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Abstract. It has been suggested that the deleterious effect of contrast reversal on visual 

recognition is unique to faces, not objects. Here we show from priming, supervised 

category learning, and generalization that there is no such thing as general invariance of 

recognition of non-face objects against contrast reversal and, likewise, changes in 

direction of illumination. However, when recognition varies with rendering conditions, 

invariance may be restored, and effects of continuous learning may be reduced, by 

providing prior object knowledge from active sensation. Our findings suggest that the 

degree of contrast invariance achieved reflects functional characteristics of object 

representations learned in a task-dependent fashion. 
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Introduction  

Contrast reversal disrupts the visual recognition of human faces from grey-level 

(Galper, 1970; Hayes, Morrone, & Burr, 1986; Liu, Collin, Burton & Chaudhuri, 1999) 

and two-tone images (Phillips, 1972), whereas little or no effect of contrast reversal on 

the recognition of chairs (Subramaniam & Biederman, 1997) and contraptions of 

geometric components (“Greebles”; Vuong, Peissig, Harrison & Tarr, 2005) has been 

reported. A possible explanation of this discrepancy is the existence in test objects of 

differences in contrast-invariant shape features resulting from discontinuities of 

orientation and depth (Nederhouser, Yue, Mangini, & Biederman, 2007). To exclude 

this possibility, the latter authors compared the effects of contrast reversal on the 

recognition of faces and non-face stimuli composed of spherical harmonics. The results 

obtained were suggestive to these authors of contrast reversal being deleterious to the 

recognition of faces but not objects. 

 An alternative account of the dependence of visual recognition on contrast 

reversal has been offered by Jüttner, Langguth & Rentschler (2004). These authors 

studied supervised category learning (Caelli, Rentschler & Scheidler, 1987) and 

generalisation to contrast reversal for several sets of compound Gabor signals (grey-

level patterns composed of Gabor waveforms; Caelli, Hübner, & Rentschler, 1986). The 

sets differed either locally in their grouping in feature space or globally in the grey-level 

distribution of learning patterns. Jüttner and co-workers found an inverse relationship 

between the set-specific duration of category learning to criterion and generalisation to 

contrast reversal whereby fast learning coincided with invariance to contrast reversal. 

They analysed their behavioural data by means of computer simulations employing an 

evidence-based, structural pattern classifier (cf. Jain & Hoffman, 1988; Caelli & Dreier, 
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1994; Jüttner, Caelli & Rentschler, 1997). For a given categorisation task, Jüttner et al. 

obtained sets of part and part-relational attributes, or feature states, as solutions within 

this evidence-based system (EBS). They found the psychophysically observed speed of 

category learning to be directly proportional to the number of EBS solutions in search 

space. Importantly, fast learning was associated with high relative frequency of 

contrast-invariant feature states used for generating class descriptions.  

On the one hand, the findings by Jüttner et al. (2004) indicate that invariance to 

contrast in pattern recognition depends on task- or context-dependent characteristics of 

learned representations (cf. Albright, 1995). On the other hand, the visual recognition of 

three-dimensional (3D) objects could involve more abstract types of representation in 

the brain (Biederman, 1987; Biederman and Kalocsai, 1997) that entail a generic, 

learning-independent invariance to contrast reversal. To resolve this issue, we examine 

the effects of changed rendering within a category learning paradigm involving 

unfamiliar 3D objects (cf. Osman, Pearce, Jüttner & Rentschler, 2000; Rentschler, 

Gschwind, Brettel, Osman & Caelli, 2008). More specifically, we study supervised 

category learning as well as generalisation to novel viewpoints and changed rendering 

using 3D objects composed of a fixed number of identical spheres. For probing the 

nature of object representations, we control the amount of prior knowledge subjects 

have about test objects. This is achieved through priming, a technique from memory 

research using the beneficial influence of pre-exposure to a stimulus in the absence of 

explicit instructions to remember the stimulus (see Biederman & Cooper, 1991; Cooper, 

Schacter, Ballesteros, and Moore, 1992).  

The conjecture of invariance characteristics of object recognition being task-

dependent entails the possibility that internalised representations are susceptible to 
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continuous learning (Tagscherer and Protzel, 1998; Tagscherer, 2001; Keith-Magee, 

2001, unpublished Ph.D. dissertation, Curtin University of Technology, Perth, W.A.). 

That is, visual object recognition may not only be enabled by category learning but 

continuously modified by interfering input signals (cf. Edelman, 1987). We investigate 

this possibility in an additional experiment, where participants classify object views in 

standard rendering after having performed with test views in changed rendering. 

 

METHODS 

Subjects 

45 subjects participated for pay. They ranged in age from 19 to 45 years and were free 

of ophthalmologic and neurological disorders.  

Stimuli  

Learning objects. A set of three test objects was constructed using four identical sphere 

parts in varying spatial arrangements (Fig. 1a). Objects were designed according to the 

concept of chirality. Chiral objects cannot be carried into their mirror images by 

rotations and translations. Handed chiral objects allow categorization into “left” and 

“right” objects (King, 2003). Bilaterally symmetric objects are achiral by definition. 

Thus, one non-handed achiral object (object 1, cf. Fig. 1a) and one pair of handed chiral 

objects (objects 2 and 3) were used. Physical models were constructed from directly 

connected polystyrene balls each measuring 6 cm in diameter. Three spheres formed a 

rectangular isosceles triangle. The fourth sphere was placed perpendicularly above the 

centre of one of the base spheres. Corresponding virtual models were generated and 

displayed for 250 ms each as perspective 2D projections by means of the Open 
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InventorTM (Silicon Graphics, Inc.) 3D developer’s toolkit. A lighting model of mixed 

directed and diffuse illumination lacking cast shadows was used. At the viewing 

distance of 1 m, virtual objects subtended in average 7.4°.  

Learning views. Discarding views redundant due to rotational symmetry, 22 learning 

views (6 for object 1, and 8 for each of objects 2 and 3) were generated by sampling 

azimuth and polar angle of the viewing-sphere in 60° steps. Steps were taken on three 

great circles inclined against each other by 60°. The equatorial plane was horizontal and 

contained the symmetry axis of each object (three-fold rotational symmetry of object 1 

and two-fold rotational symmetries of objects 2 and 3). The origin of the coordinate 

system used for sampling was at the centre of gravity of the component spheres and thus 

on the symmetry axis of each object. To reduce occlusion artefacts, reference views 

(Fig. 1a) were chosen such that the objects’ symmetry axes were perpendicular to the 

picture plane and no centre of any sphere was directly in the equatorial plane. An angle 

of rotation in the picture plane, randomly selected from the values of 0°, 60°, 120°, and 

180°, was employed to prevent observers from using the frame of the computer screen 

as a reference. To examine the possibility of recognition depending on pixel-based 

similarities of input signals and stored 2D views (cf. Bülthoff & Edelman, 1992), 

classification probabilities were predicted from a Minimum-Distance Classifier (see 

Ahmed & Rao, 1975) using the maximum of the 2D cross-correlation function as a 

measure of similarity (cf. Caelli & Rentschler, 1986). Predicted classification 

probabilities were at chance level for all three objects, demonstrating that no differences 

of pixel-based similarities exist within the learning set. Thus, the 2D views of the 

learning set qualify as “structure-only” stimuli. 

[Figures 1 about here] 
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Test views. In order to test spatial generalisation, 64 views from novel viewpoints were 

obtained from sampling the viewing sphere as above but in 30° steps. Views redundant 

due to rotational symmetry or identical to those used during supervised learning were 

discarded. Finally, the views were manipulated using three different rendering 

conditions. For views in the standard rendering condition the lighting model remained 

unaltered. In the contrast reversal condition, the grey level of each pixel was subtracted 

from the maximum value 255 to obtain reversed intensities (Figs. 2a). For views in the 

condition of changed  direction of illumination (Fig. 2b), the default position of the light 

source was changed from the upper left (infinite distance, 10° to the left and up from the 

viewer’s position) to the lower right from the observer’s position (infinite distance, 45° 

to the right and 90° down from the viewer's position). 

[Figure 2 about here] 

Procedure  

The main experiment consisted of three parts: priming, supervised category learning, 

and generalization. Subjects who had carried out the generalization test under the 

rendering conditions of contrast reversal or changed direction of illumination (see 

below) completed an additional generalisation re-test, using the test views of the 

standard rendering condition. 

Priming phase. During priming subjects either explored with their hands the physical 

objects occluded from sight (active touch priming) or explored virtual models by 

grasping 2D views on the computer display with the mouse and a cursor and  rotating 

them within the viewing sphere (active vision priming). Priming lasted for 5 min in 

either condition. No instruction other than the invitation to familiarize themselves with 



                                                                         7              

the objects was given. As a baseline for the two priming conditions a neutral (control) 

condition was included, where subjects entered the second part of the experiment, visual 

category learning, directly, i.e. without acquiring prior object knowledge. Participants 

were randomly assigned to one the three experimental conditions, resulting in 15 

participants per condition.  

Supervised category learning. The second part of the experiment involved a procedure 

of supervised learning partitioned into learning units (for details, see Rentschler, Jüttner 

& Caelli, 1994; Osman et al., 2000). Each learning unit consisted of a learning phase 

and a test phase. During the learning phase each of the 22 views of the learning set was 

presented once for 250ms and in random order, followed by the corresponding object 

label (“1”, “2” or “3”) displayed for 1 s. During the test phase, each learning view was 

presented once, whereupon the observer assigned it to one of the three objects. Upon 

completion of each test phase, participants received feedback as to the percent correct 

value of their responses. No instructions as to the possible duration of classification 

decisions were given. On average duration, a learning unit took 5 min to complete. The 

series of learning units terminated upon reaching a criterion of 90% correct 

classification. 

Generalization test. The final part of the main experiment assessed generalization to 

novel viewpoints and to changes in rendering. Here, each of 64 novel test views of one 

rendering condition was shown three times for 250 ms and in random order. Upon each 

presentation, the observer had to assign the view to one of the object categories 1 to 3. 

The 15 participants within each priming condition were randomly assigned to one of the 

three rendering conditions, resulting in 5 participants per priming and rendering 

condition.  
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Generalization re-test. To test for effects of continuous learning, participants who had 

completed the generalisation test under the conditions of changed rendering (contrast 

reversal or changed direction of illumination) were tested again for generalisation to 

novel viewpoints, this time using the test views of the standard rendering condition. 

The same procedure as during the generalization test was employed. However, the test 

views were presented only once in random order.  

  

RESULTS   

Table 1 summarises durations of supervised category learning to criterion (90% correct 

classification) for the control condition, where no prior knowledge about test objects 

was provided, as well as the two priming conditions of active vision and active touch. 

Learning duration, as measured by the number of learning units, is distinctly reduced by 

either form of priming relative to the control group. 

[Table 1 about here] 

From the confusion matrix of each observer, the percentage of correct scores for 

each of the three objects was computed to assess classification performance in the 

generalization test. Figures 3 a-c show mean generalization performance to novel 

viewpoints for the control condition and the priming conditions of active vision and 

active touch. Each graph shows three pairs of bars, with the left (bright) bar 

corresponding to generalization performance for non-handed object 1 and the right 

(dark) bar to mean performance for handed objects 2 and 3. In order to test the impact of 

priming and rendering, we analysed the data in terms of separate 3 (priming condition: 

control vs. active vision vs. active touch) x 3 (rendering condition: standard vs. contrast 
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reversal vs. changed direction of illumination) ANOVAs for handed and non-handed 

objects. The analysis yielded a significant main effect of priming condition (non-handed 

object: F(2,36)=6.72, p<0.01; handed objects: F(2,36)=15.92, p<0.001). Rendering 

condition significantly affected generalization in case of handed objects 2 and 3 

(F(2,36)=6.02, p<0.01) and marginally in case of non-handed object 1 (F(2,36)=3.13, 

p=0.05). There was no significant interaction between the two factors (non-handed 

object: F(4,36)=1.80, p=0.15; handed objects: F(4,36)=0.55, p=0.70). 

[Figure 3 about here] 

To further assess the effect of rendering, additional one-way ANOVAs were 

conducted for each priming condition and object type. For the control condition, there 

was a significant effect of rendering on generalisation for both object types (non-handed 

object: F(2,12)=7.36, p<0.01; handed objects: F(2,12)=16.69, p<0.001). As illustrated in 

Fig. 3a and confirmed by post-hoc Bonferroni comparisons, contrast reversal 

significantly impeded generalisation for both the handed and non-handed object (all ps 

<0.05). A change in the direction of illumination impeded generalization of the handed 

objects (p<0.01) while leaving recognition of the non-handed object unaffected (p 

=0.99).   

No significant effect of rendering on generalization was observed in case of 

active vision or active touch priming for both non-handed object 1 (active vision: 

F(2,12)=0.30, p=0.75; active touch: F(2,12)=0.01, p=0.99) and handed objects 2 and 3 

(active vision: F(2,12)=0.64, p=0.54; active touch: F(2,12)=1.37, p=0.29). For both 

types of objects, categorisation performance was invariant to contrast reversal and 

changes in the direction of illumination. Still, paired t-tests revealed that for priming 

from active vision performance for handed objects 2 and 3 was consistently lower than 
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for non-handed object 1 in these two rendering conditions (t(4)>3.26, p<0.05 and 

t(4)=7.36, p<0.01, respectively), whereas there was no significant difference for the 

baseline condition of standard rendering (t(4)=1.98, p=0.12). Priming from active touch 

yielded a generalisation performance for the two types of objects that differed 

significantly only in case of changed illumination (t(4)=4.55, p<0.05) but not for 

standard rendering (t(4)=0.27, p=0.80) or contrast reversal (t(4)=2.10, p=0.11),  

[Figure 4 about here] 

 Figure 4 a-c shows results obtained in the re-test of spatial generalization to 

standard rendering for those subjects who had first been tested in the conditions of 

contrast reversal or changed direction of illumination (middle and right double bars). 

For comparison, generalization performance of the not re-tested group of participants 

(i.e., those who had directly been tested with novel views under conditions of standard 

rendering) is re-plotted from Figure 3 (open bars).  

Separate 3 (priming condition: control vs. active vision vs. active touch) x 3 

(rendering condition: standard direct vs. standard after contrast reversal vs. standard 

after changed direction of illumination) ANOVAs for both types of object revealed 

significant main effects of priming condition (non-handed object: F(2,36)=4.28, p<0.05; 

handed objects: F(2,36)=12.44, p<0.001) and rendering condition (non-handed object: 

F(2,36)=6.56, p<0.01; handed objects: F(2,36)=4.30, p<0.05). There was no significant 

interaction between the two factors (non-handed object: F(4,36)=1.67, p=0.18; handed 

objects: F(4,36)=0.34, p=0.85). 

To further test for effects of continuous learning, additional one-way ANOVAs 

were conducted for each of the priming conditions and object types. For the control 

condition, there was a significant effect of the preceding test involving changed 
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rendering on generalization performance in the re-test (non-handed object: 

F(2,12)=12.21, p<0.001; handed objects: F(2,12)=4.88, p<0.05). As illustrated in Fig. 

4a and confirmed by post-hoc Bonferroni comparisons, this was mainly due to the 

detrimental effect of contrast reversal. Preceding testing with contrast-reversed images 

significantly impeded generalisation in the re-test for both the handed and non-handed 

object (all ps <0.05), whereas a change in the direction of illumination left recognition 

of both types of objects during the re-test unaffected (all ps>0.24). 

No significant evidence for continuous learning was found in case of active 

vision or active touch priming for non-handed object 1 (active vision: F(2,12)=0.37, 

p=0.70; active touch: F(2,12)=1.29, p=0.31) and handed objects 2 and 3 (active vision: 

F(2,12)=1.42, p=0.28; active touch: F(2,12)=0.72, p=0.51). For both types of objects 

generalization performance in the re-test after a preceding test with changed rendering 

did not differ significantly from that without such test history. This indicates that prior 

knowledge from active visual or tactual sensation enabled the acquisition of more 

robust object representations. 

DISCUSSION 

We have shown that contrast reversal or a change in direction of illumination may be 

deleterious to the visual recognition of non-face objects.  Yet it is possible to enable 

invariant recognition by providing observers with prior object knowledge from active 

sensation (active vision or active touch). Such type of information does not only 

diminish the effects of changed rendering but allows the construction of object 

representations that are relatively robust against perturbation by intervening input 

signals, i.e., continuous learning.  
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Our results qualify previous claims of a generic invariance of non-face objects 

against contrast reversal (Nederhouser et al., 2007). Indeed, the latter would seem to be 

in stark contrast to what is known from studies in perceptual learning. Discrimination 

performance typically improves with practice but does not transfer to new stimulus 

conditions (e.g., Fiorentini & Berardi, 1980; Karni & Sagi, 1991; Poggio, Fahle & 

Edelman, 1992). Accordingly, perceptual learning in motion discrimination is highly 

specific to practised directions of motion for difficult discrimination tasks but transfers 

to new directions when the difficulty is reduced (Liu, 1999).  Similarly, Jüttner et al. 

(2004) have shown that the effects of contrast reversal on visual pattern recognition are 

determined by task-dependent characteristics of learned representations. 

 Here we have observed that changes in rendering clearly impair visual object 

categorisation but prior knowledge from active sensation may facilitate recognition and 

make it more invariant against changes in rendering. Furthermore, prior knowledge 

from active sensation may reduce continuous learning. To better understand these 

results, it is helpful to note that machine learning systems are typically based on the 

assumption of learning being restricted to a certain time interval (learning phase), 

whereupon systems are put into operation (working phase). Yet there exist systems that 

allow learning to take place all the time in an uninterrupted fashion, thus being able to 

adapt to time-variant environments (Tagscherer and Protzel, 1998; Tagscherer, 2001; 

Keith-Magee, 2001, unpublished Ph.D. dissertation, Curtin University of Technology, 

Perth, W.A.). Moreover, there is reason to believe that perceptual categorisation and 

generalization are adaptive per se (Edelman, 1987). Thus it is not surprising that more 

reliable information on the physical 3D-structure of the environment from active 

sensation entails the construction of more invariant and robust internal representations 

for visual object categorisation. 
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 The present study differs from earlier work on visual object recognition mainly 

in two respects. First, a paradigm of category learning involving 2D views from all over 

the viewing (half-) sphere of non-handed and handed structure-only objects was 

employed. This precluded recognition from non-accidental object parts by necessitating 

the construction and maintenance in working memory (see Baddeley, 1986) of object 

representations conserving at least aspects of 3D-structure. By contrast, Nederhouser 

and co-workers (2007) used a matching-to-sample paradigm, where participants were 

presented simultaneously with three object views from same viewpoint of which two 

portrayed the same object. Thus, observers could rely on image discrimination by 

comparing contrast invariant shape features. For instance, in Fig. 4a of Nederhouser et 

al., the distractor and the right matching view show at their lowest central positions the 

same acute protuberance, which is lacking in the left matching view.  

 Second, the effects of changed rendering were most conspicuous for handed 

chiral objects. Concerning this observation, it is helpful to note that mirror-symmetric 

object 1 can be carried into itself by mirror reflections (3-fold mirror symmetry; see 

Weyl, 1952). There is evidence that such symmetries facilitate object recognition 

(Vetter, Poggio & Bülthoff, 1994). Handed chiral objects 2 and 3 can be carried into 

themselves only by movements enacted on rigid bodies such as pure rotations (see 

International Union of Crystallography, 2005), whereas mirror reflections carry them 

into each other, thus contributing to their confusion. Indeed, physical models of handed 

chiral objects are disambiguated by spatial transformation in 3D and alignment to a 

scene-based reference (Hinton & Parsons, 1988), whereas the recognition of handed 

objects from 2D projections involves “mental rotation” of internalized models (Shepard 

& Metzler, 1971). In brief, symmetry properties facilitate the recognition of non-handed 

object 1 but impair the recognition of handed chiral objects 2 and 3.  
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The possibility of non-handed object 1 being recognized from about half of its 

test views by relying on projected symmetries and the three-fold connectivity of one of 

its sphere parts (Fig. 1b, left) has to be acknowledged. Similarly, about half of the views 

of handed objects 2 (Fig. 1b, middle) and 3 (Fig. 1b, right) display a “snake-like” 

structure (introspective reports of participants), thus allowing their distinction against 

non-handed object 1 but not each other. However, for classifying the remaining 

“difficult” (introspective reports of participants) views and in particular handedness, 

observers had to enact the full cycle of image understanding, i.e., the (mental) 

generation of candidate 3D models from input images (inverse modelling), their 

rendering back into images (forward modelling), and the corresponding matching 

process (for formal solutions in the area of machine intelligence see Caelli & Bischof, 

1997; Cheng, Caelli & Sanchez-Azofeifa, 2006). Given the relative disadvantage of 

recognising handedness in the absence of prior knowledge and, to some extent, with 

active vision priming, it can be assumed that observers relied on attributes, or features, 

in image format under such conditions. The dependence of recognition on rendering 

conditions would be the consequence of such classification strategies. 

We shall then turn to the question of how prior knowledge from active sensation 

may have affected the construction of object representations. It would have drawn the 

attention of subjects to 3D structures, thus encouraging them to generate corresponding 

models (Thoma, Hummel & Davidoff, 2004). They may have achieved this by encoding 

temporal sequences of object views (active vision) or exploratory finger and hand 

movements along the physical object models (active touch). As object palpation directly 

evokes mental imagery (Critchley, 1953, chap. IV), we can conjecture that some sort of 

kinetic object traces were stored in multimodal representations (e.g., Zangaladze, 

Epstein, Grafton & Sathian, 1999). Subjects may then have inferred 3D structures from 
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linking object parts exposed in 2D views to such representations. Related categorisation 

strategies would have enabled more invariant recognition. 

In conclusion, we agree with  Nederhouser et al. (2007) in that effects of contrast 

reversal depend on the nature of internal object representations rather than physical 

stimulus attributes such as spectral composition (e.g., Hayes, Morrone & Burr, 1986). 

The difference in perspective resides in the fact that Nederhouser and co-workers 

attributed the effect of contrast reversal on recognition to fixed and invariant stimulus 

categories (face vs. non-face objects), whereas we found it task- or context-dependent. 

We propose that prior object knowledge from active sensation causes representational 

shifts as have been reported for face recognition (see Palmeri, Wong, and Gauthier, 

2004) and classification of mirror-image patterns (Rentschler & Jüttner, 2007). Such 

shifts enable increased invariance of recognition due to an increased use of contrast- or 

illumination-invariant part-relational object attributes. Moreover, they render object 

representations more robust, i.e., less sensitive to modification through interfering input 

signals. 
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Figure captions: 

Figure 1. 2D views of the set of objects for category learning and generalisation. (a) 

Achiral (bilaterally symmetric; left) object 1 (O1) and handed chiral (mirror image; 

centre and right) objects 2 (O2) and 3 (O3). Three spheres formed a rectangular 

isosceles triangle. The fourth sphere was placed perpendicularly above the centre of one 

of the base spheres. All spheres were of same size and reflectance. (b) Sample of four 

2D views for each of the objects (left). Views obtained from sampling azimuth and 

polar angle of the viewing (half) sphere in 60° steps, thus yielding 8 views per object 

(right). 2 views of object 1 were redundant due to symmetry reasons. Discarding them, 

22 views (6 for object 1 and 8 for each of objects 2 and 3) were used for category 

learning to criterion. 

Figure 2.  Changed object rendering. (a) For contrast reversal, original intensities were 

subtracted from the maximum value 255 to obtain reversed intensities. Background 

intensities remained fixed under these conditions. (b) For a change in the direction of 

illumination, the default position of the virtual light source was changed from the upper 

left corner to the lower right corner from the observer’s position. 

Figure 3. Spatial generalisation under three conditions of rendering and three 

conditions of priming. Standard rendering (leftmost double bars), contrast reversal 

(centre), and changed direction of illumination (rightmost double bars). Priming 

conditions of control (top), active vision (centre), and active touch (bottom). 

Generalisation performance is given in percent correct classification. Left bar of double 

bars: Object 1; right bar of double bars: mean value of objects 2 and 3. Error bars: 1 

S.E. (N = 5; O1); mean values of S.E.s (N=5 each; O2 and O3). 
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Figure 4. Re-test of spatial generalisation under conditions of standard rendering 

following spatial generalisation under conditions of contrast reversal (middle double 

bars), and changed direction of illumination (rightmost double bars). Data for 

participants, who were initially tested under conditions of standard rendering, 

reproduced from Fig. 3 (leftmost double bars). Priming conditions of control (top), 

active vision (centre), and active touch (bottom). Generalisation performance is given in 

percent correct classification. Left bars of double bars: object 1; right bars of double 

bars: mean value of objects 2 and 3. Error bars: 1 S.E. (N = 5; O1); mean values of 

S.E.s (N=5 each; O2 and O3). 

 

Table 1. Duration of category learning to criterion for the three conditions of control, 

active vision priming, and active touch priming. Mean values over groups of 

participants and standard errors in number of learning units (N = 15, standard rendering; 

N = 15, contrast reversal, and N = 15, direction of illumination). 
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