi) a, 4.94 320 
eH area 2,50 
15 gto Hag 329 we 2,2 
2120 Ve09 a0 

9:99 3 
2079 09 
B18 3 
Sian 3 
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Appendix 8.1.18 Data read from the cine film for Run=19, 
at 50 frame/sec. 

Distance 
cm 

0. 
4, 

10. 
20. 
30. 
ho. 
50 
60 
70. 
80. 
87. w

b
m
o
o
s
s
c
c
o
5
0
 

Drop (1) 
frame 

487 

Distance 
cm 

e
n
o
o
o
n
0
0
0
0
 

Drop (2) 
frame 

0 
33 
60 

116 
7 
229 
285 
339 
453 
430 

Appendix 8.1.19 Data read from the cine film for Run=22, 
at 50 frame/sec. 
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0
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0
0
0
0
0
0
0
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I
 

BR 
E
M
M
E
 
E
w
w
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O
D
S
R
O
R
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E
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E
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O
S
 

Ap
pe
nd
ix
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20
 

Da
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re
ad
 

fr
om
 

th
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ne
 

Da
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th
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ne
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B.
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fo
r 

Ru
n-

23
, 

at 
50
 

Fr
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se
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or 
Ru
n-
24
 

at 
20
0 

e/
se
c,
 

  

  

Drop (1) 
frame 

Dr
op

 
(1
) 

Dr
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(2
) 

Fr
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e 
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Di
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an
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cm
 

  

Dr
op
 

(2
) 

    

Dr
op
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Fr
am
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Di
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33 2 105
 

14
3 77
 

2 

Drop (2) 
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24
2 

27
4 

30
6 

33
9 

Drop (3) 
frame 

o 
35 
64 
$2 

120 

374
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AA
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47
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51
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54
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Appendix B.1.22 Data read from the cine 

Frame 

oO. 
4e 
6. 
ia 
14. 
20. 
4a. 
43. 
45. 
50. 
56. 
S?. 

  

~ film for Run-12. Jt is 
the input for area- 
velocity Appendix C.1 4 
programme Appendix C.2 
Scale 2.95:1, Rate 50 

frame/sec 

Distance X Y Z 
cm 

0.00 2.70 2.70 2.70 
0.80 3.50 1.80 0.00 
1.00 3.40 1.60 9.00 
2.00 3.20 2.30 3.20 
2.60 3.50 4.50 3.50 

+390 3.60 2.25 2.50 
8.20 3.50 1.90 3.50 
3.70 3.00 2.50 3.00 
9.00 e010 2.70 2.80 

10.20 3.40 1.60 1.00 
11.40 2.50 3.30 
0.00 2.50 2.60 

21.90 2.20 3.00 
22.60 2.30 $.00 
23.40 =20 3.50 
25.10 2.40 3.20 
25.70 2.00 3.20 
27.40 -30 3.50 
33.00 00 3.90 

2.50 3.10 
2.50 2.70 
2-50 2.90 
2.10 0.90 
2-30 2.90 
1.90 3.40 
2.00 0.00 
2.30 2.90 
2.20 3.40 
2245 0.00 
2.20 6.00 
2.00 3.20 
20 3.20 

1-80 3.40 
2260 3.30 
2.30 3.30 
2.00 2.30 
2.50 3.00 
30 0.00 

2.00 3.20 
2.40 3.10 
2.00 3.50 
2.00 2.70 
2.50 2.90 
2.10 0.00 
2.50 2.80 
1-50 9.00 
2.20 3.00 
1.40 3.70 
2.20 0.00 
2.80 2.50 
2.00 3.20 
1.60 3.00 
2.00 2.70 
2.20 0.00 
1.80 0.00 
2240 6.06 
2.40 9.60 
2.00 0.66 
2.50 2.90 
2.10 3.00 
1.80 3.50 
2-60 2.80 

3.00 
3.70 
3.00 
3.20 
3.60 
3.00 
3.10 
3.20 
3.60 
6.00 
3.06 
3.10 

2.90 
5.00 
3.00     2.30 2.80
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Appendix B.1.25 Data read from the cine film for Run-27.~ It is the 
input for area-velocity programme Appendix C.1 and programme Appendix C.2 
Scale 3.2:1, Rate 50 frames/sec. 

Frame Distance 

  

x ¥ Zz 
cm 

oO. 0.00 2.60 2.70 2.50 211. 2.90 2.20 3.10 ue 9.00 3.10 2.30 3-10 212. 2-60 2-60 2.80 4. 0.00 3.10 2.00 3.10 214. -00 2.10 3.20 a. 1.50 3.10 1295 3.10 216. 3.60 1.70 3.60 26 0.00 3-30 1.70 3.20 24. 3.80 1.80 3.60 10. 0.00 3-40 4.60 3.40 223. 3.00 2-50 2.70 ie 9.00 3.60 1.50 3.50 226. 2.70 2.80 2.70 18. 3.80 3.50 1.60 3.50 228. 3.50 1.50 3.70 2a 0.00 3.80 1.30 3.80 236. 2.90 2.50 2.70 28. 5.80 2.60 2.80 2.60 235.6 -20 2.30 2.90 io 6.80 3.20 2.00 3.20 243. 80 2.60 2.70 35. 0.00 3.70 1.50 4.00 253. 2.90 2.90 0.00 38. 0.00 2.25 3.20 2.25 257. 3.70 1.70 0.00 5 8.60 2.30 3.30 2.20 260. 3.20 2.40 2.50 46. 9.70 3-80 1.50 3.80 284. 3.40 1.70 0.00 116. 26.00 00 30 3.00 287. 3.20 1.90 3.10 119. 0.00 3.70 1.60 3.70 294. 3.80 1.50 3.30 120. 0.00 50 1-70 3.70 316. 2.90 2.50 3-00 
125. 27.90 3.00 2.80 3.00 324. 3.80 1.80 3.30 129. 0.00 3.60 1.80 3.60 335. 4.50 1-20 0.00 136. 29.90 3.00 2.00 0.00 342. 2.50 2.20 9.00 164. 36-460 3.10 > 2.15 2.90 555. 2.70 2.30 3.30 167. 0.00 60 ners 3.50 361. 2.30 2-80 2.80 172. 38.00 50 2.00 2.70 366. 4.00 1-50 3.40 
AT Bie 0.00 3.30 1.80 0.00 370. 2.70 2.30 2.80 176. 0.00 3-40 1.80 3.50 380. 2.70 2-40 2-70 
182. 40.00 3.20 2.30 0.00 390. 2.70 2.70 2.50 
211. 0.00 3.00 2.40 2.60 400. 2.50 2.70 2.70 2126 0.00 3-10 = 2.60 2.70 412. 2.50 2.00 2.70 
216. 46.80 3.50 1.70 3.10 0. 2.60 60 2.60 216 0.00 4.00 1.50 3.70 4 3.00 2.00 3-20 
219. 0.00 3.30 2.10 3.00 Be 3.20 2.00 3.10 
22% 0.00 2.90 2.80 2.40 re 3.60 =50 3.60 22s 48.90 3.00 -20 3.00 At. 2.80 1.80 2-80 
225. 0.00 3-50 1.75 3.40 Zs 3-80 1.30 3-80 
231. 0.00 2.60 3.00 2.60 26. 2-70 2.40 2.80 
259. 56.00 3.00 2.00 0.00 28. 2.70 3.20 2.60 

262. 0.00 3-50 ~60 0.00 320 3.70 1.60 3.70 263. 0.00 3.70 1.50 0.00 36. 3.00 2.50 2-60 
270. 58.30 2.70 2.50 0.00 38. 2.60 3.00 2.30 
301. 65.00 3.60 1-80 3.20 56. 3.20 1.90 3.00 
303. 0.00 3.85 jogs 3.30 116. 2.60 2.20 3.30 

307. 66.30 3.00 2.00 2-80 122 4.10 1240 3.70 
310. 0.00 3.50 1.60 3.50 126. 2.50 50 3.10 
311. 0.00 3.80 1.50 3.80 4127. 2.50 2.70 3-00 

317. 0.00 3.00 2.50 ~00 129. 3.00 2-10 3.00 
319. 68.90 3.00 2.40 0.00 18h. 3.90 1.80 3.30 
340. 73.50 20 1.50 3.20 137. 2-50 2.60 0.00 

346. 74.70 2.80 2.50 2-90 148. 3.00 2.00 3.20 
347. 0.00 2.80 2.70 3.00 155. 2.70 2.20 3.00 
351. 0.00 3.70 1.60 3.70 206. 3.00 2.50 2.70 

357. 77.30 2.70 2.80 2.70 209. 3.50 1.60 3.50 
366. 79.20 2.80 2-50 2.70 213. 3.20 2.20 3.20 
368. 0.00 3.00 1.80 3-30 214. 2.80 2.60 2-60 
403. 37.00 2.70 2.60 2.70 215. 3.00 2.70 2.50 

Oo. 0.00 2.60 2.70 2.50 216. 3.20 2.40 2-70 ie 0.00 -70 1.60 3.70 218. 3.50 2.30 2.80 V7. 0.00 2.80 1.80 2.80 220. 3-50 2.00 3.50 ee 0.00 3.80 1.30 3.80 225. 3.30 2.30 2-80 29. 6.00 2.80 3.00 2.80 229. 3.70 1.80 3.00 
32. 0.00 3.70 1.60 3.70 234. 3.00 2-20 3.10 36. 0.00 2.60 2.70 2.70 273. 3.00 2.20 2.70 
38. 9.00 2.40 3.10 2.30 276. 3.50 1.60 3.50 
39. 0.00 2.80 3.20 2.20 281. 3.50 2.10 2.60 
40. 8.70 2.90 2.80 2-50 223. 3.20 2.00 3.00 

47. 10.00 2.90 1.90 2.80 286. 3.30 1.60 3.80 86. 18.30 3.20 2.50 2.50 293. 3-10 2.50 2.80 
88. 0.00 3.00 2.80 2.70 301. 3.20 2-50 2.30 ot. 0-00 3.50 1.50 3.80 349. 2-80 2.50 2.70 
96. 20.50 2.80 2.80 2.60 355. 3.50 1.70 3.50 

126. 27.00 2.75 2.90 2-50 357. 3.10 2-10 3-10 
130. 28.00 3.60 1.60 3.80 359. 3-00 2-30 2.80 
131. 0.00 3.50 1.60 3-80 413. 87.00 3.00 2.00 0.00 
135. 0.00 2.80 2.80 2.60 
145. 34.10 2.90 2-5 2.90
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Appendix 8.1.26 Oata read from the cine 
film for Run-28, Ic is the input: for area- 
velocity programme’ Appendix C.1 and programme 
Appendix C.2. Scale 3.1:1, R 5c Frames/sec. 

  

Frame Dist. is tance: x Y z 

Oo. 9.00      

        

   

  

   

  

     

Appendix 8.1.27 Data read from the cine 
film for Run-$8. It is the input for area- 
velocity programme Appendix C.1 and 
programme Appendix C.2. Scale 3.1: 
Rate 50 Frames/sec. 

Frame Distance x ¥ Zz 

a. 9.99 2.80 
10. 9.00 © 2.80 
Be 2.70 © 3-30 
16. 70 
2a. 
ae. 2.90 
2 

    
  

2.30     
2 
2 

3 
a 
2 
a 

3 

3 
3 

2 
st
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Appendix B.2.1 Data read from the cine film for Run~30. It is the input 
for area-velocity programme Appendix C.1 and progranme 
Appendix €.2. Scale 3.1:1, Rate 50 frames/sec 

V7. 49.20 2.50 2.50 

Frame Distance X Ni < 179. 59.46 3.00 
cm 183. 51.50 2.90 

2.60 2.60 184. 0.60 
3.39 3.50 128. 53,00 

Vs 1.7 3.56 3.50 228. 63.90 
5. 23S $80 3.30 231. © 64.70 
B 3.60) < 3-20 3.20 
166 4.75 4.00 4.00 
O. 5.80 <.30 2.30 

23. 6.90 3.40 

  

3.46 
a7 6 6.00 2.70, 2.50 2.70 
a1. 23.60 2.79 2.00 3.20 
oo. 26.90 2.70 2-30 0.00 

403. 27.50 2.88 2.50 2.860 
116. 33.00 2.70 €.50 2.30 
V7. 0.00 2.66 2-59 
V9. 33.80 2.79 2.96 
V2. 36.10 2.20 2.00 
Ves. 34.89 3.20 2.00 
126. 35.00 3.06 2.00 
130. 36.76 2.59 250 
6b. 47.50 2.8C 2.50 
Wt. 48.20 2.79 2.10 
17s. 49.20 2,50 2.30 © 
V2 « 350.36 2.50 1.80 5.39 
182. 51.30 2.65 2-50 2.70 
Wad 6 $1.65 2.75 2.59 2.79 
215. 60.36 2.79 2.50 2.70 
218. $1.26 3.05 1.89 3.30 
eth. S100 2250 82159 2-80 

  

79.30 

  

83230 
84.06 

28.00 
0.909 

2.39 
3.00    

170. 4B.45 2.30 

2-30 
176. 50.10 2.20 

S
S
s
s
u
q
u
n
s
s
e
s
g
o
s
e
a
 187. 53.20 

243. 48.40 

256. 72.00 

271. 76.40 

Bi
ng

 
0 

Fo
re
 r

e 
O
l
y
 
na
pe
 
i
 

oe
 o
y 

280. 0.c9 
293. e2.60 
314. 68.09 

eS
       



    

Appendix 8.2.2 Data read from the cine film for Run-31. 

for area-velocity programme Appendix C.1 and programme 

3.05:1, Rate 50 frames/sec 

Frame 
0 

127. 
124. 
130. 
132. 
135. 
137. 
139, 
Vos. 
169. 
173. 
VS. 
179. 

Appendix C.2. 

Distance x 

@.cCO0 
32.65 
33.460 
35.90 
35.50 
26.50 
37.00 
37.50 
46.70 
45.860 
46.75 
48.00 
0.09 

51.80 
53.40 
G.co 
9.0 
C.00 

55.30 
$9.30 
60.460 
9.00 
0.ce 
0.0 

$2.80 
0.00 
9.co 

65.30 
76.60 
O.c0 

78.20 

  
2.50 
2.70 
2.70 
2.50 
2.59 
2.60 
2.50 
2.80 
2.60 
2.80 
2.80 
2.50 
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Scale 

Zz 

2.50 
2-70 
2.70 
2.76 
3.60 
2.60 
2.60 
2.70 
2.50 
2.70 
2.60 
2.55 

302. 
325. 

  

  
  

It is the input 

3.¢0 
2.30 
2.70 
2.60 
2.70 
2.80 
2.70 
2.55 
2.55 
2.50 

2.25 

2.09 
1.40 
1.60 
1210 
7.80 
1.06 
3.10 
1.86 
1.99 
2.30 
2.30 
2.00 
1.80 

    
2.10 

2.25 
2.22 
2.20 
2.29 

2.80 
2.60 
2.65 
2.85 
2.50 
2.90 
2.50 
2.50 
2.70 
2.70 
3.00 

  

2.70 

2.50 

   an    

  

e
s
q
n
a
a
g
a
e
0
 

O
N
A
N
 
A
N
N
 

o
b
e
y
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Appendix B.2. 3 Data read from the cine film for Run-32. It is the input 
for area-velocity programme Appendix C.] and programme 
Appendix C.2. Scale’ 3.01:1, Rate 50 frames/sec 

   

  

Frame Distance X ry z 163. 6.00 =.90 2.9 
cm 165. 44.60 3230 2.59 Os 3.5¢ 3.30 2.70 3.30 176. 0.0 340 2.86 Be 0.00 4.2.10 2.00 4.10 175. 47.20 2290 3.60 6. 0.00 4.00 2.05 4.00 178. 336 250 10. 9.00 4.80 1.50 6.79 180. 3.80 2-20 166 4.20 3.50 2.60 3.70 183. 3.50 2.5C 23. 0.90 4.50 1.20 4.70 187. 3.29 2a50 29. 6.60 3.69 2.89 3.50 193. 3.40 2-60 57 26.60 3.25 2.75 3.20 201. 3.20 2.70 98. 2.00 3.15 2.8¢ 3.25 205. 3.20 2.55 102. 9.00 Sars 2.10 3.20 208. 3.50 2.30 105 - 28.60 4.00 2.00 3.70 213. 3.10 2.60 

109. 29.60 3.50 2.75 3.2 ets. 3.00 2.79 5 9.00 3.56 2.60 3.59 238. 3.00 2.50 
32.60 3.00 2.80 0.00 241. 3.50 2.50 0.00 S210 2.00 3.30 245 ~ 3.20 2-00 0.0¢ «30 2.20 3.06 248. 3.10 2-60 O.CO 84.95 2.15 2.760 2st. 3.75 2.00 0.00 
0.00 4.10 2.20 2.75 opie 3.00 2.80 3.00 0.09 3.05 2.20 4.10 261. 3-50 2.50 3.00 137. 35.70 2.90 2.90 0.00 263. 3.60 2.50 3.00 ite. 48.20 3.00 2.70 0.96 256. 3.70 2.36 3.00 irra 0.00 2.50 9.06 275. 3.90 2.60 9.00 1856 49.40 2.00 3.70 287. 3.06 2.50 3.45 190. 50.70 2.70 0.00 290. 6.00 2.20 2.80 WT O.Cu 3.00 0.00 292. 4.00 2.10 2.70 194. 0.00 2.50 0.00 297. 3-50 2.30 3.50 197 6 $2.10 2.59 c.00 301. 3.10 2.86 3.16 202. 53.10 2.79 0.00 329. 3.00 2.80 0.00 203. c.0° 2.50 c.00 oO. 3.80 2.20 3.50 ets. 54.70 3.25 2.50 3.59 2. 3.90 1.90 4.10 res 0.0 Se 3.8C 2.10 3.80 217i 57.49 oS 4.60 1.70 4.50 228, 0.62 16. 3.20 3.20 3.30 2306 0.66 20. 4.50 1.60 

231. 60.05 25~ 3.50 2.60 232. 0.06 163. 3.00 2.60 
23. Ob 165. 3.36 2.90 

23a $1.56 167. 4.06 2.20 260, 0.06 168. 4.00 2.00 Pou. 6.00 173. 3.00 2.50 
2504 $5.50 176. 0.00 2.50 27s G.u0 183. 3.00 2.56 259. G.co 187. 3.50 2.0 262. 5.00 191. 3.55 2.60 263. 96.90 1956 3.60 2.60 268. 199. 3.70 2.30 209. 204. 3.00 2.50 o75s 210. 3.10 2.80 2755 212. 3-60 2.40 278. 245. 0.00 1.80 301. 219. 3.10 2.50 303. 225. 3.10 2-70 305. eer 3.26 220 315. 229. 3.20 2.10 338. 231. 3.20 1.95 0. 235. 5.25 2.50 2) 238. 3.80 2.60 

6. 24a, 3.30 2.30 10. 268. 4.00 2.00 Ate eee 3240 Biss 52. 255 2.80 2.50 54. 261. 3.00 2.36 See 266- 3.2C 6 ea. 27%. 3.60 0 
to. 275. 3.49 o be. 277 $225 c 
75. 280. 3.09 6 A. a9. 3.20 9 99. z56. 3.30 0 yo. 305. 3.59 3 107. 343. 3.20 ° 158. 318. 3.20 v 161. 339 3-10 o        
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Appendix 8.2.4 Data read from the cine Film for Run-29 at 
50 frame/sec 

    

Distance Orop (1) Drop (2) 
cm Frame Frame 

Q 0 0 
5 14 1h 

10 27 28 Appendix B.2.7 Data read from the 

g a a cine film for Run 42. It is the 
25 B 74 input for area-velocity programme 

a an Appendix C.1, Scale 3.0:1, Rate 50 frame/sec 
ho 125 124 Frame Distance X ¥ Z 

= el a a oc00 2.70 «2.00 2.70 50 159 157 a 4 z iz os 
55 176 175 Sis 9.90 2.80 1.60 3.20 
$0 194 192 6. 0.00 2.70 1.80 2.80 

65 aii 203 1h. 5x50 | gySe 2.20 0.00 
70 228 226 40. 10.00 2.80 2.00 2.50 

55 246 203 41. 9.00 2.80 2.00 2.220 
80 263 258 4h. Q.00 2.70 1.50 3.50 
85 282 280 47. 9.00 2.30 1.80 3.00 

495 0.60 2.50 2.00 2.79 
BA's g.00 = 3.20 2.00 0.00 

Appendix 8.2.5 Data read From the cine film for Run-33 at Bc 13.90 2.50 2.00 0.00 
50 frame/sec 38. 6-00 3.20 1.90 9.30 

89. 9.00 2.20 
g56 6.00 2.50 
93. 23.00 2.70 

Distance Drop (1) Drop (2) Drop (3) 97. 26.10 2.50 
cm Frame Frame Frame 101. 0.00 9.06 

0 9 ° 9 103. 9.00 0.00 
5 16 16 16 173. 43.80 2.66 

10 30 3 32 = ATS 0.00 
15 uy 4B 4g 182. 0.00 
20 64 66 66 189. 48.20 

25 61 82 82 255. 65.20 
30 99 101 39 260. a.09 
35 v7 ig 7 267. 68.30 
4o 133 137 134 rs - 9.00 
45 152 154 152 ea 71-30 

50 170 71 170 309. 79.239 
55 189 189 188 Bate a.00 
60 205 206 205 314. 30.60 
65 225 224 223 32) $4060 

70 281 242 240 33: 0.00 
75 260 262 258 36.00 
80 278 278 276 0.00 
85 296 297 296 1.30 
87 304 305 303 3.89 

16.00 
9.00 

Appendix 8.2.6 Data read from the cine film for RU-35 at eed 
$0 frame/sec i 9-00 22.90 

9.00 
23.40 

Distance Drop (1) Drop (2) Drop (3) ee 
em Frame Frame Frame 3160 

: : ‘ : 31.80 5 21 21 22 2.00 
10 4o 4o 4) 33.50 
15 58 53 60 as 

20 76 73 79 fey 
25 103 7 96 eas 

30 421 116 4 46.50 
35 139 135 132 ets 

4o 157 153 149 ea 08 
8s 172 171 166 a 

50 189 188 183 Pee 
55 206 205 201 cars 

60 226 225 219 s0552 
65 241 239 236 ote 
70 258 258 253 re 
e 277 274 271 35.50 

0 293 291 288 4606     85 312 313 31
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Appendix 8.2.8 Data read from the cine film for Run-39 at Appendix 8.2.9 Data read from the cine film for Run=36 at 
50 frame/sec at 50 Frame/sec 

Distance Drop (1) Drop (2) Drop (3) Distance Drop (1) Drop (2) Orop (3) 
com Frame Frame Frame cm Frame Frame Frame 0 0 0 Q Q 19 0 0 

5 24 21 22 5 38 21 20 10 43 40 4i io 57 ko = 
15 63 60 61 15 76 58 59 

20 82 82 82 20 93 7 80 25 101 102 102 25 112 94 99 
30 121 122 125 30 129 112 e 

35 141 143 147 35 146 131 133 
40 160 162 168 40 164 150 150 
45 179 181 187 45 183 168 166 

50 196 198 206 50 198 185 184 
55 214 217 224 55 216 202 202 60 233 236 242 60 233 219 220 

85 252 254 261 65 249 238 240 
70 269 271 282 70 266 255 258 
15 286 288 299 75 284 272 276 
80 306 306 318 80 301 289 292 
85 328 324 339 85.5 310 307 310 
88 340 337 350 87.5 = 314 318 

Appendix 8.2.10 Qata read from the cine film for Run-43 at — gonendix 8.2.11 Data read from the cine film for Run-40 at 
50 frame/sec 50 frame/sec 

Distance Orop (1) Orop (2) Drop (3) Distance Drop (1) Orop (2) Drop (3) 
cm Frame Frame Frame em eS Frame Frame 

° 9 9 Py 0 0 0 0 
5 25 23 5 24 24 23 10 46 ah 43 10 42 42 42 

15 66 65 6h 15 61 60 63 
20 5 85 82 20 80 rR 31 

25 105 104 102 25 38 398 101 
30 124 123 121 30 WW - 120 

35 143 14a 140 35 136 = 140 
40 161 162 158 40 154 - 159 

45 180 181 176 45 173 172 176 
50 197 200 195 50 180 190 194 
55 215 219 213 55 208 208 212 

60 233 238 231 60 - 226 230 
65 251 256 249 65 245 243 248 
70 269 274 266 70 262 259 266 
75 288 292 283 5 280- 276 283 
80 307 3H 303 80. 297 293 299 
85 325 331 323 85 317 31 318 
88 336 345 334 87 325 318 327 

Appendix 8.2.12 Data read from the cine film for Run-50 at 
50 frame/sec Appendix 8.2.13 Data read from the cine film for Run-44 at 

50 frame/sec 

Distance Drop (1) Drop (2) 
(cm) Frame Frame Distance orsp tt) Cron (2) 

¢ ° e cm Frame Frame 
: 23 23 3 ft : 

10 46 43, 5 a e 
13 66 64 10 ts 5 

20 86 86 is a Al 
25 jou 105 20 G ry 

30 124 125 25 101 100 
35 184 147 30 i ey 

4o 163 168 35 1ho i 

45 185 130 ie ise ee 
50 205 210 45 ‘BS oe 

55 227 233 50 205 204 
60 249 254 55 219 225 

66 anh a3 60 238 240 
70 230 294 65 256 a 

75 311 315 70 27h oe 
80 231 334 15 291 294 

e 33% a2 80 308 311 
88 361 367 85.5 328 329
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Appendix B.2.14 Data read from cine film for Run-37, Scale 2.95:1, 
Rate 50 frame/sec 

Distance X 

0.68 2.20 
200 
0.00 
3.00 
2200 
7200 
aloo 
0.00 
0.00 

24.50 
o.00 
0:00 

    

a ie 

  

47.20 

9.00 

0.00 
66.00 
66.50 
9.00 
0.00 
9.00 

77.20 
0.00 

79.10 
39.00 

2.30 
2.40 

1.90 
1.99 
2.00 
1.70 

2.00 

2.00 

1.30 
1.90 
2.00 
1.80 
1.60 
2.00 
1.99 
2.00 
1.99 
1.80 
1.80 
1.30 
1.60 
2.90 
1.75 
2.00 
1.99 
1.80 
1.85 
1.90 
1.90 
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Appendix B.2.15 Data read from cine film for Run~41. It is the 
input for area-velocity programme, Appendix C.1, 
Scale 3.0:1, Rate 50 frame/sec 

Frame Distance X Ms Z 
cm 

9. 0.09 
3. 0.09 
6. 0.00 

- 0.00 
12. 2.70 2.20 1.90 
18. 0.00 2.40 2.00 — 
4. 11.00 1.80 2.00 
45. 0.00 2.10 2.00 
47. 0.00 2.60 1.80 
49. 0.00 2.60 1.90 
Sle 12.80 

19.50 2.40 2.10 9.00 
32.80 2.70 1.50 
0.00 2.30 1.70 
0.09 2.30 1.70 

35.30 2.30 1.30 
9.00 2.10 1.90 

36.80 2.30 2.0 

  

0.00 2.50 1.80 

105~     
Appendix B.2.16 Data read from cine 

film for Run-48, 
Scale 3.0:1, Rate 
50 frame/sec 

Frame Distance X yy: Zz 

cm 
o. 0.00 2.80 
3. 0.00 2.80 

we 9.50 3.00 
1S. 3.50 2.89 
1a. 0.00 3.00 

2.60 
2.20 

166. 

  

   6
6
6
5
0
0
6
5
 

t
e
d
 

bb
 w
o
t
s
 

oc
          C

N
A
 
N
U
N
 
K
O
N
 
W
N
W
 
R
E
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Appendix B.2.17 Data read from the Appendix B.2.18 Data read from the 
cine film for Run-38.Scale 2.7:1, cine film for RUn-34. Scale 3.0:1, 

rate 50 frame/sec rate 50 frame/sec 

Di 7 
Frame Distance x y Z Frame Peeass x y z 

See eS kO, 1 eats o 0.00 1.50 1.80 
240 1570 2-40 Sie 0.00 2.50 91.40 2570: 460! © 510 ee Glad meiea . scsi 
ent 75 9. 0.00 © 2.20 1.00 

: : - Adie 0-00 2.60 1.00 
CaSO (Mess Fare 13. 5.70 2:20 ©4280 
2-50 = 1-50 2.-70 15. 4.60 2.30 1.00 
eo30 4,40° 2-80 17. 5.00 1.85 1.80 
gxe0 9 2520 2520 ie. 0.00 1.80 2.00 
ak Shek, | Wikose 22. 6.70) 1.80 & 2.40 2.60 1.80 2.40 isa. caesee fone 
2550 netO 3460 . 86200 Aces 
07007 1.90 2.50 we. 8) 45-16 qlee 
2-50 2.00 2-20 71. 24.90 4280 
oe oe 75.) 25240 1.60 2.00 
aie aco 30. 0.00 1.80 01.36 
ae Sp a6. 25.70 1.80 1.80 
ne a0 $02." $2.20 1.60 2.00 
o0 oF 108. a.00 256 2.00 
sa oro 109. 2.00 60 0 280 
me sien HAGs: | Se3800 1.55 2.00 
os ad 40's 0.00 ges0.  2b80 
fae 2 112. 0.00 1.60 2.00 
<0 ence 136. 39.80 1.50 1.99 

2-20 2-20 ae 0.90 1.50 2.00 
2.20 2.20 Anes 0.00 1.50 © 2.00 
2.20 2-30 1335 61.00 1.60 © 1.90 
2.60 2.60 139. 0.00 1.65 4.90 
2.55 2.60 140. 0.00 1.60 1.95 
3<19 2-80 141. 62.00 1.50 2.00 
2.50 e00 246. 71.60 1.50 2.00 
$018 2-20 247. 0.09 1-65) 2.19 

2.30 248. 0.90 4.65 2.00 
2-70 Beod 249. 7250 ae. 1.80 
2.2 ened 259. 0.00 1.50 2.00 
2.50 2-50 25ts 9.3 1.50 2200 
aan a 252. 0.06 1.50 2.90 
pe ae 253. 73.60 168 195 
seh Se5 254. 0.00 tera’ = 1c80. 
oa Suse 255. 0.00 25 © 4.35 
eee ee 256. 0.00 170 © 1.698 
oe) a5 293. 85.00 1.50 © 2.90 
260 2.70 
2.10 2.56 
2.30 2.20 
2.20 0.00 
2.20 2.66 
3.09 12.40 
2.60 2.20 
2.30 2.30 
2.50 2.50 
2.20 2.50 
2.19 2.50 
2.10 2.30 
2.20 2.10 
2.20 2.29 
2.60 2.30 
2.50 2.20 
2.60 2.20 
2.59 2.30 
2.50 2.50 
2.69 2.60 
0.00 2.90 
2.20 2.40 

303. 2.40 2.230 
325. 0.00 2.00 
334. 2.20 2.20  
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APPENDIX C.4 CALCULATION OF MASS TRANSFER COFFICIENTS PROGRAMME,OUTPUT D4. 

TRACE 2 
MASTER MASS 

THIS PROGRAMME IS TO CALCULATE MASS TRANSFER COEFFICIENTS USING : 

ROSE AND KINTNER (111) ;ANGELO,LIGHTFOOT AND HOWARD (80);SRUNSON 

AND WELLEKE (79) SAND YAMAAGUCHI , FUJIMOTO , KATAYAMA AND WATANABEC110,113) 
TWO MODIFICATIONS WERE INTRODUCED ON ROSE ZT.AL. 

(1) USING THE APPROPRIATE CORRELATION FOR CONTINUOUS PHASE COEFFICIENT 

(2)USING ANGELO ET.AL. FORMULA FOR CONTINUOUS PHASE COEFFICIENT 

ALSO FREQUENCIES ARE CALCULATED USING THE EXPERIMENTAL OVER ALL 

MASS TRANSFER COEFFIECIENT. REYNOLD ,WESER,SHERWOOD,SCHMIDT AND 

STRHOUL NUMBER WERE ESTIMATED. 

READ(3,2) DENC,DC 
READ(3,1)DEND,AIT,00,0IST,VISD 
VIS=0.00958 
WRITEC6,35)0ENC,DEND,0C,00 
WRITEC6,112)0IST,VIS,AIT 
00 4 K=1,2 
KRES6+K 
WRITECS,S)KA,KR, 
N=? 
REAO(3,5)0E,VELT,E0,Ex PK 
WRITEC6,34)DE ,VELT,E0,ExPK ,VISD 
REYNOLD=DE*VELT#OEND/VISD 
WEBERD=DE e(VELT#e2)40END/AIT 
SHERWOCO=EXPK*0=/90 
SCHMIDT=VISD/ (DEND#00) 
WEBER=DE*(VELTee2) @DENC/AIT 
PGROUP=(AIT##3) #(DENC##2) /(980e(VIS##6) 4 (DENC-D=ND)) 
WRITECE,T1T)REYNOLD WEBERD, SHERWOOD, SCHMIDT, WEBER ,PGROUP 

  

THIS LOOP TO CALC. THE COEFF. FOR THREE DIFFERENT VALUES 

OF OSCILLATING MODE 1.2.=2,3,4 

00 3 £21,3 
WRITECO,49)N 
B=(DE*#*9.225)/1.262 
CT=(N+1)*DEND+N®DENC . 
FRISALT#N® (N41) *(N=1) # (N42) 
FRZ=(DEe*3)eC1/3 

FREQ; MODIFIED LAMB FREQUENCY 

FREG=(3*FRI/FR2)*20.5
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APPENDIX C.4 (CONTINUED) 
w 

13 

FREQ); MOOIF    LAMB IN SEC#*-1 

FREQT=FREQ/ (243.1616) 

FREGSK;IS HALF MODIFIED LAMB IN RAD/SEC 

FREQSK=FREQ/2 
EDS0.465#( (DDH FREQ) ##O.5) 
RESDE*VELT*DENC/VIS 
SC2(VIS/(DENC#OC)) ##0.7 
YT=50+0.0085#RE«SC 
ECEDCHYT/DE 
ROK=0.68((DC*#VELT/DE) **0.5) 
EQVERA=(EC*ED)/(EC+OIST#ED) 
ROKOSC(ROK*ED) /(ROKFOIST*ED) 
AOS=14E0/2 
Bw 1=(14+0.378 #60) «((OD*FREQSK)#*0 .5)*2/(3.14616*A0S) 
BW2=(140.687*E0) #((DD*FREGSK)*#0 .5)#2/(3.1416#A0S) 
FROP=EOVERA/ED 
FRCP=O0IST*EOVERA/EC 
DEFSFROP¥DD+FRCEPHOC 
RKD=ROKO/ED 
RKC=OIST#ROKO/ROK 
DEFTERKD*DDFRKC HDC 
XOT=DEFI/ROKO 
BWOOT=(ECeBW1)/ (EC+OIST*BW1) 
BWODZ=(EC*BW2)/ (CEC+OIST*BW2) 
XO=DEF/EOVERA 
ALKO 1S (4#0D#FREG14(14E0+(3#E00#2)/8)/3.1616) 480.5 
ROKOT=(ALKD1#ED) / (ALKDI+DIST#ED) 
FROKDI=ROKOT/ED 
FROKCI=DIST#ROKOT/ALKD1 
DEFZ=FROKD1*DD+FROKCI*OC 
KOZ=DEFZ/ROKO1 
ALKDZ=1/ C1+01EST#( (00/00) #*0.5)) 
ALKD=ALKD TAL KOZ 
YUJE1.G0(FREGTODC) ##0.5 
YUI=1. 144 (DEND WU DE#H2) SFREGT/VISD) 440.56 
YUZ=(VISD/(DEND*00))**0.5 
YUDRDD eYUT#YU2/9e 
YUTSYUJeYUD/ (YUd eOSTaYUD) 
WRITEC6, 97) FREGSK ,ED, ROK ,ROKO ,OEF1,XOT 
WRITEC6,10)FREQSK,£0,EC,EOVERA DEF XO 
WRITEC6,101)ED,ALKD1,ROKO1,DEF2,X02 
WRITEC6,95)FREQ1,YUS,YUD,YUT 
WRITECS,33)FREQT,ALKD1 ,ALKD1,ALKO 
WRITE(6, 43) FREGSK,EC,5w1,2W001,Bw2,8W002 
SRT=FREGT#OE/VELT 
ZM=VISD/((DEND#ALT#DE) *#0.5) 

WRITEC6,126)SRT,2M,RE 
NSN+T 
WRITE(6,98) 
CONTINUE 
WRITE( 6,124) . 

THIS PART IS TO CALC. FREQUENCIES FROM EXP. OVER ALL COEFFICIENT 

ALSO STRHOUL NUMEERS WERE CALC. 

pO 13 KIA=1,100009 
IF(KIA.GT.1) GO TO 14 —~ 
FCAL=FREGSK*#C.0S 
OLFsExPK/50.0 
60 TO 13 
FOAL=FCAL+KIA89 006 
EDK=0.45"((OC#FCAL#2) #*0.5) 
FCALI=FCAL/3.1416 
EDKCH(GHODMFCAL TH (14E04( 3420002) /89/3 1416) 490.5 
EDKT=EDKCHEDK/(EDKC+DIST#EDK) 
TFCABS CEXPK=EDKT) .LE.DIF) GO TO 15 
CONTINUE 
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APPENDIX C.& (CONTINUED) 

15 FCALZ=FCAL#2 
RK 1D=CEXPK*ROK) / (ROK=DIST#EXPK) 
RK IFREQ=(RKID/(0.45#(D0*40.5)) )en2 
RK2D5( EXPK*EC)/ (EC-OISTAEXPX) 
RKZFREG=(RK2D/ (0.45 *(D 0440.5) ) ee2 
ALD=EXPK/ALKO2 
AL=(G*0D*(1+E0+ (3"E0042)/8)/3.1416)420.5 
ALFREQ=(CALD/AL) ##2) (5.161642) 
BRWE1=(14+0.378%E0)*(0D**0.5)#2/(3 1614408) 
BRWE2= (140687420) * (DD #965) #2/(3.1416*405) 
BRIFREG=((RK20/5RWE1) #42) #2 
BRZFREQ=((RKZ2D/BRWE2) #42) #2 
SRTIERKIFREQ*DE/ (3.161642 4VELT) 
SRTZ=RKZFREQ*DE/ (3.141642 *VELT) 
SRTIS=ALFREGHDE/ (3.1416 *2*VELT) 
SRIG=BRIFREQ*0E/(3.1646e24VELT) 
SRIS=BRZFREQ*OE/(3.1616#2eVELT) 
SRTS=FCALI*DE/VELT : 
WRITEC6, 123) RKIFREQ,SRT1,RKZFREQ,SRT2,FCALZ,SRT6,ALFREQ,SRT3, 
*ERIFREQ,SRT4,BRZFREG,SRTS 
WRITE(6,99) 

4 CONTINUE “ 6 FORMATCIH ,"RUN NO.*,I4,3X,"RUN NO.*,14,3%,"RUN NO ',16,//) 
10 FORMATCIH ,*MOOIFIED ROSE AND KINTNER *,/,20X,0PF10.4, 
#5(1PE11.6,2x) ,/) 

97 FORMATCIH ,"ROSE AND KINTNER ",/,29x,O0PF10.4,5(1PE11.4,2x),/) 
33 FORMATCIH ,"ANGELO , LIGTFOOT AND HOWARD',/,20X,CPF10.4, 
#3(1PE11.4,2x) ,/) 

43 FORMATCIH "BRUNSON AND WELLEK *,/,20X,OPF10.4,5(1PE11.4,2x),/) 
5 FORMAT(4FO.0) 
2 FORMAT (2FO.0) 

35 FORMATCIH ,"DENSITY C.=",2x ,0PF5.3,2X, "DENSITY 0.=*,2%,0PF6.3,1%, 
*' DIFFUSION C.C.=*,2X,1PE10.3,1%, "DIFFUSION C.D.=",2%,1PE10.3) 

112 FORMATC//, 1H ,*OLSTRIBUTION R=", 0PFS.6,1X, "VISCOSITY =, 2x, 
*1PE10.3,1X, "INTERFACIAL TENSION=",0PF6.3,//) 

111 FORMATCIH ,"9ROP REYNOLOS=",2x,1P511.4,2%,'DROP WEBER’, 2x, 
#1PE11.4,2X%, SHERWOOD NO.=*,2x,1P£11.4,/,1H , 
* "SCHMIDT NO.=",2X,1PE11.4,2X, "WEBER NO.*,2%,1PE11.6, 
*2X,°P GROUPS" ,2x%,1PE11 24,7) 

126 FORMATCIH ,*STROUMAL NO. = ',3x,1PE11.£,2x,°m 
#2X,1PE11,06,2X "REYNOLDS NO.=", 2X ,1PE11.6,//) 

101 FORMAT(1H "SECOND MODIFICATION OF ROSE AND KINTNER', 
*/,20X,5C1P E1424) ,/) 

123 FORMATC//, 1H ,*FREQUENCY FROM ROSE METHOD= ',13X,F10.4,2x, 
**STROUHAL NO-=",2X,F10.4,2X,/1,1H 
**FREQUENCY FROM MODIFIED ROSE =",11X,F10.6,2%,'STROUHAL NO_=', 
#2X,F1G.4,//,1 ,*FREGUENCY FROM 2ND MOOIFICATION OF ROSE=", 
*1X,F10.6,2K,"STROUHAL NO.=*, 
*2x,F10.4,/7,1H ,"FREQUENCY FROM ', 
#* ANGELO ET AL.=",11X,F19.4,2%,"STROUHAL NOL=",2%,F10.6,/7,0H | 
“ "FREQUENCY FROM SRUNSON 1 = ', 
*14X,F10.6,2%,"STROUHAL NO.=",2x,F10.4,//,1H , 
+ FREQUENCY FROM BRUNSON 2 =*,15X,F10.4,2X,'STROUHAL NO.=", 
*2x,F10.6,//) 

126 FORMAT(1H ,'THE FREQUENCIES ARE CALCULATED USING THE", 
*! EXPERIMENTAL OVER ALL COEF.*,//,1H ,*ASSUMING THAT K.C. HOLD", 
+! FOR CONTINUOUS PHASE FILM*,//) 

34 FORMATCIH ,GHEG.OTAMS,2x,F8.2,2% ,10HVELOCITY =,2X,F10.2,2%,4H = = * ,2X,F8.6,2X, 
**KEXP 5°,2X,1PE1106,2X ,"VISCOSITY DISP.",2X,1PE11.6,2%,/) 

40 FORMATCIH ,'MCDE OF OSCILLATION =*,14,/) 
9B FORMAT (LSHP4++erterteressrrsettstratese totes eresetetess) 
G9 FORMAT ("Aseeneneetsaeeeererterentnestennsseasentieenes reneree!, 

    

    

  

  

  

OHNESORGE NO.=", 

      

  Qieeentennerrnnnereneerent) 
GS FORMAT(IH | ‘YAMAGUCHI, FUJIMOTO,KATAYAMA AND WATANABE", 

#1 ,29X;, OPF19.4,3¢1P511.6),/) 
1 FORMAT (5F9.0) 

stop 
END 
FINISH 

anes
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APPENDIX-D.2 THE QUTPUT OF SYMMETRICAL SPHEKIOD CALCULATIONS PROGRAMME,FOR RUN-S 
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(continued) 
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APPENDIX D.2 (continued) 
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APPENDIX E 

E.1 DROP FORMATION CALCULATION 

E.1.1 THEORETICAL OVERALL DISPERSED PHASE COEFFICIENT 
  

Michel and Pigford (196) equation for continuous 

phase mass transfer coefficient: 

D 
= 4.61 aay 

Ker 

Sawistowski and Goltz (132) equation for dispersed 

phase mass transfer coefficient 

_ 40 ,Da 
Kar 7 “ats ey 

where t is the time of drop formation and Do» Dg are 

estimated using the Wilke and Chang (191) equation. 

Thus, the overall dispersed phase mass transfer 

coefficient is: 

Coe ee gee 
Kae Kae Kes 

The results were shown in Table E.1 for the 

toluene-acetone-water system. 

E.1.2 EXPERIMENTAL OVERALL DISPERSED PHASE COEFFICIENTS 

The overall mass tranfser coefficient may be 

estimated from (197): 

* 
= ¢ A =) (B.3) 2 = Kae Ame (p
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where 

is the concentration of dispersed phase; 

*
Q
 

Cc. is the concentration of dispersed phase in 

equilibrium to the concentration of the 

extract phase; 

mt is the mean area of the droplet during 

formation assuming that the drop grows from 

zero volume at time ty and is always a 

sphere until its release at time ty. 

If V and d are the volume and diameter of any 

sphere, surface area A = ad? = Ey P/8 

The drop volume changes at a constant volumetric rate 

u, then A at any time t; is equat to 

= ni/3 62/3 2/3 42/8 (B4) 

Equating the product of surface and time, and 

introducing Ant: 

Ane = (et y trl8 couyP/® Bc 0,9/8 — 4 °/8)) 
Oo 

(E5) 

For e, = 0 

Ane = 0-6 r/3 ceuty?/8 (B.6) 

The concentration of the dispersed phase in 

equilibrium with the concentration of the extract 

phase () was taken as zero because the volumetric 

rate of continuous phase are 47-45 times that of the 

dispersed phase. The results are tabulated in 

Table E.2 and the theoretical and the experimental 

overall mass transfer coefficient during drop formation 

are shown in figure (E.1).
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The overall mass transfer coefficient during 

formation for the experiments were read from figure 

(E.1) for toluene-acetone input concentration, 

while for n-heptane-acetone the mass transfer 

coefficient during formation was calculated by taking 

the value from figure (E.1) and multiplied by the 

ratio of the overall diffusion coefficients of 

n-heptane system to that of toluene. 

E.2 DRAG COEFFICIENT CALCULATION 

Under steady state conditions, the gravity 

force on a rising drop is exactly balanced by the 

resistance it encounters: 

ye 
VY Ape = CyA oe Gy) 

from which 

2VAog epee E.8 
&p Av2oe ( ) 

The results are presented in Table E.3. and figure E.2.
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F.2 THE CORRELATIONS OF ECCENTRICITY FOR TOLUENE-ACETONE-   

WATER AND n-HEPTANE-ACETONE-WATER SYSTEMS   

The following correlations for toluene-acetone- 

water and n-heptane-acetone-water systems respectively 

were found the most suitable to predict the eccentricity 

Gi) O.ReS Pore Nag (RD 

% =0.09 0.08 0.5 
e =. 0.332 Sr We. oy (F.2) 

The above correlations gave an average absolute 

deviation of 10 and 8% as shown in figure (F.1)
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area of droplet, em? 

horizontal radius of spheroid, cm 

amplitude in X-axis, em (3.37) 

average mean area during drop formation, 
cm2, equation (E.6) 

vertical radius of spheroid, cm 

constant/function 

concentration, gmoles/1, gm/om®? 

drag coefficient 

diffusivity, em?/sec 

diameter of droplet, cm 

equivalent diameter of droplet, cm 

concentration driving force, gmoles/1 

deformation ratio {(X-Y)/(X+Y)} 

length D3, the interfacial area divided 
by maximum perimeter of the ellipse 
vertical to the flow, cm 

effective diffusivity from Rose and 
Kintner, modified and second wodifica— 
tion methods respectively, cm/sec 

eccentricity of axes, equation (2.18) 

extraction efficiency 

= extraction efficiency from Rose and 
Kintner, modified and second modifi- 
cation methods respectively 

drag force 

oscillation frequency of droplet found 
experimently (rad/sec) 

physical constant, equation (3.11) 

flow rate of continuous phase, em3/min 

flow rate of dispersed phase, om3 /min



dle 

cc 

Ustokes 

4 
- 
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equation (3.52) 

acceleration of gravity, cm/sec” 

overall mass transfer coefficient, cm/sec 

individual mass transfer coefficient, 
cm/sec 

dispersed phase mass transfer coefficient 
calculated from the experimental overall 
dispersed phase mass transfer coefficient 
assuming that Garner and Tayeban (44) 
correlation for the continuous phase 
mass transfer coefficient is valid, cm/sec 

continuous phase mass transfer coefficient 
calculated from Garner and Tayeban cor- 
relation, cm/sec 

ratio of equilibrium concentration 
dispersed to continuous phases 

mode of oscillation 

interfacial flux in solute, gmoles/sec 

property group equation (2.8) 

dimensionless correlation factor 

radius of spherical droplet 

fraction of surface renewal (3.5) 

surface free energy 

time droplet rise period, sec 

terminal velocity equation (2.20) 

volume, em? 

terminal velocity of droplet, cm/sec 

velocity of droplet, equation (2.6), 
em/sec 

instantaneous velocity, cm/sec 

equation (3.47) 

fictitious film thickness, cm 

length of droplet X-axis, cm 

half length of droplet X-axis, cm
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= fictitious film thickness from Rose 
and Kintner modified and second 
modification methods respectively 

= length of droplet Y-axis, cm 

= half length of droplet Y-axis 

= length of droplet Y-axis from displaced 

volume, cm 

= length of droplet Y-axis from mean 
volume, cm 

= length of droplet Z-axis, cm 

= half length of droplet Z-axis, cm 

Dimensionless Groups 

ue 
Ga 

Pe 

Re 

Re 

Se 

Sh 

Sh' 

Sr 

We 

ARe 

2 

= Eotvos number ee 

32, 
= Golilec number “8 

dev 
= Peclet number a 

= Reynolds number widen 

= equation (3.21) 

= i ae Schmi dt oD 

= Sherwood number Kde 
D 

= modified Sherwood number with average 

Kq a Ka d Se 

= Strouhal number od 

= time dimensionless group a3 
e 

= Weber number   
dev2p 

T 

= equation (3.52)



Functions 

F(e) 

eCt) 

An 

£,(t) 

IF(I,$)& EI(I,4)) 

Greek Letters 

w* 

0,T 

-281- 

equation (2.16) 

equation (2.14) 

Legendre polynomial 

empirical function equation (2.28 & 2.29) 

equation (3.13) 

function of k, 

function of ke 

equation (3.39) 

elliptic integrals 

density, g/em? 

viscosity eP 

(Po-Pg)s g/cm? 

interfacial tension, dyne/cm 

transitional frequency, rad/sec 

equation (2.13) 

equation (2.27) 

time 

frequency rad/sec, or sec”? 

yo 

equation (3.46) 

equation (3.61) 

average interfacial tension (0;-o-), dynef&m 

ratio of interfacial tension a 

He ratio of viscosity 
uq
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Subseript 

A = component A 

= average 

Cc = continuous phase 

W dispersed phase 

= after drop formation     
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