
1 

 

  

Reactive oxygen and nitrogen species production in 

cardiomyoblasts during hypoxia and reoxygenation 

 

 

 

 

 

RAJITHA THUSHARA KOLAMUNNE 

Doctor of Philosophy 

 

 

 

 

ASTON UNIVERSITY 

April 2010 

 

 

 

 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is understood 

to recognise that its copyright rests with its author and that no quotation from the thesis and no 

information derived from it may be published without proper acknowledgement. 



2 

 

Aston University 

Reactive oxygen and nitrogen species production in cardiomyoblasts during hypoxia and 

reoxygenation  

 

Rajitha Thushara Kolamunne 

Doctor of Philosophy 

April 2010 

SUMMARY 

Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may 

trigger cell death with pathological consequences in cardiovascular or neurodegenerative 

disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can 

cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species 

(ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes 

the systematic characterization of the kinetics of ROS/RNS production and their roles in cell 

survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a 

significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an 

increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was 

dependent on the production of mitochondrial superoxide (O2
-•
) and nitric oxide (

•
NO), partly 

from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h 

could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-

NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis 

under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell 

death via a O2
-•
 dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 

4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased 

production of O2
-•
 and 

•
NO, during hypoxia but, partially restored during reperfusion. O2

-• 

generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas 
•
NO 

generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened 

metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 

activation during 2% O2, a sustained hypoxia and reperfusion was O2
-•
/
•
NO dependent. Inhibition 

of NF-κB activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, 

mitochondrial O2
-•
, but, not ATP depletion is the major cause of apoptotic and necrotic cell death 

in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is 

due to NOS-dependent 
•
NO. The management of ROS/RNS rather than ATP is required for 

improved survival during hypoxia. O2
-•
 production from mitochondria and NOS is cardiotoxic 

during hypoxia/reperfusion. NF-κB activation during hypoxia and NOS activation during 

reperfusion is cardiomyoblast protective. 

Keywords; mitochondria; superoxide; nitric oxide; NOS; protein oxidation; NOX, NF-κB; 

Nrf2; reperfusion; H9C2 cells 
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1.1 What are free radicals? 

A free radical is an atom or molecule which is stable and exists with one or more unpaired 

electrons in its molecular orbital such as superoxide anion (O2
•-
), hydroxyl (HO

•
) and nitric oxide 

(
•
NO). If an orbital in the outer shell of a molecule lose an electron from a pair, the molecule 

becomes a radical, which is unstable and therefore highly reactive (Mason, 1995). Free radicals 

often react with another molecule(s) to be stabilized (Shackelford et al., 2000). Partially reduced 

O2 metabolites are known as ―reactive oxygen species‖ (ROS) due to their higher reactivity over 

molecular O2. In other terms, reactive oxygen species may be identified as any chemical species 

containing one or more unpaired electrons potentially capable of independent existence.  

 

The main reactive oxygen species include superoxide (O2
•-
), hydroxyl radical (OH

•
) and H2O2, 

which is a non-radical. O2
•- 

can be dismutated (by cytosolic or mitochondrial superoxide 

dismutase; SOD) to hydrogen peroxide (H2O2) which is a biologically active and stable molecule 

(Figure 1.1). H2O2 is non-polar and often diffuses into the cytosol of cells through membranes 

(Henderson and Chappell, 1993). Myeloperoxidase which is the most abundant enzyme in 

neutrophils, catalyses the conversion of H2O2 and Cl
-
 to hypochlorous acid (HOCl) (Kettle et al., 

1993) (Figure 1.1). This potent oxidant can cause considerable tissue damage in many 

inflammatory diseases as reported by Kettle et al., (1993).  

A newly formed radical may react with another species to become stable by donating the 

unpaired electrons, or may react with a free radical scavenger (i.e. primary antioxidant or chain 

breaking species), to become unreactive   (Nordberg and Arner, 2001). Free radicals are known 

to damage cells and tissues through reactivity with another molecule. In this way, radical species 

are reported to perturb cellular antioxidant defence systems, damaging biological molecules 

including protein, carbohydrates, lipids and nucleic acids (Tahara et al., 2009). Free radical 

generation is a consequence of many metabolic reactions in living systems that may generate low 

levels of radicals. There are number of enzymes, which employ radicals for synthesis of specific 

enzyme products; cyclooxygenase, tyrosine hydroxylase, nitric oxide synthase, lipooxygenase 

and ribonucleoside reductase (Thomas, 2000).  
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                                       O2  +  e
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•
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Figure 1.1 Schematic ROS generation from oxygen (O2), adapted from Hool (2005). 

Superoxide (O2
•-
) is generated directly from the reduction of oxygen and then dismutated to 

hydrogen peroxide (H2O2) in the presence of superoxide dismutase (SOD). Reactions with 

chloride ion (Cl
-
), nitric oxide (

•
NO) and iron (Fe

2+
) are as indicated. 

 

Reactive nitrogen species (RNS) include 
•
NO and their related species such as peroxynitrite 

anion (ONOO
-
) (Figure 1.1). O2

•-
 undergoes a diffusion-controlled reaction with 

•
NO to produce 

ONOO
- 
(Beckman and Koppenol, 1996). Peroxynitrite is relatively long-lived, stable molecule, 

which has an ability to reach critical targets of cells, as it is membrane permeable (Glebska and 

Koppenol, 2003). Each of these reactive oxygen and nitrogen species are reported to impair 

cellular homeostasis through alterations in cellular thiols, protein, lipid, and nucleic acid 

structure and function with resultant disruption of cell signalling cascades (Patel et al., 1999). 

  

This can be explained by potent oxidising capacity of ROS/RNS which lead to oxidation, 

nitrosation or nitration of amino acids/residues (Griffiths, 2005). To minimize potential damage 

to macromolecules and cellular environment, cells express antioxidant enzymes including 

superoxide dismutase to reduce O2
•-
 to H2O2, catalase and glutathione peroxidase which reduce 

H2O2 to H2O (Thannickal and Fanburg, 2000). Glutathione peroxidase uses the low MW thiol 

glutathione as a reducing agent in this reaction. Oxidative stress is defined as an imbalance 

between oxidant production and antioxidant capacity.  

•NO SOD 

Myeloperoxidase + Cl
-
 

 

Fe+2 



20 

 

Oxidative stress has been implicated in many pathological injuries within the cardiovascular 

system including atherosclerosis, hypertension, hypoxia, and ischaemic reperfusion.  

 

 1.2 Sources of ROS/RNS production 

Superoxide is the intermediate precursor of reactive oxygen species in most oxygenated 

biological systems. It is formed when molecular oxygen acquires an additional electron 

(Wardman, 2007). Having two unpaired electrons in antibonding orbital with parallel spins 

makes ground state O2 able to accept one electron at a time. Superoxide anion is potent 

damaging molecule probably indirectly, and is less reactive than 
•
OH. Therefore, O2

-•
 can diffuse 

longer distance until it encounters critical molecular targets, whereas 
•
OH reacts indiscriminately 

and expendably within a smaller radius from the site of generation (Benov et al., 1998).  

 

1.2.1 Superoxide production from mitochondria 

The mitochondrion is believed to be a major superoxide producer in many cells. The principle 

function of the mitochondrion is to harness the free energy release from electron transport from 

complex I and III and IV by coupling the transport of protons out of the mitochondrial matrix to 

the intermembrane space with the production of ATP according to the chemiosmotic theory.   

 

The transfer of protons from the matrix to the intermembrane space may create an 

electrochemical gradient, which maintains mitochondrial membrane potentials (Ψmt) across the 

inner membrane. The proton gradient or electrochemical gradient is used to generate a 

chemiosmotic potential (between the mitochondrial matrix and intermembrane space) or proton 

motive force which is critically important to ATP production. This electrochemical gradient 

plays a major role in converting the energy derived from redox reactions of electron transport to 

the potential energy stored in ATP.  
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Complex IV harnesses the energy from the electrochemical gradient to make ATP energy from 

ADP + Pi at ATP synthase. The ATP synthase is made up of two subunits; F0 and F1. F0 creates 

the channel for proton movement across the membrane where F1 harvests the free energy derived 

from proton movement down the electrochemical gradient (from the intermembrane space to the 

matrix during aerobic respiration) by catalyzing the ATP production (Figure 1.2 and 1.3). 

 

  

 
 

            Figure 1.2   Mitochondrial electron transport system (ETS), taken from  

            Moncada and Erusalimsky (2002). 

 

  

During mitochondrial respiration, the kinetic and thermodynamic factors underlying the 

interaction of potential one-electron donors with O2 and that control mitochondrial ROS 

production depend on the standard reduction potentials and pH value of the mitochondrial 

matrix. The standard reduction potential for the transfer of an electron to O2 to form O2
•−

 is −160 

mV at pH 7, for 1M O2 under standard conditions. This standard reduction potential is stable 

across most biological pH values including mitochondria (Murphy, 2009). In mitochondria, it 

has been reported that electron transport complexes I and III (Figure 1.2) are important sources 

of mitochondrial ROS (Murphy, 2009). However, mitochondria produce less ROS at higher 

respiration rates, including enhanced oxidative phosphorylation or in the presence of uncouplers 

and under oxidative stress due to certain pathological conditions.  
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O2
•−

 release from complex I occurs via forward electron transfer, electron release from NADH 

(reduced nicotinamide adenine dinucleotide) and reverse electron transfer from succinate. 

Additionally, mitochondrial enzymes, particularly flavoenzymes including α-ketoglutarate 

dehydrogenase and glycerol phosphate dehydrogenase, are involved in the production of O2
•−

. 

(See Tahara et al. (2009) for review) (Figure 1.3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Mitochondrial electron transport system showing O2
-• 

generation by substrate 

metabolism, electron leakage sites, and effects of respiratory chain inhibitors and 

uncouplers. Taken and adapted from Tahara et al. (2009). The sites of action of the complex 

I inhibitor, rotenone; the complex III inhibitors, myxothiazol and antimycin A; the complex V 

inhibitor, oligomycin and the uncoupler, FCCP are shown. 

 

 

Mitochondrial complex I is a major site of superoxide production from NADH in the respiratory 

chain. The FMN (Flavin mononucleotide) cofactor accepts electrons from NADH and passes 

them through a chain of seven Fe-S (iron–sulphur) locations to the CoQ (Co-enzyme Q) 

reduction site, with another Fe-S centre close to the FMN with any reverse transfer of electrons 

to CoQ. Mitochondrial complex II is known to be a second funnelling site of electrons into ETS.  
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In complex II, electrons from succinate enter the ETS via FADH2. Then, electrons are 

transferred to CoQ and carried through the rest of electron transport chain. Complex III has for a 

long time been regarded as a source of O2
•−

 within mitochondria (Chandel et al., 1998; Chandel 

et al., 2000). Mitochondrial complex III fluxes the electrons from the CoQ pool to cytochrome c 

which is a bridge between complex III and complex IV. Mitochondrial cytochrome c consists of 

three haem and Fe-S locations, and those interact transiently with CoQ during electron transfer 

(Iwata et al., 1998). It has been reported that generation of O2
•−

 is increased when complex III is 

inhibited by antimycin where O2
•−

 is derived from the reaction of O2 with an ubisemiquinone 

radical bound to the Qo site. This O2
•−

 is released from complex III to the mitochondrial matrix 

and intermembrane space as shown in Figure 1. 3. O2
•−

 is unable to penetrate mitochondrial lipid 

membranes although it may be transferred through anion channels and therefore it may be 

trapped in a compartment where it is produced, including inside the mitochondrial matrix 

(Murphy, 2009).  

 

During normal metabolic respiration, mitochondria can produce superoxide, especially in the 

electron rich aerobic environment in the vicinity of the inner mitochondrial membrane within the 

ETS. Mitochondria can reduce nearly 1-3% of the O2 consumed in aerobic respiration (Boveris 

and Chance, 1973, Boveris et al., 1972) by transferring a one single free electron to molecular 

oxygen at the level of NADH CoQ reductase (Complex I). Subsequently CoQ cytochrome C 

reductase (Complex III) donates a single electron to O2 for O2
•−

 production (Turrens, 1997). 

 

 

1.2.2 Nitric oxide and peroxynitrite generation from mitochondria  

Nitric oxide (
•
NO) is a reactive and transient radical molecule  that can diffuse across the cell 

membrane. It is known that common 
•
NO is generated from guanido nitrogen of L-arginine by at 

least three distinct isoforms of nitric oxide synthase in the cells (Pacher et al., 2007). It appears 

that 
•
NO can damage biological molecules after forming ONOO

-
 with O2

•−
. Peroxynitrite is a 

strong biological oxidant and nitrating species formed from the near-diffusion-limited reaction of 

the free radicals, nitric oxide and superoxide anion (Beckman and Koppenol, 1996).  
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•
NO at nanomolar level can interact with the mitochondrial ETS by causing rapid and selective 

reversible inhibition of cytochrome oxidase. 
•
NO related species or RNS in mitochondria 

including ONOO
-
, NO2, N2O3 and S-nitrosothiols (from 

•
NO and thiol reaction) cause slow, non-

selective, weak, but irreversible or slowly reversible inhibition of many mitochondrial 

components including proteins, lipids and mt-DNA. Moreover, the inhibition observed in most 

cells in response to 
•
NO or expression of inducible nitric oxide synthase (iNOS or NOS2) 

appears to be largely competitive with O2 (Brown and Borutaite, 2007) (Figure 1.4). 

 

 

 

 

Figure 1.4  Interactions between 
•
NO, reactive nitrogen species, reactive oxygen species and 

the mitochondrial respiratory chain, taken from Brown and Borutaite (2007). The oxidation 

of 
•
NO with oxygen in the inner membrane of mitochondria produces NO2 and N2O3, and further 

•
NO can react with thiols (RSH) to produce S-nitrosothiols (RSNO). 

•
NO and RNS inhibit 

respiratory complexes I, III and IV. O2
•−

 reacts with 
•
NO to form ONOO

-
, which further inhibits 

the ETS, aconitase and the Mn-SOD. A lightning bolt illustrates the sites of RNS mediated 

inhibition (Brown and Borutaite, 2007). 
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1.2.3 Superoxide production from NADPH oxidase 

In phagocytes and certain non-phagocytic cells in the colon, kidney, brain and vascular smooth 

muscle cells (VSMCs), cell membrane bound NADPH (nicotinamide adenine dinucleotide 

phosphate) oxidase functions as the major ROS generating centre (Cheng et al., 2004). The 

enzyme complex is comprised of several subunits, including cytochrome b558 and two 

membrane bound subunits (the small subunit p22phox bound to the catalytic subunit gp91phox 

(Nox 2) and cytosolic units, Rac1 in non-phagocytic cells and Rac2 in phagocytes as well as, p47 

phox and p67phox which are recruited to the membrane bound Nox/p22phox complex upon 

activation.  

 

Rac1 and Rac2 belong to the low molecular weight G protein Rac family. Some studies suggest 

that NADPH oxidase activity may decrease during hypoxia with a reduction in ROS production 

(Mohazzab and Wolin, 1994; Paky et al., 1993). In atherosclerotic inflammatory sites, 

recruitment of neutrophils and over-production of ROS, mainly by NADPH oxidase, leads to 

lipid oxidation. Protein expression studies suggest that p47phox expression is predominant in 

neutrophils compared to non-phagocytes such as smooth muscle cells/fibroblasts, offering 

further insight into putative ROS generation in vascular inflammatory sites. Some reports 

suggest ROS generation may also be increased due to mechanical forces and agonist-stimulation 

by certain hormones such as Angiotensin II (Griendling et al., 2000). Mechanical forces that 

induce ROS generation in endothelial cells through NAD(P)H include cyclic stretch and laminar, 

oscillatory shear stress (Griendling et al., 2000).  

 

Angiotensin II is a major peptide hormone in the renin-angiotensin-aldosterone system. It is 

reported that Angiotensin II plays a pivotal role in signalling in the cardiovascular system by 

generating ROS through NADPH oxidase (Yoshimoto et al., 2004). The NAD(P)H/NADH 

oxidase in VSMCs, endothelial cells and adventitial fibroblasts has been shown to elicit an 

increase in intracellular superoxide production after AngII treatment.  
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It has been reported that PDGF (platelet derived growth factor), TNF-α, thrombin and 

lactosylceramide stimulate NAD(P)H oxidase dependent O2
•−

 production in smooth muscle cells 

(Griendling et al., 2000). ROS generated by NADPH in VSMCs is required for cell 

differentiation, proliferation, migration, secretion of inflammatory cytokines and apoptosis 

(Clempus and Griendling, 2006).  

 

1.2.4 Other sources of ROS/RNS 

In addition to mitochondria and the NADPH oxidase complex, there are number of other cellular 

sources of radical species. They include nitric oxide synthase (NOS), xanthine oxidase, 

peroxisome and endoplasmic reticulum. Other minor level O2
•−

 producers in the cytosol include 

enzymes of the arachadonic acid cascade that may produce ROS during lipid metabolism. Some 

cytochrome P-450 isozymes are also reported to generate O2
•−

. Autooxidation of ascorbic acid, 

low molecular weight thiols, adrenalin and flavin coenzyme can also produce ROS under various 

conditions. ROS/RNS producers are tabulated (Table 1.1) along with any cellular defence 

mechanism. In addition to the above sources of endogenous free radical production, there other 

ways of free radical production via exogenous agents; cigarette smoking, air pollution and toxic 

radical generation from drug metabolism including nitrofurantoin and penicillamine (Mason, 

1995). 

 

1.3. ROS/RNS as signalling molecules 

ROS and RNS can act as signalling molecules in various cell types, mediating and/or modifying 

physiological events related to gene transcription and transduction after receptor ligand binding. 

In vascular homeostasis and pathogenesis, ROS/RNS play a pivotal role in downstream and 

upstream intracellular cell signalling. Downstream signalling cascades operate by second 

messengers such as Ca
2+

, cAMP, phospholipid metabolites and phosphorylation cascades. These 

pathways subsequently lead to activation of transcription factors that govern specific gene 

expression patterns.  
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Table 1.1  The sources of ROS/RNS production and associated antioxidant defence, 

adapted from Nordberg & Arner (2001). SOD - superoxide dismutase, GPX - glutathione 

peroxidase, CAT - catalase, PRX - peroxidase, GRD - glutathione reductase, Trx –thioredoxin 

and TrxR - thioredoxin reductase and NOS – nitric oxide synthase. 

 

However, there are important implications of ROS/RNS in intracellular cell signalling and 

regulation, including cytoprotection and antioxidant defence during hypoxia/reperfusion. O2
•−

 

and H2O2 are considered the most important ROS signalling molecules (Griendling et al., 2000). 

The ROS/RNS molecules in signalling are structurally diverse and include 
•
NO, O2

•−
, H2O2 and 

peroxynitrite (Griendling et al., 2000; Harrison et al., 2003).  

Intracellular signalling pathways are implicated in cell death during hypoxia and/or following 

reoxygenation, although the mode of cell death; apoptosis or necrosis may vary among different 

cell types. ONOO
-
 has been identified as a mediator of cytotoxicity due to its variable reactivity 

with cellular thiols, proteins and DNA (Patel et al., 1999). ONOO
-
 or 

•
NO is also important as a 

cell-signalling molecule, in addition to its pathological roles. For instance, low concentrations of 

•
NO are formed by endothelial nitric oxide synthase (eNOS) in vascular endothelial cells and 

function as a mediator of vasodilatation (Thannickal and Fanburg, 2000). 
•
NO inhibits 

proliferation and migration of smooth muscle cells, platelet aggregation and adhesion of 

leukocytes to the endothelium (Tarpey and Fridovich, 2001).  
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ROS generation from mitochondria has been implicated in vasodilatation of cerebral artery and 

vasoconstriction in pulmonary arteries (Schumacker, 2003; Beardsley et al., 2005). However, 

particular ROS species have not been investigated. O2
•−

 and superoxide dismutase exhibit many 

modulatory effects in 
•
NO dependent cell signalling and endothelial dependent-relaxation in 

vascular systems (Tarpey and Fridovich, 2001). Generation of O2
•−

 and H2O2 mediates 

proinflammatory events by regulating the transcription and expression of vascular cell adhesion 

molecule-1 and monocyte chemotactic protein-1 (Tsao et al., 1996; Marumo et al., 1997).  

 

1.4 Free radicals as damaging molecules 

Oxidative stress can be induced by variety of environmental factors including oxygen 

deprivation (hypoxia and anoxia), UV stress and herbicide metabolism (Kobayashi et al., 2003; 

Štajner et al., 2003; Renzing et al., 1996; Flores-Sanchez and Verpoorte, 2008). The cellular 

components susceptible to damage by free radicals are lipids (peroxidation of unsaturated fatty 

acids in membranes), proteins (nitration, oxidation and denaturation), carbohydrates and nucleic 

acids. However, the outcome of oxidative stress mainly depends on organs/tissue, species, 

endogenous antioxidant content and defence signalling pathways. It is postulated that 

overproduction of radicals may overcome the cellular antioxidant defence, and free radical 

mediated damage may persist in pathological conditions including ageing, chronic inflammation 

and ischaemia/reperfusion. 

 

1.4.1 DNA damage 

Oxidative damage to DNA is associated with many pathological conditions such as 

ischaemia/reperfusion, carcinogenesis, mutagenesis and ageing. One of most reactive free 

radicals, hydroxyl radical (
•
OH) causes damage to DNA. The presence of oxidized DNA is 

known as a marker for ROS-mediated DNA damage (Halliwell, 1999; Nakano et al., 2003). The 

guanine base is more sensitive to oxidation, thereby, it is considered as a reasonable biomarker 

for oxidative injury (Kehrer, 2000). 
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Figure 1.5   The mechanism of formation of guanine products from 
∙
OH addition to the C8   

position of guanine, adapted from Dizdaroglu et al. (2002). 

 

 

Mechanisms of damage involve abstractions and addition reactions by free radicals leading to 

carbon (C)-centered sugar radicals and 
•
OH- or H-adduct radicals of heterocyclic bases, which 

may be further fragmented after additional reactions with free radicals. The modification of 

DNA takes place by the 
•
OH which attacks the deoxyribose moiety leading to the release of free 

bases from DNA and generates strand breaks. Other changes occur in bases, with the resultant 

cross linking as a result in additions and abstractions (Dizdaroglu et al., 2002). The formation of 

guanine products from the C8-OH adduct, which is formed by attack of 
•
OH to the C8-position 

of guanine, is a common alteration in the DNA molecule (Figure 1.5). It is important to note the 

presence of oxidized purines or pyrimidines at low levels and at critical sites may cause 

functional problems (Kehrer, 2000). There are nearly 200,000 base lesions formed per day after 

oxidation with endogenous ROS generation. Adversely, DNA damage may lead to impaired 

hydrogen bonding, fidelity of DNA and/or RNA polymerase and conformational changes to the 

DNA template during DNA synthesis (Kehrer, 2000). The presence of 8-hydroxyguanine is a 

marker of oxidative stress in nuclear and mitochondrial DNA (nDNA and mtDNA).  
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It has been reported that oxidative damage is significant in mitochondrial DNA, especially, since 

the absence of bound histones and deficiency in repair mechanism renders mtDNA susceptible 

compared to whole nDNA (Zastawny et al., 1998). Moreover, Bristow and Hill, (2008) reported 

the genomic instability of DNA repair mechanisms in tumor cells in respect to transcription and 

translational proteins during acute and chronic, severe hypoxia. Oxidative mtDNA damage is 

associated with induction of nuclear phosphorylation and the dysfunction of mitochondria in 

ischaemic heart disease (Ferrari, 1996). 

 

 

1.4.2 Lipid Damage 

Oxidation of lipids refers to the loss of hydrogen from lipids in cells that may result in cell 

damage. Lipids include polyunsaturated fatty acid (PUFA) that may contain multiple double 

bonds in between which lie methylene –CH2- groups containing reactive hydrogen. The reaction 

proceeds by a free radical chain reaction which consists of initiation, propagation and 

termination. Disruption of PUFA in the phospholipid bilayer may result in functional and 

structural impairment leading to irreversible cell damage. The reaction may be initiated by ROS, 

such as 
•
OH whereby a fatty acid radical and H2O are produced by the abstraction of a hydrogen 

atom from a double bond in a polyunsaturated carbon chain (Figure 1.6). The resultant fatty acid 

radical is unstable and readily reacts with diradical O2 to form a peroxyl radical.  

 

The peroxyl radical is highly reactive and can abstract another hydrogen atom from 

neighbouring fatty acid molecule, yielding another radical species and lipid hydroperoxide, 

thereby establishing the propagation step of the chain reaction. The lipid hydroperoxide formed 

is unstable and can decompose to various species including malondialdehyde, or it can be 

reduced to the more stable alcohol form. The lipid bilayer itself may also become more 

permeable thereby disrupting ion homeostasis (Young and McEneny, 2001). In addition, some of 

the oxidized fatty acid species that are formed such as the isoprostanes or the hydroperoxides can 

regulate the apoptosis (Kehrer, 2000). Other lipids may also undergo significant oxidation, 

particularly cholesterol, resulting in several hydroxycholesterol products (Griffiths et al., 2002).  
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Figure 1.6 Schematic representation of ROS induced lipid damage in polyunsaturated     

fatty acid, taken from Young and McEneny, (2001). 

 

 

1.4.3 Protein damage 

Protein damage can occur as a result of oxidation or nitration of amino acids within a 

polypeptide chain due to the interaction with ROS and RNS. Accumulation of these oxidized or 

nitrated proteins may have deleterious effects including disruption of ion channel transport, 

inactivation of enzymes and ultimately lead to necrosis and apoptosis in vitro (Obrosova, 2006; 

Davidson et al., 2001; Ischiropoulos and Beckman, 2003).  

 

Oxidation and nitration of proteins has been identified from in vivo tissue isolated from several 

chronic conditions such as inflammation and ageing. Protein oxidation may also be a radical 

chain reaction where initiation takes place when 
•
OH

 
radical (Reaction a and b) abstracts a 

hydrogen atom of an amino acid residue, thereby, forming a carbon-centered radical (Reaction c) 

(Figure 1.8).   
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Then C-centered radical reacts rapidly with O2 to form an alkylperoxyl radical (Reaction d) 

which is an intermediate in generation of alkylperoxide and formation of alkoxyl radical 

(Reaction h). The alkoxyl radical is converted to a hydroxyl protein derivative (reaction j). 

Alkyl, alkylperoxyl, and alkoxyl radical intermediates in this pathway may undergo side 

reactions with neighbouring  amino acid residues in the same or a different polypeptide chain to 

produce to a another carbon-centered radical (Figure 1.7 and 1.8) (Berlett and Stadtman, 1997). 

 

 

 

Figure 1.7  ROS mediated oxidation of protein - C centred radicals, taken from Berlett  

    and Stadtman, (1997). 

 

 

Interestingly, in the absence of oxygen under conditions of hypoxia or anoxia or when tissues 

become ischaemic, when Reaction d in figure. 1.8 is prevented; the carbon-centered radical may 

react with another carbon-centered radical to form a protein-protein cross-linked derivative 

(Berlett and Stadtman, 1997). 

 

Direct oxidation of amino acids including lysine, arginine, proline, and threonine residues may 

yield carbonyl derivatives on side chains. Alternatively, carbonyl groups may be introduced into 

proteins by reactions with aldehydes (4 hydroxy-2-nonenal, malondialdehyde) produced during 

lipid peroxidation (Figure 1.6) (Berlett and Stadtman, 1997; England et al., 2003). The 

formation of protein carbonyls has been used as a marker of ROS-mediated protein oxidation, 

and determination of carbonyl may reflect the degree of oxidative stress (England et al., 2003; 

Berlett and Stadtman, 1997).  
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Figure 1.8  ROS mediated oxidation of protein-protein cross linking and peptide bond     

cleavage, taken and adapted from Berlett and Stadtman (1997). 

 

 

The nitration of proteins is a marker of ONOO
-
generation. Tyrosine and tryptophan residues are 

selective targets of ONOO
- 

- dependent nitration, but, methionine and cysteine residues are 

particularly vulnerable to oxidation by ONOO
-
. Nitration of aromatic residues and oxidation of 

thiol containing residues depend on the availability of CO2 and ONOO
-
 reacts rapidly with CO2 

to form O=NOOCO2
- 

or O2NOCO2
- 

derivatives which may direct the modifications to nitrate 

aromatic compound in the protein chain (Berlett and Stadtman, 1997). 
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1.5 Physiology and pathophysiology of hypoxia and hypoxia/reperfusion injury 

Hypoxia is a stress condition in which tissues are deprived of adequate oxygen supply whereas 

ischaemia is a condition in which the blood flow (oxygen and glucose) is restricted to a tissue 

and results in anoxia. The effect of hypoxia and ischaemia may not be identical, but they are 

difficult to separate clinically (Peters et al., 2000). Hypoxia and subsequently ischaemia is an 

important cause of reversible or irreversible tissue injury, but it depends on severity and duration 

of the insult. The German pathologist Rudolf Virchow in 1858 first defined and described 

ischaemia in the heart, as an imbalance between myocardial oxygen supply and demand due to a 

decrease of blood flow as a result of narrowing of the coronary artery (Liem et al., 2007). 

Coronary heart disease is one of the leading causes of death and disability in the world. 

Epidemiological data indicate that its morbidity and mortality rates will exceed those of cancer 

and infectious disease in the near future (Murray and Lopez, 1997). Hypoxia could arise due to 

narrowing of a blood vessel due to fatty deposits (atherosclerosis) and restricted blood supply to 

neighbouring tissue or cells. If this process takes place in the coronary artery, the condition is 

known coronary ischaemia and leads to coronary heart disease (Figure 1.9). It is therefore 

essential to restore coronary flow to the ischaemic myocardium by interventions such as 

angioplasty, thrombolytic treatment or coronary bypass surgery (Jennings and Reimer, 1991).  

 

 

Cardiac hypoxia as a result of ischaemia mainly results in irreversible cell damage, which may 

further progress to contractile failure, ventricular remodelling and arrhythmias. Reperfusion is 

the restoration of oxygenated blood supply to hypoxic or ischaemic tissues. Reperfusion injury 

refers to irreversible damage to a tissue caused when blood supply carrying oxygen returns to the 

tissue after a period of ischaemia or hypoxia. The absence of O2 alone or O2 and nutrients for a 

period from blood result in a condition in which inflammation and oxidative stress is typical in 

many organs including heart, brain, liver, kidney and intestine. The energy demand for these 

tissues depends on limited mitochondrial respiration and possibly glycolysis alone (de Groot and 

Rauen, 2007). In general, the susceptibility of cells or tissues to hypoxia or ischaemia 

reperfusion injury is a major clinical challenge after an infarct and after successful organ 

transplantation. 

http://en.wikipedia.org/wiki/Tissue_%28biology%29
http://en.wikipedia.org/wiki/Ischemia
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Nutrient
http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Oxidation
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                          Figure 1.9  Coronary heart disease and myocardial infarction  

                                      (www.focalcool.com). 

 

 

Inflammation during hypoxia/reperfusion includes both the cellular and humoral responses. 

Many metabolic changes are induced in hypoxia or ischaemia/reperfusion injury. Coronary 

occlusion in the heart or microvascular occlusion in other tissue may result in complete 

deprivation of the O2 supply (anoxia) which triggers loss of the mitochondrial ATP supply, 

accumulation of lactic acid, overload of intracellular Ca
2+

, osmotic swelling due to loss of Na
+
 

homeostasis, mitochondrial permeability transition and disruption of membrane potential and 

finally, cell death via necrosis (de Groot and Rauen, 2007) (Figure 1.10 and 1.11).   

 

During reperfusion injury in a tissue, release of ROS/RNS by macrophages, endothelial cells, 

neutrophils, lymphocytes, platelets, parenchyma cells and leukocytes add to the existing damage 

to the endothelium, thrombus formation, cytotoxic enzyme release, increased vascular 

permeability and increased cytokine release. These effects contribute induced tissue injury 

through effects on signal transduction pathways mediated by ROS and/or Ca
2+ 

leading to 

activation of enzymes or mediators involved in cell death and dysfunction (de Groot and Rauen, 

2007; Björk et al., 1982; Mueller et al., 1997; Weiss, 1989). The progression of cell death in 

ischaemia under anoxia is shown schematically in figure 1.11.   
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Deleterious effects may persist for a period of time, weeks or months. This depression of cardiac 

function (myocardial stunning) of the ischaemic-reperfused heart is common in patients after 

coronary bypass surgery or in patients with a heart transplant (de Groot and Rauen, 2007). 

 

 

 

 

Figure 1.10 Paradoxical effects of reperfusion in the ischaemic heart. Reperfusion      

contributes to further tissue damage, taken from Dhalla and Duhamel (2007). 

 

 

 

Irreversible or reversible cell death or infarction size induced by an acute coronary occlusion 

mainly depends on severity and duration of ischaemia. Several treatments restore blood flow 

(reperfusion therapy) in patients with acute myocardial infarction; but clinical reperfusion 

therapy such as thrombolysis is not effective in supporting survival of ischaemic cells. Cardiac 

cell death is mainly associated with restoration of blood supply; reperfusion. Recent 

development of current methods for improving the efficacy of thrombolysis and percutaneous 

coronary interventions during revascularization or cardioprotection therapy have improved 

survival, but many effects of these therapies remain unresolved.  
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Figure 1.11  Schematic presentation of progression to cell death in ischaemic tissue under      

anoxia, adapted from de Groot and Rauen (2007) and Crompton (1999).    - increase  or     - 

decrease. 

 

1.6 ROS/RNS signalling in cardiovascular disease 

Signalling mechanisms of ROS/RNS are of particular relevance to cardiovascular diseases 

(CVD); myocardial infarction, ischaemia/reperfusion, atherosclerosis and hypertension, and have 

been studied recently in vascular cells. During atherosclerosis, activation of the enzymes in both 
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infiltrating macrophages and vascular cells generate high levels of ROS/RNS, thereby changing 

the oxidation status of thiols on signalling proteins (Harrison et al., 2003; Taniyama and 

Griendling, 2003; Levonen et al., 2001). The ROS/RNS involved in redox signalling pathways 

can be generated from the NADPH oxidases and NOS or mitochondria as a major ROS 

generation site. Mainly, mitochondrial ROS formation is associated with the cell signalling that 

controls proliferation (Li et al., 1997), hypoxia, necrosis and apoptosis (Chandel and Budinger, 

2007; Bonavita et al., 2003; Kim et al., 2003). The redox cell signalling pathways that are 

activated are balanced between those that protect endothelial and vascular smooth muscle cells 

with those that initiate cell death through apoptosis (Sauer et al., 2001; Schafer et al., 2003).  

 

A major challenge at the present time is to understand how the localized production of 

ROS/RNS contributes to the atherosclerotic lesion formation and how it makes a plaque (Patel et 

al., 2000). Therefore, particular attention is being made to associated mechanisms through which 

cells generate and detect ROS/RNS and their metabolic products, particularly oxidized lipids or 

proteins produced by enzymatic and non-enzymatic mechanisms (Li and Jackson, 2002). There 

is increased interest in how ROS/RNS contribute to cellular protection in addition to deleterious 

effects as a number of therapeutic interventions based on reactive species which have not 

demonstrated clinical benefits in treating vascular diseases. Strikingly, use of low molecular 

weight antioxidants and inhibitors of cyclo-oxygenase pathway has not been successful 

(Taniyama and Griendling, 2003). It was assumed these agents would have therapeutic benefits 

as some ROS/RNS and oxidized lipids have potentially beneficial effects as signal transduction 

molecules in cytoprotection (Taniyama and Griendling, 2003). Therefore, it is important to 

examine sources of free radical generators; mitochondria, NADPH oxidase and NOS in vascular 

systems in the pathophysiology of cardiovascular disease.  

Interestingly, lipid oxidation products are implicated in the progression of atherosclerosis which 

is the underlying cause of myocardial infarction and strokes. The mitochondrion is a site of 

redox signalling which is mediated by oxidized lipid products (Zmijewski et al., 2005).  

In general, vascular pathologies are multifactorial, but it is known that mitochondrial dysfunction 

can contribute to the pathophysiology of vascular diseases; ischaemia, hypoxia and reperfusion. 
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It is not only the dysfunction of mitochondrial energy production, but also mitochondria- 

dependent redox signalling pathway that contribute to cell survival and/or injury (Zmijewski et 

al., 2005). 

 

1.7 Cell death during hypoxia, anoxia, or hypoxia/reperfusion 

Cell death during hypoxia was thought to be by necrosis based on various ultrastructural findings 

in hypoxic cells (Jennings et al., 1975). However, recent biochemical investigations have 

demonstrated the feasibility of hypoxia-induced apoptosis (Muschel et al., 1995). McCully et al. 

(2004) reported that both necrosis and apoptosis contribute to myocardial infarct size during 

ischaemia/reperfusion. Therefore, cell death in cardiomyocytes is induced by two mechanisms; 

necrosis and apoptosis, which are different morphologically (Watkins et al., 1995).  

 

1.7.1 Necrosis  

Necrosis has been reported as a passive degenerative process induced by direct toxic and 

physical injuries (Shimizu et al., 1996) in addition to cellular stress conditions. Cellular necrosis 

is associated with chronic, severe hypoxia or anoxia condition due to absence of O2, which may 

have impaired ATP production. However, cellular endogenous factors such as intrinsic adaptive 

mechanisms, hypoxic tolerance and tissue type may determine the degree of necrotic cell death. 

Characteristically, necrotic cells swell, accumulate intracellular water, chromatin clumps, DNA 

degenerates, large cytosolic vacuoles are seen, ATP is depleted, mitochondria swell, and the 

cells lyse with intracellular contents spilled into the extracellular space (Figure 1.12). This 

results in activation of inflammatory reactions with recruitment of macrophages (Shimizu et al., 

1996; Naoi et al., 2000; McCully et al., 2004). Necrosis can occur during trauma, and 

thrombosis, with depletion of high energy stores, and disruption of the cellular membrane 

involving fluid and electrolyte alterations, the loss of potassium and magnesium ions, and 

accumulation of sodium, chloride, hydrogen, and calcium (McCully et al., 2004).  
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1.7.2 Apoptosis 

Apoptosis is a conserved process of cell suicide that plays an integral role in embryonic 

development, tissue homeostasis and tissue remodelling. Deregulation of apoptosis may result in 

excess cell death, and is implicated in pathogenesis of human disease.  It is now evident that 

apoptosis plays a key role in the pathogenesis of a variety of cardiovascular diseases including 

myocardial infarction, ischaemia/reperfusion heart failure and stroke (Crow et al., 2004).  

 

 

 Figure 1.12   The sequence of ultra structural changes in apoptosis and necrosis, taken 

from Cruchten and Broeck.  (2002). 

 

Cardiomyocytes may undergo apoptosis in response to hypoxia and reperfusion. Acidosis, serum 

or glucose deprivation, metabolic inhibition and other stimuli such as stretch, tumour necrosis 

factor and Fas ligand also trigger cardiomyocyte apoptosis (McCully et al., 2004; Adrain and 

Martin, 2001; Bromme and Holtz, 1996; Clerk et al., 2003; Crow et al., 2004). Apoptosis is an 

ATP-dependent mechanism of cell death, which is known as programmed cell death whereby 

damaged cells are cleared out in controlled manner without provoking inflammation. Apoptosis 

is characterized by the generation of fragmented nuclei with highly condensed chromatin and 
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fragmented DNA, plasma membrane blebbing, externalization of phosphatidylserine and cell 

shrinkage due to reduction in cytoplasm or protrusion of cytoplasm and organelles and then 

formation of membrane-bound apoptotic bodies (Crow et al., 2004; Shimizu et al., 1996; 

Cruchten and Broeck, 2002). These membrane-bound apoptotic bodies containing cytosol and 

processed organelles are formed and then removed by recruited macrophages via phagocytosis 

(Cruchten and Broeck, 2002) (Figure 1.12). Clinically, apoptosis has been observed in samples 

collected from patients after myocardial infarction and end-stage heart failure (Olivetti et al., 

1996; Narula et al., 1996) and also, in animal models of ischaemia/reperfusion injury (Levrand et 

al., 2006; Cruchten and Broeck, 2002; McCully et al., 2004).  

 

Two major pathways of apoptosis exist; the extrinsic, death receptor-mediated pathway and the 

intrinsic pathway. The intrinsic pathway triggers a mitochondrial mediated pathway involving 

cytochrome c release. The immediate effect of apoptosis via the intrinsic pathway is the 

activation of procaspases and dysfunction of the mitochondria. Therefore, apoptosis follows via 

specialized machinery; the central component of this machinery is a proteolytic system involving 

a family of proteases called caspases. These enzymes are involved in a cascade that is triggered 

in a response to proapoptotic signals and culminates in cleavage of structural proteins and DNA 

resulting in disassembly of the cell (Thornberry and Lazebnik, 1998, Nicholson et al., 1995). In 

apoptosis, procaspase activation is regulated by members of the Bcl-2 and inhibitor of apoptosis 

(IAP) protein families. Both intracellular and extra cellular signals mainly act by regulating the 

levels or activity of members of the Bcl-2 and IAP families (Alberts et al., 2008; Galonek and 

Hardwick, 2006;Kim et al., 2006). 

 

The Bcl-2 family of proteins; pro-apoptotic factors regulate the activation of procaspases, but, 

some other proteins of the same family such as Bcl-2 or BcL-XL; anti-apoptotic factors inhibit 

apoptosis at least by inhibiting release of cytochrome c from mitochondria (Alberts et al., 2008; 

Kim et al, 2006; Galonek and Hardwick, 2006). The Bcl-2 family anti-apoptotic factors include 

Bcl-2, Bcl-xL, Bcl-w/Bcl2L2, Mcl-1, Bcl2A1/Bfl-1, NR-13, Boo/Diva/Bcl2-L-10 and Bcl-B as 

http://www.ncbi.nlm.nih.gov/bookshelf/?book=mboc4&part=A4754&rendertype=def-item&id=A4920
http://www.ncbi.nlm.nih.gov/bookshelf/?book=mboc4&part=A4754&rendertype=def-item&id=A5688
http://www.ncbi.nlm.nih.gov/bookshelf/?book=mboc4&part=A4754&rendertype=def-item&id=A5049
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reported. The first group of pro-apototic factors include Bik/Nbk, Blk, Hrk/DP5, BNIP3, 

Bcl2L11/BimL/Bod, Bad, Bid, PMAIP1/Noxa, PUMA/Bbc3 and Bmf (Willis and Adams, 2005; 

Kim et al., 2006; Galonek and Hardwick, 2006; Huang and Strasser, 2000; Adams and Cory, 

2001; Borner, 2003). All members listed above holds only a specific BH3 domain unlike other 

members in Bcl-2 family (Huang and Strasser, 2000). The second group of pro-apoptotic factors 

includes Bax like pro-apoptotic factors including Bax, Bak, Bok/Mtd, Bcl-xs (Kim et al., 2006; 

Galonek and Hardwick, 2006; Huang and Strasser, 2000). PUMA and Noxa are both BH3-only 

proteins which are known as other pro-apoptotic factors which can activate p53-mediated 

apoptosis (Willis and Adams, 2005; Yu and Zhang,2008; Vousden, 2005). BH3 only members 

and their ability to interact with other pro-survival family members to permit bax/Bak to form 

mitochondrial pores. The proapototic factors, like Bad, function by binding to and inactivating 

the anti-apoptotic factors, whereas Bax and Bak, trigger the release of cytochrome c from 

mitochondria (Jiang and Wang, 2004; Galonek and Hardwick, 2006) and Bid in Bcl-2 family can 

promote the activation of both Bax and Bak (Willis and Adams, 2005;Jiang and Wang, 2004; 

Kim et al, 2006). If the genes encoding Bax and Bak are not activated or expressed, cells can 

resist to apoptotic stimuli (Kim et al., 2006; Galonek and Hardwick, 2006; Huang and Strasser, 

2000). 

 

 

IAP (i.e. X-linked inhibitor of apoptosis, XIAP) are known to inhibit apoptosis either by binding 

to procaspases, like 9 and/or 3  to prevent their activation or binding to active caspases, like 

caspae-9 (Verhagen et al., 2001;Crow et al., 2004). When Bax and Bak stimulate the release of 

cytochrome c, it can activate Apaf-1 and at the same time, the other protein released by 

mitochondria can block the activity of IAPs (Verhagen et al., 2001;Crow et al., 2004, Kim et al., 

2006; Galonek and Hardwick, 2006). Caspases are a subclass of cysteine proteases that cleave 

substrate after aspartic acid residue which are crucial to the activation of execution of apoptosis 

(Thornberry and Lazebnik, 1998). Caspases are constitutively expressed and synthesized as 

inactive zymogens referred commonly as procaspases, containing an N-terminal prodomain and 

a C-terminal catalytic domain consisting of ~17-24kDa (p20) and ~10-12kDa (p10) subdomain.  

http://www.ncbi.nlm.nih.gov/bookshelf/?book=mboc4&part=A4754&rendertype=def-item&id=A5049
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Caspases are classed according to their function, as either upstream (initiator) caspases; caspases 

2, 8, 9, 10 and 12 or downstream (effectors, executioner) caspases; 3, 6 and 7 (Nicholson et al., 

1995; Crow et al., 2004) (Figure 1.13). Induction of cell death largely depends on the 

interactions between different modulators, typically activation of apoptosis in cardiac myocytes 

is multiple stressor-dependent. In cardiovascular disease multiple stressors include cytokines, 

increased oxidative stress, and DNA damage. Upstream procaspases are activated by 

dimerization and autolysis and inactive downstream procaspases activated by proteolytic 

cleavage mediated by initiator caspases. Procaspase-3 has a major role in apoptosis, when it is 

cleaved, in turn; it activates other executioner caspases and leads to the subsequent characteristic 

features of apoptosis (Thornberry and Lazebnik, 1998; Nicholson et al., 1995) (Figure 1.13).  

 

 

1.8 Hypoxia induced apoptosis of cardiomyocytes 

Despite the convincing evidence that apoptosis occurs following hypoxia, the molecular 

mechanism and signalling pathway(s) activated by hypoxic stimuli and resulting in cardiac cell 

apoptosis are enigmatic to date. Ischaemia/reperfusion mediated cardiomyocyte apoptosis is 

regulated by several redox- sensitive transcription factors and genes including NF-κB and AP-1 

respectively (Maulik et al., 2000; Sun and Oberley, 1996). Satriano and Schlondorff. (1994) 

reported the activation of NF-κB by O2
-•
 in mouse glomerular mesangial cells in response to 

tumour necrosis factor-alpha, whereas Pignatti and Stefanelli (2003) reported the modulation of 

NF-κB activity with NOS-dependent 
•
NO in cardiomyocytes. In contrast, Levrand et al. (2005) 

reported the inhibition of NF-κB activation by ONOO
-
 during ischaemia/reperfusion in 

cardiomyocytes. However, the role, duration of production and specific type of ROS/RNS to 

activate NF-κB and modulation of apoptosis during hypoxia/reperfusion remains unknown. In 

accord with previous reports, prolonged hypoxia of 24-72h was needed to induce significant 

apoptosis in primary cultures of neonatal rat cardiac myocytes (Yaoita et al., 1998). Hypoxia 

alone is reported to be a very weak apoptotic stimulus in H9C2 cardiomyoblasts, however serum 

withdrawal can significantly enhance the proapoptotic actions (Bonavita et al., 2003). Unlike 

other cells, cardiomyocytes have an intrinsic pathway to protect themselves from severe hypoxia.  
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Figure 1.13  Central apoptotic pathway, adapted from Crow et al. (2004) and Kim et al. 

(2006). In the extrinsic pathway, death receptor activation stimulates procaspase-8 activation. 

Then, activated caspase-8 cleaves downstream procaspase-3, which triggers proteolytic digestion 

of the cell. In the intrinsic pathway, intracellular and extracellular death stimuli carry signals to 

mitochondria through Bax and Bid, which translocate to outer membrane and then stimulate 

release of apoptogens; cytochrome c , Smac and DIABLO. Bcl-2 and Bcl-xL are anti-apoptotic 

factors. In the cytoplasm, cytochrome c + dATP+Apaf-1 and procaspase-9 form apoptosome. 

Then, activated procaspase-9 induces proteolytic cleavage of procaspase-3. XIAP can inhibit 

activation of procaspase-9, active caspase-9 and 3. Activated caspase-8 cleaves Bid and then the, 

C-terminus of cleaved Bid translocates and inserts into the outer membrane of mitochondria, 

thereby activating Bax and Bak and release of cytochrome c.   
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It has been suggested the presence of high levels of endogenous apoptosis inhibitors such as 

apoptosis repressor caspases (ARC) that interact selectively with the death domain of the Fas 

(CD95/Apo-1) death receptor and upstream initiator caspases 2 and 8, respectively support cell 

survival (Bonavita et al., 2003). Furthermore, other survival factors for cardiomyocytes include 

interleukin-6, cardiotrophin 1 and insulin-like growth factor 1 and have been shown to be 

protective by inhibiting cardiomyocyte apoptosis pathways (Bonavita et al., 2003). An absence 

of glucose in neonatal rat cardiac myocytes during hypoxia-induced significant apoptosis as 

reported by cytochrome c release and DNA fragmentation (Malhotra and Brosius, 1999). 

However, the mechanism by which enhanced glycolysis protects against hypoxia-induced 

apoptosis is unknown.  

 

1.9 ROS/RNS generation in cardiovascular system 

Mitochondria and NAD(P)H enzymatic complexes are considered the main centres of ROS 

generation in the cardiovascular system (Abramov et al., 2007). Other sources of ROS 

generation can become significant in non-physiological conditions including superoxide 

generation from xanthine oxidase in hypoxic tissues (Abramov et al., 2007). NADPH oxidase 

has been proposed as the major superoxide producer in the vascular system (based on the use of 

inhibitors of flavoproteins such as diphenyleneiodonium (DPI)) compared to xanthine oxidase, 

NOS, cytochrome P-450 reductase and oxidoreductases of the mitochondrial respiratory chain 

and ubiquinone oxidoreductase (Balcerczyk et al., 2005). It has been reported that NOS-

dependent and independent 
•
NO production occurs in the cardiovascular system and in rat heart 

(Raat et al., 2009; Brown and Borutaite, 2007; Zweier et al., 1999; Strijdom et al., 2009).  

 

Many investigators have demonstrated that there is a NOS-dependent increase in 
•
NO production 

in the myocardium during early ischaemia (Strijdom et al., 2009). However, these studies do not 

clearly specify the cellular sources of 
•
NO production and/or which NOS isoforms are 

responsible for 
•
NO generation under pathological conditions (Strijdom et al., 2009; Brown and 

Borutaite, 2007).  
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Several studies have shown that increased expression of eNOS and iNOS generates 
•
NO during 

ischaemia, but their regulation and activation are not well understood during hypoxia (Raat et al., 

2009). Recently, studies have shown that activation occurs of cellular nitrite sources to generate 

•
NO during ischaemia and also in reperfusion as a cytoprotective measure, but their mechanism 

and contribution are not well described  (Raat et al., 2009). Peroxynitrite is involved in 

myocardial cytotoxicity by direct oxidation of lipids, proteins, and DNA (Pesse et al., 2005; 

Pacher et al., 2005), the activation of metalloproteinases (Wang et al., 2002) and nitrotyrosine 

formation. Moreover, ONOO
-
 generation associates with myocardial oxidative stress, which may 

contribute to myocardial apoptosis (Kumar and Jugdutt, 2003). ONOO
-
 acts as a potent 

signalling molecule in cardiomyocytes by activating all members of the MAP kinase family 

(Pesse et al., 2005), and inhibiting the activation of nuclear factor kappa B (Levrand et al., 2005). 

 

1.10 Mitochondria in hypoxia/reperfusion 

The mitochondrion is the energy producer for cell survival, but is involved in the cell death 

during hypoxia/reperfusion. Mitochondrial death during hypoxia/reperfusion is associated with 

mitochondrial permeability transition pore (MPTP) opening  during both necrosis and apoptosis 

(Crompton, 1999). MPTP opening results in depolarization of membrane potential (Δψm) which 

may in turn reduce the proton motive force to harness energy from ATP synthase at 

mitochondrial complex IV. Instead, ATP depletion occurs as cells attempt to maintain lost 

membrane potential in an adaptive process. However, sustained opening of MPTP results in 

release of cytochrome c and activation of the apoptogenic molecules, Smac/DIABLO and 

APAF-1 within the intermembrane space (Honda et al., 2005). This may result in the induction 

of cell death via by cleaving procaspase-9 during apoptosis. It has been reported that generation 

of ROS/RNS plays a critical role in determining the opening of MPTP (Zhao, 2004).  

Sustained opening of MPTP may result in matrix swelling due to diffusion of water and 

ultimately rupture of the outer membrane. It is believed that intracellular Ca
2+

 overload in the 

mitochondria plays a role in mitochondrial swelling and rupture of outer membrane and Ca
2+

 

buffering mediated hypoxia/reperfusion induced-cell death is widely established (Lemasters et 

al., 2009).  
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Moreover, MPTP opening is pH-sensitive, but its relative sensitivity is unknown under 

hypoxia/reperfusion conditions (Crompton, 1999; Crow et al., 2004). Typically, MPTP opening 

can be activated by overexpression of proapoptotic factors such as Bcl-2 family members; Bax, 

Bak, Bad, Noxa, Puma, and Bid (Kim et al., 2003; Crompton, 1999; Honda et al., 2005).  MPTP 

opening during hypoxia may be further sustained during reperfusion; however, this depends on 

the interplay between matrix Ca
2+

 level, ROS, intracellular Mg
2+

 and pH (Crompton, 1999; 

Zhao, 2004). As a cardiac protective mechanism, particularly during preconditioning, cells may 

adapt by; (1) opening of Mg
2+

 and ATP dependent mt-KATP channels leading to depolarization, 

and  decreasing the electrochemical gradient for Ca
2+

 during reperfusion; (2) opening of mt-

KATP channels to promote matrix swelling that can help to maintain membrane integrity where 

it can run efficient electron transport; (3) opening of mt-KATP that  may reduce ROS 

production, thereby, preventing MPTP opening (Crompton, 1999; Honda et al., 2005; Penna et 

al., 2009). mt-KATP channel function during preconditioning is under investigation as an 

approach to improve therapeutic interventions against reperfusion injury. 

 

1.11 ROS/RNS generation during hypoxia/reperfusion 

During normoxia, O2
•-
 anion radicals are produced by the mitochondrial electron transport 

system at NADH coenzyme Q reductase (complex I); and ubiquinol–cytochrome c reductase 

(complex III). During ischaemia,  reduction of iron-sulphur and ubiquinone components occurs 

with an inhibition of complex I which may trigger the decline in superoxide dismutase activity 

and result in the mitochondrial superoxide burst (Murphy, 2009). In the myocardium, it is 

believed that the mitochondrion is the main source of ROS from the respiratory chain (Becker et 

al., 1999). The ETS often generates a large flux of electrons which may be potentially capable of 

reducing O2 (Becker et al., 1999). After exposure to hypoxia, probably redox components of the 

respiratory chain impair complexes I and III in their reduced state, causing more superoxide or 

ROS formation possibly via ubisemiquinone radical intermediates (Becker, 2004a). Experiments 

with the electron transfer inhibitors amytal and myxathiazol demonstrated complex III as a major 

site of ROS production during ischaemia (Becker et al., 1999).  
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Recent studies show that NADH dehydrogenase in complex I is inactivated partially during 

hypoxia-reperfusion due to accumulation of O2
•-
 and ROS which may cause loss of the Fe-S 

clusters in the complex. Moreover, complex II may also produce ROS during hypoxia, by 

switching its catalytic activity from SDH to fumarate reductase activity at reduced oxygen 

tension (Murphy, 2009). There is no clear evidence of ROS generation from complex IV, except 

for its role as a cellular oxygen sensor with the function of cytochrome c oxidase (Palacios-

Callender et al., 2007). During normoxic respiration, antioxidant enzymes such as Mn 

superoxide dismutase (Mn-SOD) in mitochondrial matrix and Cu/Zn superoxide dismutase 

(Cu/Zn-SOD) in the mitochondrial intermembrane space and cytosol swiftly dismutate excess 

O2
•-
 produced within the matrix, intermembrane space and outer membrane to H2O2 (Murphy, 

2009; Okado-Matsumoto and Fridovich, 2001). The resultant H2O2 is then degraded to O2 and 

H2O by cytosolic or mitochondrial catalase, glutathione peroxidase (Thannickal and Fanburg, 

2000) and peroxiredoxin (Vivancos et al., 2005). The contribution of ROS in promoting 

ischaemic damage has been demonstrated by the reduced damage observed in reperfused heart of 

transgenic mice overexpressing Mn-SOD (Chen et al., 1998). GSH peroxidase-catalysed 

removal of H2O2 reduces GSH concentration and can result in a redox change in the 

mitochondria and cytosol.  

 

Overproduction of ROS during a prolonged hypoxic insult can further disrupt mitochondrial 

homeostasis by irreversibly oxidising proteins such as cytochrome oxidase (Murphy, 2009), 

DNA and lipids. In contrast, a lower level of ROS generation is required to induce 

cardioprotective mechanisms that preserve mitochondrial integrity and the myocardium during 

episodes of hypoxia or ischaemia. Within the hypoxic heart, mitochondria are likely to be the 

main source of ROS in muscle cells (Vassilopoulos and Papazafiri, 2005; Turrens, 1997; 

Suleiman et al., 2001). Other sources such as the NADPH oxidase complex in vascular cells 

(Souza et al., 2002) or xanthine oxidase in endothelial cells, pulmonary cells and neuronal cells 

can generate O2
•-
 (Pearlstein et al., 2002; Abramov et al., 2007; Becker et al., 1999; Becker, 

2004a). Moreover, NOS isoforms also can produce O2
•-
 and H2O2 when L-arginine substrate is 

limited in supply (Pou et al., 1999).  
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However, the relative contribution of aforementioned sources for O2
•-
 production during hypoxia 

alone in cardiomyocytes has not been clearly established.  

 

1.12 NOS in hypoxia/reperfusion 

Nitric oxide (
•
NO) can be generated in many cells or tissue types including myocardium in the 

heart and have profound effects on cardiac function. 
•
NO is principally generated by 

•
NO 

synthases (NOS), which catalyze the conversion of L-arginine to 
•
NO and L-citrulline, however, 

there are non-enzymatic sources including endogenous nitrite stores, generating 
•
NO or their 

related species during ischaemia/reperfusion.  nNOS and eNOS are constitutively expressed and 

their activation is calcium/calmodulin-dependent. However, iNOS is expressed only under 

stimulated conditions such as microbial or immunological stimuli, and there is no relation to 

intracellular calcium level (Kanno et al., 2000).  

 

There is considerable interest in mitochondrial NOS as previously reported by Zenebe et al. 

(2007). Even in the presence of mtNOS, the contribution of mitochondria to 
•
NO production 

might not be important under in vivo ischaemia/reperfusion. Some authors have reported that the 

main site of 
•
NO synthesis is non-mitochondrial, probably by nitrosyl-heme complexes as those 

are formed in ischaemic hearts (Tiravanti et al., 2004). Several authors have documented the 

beneficial effects of administration 
•
NO donors attenuating ischaemic injury (Pabla and Curtis, 

1995; Wainwright and Martorana, 1993; Kanno et al., 2000; Strijdom et al., 2009). Moreover, 

pharmacological inhibition of NOS and transgenic iNOS or eNOS knockout (KO) mice show 

more severe hypoxic injury in the heart (Kanno et al., 2000).  

 

In further support of a protective role of 
•
NO, eNOS-KO mice attenuates cardiac recovery after 

ischaemia/reperfusion, but overexpression of eNOS accelerates functional recovery of the heart. 

Moreover, pharmacological inhibition of NOS attenuates the developed pressure after 

ischaemia/reperfusion in mice and guinea pig hearts; to NOS-dependent 
•
NO formation is 

cardiacprotective and can attenuate myocardial stunning in mice and guinea pigs (Schulz et al., 

2004).  
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However, the protective efficacy of NOS-dependent 
•
NO is species dependent, as NOS isoforms 

expression is species dependent (Pabla and Curtis, 1996). In rats, both low and high 
•
NO 

concentration are ineffective in activating cardiac protection while intermediate concentrations 

are protective (Schulz et al., 2004). eNOS-KO mice have an increased infarct size after 

ischaemia reperfusion, suggesting the importance of eNOS activity during ischaemia/reperfusion 

(Schulz et al., 2004). Moreover, addition of a 
•
NO donor at the time reperfusion or just before 

reperfusion had beneficial effects, such as a decrease in irreversible injury and reduced 

neutrophil adhesion to the endothelium (Sato et al., 1995).  

 

 

1.13 Quantification of ROS and RNS during hypoxia-reperfusion using fluorescent probes 

There are number of direct and indirect methods available to detect ROS/RNS at an intracellular 

level; but facile detection of ROS is still problematic. The use of reliable and precise methods to 

assess ROS/RNS production is crucial. Fluorescent probes are widely used for in vitro 

determination of ROS and RNS. Fluorescent probes are fluorophores that may be designed to 

localize within a specific region of a biological tissue and to respond to a specific signal such as 

amount of ROS and RNS. ROS/RNS cause oxidation or nitration of the fluorescent probe which 

is initially in a chemically reduced state and an associated increase in fluorescence. Therefore, 

the proportion of fluorescence is correlated to the amount of intracellular ROS/RNS. The 

reduced dyes are known to be colourless and non-fluorescent; once oxidized, the dyes are highly 

coloured and fluorescent. It is important to understand the chemical properties of the probe, 

particularly their chemical reactivity towards ROS/RNS.  

 

Most dyes have variable sensitivity, but some have specificity for a particular reactive species. 

However, in complex biological research, physical properties also play an important role, 

therefore understanding the physical properties such as solubility in the culture medium, 

biodistribution, absorption spectra, fluorescent emission spectra and fluorescent lifetime is 

important (Wardman et al., 2007).  
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In hypoxia-reperfusion experiments, the ideal properties of fluorescent ROS/RNS sensor would 

include (a) being cell membrane permeant and exhibiting stochiometric binding to intracellular 

ROS (b) having no cellular toxicity (c) undergoing efficient oxidation to a fluorescent product by 

ROS (d) showing intracellular sequestration of the fluorescent oxidised form (Kudin et al., 2005) 

(e) having mono-specificity for a particular species and (f) stability within the intracellular 

environment. The following section explains the particular fluorescent probes that can be 

employed in ROS/RNS-related research.  

 

1.14 The construction of new reporter systems for ROS/RNS detection 

There is increasing evidence suggesting that mitochondrial dysfunction, mitochondrial-based 

O2
•-
 generation and other ROS/RNS are implicated in the pathophysiology of cardiovascular 

disease, aging, cancer, neurodegenerative disease, inflammatory disorders, diabetes, and diabetic 

complications (Mukhopadhyay et al., 2007). Chemiluminescence and fluorescence-based assays 

have been widely available to measure cell-derived superoxide.   

 

Detecting O2
•-
 using fluorescent probes provides benefits of analysis by fluorescence 

microscopy, flow cytometry, a fluorescence microplate reader, and a cell sorter. However, 

selectivity, simplicity, reactivity and availability are important factors. The novel fluoroprobe; 

MitoSOX Red (MitoSOX) has been used for selective detection of O2
•-
 (Mukhopadhyay et al., 

2007), but only in mitochondria, not as a global O2
•-
 indicator. Other new approaches are 

dependent on the effects of O2
•-
 and other radical species on gene expression systems. Some 

organism such as E.coli have various gene expression systems sensitive to ROS/RNS. Those 

systems have been utilized to construct reporter systems to monitor environmental stress factors 

(Belkin et al., 1996), and also to monitor O2
•-
  and other radical species generation in in vivo 

animal models (Koo et al., 2003;Kim et al., 2005; Niazi et al., 2007). If the promoter region of 

O2
•-
- sensitive gene segment is fused to a Renilla reniformis luciferase gene as a reporter, that 

system can be used as a quantitative indicator to assess intracellular O2
•-
 production.  
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This type of system may have number advantages including accurate quantification of 

superoxide produced, exclusion of O2
•-
  related species which may have evolved from secondary 

oxidations, detailed information about the redox state of the cell or tissue and possible in  vivo 

detector of O2
•-
  production in animal models. A reporter gene system has been described for the 

individual detection of H2O2 and singlet oxygen generation in Chlamydomonas reinhardtii, a 

plant model organism. This system employs various HSP70A promoter segments fused to a 

Renilla reniformis luciferase gene as a reporter (Shao et al., 2007).  

 

Other reporter systems have been reported that use SOXRS of E. coli and green fluorescent 

protein (GFP) of Aequorea victora where GFP showed an increased fluorescence in the presence 

of O2
•-
  (Shibuya et al., 2004). It is clear now, there is a raised possibility of using those reporter 

gene plasmid constructs to quantify O2
•-
 generation in vivo and in vitro animal models under 

hypoxia or hypoxia/reperfusion.   

 

1.15 The validity of the fluorescent probe for 
•
NO determination compared to EPR 

There are three widely used major methods available for detection of 
•
NO; such as 

chemiluminescence, electron spin resonance (ESR) /Electron Paramagnetic Resonance (EPR)  

and fluorometric methods including selective fluorescent probes. There are several advantages 

and disadvantages in all methods. However, direct 
•
NO measurements are difficult due to low 

concentrations and short half-life, therefore, EPR spin trapping has been reported as one of best 

methods for quantification of 
•
NO (Kleschyov et al., 2007). ESR or EPR based techniques show 

higher sensitivity and selectivity for radical species or paramagnetic species in variety of 

application methods (Archer, 1993, Tsuchiya et al., 1996, Berliner et al., 2001).  

EPR is a tool that determines the resonant absorption of microwave radiation by paramagnetic 

systems in the presence of an applied magnetic field (Kleschyov et al., 2007). EPR can be used 

as a direct or non-direct in vivo and in vitro methods to analyse endogenous or exogenous 
•
NO 

production in intact tissues or isolated organ or small animals (Kuppusamy and Zweier, 2004).  
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Despite above advantage of EPR tools, they are limited by expensive instrumentation, sample 

preparation, and complicated and intensive operation under laboratory conditions, where 

fluorescent probes are an easier and rapid method for 
•
NO detection in cell culture systems. 

Moreover, with the development of fluorometry techniques, there are new small molecule probes 

which are available that can discriminate between ONOO
-
 and nitroxyl radicals in culture 

systems when determining 
•
NO generation, with increasing development of biocompatible 

probes for use in animals and tissues (Kleschyov et al., 2007; McQuade and Lippard, 2010). 

 

1.16 Cardiac protection during hypoxia/reperfusion 

1.16.1 Defence mechanisms in biological systems 

In vivo and in vitro biological systems have natural defence mechanisms against ROS/RNS to 

prevent damage if they are overproduced. Natural defence mechanisms consists of endogenous 

antioxidant enzymes; superoxide dismutase, glutathione peroxidase, catalase and thioredoxin 

reductase and non-enzymatic antioxidants; coenzyme Q, thioredoxins, glutathione, endogenous 

nitric oxide, and antioxidant vitamins (Elsässer et al., 2001; Downey and Cohen, 2006). 
•
NO 

itself has been reported as a protective molecule during hypoxia in several reports (Beckman and 

Koppenol, 1996; Bereesewicz et al., 1995). The addition of exogenous antioxidants, radical traps 

and low molecular weight ROS scavengers can also overcome deleterious effects of excessive 

generation of ROS/RNS. The presence of excess ROS/RNS can in turn trigger activation of a 

number of redox-sensitive transcription factors such as NF-κB and Nrf2 that in turn promote the 

expression of antioxidant enzymes such as MnSOD and GCS respectively (Penna et al., 2009; 

Maulik et al., 2000; Thimmulappa et al., 2002). 

 

In addition to ROS/RNS mediated cytoprotection during hypoxia/reperfusion via NF-κB and 

Nrf2, hypoxia inducible factor (HIF)-1α activation plays an essential role in triggering protection 

against cellular injury and metabolic alterations from the consequences of oxygen deprivation 

during hypoxia.  
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According to recent reports, HIF 1α activation confers protection against ischaemia–reperfusion 

(I/R) injury, provided that HIF 1α activation has been induced before the onset of lethal 

ischaemia (Loor and Schumacker, 2008). The term ―cardiac protection‖ defines an activation of 

protective mechanism during hypoxia to adapt cells for survival. Numerous reports describe 

cardiac preconditioning under mild hypoxic conditions that protects against later severe hypoxia. 

But low concentrations of ROS/ RNS play a vital role in modulating signalling mechanisms of 

cardioprotection. 

 

 

1.16.2 Preconditioning in the heart with hypoxia and hypoxia/reperfusion 

Reperfusion after ischaemia may restore function to the myocardium, but paradoxically, also 

results in additional damage to the tissue. The proliferative ability of cardiomyocytes is limited; 

therefore, loss of cardiomyocytes cannot be compensated for and a strategy of controlling cell 

death is required to attenuate the heart damage induced by reperfusion. Cardiac protection during 

ischaemia has been unsuccessful with therapeutic interventions to date, which have attempted to 

minimize infarct size or subsequent reperfusion damage. Preconditioning makes tissue more 

resistant for subsequent episodes of ischaemia or reperfusion insult (Murry et al., 1986). There 

are two types of preconditioning; first window protection (classical preconditioning) and second 

window protection. The classical preconditioning occurs after first 5min of reperfusion and it 

extends until 3h whereas the second window of protection occurs between 12-72h later (Yellon 

and Downey, 2003; Ardehali, 2006; Balakumar et al., 2009).   

The mechanisms of these two processes are not clear; however, first window protection is 

associated with posttranslational modifications of proteins whereas the second window of 

protection depends on cardiac protective agents available intracellularly. Cardiac preconditioning 

is associated with complex redox signalling mechanisms in rat heart (Penna et al., 2009). It has 

been reported that redox activity of endogenous and exogenous ROS/RNS generated at low 

concentrations during transient ischaemia may trigger protective mechanisms (Costa et al., 

2005). Mitochondrial ROS/RNS mediate first window protection, with O2
•-
, 

•
NO and H2O2 

reported as the major molecules in the cascade.  
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Moreover, scavenging of hydroxyl radical and ONOO
-
 have shown their involvement in 

preconditioning (Kevin et al., 2003; Becker, 2004b; Becker et al., 1999). Other sources of O2
•- 

production are also important in preconditioning; NADPH oxidase plays a pivotal role in 

ischaemic preconditioning, as NADPH oxidase KO-mice cannot be preconditioned (Bell et al., 

2005). It has been reported that ROS mediates PKC and, thereby to induce associated effects of 

cardiac protection with MPTP, mitochondrial KATP channels and BAX/BAD (Penna et al., 

2009).  

In ischaemic heart and also during reperfusion period, 
•
NO production takes place and is 

involved with preconditioning via the mitochondrial K ATP channels (Penna et al., 2009). 

Moreover, inclusion of exogenous 
•
NO by 

•
NO donors and endogenous 

•
NO have shown to 

produce cardiac protection during ischaemia/reperfusion in various tissues including 

myocardium. It is believed that endogenous 
•
NO is involved in cardiac preconditioning during 

ischaemia/reperfusion through several mechanisms including reducing platelet aggregation, 

neutrophil activity and adhesion in a cGMP-dependent manner in in vivo models (Penna et al., 

2009).  

 

1.16.3 Post conditioning in the heart with reperfusion 

Post conditioning is defined as intermittent interruption of coronary flow in the very early phase 

of a reperfusion, to activate cardiac protection. Cardiac effects of postconditioning depend 

critically on the duration of index and severity of ischaemia at the early phase of reperfusion. 

Moreover, it has been shown recently that redox signalling is paramount at the time of 

myocardial reperfusion (i.e. after period of hypoxia or ischaemia), to mediate the 

cardioprotection elicited by ischaemic preconditioning (Dave et al., 2008; Liu et al., 2008). Post 

conditioning is associated with multiple mechanisms including reduction of apoptosis, necrosis, 

endothelial dysfunction so as to, minimise endothelial/leukocyte interactions, and to reduce 

inflammation. The contribution of 
•
NO in cardioprotection has been shown by administering of 

L-NAME, 5min before the beginning of reperfusion in rabbit heart; this exacerbates the 

reperfusion injury (Xi-Ming et al., 2004). The significant role of nitrite in ischaemia/reperfusion 

injury has recently been suggested.  
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It is argued that whether 
•
NO (from either enzymatic or non-enzymatic sources during 

reperfusion) or ONOO
- 
(produced after reaction with O2

-• 
and 

•
NO) mediate the cardiacprotection 

during ischaemia/reperfusion (Penna et al., 2006). However, the mechanism of the involvement 

of ONOO
- 

in the cardiac protection and post conditioning remains unclear (Dawn and Bolli, 

2002; Yellon and Downey, 2003; Pagliaro, 2003).  

 

In summary, the mechanism of postconditioning includes occupation of adenosine receptors, 

activation of NOS and non enzymatic processes to produce 
•
NO, opening of mitochondrial KATP 

channels and blockage of MPTP under acidosis and production of ROS, thereby producing 

ONOO
- 

and triggering the activation of PKC and MAPKs. However, ROS/RNS may be 

protective in the pre-hypoxic phase and/or play roles in redox signalling during cardiac 

protection, but they can act deleteriously in the post-ischaemic phase causing reperfusion injury. 

Therefore future investigations are warranted.  

 

1.17 Cellular defence mechanism-signalling via NF-κB and Nrf2 activation 

There are only a few transcription factors, including NF-κB and NE-E2-related factors (Nrf2; 

Nrf1, Nrf2 and Nrf3 and Nrf2-associated factor INrf2), known to be activated by ROS and/or 

electrophiles generated during oxidative stress or chemical exposure of cells respectively. The 

activation mechanism of Nrf2 is different from the NF-κB pathway (Jaiswal, 2004). 

 

1.17.1 Nrf2 activation and ARE 

As a protective pathway against ROS/RNS under oxidative stress conditions, higher organisms 

have developed elaborate defence mechanism comprising phase II detoxification enzymes and 

antioxidant proteins. These antioxidant proteins include NAD(P)H: quinone oxidoreductase 

1(NQO1) a flavoprotein, glutathione, S-transferase (GST), heme oxygenase 1 (HO-1), 

superoxide dismutase (SOD1), NOS and glutamate cysteine ligase (GCL). All these genes 

contain specific nucleotide sequence in their gene promoter; the antioxidant response element 

(ARE) which can drive gene transcription. The consensus sequence of ARE is 5′-

TA/CANNA/GTGAC/TNNNGCA/G-3′ (Wasserman and Fahl, 1997).  
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The antioxidant responsive element (ARE) is a cis-acting regulatory element or enhancer 

sequence, which is the promoter gene sequence of phase II detoxification enzymes and the 

aforementioned antioxidant proteins. Under unstimulated conditions, Nrf2 is sequestered in the 

cytoplasm by Keap1. Activation signals include  protein kinase pathways (MAPK, PI3K and 

PKC) and ROS or electrophiles that can dissociate the Nrf2-Keap1 complex which may result in 

nuclear translocation of Nrf2 with small Maf proteins, thereby causing the transcriptional 

activation of downstream target genes; NQO1,GST,GCL,SOD1 and HO-1 (Heiss et al., 2009; 

Lee and Johnson, 2004 ) (Figure 1.14). The cytoplasmic Keap1 protein acts as a repressor of 

Nrf2-mediated ARE activity (Heiss et al., 2009). 

 

Among antioxidant proteins, NQO1 plays an important role in detoxification of metabolic 

reduction of redox cycling quinones (Sally et al., 2007; Nioi et al., 2003; Nguyen et al., 2009; 

Heiss et al., 2009) and evidence from gene-knockout models has shown the pivotal role of 

NQO1 in the cytoprotective responses invoked by electrophilic stress (Nioi et al., 2003). 

Moreover, activation of ARE promoter and NQO1 gene up-regulation occurs during ischaemia-

reperfusion (Leonard et al., 2006). In the activation of NQO1 protein, Maf protein must be 

bound to NQO1-ARE independent of Nrf2 (Itoh et al., 1997), unlike other antioxidant genes.  

 

 

1.17.2 NF-κB activation 

NF-κB (nuclear factor κB) is a redox-sensitive transcription factor which plays a pivotal role in 

the regulation of immune, apoptotic, cell proliferation, survival and inflammatory responses. NF-

κB is ubiquitously expressed and can be activated by variety of stimuli including cytokines, 

endotoxin and oxidative stress.  NF-κB activation regulates expression of various genes, thereby, 

co-ordinating cellular homeostasis with the control of balance between cell survival and cell 

death (Kukreja, 2002). At rest, NF-κB is sequestered in the cytoplasm by IkB and then can be 

activated upon multiple steps of phosphorylation through a protein kinase cascade of activation 

signals (Adrienn et al., 2003; Beinke and Ley, 2004). Under stimulated conditions, IkB 

immediately undergoes phosphorylation and ubiquitination and result in release of sequestered 

NF-κB (Figure 1.15). 
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Figure 1.14  ARE-driven gene expression by Nrf2, taken from Lee and Johnson (2004 ). 

 

 

Then, NF-κB translocates into the nucleus and binds with the promoter region of genes where it 

can promote transcription of specific, regulated genes including inducible nitric oxide synthase 

(iNOS), cyclooxygenase II (COX-2), Mn-superoxide dismutase (MnSOD), anti-apoptotic agents 

such as Bcl-2, inhibitor of apoptosis activation factors (IAFs), A1, and cytokines, tumour 

necrosis factor (TNFα), HO-1, interleukins; IL-1 and IL-6, cell adhesion molecules; ICAM, 

VCAM, selectins, FAS ligand and other transcription factors such as p53 (Kukreja, 2002, 

Adrienn et al., 2003). NF-κB/DNA binding activity associates in ischaemia/reperfusion and 

preconditioning under oxidative stress due to its redox sensitivity.  

Activation of NF-κB may reflect an early pathway to promote gene transcription for cardiac 

protection during preconditioning. Ischaemic preconditioning induces NF-κB DNA binding 

activity after coronary occlusion in rabbit hearts (Kukreja, 2002). In the presence of NOS 

inhibitors, NF-κB DNA binding was blocked, where ONOO
-
 and 

•
OH are responsible for 

activation of NF-κB under ischaemic conditions.  
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Adding to this, Takano et al. (1998) reported NF-κB dependent gene transcription of iNOS and 

synthesis of 
•
NO in heart during delayed preconditioning. NF-κB activation is involved in 

hypoxia/reperfusion injury, particularly in the vascular endothelium in where NF-κB activation 

promotes neutrophil adhesion. Early studies showed that NF-κB nuclear binding increased in 

microvascular endothelial cells during reperfusion but not during hypoxia (Kupatt et al., 1997). 

However, it is possible to induce cardiac dysfunction through overexpression of myocardial 

cytokines if NF-κB is activated for a long time during ischaemia/reperfusion (Kukreja, 2002). 

Therefore, NF-κB is a key regulator of the balance between cell death and survival.  

 

 

 
 

 

Figure 1.15   Generic pathway of NF-κB activation, taken from Beinke and Ley (2004). 
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1.18 What remains unknown in hypoxia and hypoxia/reperfusion? 

In the present study, there are still unanswered questions related ROS/RNS generation and their 

associated detrimental effects and beneficial effects during hypoxia and hypoxia/reperfusion. 

Previously, there has even been a dispute about whether hypoxia increases or decreases the 

production of ROS from mitochondria (Duranteau et al., 1998; Toescu, 2004; Waypa and 

Schumacker, 2005; Lesnefsky et al., 2004; Murphy, 2009).  

However, the effects of severity and duration of hypoxia for particular cells or tissues that 

induces ROS/RNS generation, detrimental effects or induces cellular antioxidant defence 

mechanism against hypoxia insult remains unknown. The development of therapeutic 

interventions requires clearer understanding of pathways for treating ischaemia/reperfusion. 

 

1.19 Hypothesis and aims 

1.19.1 Hypothesis 

An increase in ROS/RNS generation leads to myocardial cell death during hypoxia or 

hypoxia/reperfusion, which is dependent on the severity and duration of ROS/RNS 

production. Inhibition of specific sites of ROS/RNS generation prevents hypoxia and 

hypoxia/reperfusion-induced cell death. Hypoxia and hypoxia/reperfusion-induced 

superoxide and/or nitric oxide increase the activity of redox sensitive transcription factors 

that can influence cell survival.  
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1.19.2 Aims 

 

1. To optimise analytical conditions for using fluorescent probes in order to achieve 

optimum oxidation with intracellular ROS/RNS in vitro. 

 

2. To develop and determine the stability of the hypoxic system. 

 

3. To characterise the kinetics and sources of ROS/RNS production during mild (10% O2) 

and severe hypoxia (2% O2) under acute (30min) and chronic time periods (≥ 1h). 

 

4. To investigate the amount of cell death and effects on metabolic activity during mild and 

severe hypoxia at different time points. 

 

5. To investigate the mode of cell death (necrosis or apoptosis) during mild and severe 

hypoxia under acute and chronic conditions.  

 

6. To investigate whether pharmacological inhibition of ROS/RNS generating enzymes or 

antioxidant treatments can afford protection against hypoxia-induced cell death and 

hypoxia/reperfusion-induced changes in metabolic activity. 

 

7. To develop appropriate reporter assays in order to investigate whether activation of 

transcription factors NF-κB and Nrf2 mediates the cellular defence against hypoxia or 

hypoxia/reperfusion. 

 

8. To investigate whether ROS/RNS activate Nrf2 and/or NF-κB during hypoxia and any 

role for NF-κB in cell death or survival using pharmacological inhibitors of NF-κB 

transcription. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 Preface 

This chapter describes the different methods employed in this thesis to collect accurate data for 

the investigation of the experimental hypotheses. It includes standard experimental methods, 

modified methods and in-house developed novel techniques. Due to limitations of some 

published methods, they were modified and optimised accordingly for application to a particular 

experimental model or time point. 

 

Standard methods include cell culture, Winkler assay for dissolved oxygen measurements, 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, protein 

quantification assays, MTT cell viability assay, protein carbonyl ELISA, plasmid DNA 

transfection, Maxiprep of plasmid DNA extraction, plasmid DNA sequencing, analysis of 

plasmid DNA by restriction digestion and agarose gel electrophoresis. In house-developed 

techniques and modifications of protocols are described separately under each experiment. Those 

include induction of hypoxia/reperfusion and validation of the hypoxic chamber, time of addition 

of drug and/or probe solutions under hypoxic/reperfusion conditions, optimisation of various 

fluorescent probe conditions to quantify ROS/RNS during hypoxia/reperfusion, necrotic and 

apoptotic cell death analysis. The western blot analysis for procaspase-3 cleavage and a Dual 

Glo luciferase reporter assay for co-transfection studies were also modified. 
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2.2 Materials 

The solvents were purchased from Fisher Scientific (Loughborough, UK) unless otherwise 

specified. H9C2 (1-2) myoblasts (CRL-1446) were obtained from LGC Ltd (Middlesex, UK). 

DMEM (12-614F), foetal bovine serum (FBS), trypsin-EDTA (0.53mM) solution (17161E), 

penicillin (100U/ml)-streptomycin (100µg/ml) mixture (17-603E), L-glutamine (17-605E) were 

obtained from Cambrex Bioscience, Wokingham Ltd (Berkshire, UK). Cell culture plates, 

culture flasks and petri dishes were obtained from Corning Ltd, UK. Trypan Blue Solution 

(0.4%) was purchased from Sigma (UK).  

All gases and premixed special gases were from BOC Ltd (Guildford, UK). Eppendorfs and 

universals were obtained from Appleton Woods Ltd. Specific reagents, chemical products and 

instruments are as stated in the method. 

 

2.3 Methods 

2.3.1 Cell culture  

In hypoxia-reperfusion injury research, in vivo models or primary cardiomyocytes are routinely 

used. The embryonic heart-derived rat myoblasts were used throughout the project as they are 

similar to cardiomyocytes biochemically and offer a reproducible model for the study of 

myocardial hypoxia/reperfusion. Specifically routine cell culture and handling was possible for 

long term studies. Cells were passaged at 70-80% confluence to prevent them differentiating to 

myotubes at higher confluency as previously described (Kimes and Brandt, 1976). Experiments 

were performed with cells between passage numbers 14 – 20. 
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2.3.1.2 Routine cell culture 

ATCC H9C2 (1-2) rat-myoblasts were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) and supplemented with heat inactivated 10% fetal bovine serum (FBS), 4mM L-

glutamine and 1% penicillin/streptomycin  according to the supplier’s instructions. This is 

referred to as complete culture medium. Cells were grown in cell culture - treated T75cm
2
 flasks 

at 37 °C in a humidified atmosphere of 5% CO2 and 95% air. 

 

2.3.1.3 Passage of H9C2 cells 

At 70-80% confluence, cells were trypsinised (0.125% (w/v) trypsin, 0.02% (w/v) EDTA and 

0.02% (w/v) glucose) in 5ml of 0.15M phosphate buffer saline (PBS)) for 1-3 minutes. Complete 

culture medium was added to each flask and mixed with the trypsinised cells to inactivate 

trypsin. Cells were centrifuged at 400g for 5minutes at room temperature in a 50ml-centrifuge 

tube. The supernatant was removed and the pellet manually agitated and resuspended into 8ml of 

culture medium. Following the cell counts by trypan blue exclusion, cells were subcultured into 

T75/T150 flasks at 1:2 to 1:4 ratios. Media was replaced routinely every 2 days.  

 

2.3.2 Trypan blue exclusion test for cell viability 

In order to obtain accurate results and reproducible data from an experiment system, it is 

important to maintain the same cell number between experiments. Therefore, a haemocytometer 

was used to count cells. The viable cell density was determined as the number of trypan blue 

excluding cells in a haemocytometer. The advantage of the trypan blue exclusion test is it is 

simple, rapid and able to provide results comparable to other dyes such as Erythrosin B or 

Nigrasin. The chromopore of trypan blue is negatively charged and does not enter the cell unless 

the membrane is damaged (Thomadaki et al., 2007). Therefore, all the cells which actively 

exclude the dye were considered as viable. Dead cells stain a blue colour. 
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2.3.2.1 Method 

When the cells were at 70-80% confluence, the monolayer was washed three times with PBS and 

trypsinised by addition of 5ml of trypsin EDTA for 2-3 minutes at 37ºC. Cells in suspension 

were harvested and resuspended in 8ml of complete medium. Trypan blue (15µl) was added to 

an equal volume of cell suspension and mixed by gentle agitation.  

Then the mixture (30µl) was transferred to both chambers of a haemocytometer (Weber 

Scientific International, Teddington, UK). Total live cells were counted in the 1mm centre 

square as viewed under the microscope (Magnification10x; Olympus, Japan). The count was 

repeated twice. The volume of each square of the haemocytometer with a cover slip in place 

represents a total volume of 0.1mm
3
. The viable cells actively excluded the dye whereas dead 

cells absorbed the dye and were visible as blue in colour.  

 

The viable cell density was determined as follows: 

Cell density (per ml) = average count per square x dilution factor x 10
4 

 

2.3.3   Hypobaric and normobaric oxygen chamber for cell culture 

As described in the general introduction, there are various methods available to model hypoxia, 

however, in this thesis; a cost effective and reproducible system was preferred. To determine 

consistent hypoxia conditions in the chamber, the system was optimised and then validated 

routinely. 

 

2.3.3.1 Chamber design and optimisation 

A hypoxic or normoxic environment was established inside a special metal (wall thickness 4mm, 

length 25cm, area of the cylinder 125cm
2
) chamber (McIntosh and Fildes, USA) using  premixed 

gases (2% O2+98% N2, 10% O2+90% N2 and 21% O2 +79% N2; BOC, UK).  
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Two metal chambers were mounted inside a commercially available incubator (BioRad, UK) at 

37°C. The chambers have airtight lids which are fitted with gas inlet and outlet ports. A screw 

was fitted to each gas inlet and outlet ports to control the gas flow and perfusion into the 

chamber (Figure 2.1). The medium was replaced and reagents were added by opening the door 

at the front of the main incubator. 

 

 

Figure 2.1  Complete hypoxia chamber 

Complete hypoxia chamber set up in a climate incubator at 37ºC. 

 

 

A thermometer was set up inside the incubator to allow monitoring of the internal temperature. 

The chambers and apparatus were maintained at 37ºC during hypoxia or normoxia. To create 

humidified conditions in the chamber, a small water tray was placed at the bottom of each 

chamber and the cell culture plate holder was constructed top of it (Figure 2.2A). The gas inlet 

was externally fixed with gas tubing (4mm diameter, BOC, UK) which was connected to the 

appropriate hypoxic (2% or 10% oxygen + balanced nitrogen) or normoxic (21% oxygen + 79% 

nitrogen) gas cylinder.  



68 

 

The main gas flow into the chamber was controlled by a flow meter (BOC, UK). It was 

connected between the chamber and premixed gas cylinder. Premixed gas was allowed to flow 

through a sterile filter (0.2µМ, Millipore, UK) after passing the flow meter. Through the inlet, 

premixed gas at 25ml/min flow rate was allowed to enter the airspace (3L) of the chamber 

(Figure 2.2A and 2.2B). Gas exited through the outlet at same flow rate and prevented the 

pressure build-up or backflow of air. 

 

 (A) 

  
 

 

 (B) 

 
 

Figure 2.2  Hypoxic gas chamber  

(A) Inside chamber view, (B) View of full incubator system. 
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2.3.3.2 Hypoxic/normoxic medium preparation 

Cells were maintained in preincubated hypoxic or normoxic Dulbecco’s modified Eagle’s 

medium (Phenol red-free DMEM) which was supplemented with 25mM HEPES (4- (2-

hydroxyethyl) -1-piperazine ethanesulfonic acid), 1% penicillin/streptomycin. Prior to hypoxia 

or normoxia experiments, the medium was preincubated for 24h in hypoxia (2% O2 + 98% N2 or 

10% O2 + 90% N2) and for control experiments in normoxia (21% O2 + 79% N2) (BOC, UK). To 

assess the stability of pH value throughout the hypoxia or normoxia, a sample of each 

preincubated medium was measured for pH using the pH probe (Appleton Wood, UK).  

 

2.3.4 Winkler Test for dissolved oxygen in the medium 

To measure oxygen tension, there are wide range of oxygen electrodes or probes available in the 

market, however, they require larger volumes than available in  culture medium (1ml) in a well, 

therefore, the Winkler assay was routinely employed to measure dissolved oxygen concentration 

in culture medium as previously described (Grant and Griffiths, 2007; Helm et al., 2009) . 

 

2.3.4.1 Method 

The Winkler test was used to determine the level of dissolved oxygen in culture medium under 

hypoxia or normoxia. This method was adapted from Winkler, 1888. After pre-equilibrating the 

medium at 37°C in various oxygen tensions (2%, 10%, 21% O2) for 24h, the dissolved oxygen 

level in each sample (1ml) from the flasks (75cm
2
) was measured by addition of manganese II 

sulphate (40 μl, 48%, w/v). The mixture was swirled gently to minimise the risk of incorporation 

of air into the sample. Then potassium iodide (80 μl, 15% w/v, dissolved in 70%, w/v, potassium 

hydroxide) was added to yield a pinkish-brown manganese hydroxide precipitate. Sulphuric acid 

(120 μl, 50% w/v) was added to dissolve the precipitate and the sample was allowed to stand for 

2min. Starch solution (400µl, 0.1% w/v) was added, turning the solution blue due to formation of 

iodine–starch complex.  
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Sodium thiosulphate (0.31% w/v) was titrated into this solution, with swirling, until the solution 

turned colourless. The dissolved oxygen level is proportional to the volume of sodium 

thiosulphate titrated. The addition of 1 ml sodium thiosulphate is equivalent to 

10 mg dissolved oxygen/l. To verify that the dissolved oxygen level at different oxygen tensions 

did not change over the experimental period, the test was repeated again after 30min, 1h and 4h 

of hypoxia / normoxia. The partial oxygen pressure inside the medium (pO2) was calculated 

using dissolved oxygen concentrations in the following formula (Figure 2.3); the dissolved 

oxygen concentration in medium at 1atm under ambient conditions is considered as 6.00mg/L as 

previously described by Grant and Griffiths (2007). 

 

 

 

               Figure 2.3  Formula for partial gas pressure calculations  

                               (Mortimer, 1956; www. waterontheweb.org). 

 

 

2.3.5 Modification of cell culture plate lid 

The standard culture plate lids were modified before experimentation. The plate lid of each cell 

microtiter plate (24 and 96 well) was perforated with 2mm diameter holes using a heated (red-

hot) needle (2mm width x 4cm length). The holes were pierced in the centre of each culture well.  
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The holes in each plate lid were externally sealed by gas-impermeable adhesive strips (Appleton 

Wood, UK). Each hole can be opened by lifting the adhesive strip for addition of redox sensitive 

dyes or inhibitors/drugs. This technique was adapted to prevent the incorporation of external air 

into the culture medium when plates were removed from the chamber for manipulation (Figure 

2.4). 

 

 

Figure 2.4  Modification of culture plate lid 

Culture plates were modified with holes for probe additions. 

 

 

2.3.6 Determination of cell viability 

There are several methods available to determine cell viability. Most available methods are 

based either on metabolic activity or cell membrane integrity of viable cells. In general, 

metabolic activity is measured in terms of metabolically active mitochondrial reductases and 

their oxidation with tetrazolium salts which is cleaved into a coloured formazan product (e.g. 

MTT, MTS, XTT and WST-1 colorimetric assays). This method can therefore be used to 

measure cytotoxicity, proliferation or activation of cells or tissues. As previously explained the 

mitochondrion is strongly implicated in hypoxia-induced redox changes through the electron 

transport system. Therefore, the MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium) 
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assay was used to assess cell viability in terms of metabolically active mitochondria after 

exposure to hypoxia. The MTT assay is technically convenient, no washing steps are required 

and it is easy to apply in most experimental designs. The main advantages of the MTT assay are 

rapidity and precision, and the lack of any radioisotope use. The ATP levels of cells are also 

analyzed to estimate the cellular energy capacity and thus viability. Therefore, CellTiter-Glo 

luminescent assay (Promega, UK) was employed to assess cellular ATP levels during hypoxia. 

The CellTiter-Glo® Luminescent Cell Viability Assay is a homogeneous method to determine 

the quantitation of the ATP present in metabolically active cells. In principle, mono-oxygenation 

of luciferin is catalyzed by luciferase in the presence of Mg
2+

, ATP and molecular oxygen 

(Figure 2.5). Therefore, the generation of a luminescent signal is directly proportional to the 

amount of ATP present in metabolically active cells. The Cell-Titer-Glo luminescent assay is 

easy to use directly in experiments model as cell washing, removal of medium or multiple 

pipetting steps are not required. 

 

 
 

Figure 2.5  The luciferase reaction. Mono-oxygenation of luciferin is catalyzed by luciferase  

in the presence of Mg
2+,

 ATP and molecular oxygen, taken from www.promega.com. 

 

 

2.3.6.1 MTT assay 

Cardiomyoblast viability was determined using an MTT (3-[4, 5-dimethylthiazol-2-yl] - 2, 5 

diphenyltetrazolium) assay based on the reduction of 3-[4, 5-dimethylthiazol-2-yl] - 2, 5 

diphenyltetrazolium bromide by mitochondrial reductases [succinate dehydrogenase] in viable 

cells to insoluble violet formazan crystals, which are solubilised by the addition of a detergent 

solution.  

http://www.promega.com/
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Then, the colour can be quantified by a spectrophotometer (van de Loosdrecht et al., 1994). Cells 

were seeded at a density of 3 x 10
4
 cells/well (1ml) in DMEM in 24 well flat-bottomed 

microtiter plates. Cells were grown at 37 °C in a humidified atmosphere of 5% CO2 and 95% air 

until they reached to 80-90% confluence. One hour prior to the completion of each hypoxic 

and/or normoxic period, MTT solution (100µl of 5mg/ml in 0.01M PBS) was added to all wells.  

 

After completing hypoxia or normoxia, lysis buffer (100µl, 20% w/v SDS in 50% DMF, dH2O 

(50%), pH 4.7 adjusted with 2.5% of glacial acetic acid)  was added to each well and incubated 

for a further 16 hours at 37°C  in a humidified atmosphere of 5% CO2 and 95% air. After 

promptly agitating the content of each well, 250µl of the content of each well was transferred to 

a well in 96 well microtiter plate. The formation of formazan was assessed by measuring the 

optical density (OD) at 570nm in the microplate reader (Denley, UK). Cell viability was 

calculated by comparing results to normoxic cells which were considered as 100% viable. The 

MTT assay was employed to measure  hypoxia (2% and 10% O2 + balanced N2) - induced 

reduction in cell viability vs normoxia for 30min,1h, 4h and 24h and hypoxia/reperfusion 

studies. To measure the mitochondrial metabolic activity during hypoxia/reperfusion, MTT was 

added for 2h reperfusion period immediately after hypoxia (30min or 4h). 

 

2.3.6.2 Measurements of ATP 

Cells were seeded at a density of 3x10
4
 cells/well (24-well plate) and when cells reached 80% 

confluence, media was replaced with DMEM/HEPES under different oxygen tensions as 

previously explained. Five minutes prior to completion of hypoxia for 4h, plates were sealed and 

centrifuged at 1300rpm for 5min at room temperature. This step was important to avoid loss of 

any dead or partially dead cells floating in the media. Then, 900µl of media was removed from 

each well and loaded with 100µl of Cell Titer Glo reagent according to manufacturer’s 

instructions  (1:1 ratio for medium to Cell Titer Glo reagent) (Promega, UK).  
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Wells in the absence of cells were also loaded with same volume of Cell Titer Glo reagent for 

background luminescent measurements. The content of each plate was gently mixed to induce 

lysis and then incubated for another 10min to stabilize the luminescent signals. Finally, 

luminescence was recorded at room temperature in Spectramax GEMINI EM plate reader at 

emission: 542nm. 

 

2.3.7 Measurements of ROS/RNS generation 

ROS/RNS generation was measured using four different fluorescent probes, dihydroethidium 

(DHE), 2, 7-dichlorodihydrofluorescein diacetate (DCFH2-DA), dihydrorhodamine (DHR), and 

4, 5-diaminofluorescein diacetate (DAF-2-DA) according to their specificity for particular 

ROS/RNS.  

 

2.3.7.1 Fluorescent probes and preparation 

2.3.7.1.1 Dihydrodroethidium (DHE) 

Dihydroethidium is widely used as O2
•- 

detector in tissues and the assay system was recently 

reviewed (Fernandes et al., 2007; Zhao et al., 2005). This probe has unique specificity towards 

O2
•- 

radical over other radicals in the intracellular environment and oxidation results in a specific 

spectrum that can be measured by a fluorescence detector. Chemically and enzymatically 

generated O2
•- 

can react with DHE to form a fluorescent product that differs from ethidium (E
-
), 

which is a di-electron oxidised product of DHE (Zhao et al., 2005). In contrast, other ROS and 

RNS such as H2O2, 
•
OH, ONOO

-
, and OCl

-
 failed to oxidise DHE to the same product. 

Moreover, Zhao et al. (2005) showed that the reaction of DHE with O2
•- 

and its resultant DNA 

complex produce a different fluorescent spectrum. Zhao et al. (2003) demonstrated that O2
•-
 can 

oxidise with DHE to form 2-OH-DE
+
 as a specific product according their HPLC method 

(Figure 2.6). 
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Figure 2.6   Oxidation of DHE in the presence of O2
•-
, adapted from Zhao et al. (2005); 

Wardman et al. (2007). (+) indicate the inclusion of catalyst or peroxides. Blue colour indicates 

the non-oxidised compound of dye whereas yellow colour indicate the oxidised product of dye. 

 

Further studies suggest the formation of E+ in the presence of O2
•-
; but, this mechanism is not 

known (Zhao et al., 2003).   In contrast to above explanations, DHE can be oxidized by oxidants 

other than O2
•-

,
 
such as H2O2 in the presence of redox-active metal ion, peroxynitrite and 

cytochrome c; but these oxidants do not produce 2-OH-E
+
 (Zhao et al., 2005) and possibly result 

in products with different fluorescent spectra as well.   

DHE is a photosensitive reduced non-fluorescent compound. The photochemically oxidised form 

has a positive charge, so it cannot diffuse into cells. Therefore, DHE is suitable marker for 

intracellular O2
•-
 generation using specific wavelengths for detection that measure 2-OH-DE

+
. 

DHE is freely permeable into cells and rapidly oxidized to fluorescent ethidium in the presence 

of superoxide. Free unoxidised DHE emits blue fluorescence, however, it emits red fluorescence 

when the oxidised ethidium intercalates into cellular DNA. A stock solution (1mg/ml) of DHE 

was prepared in absolute ethanol. Before being stored at -20°C, the stock solution was purged in 

nitrogen to avoid air oxidation. Aliquots of 4mM working solutions were made in ethanol and 

purged in nitrogen again before storage at -20°C. 

     Oxidation 

Non-fluorescent 

O2
-• 

Fluorescent 

Excitation; 488 nm Emission; 570nm 

DHE 

Dihydroethidium 

2-OH-DE
+ 

2-hydroxyethidium 
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2.3.7.1.2   2, 7- dichlorofluorescein diacetate (DCFH2-DA) 

DCFH2-DA is the most common probe in in vitro biological research. The oxidation of the probe 

is described below (Figure 2.7). DCFH2-DA has a very low reactivity toward superoxide 

radicals and hydrogen peroxide. However, in the presence of a catalyst, reaction of H2O2 can be 

achieved in the cytosol. Recent reports suggest that DCFH2-DA fluorescence is much more 

likely due to cytosolic redox change as it cannot get into mitochondria (Abramov et al., 2007). 

DCFH2-DA can exhibit subject background fluorescence due to metal impurities in culture 

media. DCFH2-DA can also be oxidised by peroxyradicals in the presence of catalyst and can be 

directly oxidized by ONOO
- 
without the catalyst (Figure 2.7). 

 

                                        

Figure: 2.7  Oxidation of DCFH2-DA in the presence of H2O2 and ONOO
-
. (+) indicate the 

inclusion of catalyst or peroxides. Blue colour indicates the non-oxidised compound of dye 

whereas yellow colour indicate the oxidised product of dye (Wardman et al., 2007; Tarpey et al., 

2004). 

 

DCFH2-DA is oxidised in the presence of intracellular reactive oxygen species such as H2O2, 

peroxy radicals and peroxynitrite (Royall and Ischiropoulos, 1993a). DCFH2-DA is used to 

assess cytosolic based ROS/RNS.  
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A stock solution (1mg/ml) of DCFH2-DA was prepared in dimethylsulfoxide (DMSO) and 

stored at -20°C after purging with nitrogen. Aliquots of 4mM working solutions were made in 

DMSO and stored at -20°C. Aliquots were purged in nitrogen in the dark to avoid air oxidation. 

 

2.3.7.1.3 Dihydrorhodamine 123 (DHR) 

Dihydrorhodamine (DHR) is cell–membrane permeant, mitochondrially retained-fluorescent 

(Tarpey et al., 2004) and lipophilic (Crow, 1997), uncharged (Royall and Ischiropoulos, 1993a) 

probe that is often used to detect ROS and RNS in cells via oxidation to the respective 

fluorescent product. The oxidised fluorescence can be easily determined or typically monitored 

in a continuous assay system using a fluorometer at emission fluorescence; 525nm following 

excitation; 488nm (Henderson and Chappell, 1993). It has been widely used as a stain for 

mitochondria (Royall and Ischiropoulos, 1993) and possesses the aforementioned properties with 

intracellular fluorescence stability up to 1h. However, it is not mono-specific. DHR has an 

ability to enter mitochondria and be oxidised to fluorescent rhodamine in the presence of 

ROS/RNS (Frantseva et al., 2001; Henderson and Chappell, 1993). The oxidised rhodamine 

partitions over time to mitochondria due to their large inside-negative transmembrane potentials 

(Emaus et al., 1986).  

 

DHR is not oxidised by superoxide or H2O2 alone requiring a cofactor such as heme containing 

peroxidase (HRP) or cellular peroxidases (Hempel et al, 1999; Henderson and Chapell et al., 

1999) but can react directly with ONOO
-
 (Henderson and Chappell, 1993) (Figure 2.8). 

Therefore the quantitative estimation of intracellular H2O2 is questionable as it is mediated 

through secondary reactions. However, qualitative conclusions may be made. Several other cell 

derived oxidants such as ONOO
-
, but not 

•
NO or OCl

-
 can directly oxidise DHR. The spectrum 

of oxidised rhodamine is the same, regardless of the oxidizing agent (Tarpey and Fridovich, 

2001). 
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Figure 2.8  The oxidation of DHR in the presence of H2O2 and ONOO
-
, adapted from  

Wardman et al. (2007) and Royall and Ischiropoulos et al. (1993). (+) indicate the inclusion 

of catalyst or peroxides. Blue colour indicates the non-oxidised compound of dye whereas 

yellow colour indicate the oxidised product of dye. 

 

DHR is a cell-membrane permeant, mitochondrially retained-fluorescent and lipophilic dye; the  

uncharged (Kooy et al., 1994) probe is also used to detect ROS/RNS such as H2O2, HOCl and 

peroxynitrite in cells and after oxidation is converted to a highly fluorescent form of rhodamine 

(Royall and Ischiropoulos, 1993a). However, it is used to assess mitochondrial based ROS/RNS. 

A stock solution (1mg/ml) of DHR was prepared in DMSO in the dark and stored in -20°C after 

purging with nitrogen. Aliquots of 4mM working solutions were prepared in DMSO and stored 

in -20°C. Aliquots were purged in nitrogen to avoid air oxidation. 

 

2.3.7.1.4   4, 5 - Diaminofluorescein diacetate (DAF-2-DA) 

The quantification of 
•
NO generation during hypoxia/reperfusion either by mitochondrial NOS 

or by constitutive cytosolic isoforms is challenging due to low levels of accumulation at early 

stages.  
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The ideal method for 
•
NO detection in hypoxia-reperfusion should be able to detect low levels of 

intracellular 
•
NO and with minimum autoxidation in a cellular system (Kojima et al. 1998) 

reported NO-specific oxidation of DAF-2-DA. DAF-2-DA is a non-fluorescent cell permeable 

reagent that can measure intracellular 
•
NO and nitric oxide synthase (NOS) activity in tissues 

and assay systems. When the probe enters into the cytosol, diacetate groups on the DAF-2-DA 

reagent are hydrolyzed by cytoplasmic esterases and released DAF-2 is sequestered inside the 

cell. 
•
NO oxidises the non-fluorescent dye (DAF-2) to a triazole fluorescent derivative (DAF-2T) 

in the presence of O2 which can be maximally detected at ex: 491nm and em: 513nm (Figure 

2.9). A 4mM solution of DAF-2-DA was prepared in 0.01M NaOH solution and purged with 

nitrogen to avoid air oxidation. Aliquots of 4mM working solutions were stored in the dark at 

room temperature. 

Figure 2.9 The oxidation of DAF-2-DA in the presence of 
•
NO, adapted from Kojima et al. 

(1998); Wardman et al. (2007). (+) indicate the inclusion of catalyst or peroxides. Blue colour 

indicates the non-oxidised compound of dye whereas yellow colour indicate the oxidised product 

of dye. 
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2.3.8   Optimisation of incubation time points for fluorescent probes 

H9C2 rat myoblasts were seeded at 3x10
4
cells/well (1ml) in 24 well plates and cultured for 48h 

in DMEM, 10% FBS, 4mM L-glutamine and 1% penicillin / streptomycin  at 37°C in 5% CO2 

humidified atmosphere. Then, cells were briefly washed three times with PBS and loaded with 

DMEM (25mM HEPES, 1% penicillin, 1% streptomycin, phenol red free), preincubated for 24h 

at 21% oxygen + 79% N2. For time-dependent measurements of probe oxidation (15min, 20min, 

45min and 1h), cells were treated with fluorescent probes at time t=0 and incubated further for 

15min, 30min, 45min and 1h. The media in the wells was replaced with fresh preincubated 

DMEM (at 21% O2 for 24h). At t=60min, the fluorescence was measured at 37˚C in preheated 

Spectramax GEMINI EM fluorescence plate reader at particular excitation and emission 

wavelengths (Table: 2.1). 

 

 

Fluorescent probe 

 

Excitation 

 

Emission 

 

Cut off filter 

DHE 
1,2,4

 488nm 570nm 560nm 

DCFDA 
4,5,6

 488nm 520nm 515nm 

DHR 
4,5,6

 488nm 520nm 515nm 

DAF-2-DA
3,5

 491nm 513nm 495nm 

 

Table 2.1  Excitation, and emission maxima of fluorescent probes.  
(
1
Zhou et al., 2002; 

2
Zhou et al., 2005; 

3
Kojima et al., 1998; 

4
Royall and Ischiropoulos, 1993a; 

5
Tarpey and Fridovich, 2001; 

6
Tarpey et al., 2004). 
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2.3.9 Using the hypoxia chamber to induce and measure ROS/RNS  

H9C2 rat myoblasts were seeded at 3x10
4
cells/well (1ml) in 24 well plates and cultured for 48h 

in DMEM, 10% FBS, 4mM L-glutamine and 1% penicillin / streptomycin  at 37°C in 5% CO2 

humidified atmosphere. Then, cells at 80% confluence were washed three times with PBS 

solution and loaded with preincubated DMEM (phenol red-free, 25mM HEPES, 10% FBS, 1% 

penicillin / streptomycin, pH 7.4). 

 

In the experimental cells, severe hypoxia ( 2% O2 ) was induced by removing any existing media 

and replacing it with DMEM, preincubated for 24h at 2% oxygen + 98% nitrogen whereas mild 

hypoxia (10% O2) was induced by removing any existing media and replacing it with DMEM, 

preincubated for 24h at 10% oxygen + 90% nitrogen. Control cells were exposed to normoxia by 

adding DMEM preincubated for 24h at 21% oxygen +79% nitrogen. Before cells were loaded 

with preincubated medium at specific oxygen tensions, the dissolved oxygen level was measured 

using the Winkler test to verify the extent of hypoxia or normoxia in the medium.  The pH value 

of each preincubated medium was also determined to ensure physiological homeostasis (pH 7.4).

           

(+) pre-equilibrated medium                                                   Fluorescent measurement             

 Preincubation (24h)                                                                         (-) medium   

                3min                                 24min                                   3min 

   (+)  

Medium        Cells ± probe           (+) pre-equilibrated  

Gas f low rate 25ml/min                                                                                               Fresh medium and 

                                     Gas flow rate 2L/min          without probe 

               Gas flow rate 25ml/min 

Figure 2.10  Schematic diagram showing experimental design for fluorescent 

                                  measurements; acute hypoxia (30min). 
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After loading hypoxic medium, the plate was briefly flushed with premixed, sterile-filtered gas 

of specific O2 tension before it was covered with a lid. Plates were then transferred into a pre-

equilibrated hypoxic/normoxic chamber. To flush out any entrapped air inside the chamber, the 

airspace was perfused with premixed gas at a higher flow rate (2000ml/min) for 5min. During 

this procedure, the chamber’s gas outlet was fully unscrewed to prevent the build up of pressure. 

This technique was applied for all experimental treatments and controls. All four ROS/RNS-

sensitive probes were studied in a single culture plate for each experiment and control. 

 

2.3.9.1 ROS/RNS generation measured during hypoxia for 30min, 1h and 4h 

H9C2 rat myoblasts were seeded at 3x10
4
cells/well (1ml)  in 24 well plates and cultured for 48h 

in DMEM, 10% FBS, 4mM L-glutamine and 1% penicillin / streptomycin  at 37ºC in 5% CO2 

humidified atmosphere. Then, cells were washed three times with PBS and replaced with 

DMEM (1ml/well) which was preincubated at 2% or 10% O2 + balanced with nitrogen for 24h. 

Control cells were treated with DMEM preincubated at 21% O2 + balanced with N2. Then, the 

plate surface was briefly flushed with the gas at the appropriate O2 tension and immediately 

placed in the chamber shown in figure 2.1 at specific O2 tension. The fluorescent probes (5µl, 

4mM DHE or 2mM DAF-2-DA) were immediately added into wells through the holes in the lid 

by lifting the adhesive strips and gently mixed. Then, the plate was placed inside pre-equilibrated 

(hypoxia/normoxia) chamber and the plate sealant strip (Appletonwood, UK) was removed. The 

chamber was flushed with premixed gas at a higher flow rate (2000ml/min) for 3min. Then, the 

flow rate was immediately reduced to 25ml/min.  

 

The plate was taken out and medium was replaced gently with DMEM (preincubated at specific 

O2 tension) at t=27min before completing the 30min hypoxia. This step minimised the 

fluorescence due to spontaneous oxidation of the probe in the medium. At t=30min, fluorescence 

in each well was read in a preheated (37ºC) Spectramax fluorescence plate reader (Molecular 

Devices, USA) at specific excitation and emission wavelengths shown in table 2.1.  



83 

 

To measure the ROS/RNS generation in 30min normoxia (control), the same procedure was 

followed using premixed normoxic gas (21% oxygen balanced with nitrogen) (Figure 2.10). For 

1h or 4h experiments, the procedure of cell exposure and equilibration at specific oxygen tension 

was  repeated as described previously except that probes were added at t=30min for 1h 

experiment and t=3h 15min for 4h experiment, and then extracellular dye removed at 3min 

before the completion of the hypoxic period and replaced with fresh medium. 

 

2.3.9.2 Measurement of ROS/RNS generation during hypoxia/reperfusion  

For 2h reperfusion studies after hypoxia for 4h, plates were sealed and taken out at t=3h and 

57min and centrifuged at 1000rpm for 3min to avoid any loss of hypoxia induced dead cells. 

Then, existing medium was gently removed and replaced with pre-equilibrated reoxygenated 

medium (21% O2 for 24h). Then, at 45min before measurement (5h 15min) fluorescent probe 

(5μl of DHE or DAF-2-DA) was added into wells through the holes in the plate lid without 

incorporating air as previously explained. Immediately after that, the plate was returned to the 

pre-equilibrated normoxic chamber whilst removing the sealer gently.  

 

The chamber was again flushed with premixed normoxic gas at a higher flow rate (2000ml/min) 

for 3min and immediately decreased to 25ml/min. Reoxygenation was allowed for 2h. After 1h 

and 57min of reoxygenation, or at t= 5h and 57 min of total experiment duration, cell culture 

plates were taken out and the medium replaced with preincubated normoxic medium and the 

fluorescence was read at 37ºC, in a preheated fluorescence reader. For 30min hypoxia and 1h 

reperfusion studies, the same procedure was employed with media replacement after hypoxia 

and again at 3 min prior to termination of the experiment. After each experiment of hypoxia-

reoxygenation, cell number was estimated by protein quantification. After fluorescent 

measurements, cell plates were centrifuged at 400g for 5min and then supernatant was carefully 

discarded without dislodging the pellet. Then, cells were lysed using 2% Triton and used for 

protein quantification by BCA assay.  
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Fluorescence in each well was calculated in arbitrary fluorescent units per 1mg of total protein in 

order to minimise the effect of cell density on fluorescence after hypoxia and reoxygenation. 

 

2.3.10 Live imaging of O2
-•
 or 

•
NO generating cells under confocal microscopy 

Superoxide production by H9C2 cells during hypoxia was assayed using DHE (Molecular 

Probes, UK), a red fluorescent probe for in vivo superoxide detection, and imaged with a Carl 

Zeiss LSM 700 confocal microscope (Germany). At t=0min and t=3h15min for 30min and 4h 

experiments respectively, 20µM DHE was added to cells cultured in microscopic chambers and 

previously exposed to control (21% O2), mild (10% O2) and severe (2% O2) hypoxia for 30min 

and 4h in the hypobaric chamber at 37 ºC. Hypoxic conditions were maintained at the time of 

imaging, by keeping chambers sealed from ambient air.  

 

The 488nm argon laser line was used to excite DHE, which was measured by fluorescence 

emission using a band pass filter from 570-590nm (Zhao et al, 2005). Same procedure was 

applied for intracellular 
•
NO detection during hypoxia using DAF-2-DA fluorescent probe 

(Excitation: 480-490nm and emission: 510-520nm). Illumination intensity was set up at a 

minimum (0.1-0.2% of laser output) to avoid photooxidation and the pinhole set to give the 

optical beam at 2nm. Each experiment was undertaken using by at least 3 independent chamber 

wells. 

 

2.3.11 Inhibitor effects on ROS/RNS generation and cell death 

Inhibitors/antioxidants were used to assess ROS generation in H9C2 cardiomyoblasts during 

hypoxia/reoxygenation and the effects on cell viability. Inhibitors used were rotenone 

(C23H22O6), FCCP (carbonyl
 

cyanide p-(trifluoromethoxy)-phenylhydrazone), apocynin (4'-

hydroxy-3'-methoxy-acetophenone), allopurinoland L-NAME(N
G
-nitro-L-arginine methylester).  
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2.3.11.1 Rotenone  

Rotenone is a potent mitochondrial complex I inhibitor which specifically inhibits the NADH 

dehydrogenase. Rotenone at higher concentrations is also widely utilised as an insecticide or 

pesticide in the agriculture industry. It is a naturally occurring compound extracted from the root 

of Derris sp. A stock solution of rotenone (4mM) was prepared in DMSO and stored in the dark 

at room temperature (Dawson et al., 1986). 

 

2.3.11.2 Apocynin  

Apocynin is a selective, potent inhibitor of phagocyte NADPH oxidase, preventing production of 

superoxide by blocking the migration of p47 phox to membrane which is required for formation 

of a functional NADPH complex (Touyz, 2008; Stolk et al., 1994b). However, apocynin is 

widely considered as a more specific NADPH oxidase inhibitor than DPI, a potent flavoprotein 

inhibitor or a non-specific inhibitor for NADPH oxidase, but commonly used as a NOX inhibitor 

(Bedard and Krause, 2007). Apocynin is a naturally occurring botanical compound which 

isolated from Picrorhiza kurroa (Stolk et al., 1994a). A stock solution of apocynin (4mM) was 

prepared dissolving in DMSO and stored at room temperature in dark. 

 

2.3.11.3 FCCP  

FCCP, a potent uncoupler of oxidative phosphorylation, was
 
selected for these studies because it 

has been used extensively to induce uncoupling of mitochondrial oxidative phosphorylation
 
in 

many cell types, including cardiac myocytes (Hool and Arthur, 2002). It is a hydrophobic weak 

acid and it can readily diffuse across the mitochondrial membrane. The mode of action of FCCP 

in the inner mitochondrial membrane is unknown. The stock solution of FCCP (4mM) was 

prepared in DMSO and stored at 4˚C in the dark. The 200µM diluted aliquots (100µl) were 

employed as working solutions in experiments. 
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2.3.11.4 L-NAME 

L-NAME is known as potent NO synthase inhibitor. Its function is not selective between 

different types of 
•
NO synthases. A stock solution (40mM) of L-NAME was prepared freshly in 

Milli Q (MQ) water and used each day.  

 

2.3.12 Cell treatment with inhibitors 

Cells at 3x10
4
/well (1ml) were seeded into 24 well plates and allowed to grow to 80% 

confluence over 2-3 days under standard conditions (section: 2.3.1.2). Hypoxia was induced for 

varying times (30min-4h) by replacing medium with fresh medium which had been pre-

incubated for 24h at 2%, 10% or 21% oxygen and then transferring cells to hypoxic chambers 

flushed with gas (5ml/min) of the same oxygen tension (section: 2.3.9.1). 

 

In order to determine the generation and effects of specific ROS/RNS, before initiation of 

hypoxia for 30min or 4h duration and before initiation of reperfusion for 2h after 4h hypoxia, 

cells were treated with an appropriate inhibitor; 20µM rotenone, 20µM apocynin, 1µM FCCP 

and 200µM L-NAME at t=-2min before induction of hypoxia or hypoxia/reperfusion and 

inhibitors remained throughout the hypoxic/normoxic/reperfusion period. Control cells received 

an equal volume of vehicle and were exposed to hypoxia or normoxia for 30min and 4h as 

appropriate. 

 

2.3.13 Nuclear morphology of necrotic and apoptotic cell death 

Nuclear morphological changes were assessed in H9C2 cells after exposure to hypoxia using the 

fluorescent nuclear binding dye Hoechst 33342 (Calbiochem,UK) which binds to the minor 

groove and stains DNA blue after entering into damaged or viable H9C2 cells. Therefore, 

Hoechst 33342 stains the condensed chromatin of apoptotic cells more brightly than the 

chromatin in normal viable cells.  



87 

 

PI or 7-AAD can be used to discriminate late apoptotic or necrotic cells which have lost 

membrane integrity from early apoptotic cells which still have intact membranes by dye 

exclusion. Therefore, propidium iodide (Sigma-Aldrich, UK) was used and it binds and stains 

DNA red only in necrotic and late apoptotic cell where PI cannot enter into cells with preserved 

membrane integrity. Necrotic cells have round nuclei with red fluorescence, whereas round 

nuclei of viable cells are stained only with Hoechst 33342 blue fluorescence (Shimizu et al., 

1996) (Table 2.2). 

 

 

Conditions 

 

PI staining 

 

Hoescht 33342 staining 

 

Viable 

 

Nuclei not stained 

 

Round nuclei 

 

Necrosis 

 

Round nuclei stained 

 

Round nuclei 

 

Early apoptosis 

 

Nuclei not stained 

 

Fragmented nuclei 

 

Late apoptosis (secondary 

necrosis) 

 

Fragmented nuclei stained 

 

Fragmented nuclei 

 

Table 2.2  Mode of cell death defined by fluorescence staining (Shimizu et al., 1996). 

 

2.3.13.1 Method of staining apoptotic or necrotic cells 

Immediately after hypoxia or control treatments (30min and 4h) in the presence or absence of 

ROS scavengers/inhibitors, cells grown on cover slips were washed with PBS and treated with 

PI + Hoechst (10ng/ml, 20min). After 3x washing cells with PBS, they were then fixed in 4% 

paraformaldehyde. Following further 2x washing with PBS, nuclear/DNA morphology was 

visualised under a ZEISS (Carl Zeiss, Germany) fluorescence microscope according to 

manufacturer’s instructions.  
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Late apoptotic cells were detected by chromatin condensation and nuclear fragmentation 

(positive PI) but not early apoptotic cells (negative PI), whereas necrotic cells were detected as 

intact round nuclei (positive PI) (Levrand et al., 2006; Shimizu et al., 1996) (Table 2.2). 

 

2.3.14 Quantification of necrotic cells 

Quantitative necrotic cell death was measured as a ratio of PI to Hoechst staining considering the 

uptake of PI into necrotic dead cell DNA and Hoechst 33342 (Calbiochem, UK) uptakes into 

DNA of dead cells and viable cells. Cells were grown in 24-well culture plates until 80-95% 

confluency. Then cells were washed with 3x PBS and exposed to different hypoxia conditions 

and time periods. After hypoxia exposure, culture medium and cells were removed and 

centrifuged to make a pellet at 400g for 3min at room temperature. Then cells were suspended in 

10µg/ml PI for 20min at 4ºC and after 3xPBS washing, exposed to 10µg/ml Hoechst 33342 for 

20min at 4ºC. Finally, cells were suspended in PBS and dual-fluorescence was measured by 

excitation at 535nm/emission at 617nm for PI and excitation at 346nm/emission at 460nm for 

Hoechst 33342. 

 

2.3.15 Protein carbonyl ELISA 

Protein carbonyl formation during hypoxia is an indicative measure of protein oxidation induced 

by hypoxia. The quantity of protein carbonyls can be determined by derivatising with 

dinitrophenylhydrazine (DNPH) and quantifying bound DNP using a colorimetric or 

immunological method. The ELISA method is more sensitive and discriminatory than 

colorimetric methods and also can be used with microgram quantities of protein lysate.  

The quantity of protein carbonyls in each protein sample is determined by comparing its 

absorbance with that of a known reduced/oxidized BSA standard curve.Proteins are non-

specifically adsorbed to the plate wells. Proteins are then derivatised with DNPH. During the 

washing step, unconjugated DNPH is washed away.  
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Then adsorbed proteins are probed with anti-DNP primary antibody followed by HRP-

conjugated secondary antibody. Proteins for the standard curve are prepared by oxidising serum 

albumin samples with and calibrating their carbonyl content by the colorimetric method (Carty et 

al., 2000). 

 

2.3.15.1 Method 

H9C2 cells were grown at 95% confluence were washed with 3xPBS and loaded with pre 

equilibrated medium at 2% O2, 10% O2 and 21% O2. Then, culture flasks were exposed to 

hypoxia or normoxia for 30min and 4h. After each experiment, cells were incubated with 

protease cocktail inhibitor for 30min at -20ºC prior to lysis in Laemmli buffer. Both carbonyl 

standards and experimental samples were diluted in 50mM sodium carbonate buffer (1.59 g/L 

Na2CO3, 2.93 g/L NaHCO3 and pH 9.2).  

 

Samples (50µl/well) were plated in 96 well plates (Maxisorb, NUNC) and incubated for 1h at 37 

ºC.  Then, wells were washed 3x washing buffer (Tween-20 0.05% v/v in PBS) and with 1mM 

DNPH (2, 4- dinitrophenylhydrazine, 2M HCl) except blank wells and incubated for 1h at room 

temperature in the dark. After that, wells were washed and incubated with blocking agent 

(Tween-20 1% v/v in PBS) overnight at 4 ºC. The following day, sample wells were washed and 

incubated with anti-DNP primary antibody (1:2000 in Tween-20 1% v/v in PBS)   for 2h at 37 

ºC. Samples well were then washed gently and incubated with HRP conjugated-secondary 

antibody (1:5000 in Tween-20 1% v/v in PBS) for 1h. To remove excess secondary antibodies, 

wells were washed gently and loaded with substrate (50µl/well) solution (0.15M sodium citrate 

phosphate, pH5, 2g/L O-Phenylenediamine, 4.4mM H2O2). Following incubation (15min) at 

room temperature in the dark, the colour development reaction was terminated by adding 2M 

H2SO4. Absorbances were finally recorded at 490nm in the microplate reader (Biotek EL800). 

Total protein carbonyl content (nmol/mg) in each sample was quantified against the known 

concentration of standards. 
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2.3.16 Evaluation of apoptosis on the base of cleavage of procaspase-3 

There are several methods available to determine caspase-3 activation during apoptosis. Initially, 

a fluorimetric caspase-3 assay was performed to quantify active caspase-3, but results were poor 

compared to control samples due to low caspase-3 activity under experimental conditions (data 

not shown). However, detection of the cleavage of procaspase-3 was more sensitive to determine 

induction of apoptosis under the conditions used. Therefore, to investigate apoptotic cell death 

during hypoxia, western blot analysis was performed to visualise the cleavage of procaspase-3. 

 

2.3.16.1 Method 

After each period of hypoxia in the presence or absence of inhibitors, cells were trypsinised. 

After 3 x PBS washes, cells were treated with protease inhibitor cocktail (1µl/mg of total 

protein) (P8340, Sigma, UK) for 30min at -20ºC. Then cells were lysed in 2x Laemmli sample 

buffer (5% SDS) and aliquots (100µl) of lysates stored in -20 ºC for subsequent analysis.  

Proteins (20µg) were resolved by 15% Tricine-SDS-PAGE and transferred to polyvinylidene 

fluoride (PVDF) membrane (GE Healthcare, Buckinghamshire, UK) in transfer buffer with an 

ice-pack at 115V, 240mA for 2h prior to blocking overnight at 4 ºC with 5% non-fat dried milk 

powder in Tris-buffered saline containing 0.1% Tween 20 (0.1% TTBS, pH 7.5). The membrane 

was incubated overnight at 4 ºC with an appropriate dilution of anti-procaspase-3 (33kDa for 

complete fragment; Millipore) and anti-cleaved caspase-3 (17- to 19-kDa fragments) (Cell 

Signalling, UK) primary antibodies (1:1000).  

The following day, membranes were washed with 25ml of washing buffer 0.1% TTBS for 8 x 

15min at room temperature. Blots were then incubated for 1h with a 1:20,000 dilution of the 

appropriate horseradish peroxidase-conjugated secondary antibody (Cell Signalling, UK) at 

room temperature and followed by 8 x 15min washes with 0.1% TTBS at room temperature.  

The immunoblot signal was visualized by incubating PVDF membranes using enhanced 

chemiluminescence (GE Healthcare, Buckinghamshire, UK) mixed solution according 

manufacturer’s instructions and then exposed to X-ray film (GE Healthcare, Buckinghamshire, 

UK) for 45 seconds in a dark room.  
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The film was developed and fixed gently using developer and fixer solutions (Kodak Chemicals, 

Japan). Finally, films were washed with copious amounts of water for 3min and air dried. 

 

2.3.17 Quantification of total protein content in cell lysate 

2.3.17.1 RC-DC assay 

The RC-DC (Bio Rad, USA) protein assay was used to quantify total protein content of samples 

after cells are lysed into Laemmli buffer. The RC-DC assay is a colorimetric assay which is 

compatible with complex mixtures such as Laemmli buffer which contain both reducing agents 

and detergents. Also this assay is sensitive for wide range (0.2-1.5mg/ml) of protein 

concentrations. This assay is based on a modification of Lowry method of protein estimation. 

Peptide bonds in protein sample initially form complexes with Cu
2+

 ions and then reduce to Cu
1+

 

ions under alkaline conditions. Then this Cu
1+

 ion reacts with tyrosine, tryptophan and cysteine 

amino groups in the presence of Folin reagent to produce an unstable product. This unstable 

product is then reduced to tungsten blue and detected at 630nm using spectrophotometer (Lowry 

et al., 1951). 

 

2.3.17.1.1 Method 

H9C2 cardiomyoblasts were seeded at a density of 3 x10
4
 cells/well and cultured at 37°C in a 

5% CO2 humidified atmosphere in DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin mixtures. At 80-90% confluence, hypoxia was induced for varying times 

(30min-4h) in the presence or absence of inhibitors by replacing medium with fresh medium 

which had been pre-incubated for 24h at 2%, 10% or 21% oxygen and then transferring cells to 

hypoxic chambers flushed with gas (5ml/min) of the same oxygen tension. After the hypoxic 

period was completed, cell metabolism was inhibited by incubation on ice for 20min and cells 

were washed twice in ice cold 0.15M PBS. Cells were harvested by scraping. 1ml of boiled 2 x 

Laemmli buffer (63mM Tris HCl, 4mM Na2P2O7, 5mM EDTA, 41% Glycerol v/v, 2% SDS w/v, 

0.007% bromophenol blue, pH 6.8) and 100µl of protease inhibitor cocktail (P8340, Sigma, UK) 



92 

 

was added to minimize proteolysis. Genomic DNA was sheared using a 21G needle. The total 

protein extracts were transferred into a microfuge tube. Some aliquots were taken for protein 

estimation, others were diluted in 2 x Laemmli buffer and stored at -20°C for western blot 

analysis. Protein samples (5µl of 2 and 1 fold dilutions) and BSA standards (0, 0.2, 0.4, 0.6, 0.8, 

1.0, 1.2, 1.4 and 1.5 mg/ml in Laemlli buffer) were pipetted into clean, dry microfuge tubes in 

triplicate and 25µl of RC reagent I was added. Samples were vortexed and incubated for 1min at 

room temperature.  

Then, 25µl of RC reagent II was added and samples were vortexed and centrifuged at 15,000xg 

for 5min. The supernatant was discarded by inverting the tubes on clean, absorbent tissue paper 

until the liquid was completely drained. Then, 25µl of reagent A’ (1:50 v/v, DC reagent S to DC 

reagent A) was added to each microfuge tube and samples vortexed and incubated for 5min at 

room temperature or until the precipitate was completely dissolved. After vortexing the samples 

again, each tube was added with 200µl of RC reagent B and vortexed immediately. After 15min 

incubation of samples, the content of each tube (200µl) was transferred to 96 well plates and the 

absorbance detected at 630nm. Protein concentrations were determined by comparison to the 

standard curve. 

 

2.3.17.2 Bicinchoninic acid (BCA) protein assay 

The BCA protein assay was employed to quantify total protein content of samples when cells are 

lysed in culture medium or PBS with 2% Triton. The BCA assay was also adapted from the 

Lowry method (1951) and is based on reduction of Cu
2+

 to Cu
1+

 by proteins under alkaline 

conditions. Then, colorimetric detection of Cu
1+

 is achieved with bicinchoninic (BCA) acid. 

When the assay is performed, initially, Cu
2+ 

chelates with proteins in alkaline sodium potassium 

tartate solution to produce a light blue complex with Cu
1+

.  Second, BCA reacts with the Cu
1+ 

and produces an intense purple-coloured product. Two molecules of BCA react with one 

molecule of Cu
1+

. The coloured BCA/copper complexes are water-soluble and show a sharp 

linear absorbance at 562 nm that is directly proportional to protein concentration in samples.  
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The reaction that leads to BCA/copper colour formation strongly depends on the four different 

amino acid residues; cysteine or cystine, tyrosine, and tryptophan in the protein. Whenever 

required, the BCA assay was used to estimate protein concentrations in the samples as it is 

highly sensitive colorimetric technique. 

 

2.3.17.2.1 Method 

Protein samples (10µl) and bovine serum albumin (BSA) standards (0, 2, 4, 6, 8 and 10 µl of 

BSA diluted with 10, 8, 6, 4, 0 µl of deionised water) were aliquotted into independent wells in 

triplicate. Then, to each well was added 200µl copper sulphate-bicinchoninic acid mix solution 

(1:50 v/v) and the plate was incubated for 30min at 37°C. The absorbances were read at 570nm 

and protein concentrations were determined by comparison to the standard curve. 

 

2.3.18 Cloning of Bacterial Plasmids 

2.3.18.1 Preparation of Luria Bertani (LB) agar plates and LB broth for selection of Clones   

              in E. coli 

LB agar solution (15g/L) was prepared by dissolving 10g of tryptone, 5g of yeast extract, 5g of 

NaCl, (Sigma, UK) in 1000ml of deionised H2O and then transferring the content into a flask 

which contains 15g of LB agar. The solution was autoclaved for 30min at 121°C. Petri dishes 

(15mm) were labelled for each of the three different bacterial plasmids DNA; pGL 3 

[3enh/conA/luc]; pGL 3 [nqo1/luc] and pGL4.74 [hRluc/TK] (Promega, UK); pGL 3 

[3enh/conA/luc] and pGL 3 [nqo1/luc]. Plasmid pGL 3 [3enh/conA/luc] was kindly donated by 

Dr Ann Vernallis (Aston University, UK) and plasmids; pGL4.74 [hRluc/TK] and pGL 3 

[nqo1/luc] were kindly donated by Dr Melissa Grant (University of Birmingham, UK) (plasmid 

maps are shown in Appendix). After autoclaving, LB agar solution was cooled down to 45°C 

and was supplemented with the sterile ampicillin sodium salt (Sigma, UK) solution (100µg/ml).  

Agar plates were prepared by pouring LB agar solution (25ml) into Petri dishes under aseptic 

sterile conditions and any air bubbles were burst if necessary by flaming with a Bunsen burner. 

Plates were allowed to cool and solidify.  
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When plates were completely hardened, they were inverted and stored at 4°C until needed. LB 

broth solution (25g/L) was prepared by mixing 15g of LB agar in 600ml of deionised H2O in a 

sterile Erlenmeyer flask and autoclaved for 30min. After autoclaving and cooling to 45°C, LB 

agar solution was supplemented with the sterile ampicillin sodium salt (Sigma, UK) solution 

(100µg/ml). LB broth solution was stored sterile at 4-8°C. 

 

2.3.18.2 Transformation of E. coli (DH5α) with recombinant plasmids: pGL 3       

               [3enh/conA/luc], pGL 3 [nqo1/luc] and pGL4.74 [hRluc/TK] 

 

Polypropylene culture tubes were chilled on ice, one per single transformation. Frozen DH5α E. 

coli competent cells (Invitrogen, UK) were removed from -70°C and placed on ice for 5min. 

After gently mixing the thawed competent cells by flicking, competent cells (50µl) were 

transferred to each chilled tube and dilutions of cells prepared at 1:10 and 1:100 ratio in LB agar 

solution supplemented with ampicillin. Three transformation reactions; undiluted, 1:10 and 

1:100 were conducted for each plasmid.  

 

Then, 2µl of plasmid DNA was added to each tube and flicked quickly several times. 

Immediately, tubes were equilibrated on ice for 10min. A heat block (Thermo Scientific, UK) 

was set up at 42°C. The cells were heat shocked for 45sec at 42°C exactly and immediately 

placed on ice for 2min. Each tube of transformed cells was diluted with cold sterile LB broth 

(950 µl) and incubated for 1h at 37°C with shaking (9g). After the incubation period, the 

contents of each tube were  transferred into a microfuge tube and centrifuged at 5000g for 3min. 

Cells were plated with undiluted cells, 1:10 and 1:100 diluted cells on independent ampicillin 

treated LB agar plates. Then, plates were inverted and incubated at 37°C for 14-16 hours. 

Throughout the protocol, sterile aseptic conditions were employed to avoid any contamination. 
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2.3.18.3 Starting culture for DNA preparation by Maxiprep 

In order to prepare a starter culture for Maxiprep DNA extraction, a single colony of E. coli 

(DH5α) was carefully selected from a freshly grown (14-16h) selective culture using a sterile 

pipette tip. The LB broth medium (5ml, 100µg/ml ampicillin) was inoculated with one selected 

bacterial colony and incubated overnight with shaking (~16g) at 37°C. The following day, 

bacterial suspensions (1.5ml) were transferred to sterile 1.5ml eppendorf tubes and centrifuged at 

13,000xg for 5min to harvest the bacteria. After discarding the supernatant, the bacterial cell 

pellet was resuspended in fresh LB broth (1ml). For Maxipreps, a large flask of LB broth 

(400ml, 100µg/ml ampicillin) was inoculated with LB broth (1ml) containing bacterial cells and 

incubated overnight with shaking at 37°C. 

 

2.3.18.4 Maxiprep of bacterial plasmid DNA 

Large scale purification of plasmid DNA was performed by using a Marligen Maxiprep Kit 

(Marligen, USA) according to the manufacturer’s instructions. The column was equilibrated by 

adding 30ml of equilibration buffer and solution to the column and it was allowed to run through 

by gravity flow. Meanwhile, bacterial cells from 400ml of an overnight culture were harvested 

by centrifugation at 4480g for 10min at room temperature. The cell pellets were resuspended in 

cell suspension buffer (10ml) containing RNase A until the cell pellet was homogeneous. Cell 

suspension was added to cell lysis buffer (10ml) and mixed gently by inverting the capped tube 

five times and incubating at room temperature for exactly 5min. 

To the mixture, neutralization buffer was added (10ml) and mixed immediately by inverting until 

the solution was homogeneous. The mixture was centrifuged at 15,000g at room temperature for 

10min. Then, the equilibrated column was loaded with supernatant and the eluent/buffer in the 

column was allowed to drain by gravity. The column was washed with wash buffer (60ml). In all 

steps, column flowthrough was discarded. DNA was eluted by adding 15ml of elution buffer to 

the column and flowthrough was collected into clean polypropylene tubes. Isopropanol 10.5ml 

was added to the evaluate and mixed, then, centrifuged at 15,000g at 4°C for 30min.  
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Supernatant was discarded and the plasmid DNA pellet was washed with 5ml of 70% ethanol 

and again centrifuged at 15,000g at 4°C for 5min. The ethanol wash was carefully pipetted off 

and the precipitate was air dried for 10-15min.  

Finally, the precipitated DNA was dissolved in 500µl of TE buffer and transferred into fresh 

tubes. All purified plasmid DNA solutions were aliquoted (10µl) and stored at -80ºC. 

 

2.3.18.5 Determination of Plasmid DNA concentrations and purity 

Total plasmid DNA concentration and the purity of each sample was determined using a 

NanoDrop™ 8000 Spectrophotometer (Thermo Scientific, UK) according manufacturer’s 

instructions. The upper and lower measurement pedestals were cleaned first with 70% ethanol 

and then by Milli Q water on lint free wipe (Kimwipes, UK). The instrument was initialized 

using 2µl of deionised water and ―Nucleic acid application module‖ was selected. The 

instrument was blanked using 2µl of TE buffer. Then, each plasmid DNA sample (2µl) was 

pipette onto the lower measurement pedestal. The sampling arm was closed and OD reading was 

initiated automatically at A260nm and A280nm.  

 

When the measurement was complete, both the upper and lower pedestals were wiped clean 

using lint free wipes before pipetting the second sample. This step prevents the sample carryover 

in successive measurements for samples varying by more than 1000 fold in concentration. The 

readings of samples at A260nm were accepted as DNA concentrations and the ratio of 

A260/A280 was used to assess the purity. A ratio of ~1.8 was accepted as pure sample of DNA. 

 

2.3.18.6 Restriction analysis of purified plasmid DNA 

To reassess the presence of sequences (promoter, enhancer and reporter gene) of DNA inserts in 

purified plasmids, restriction analysis was performed using single enzyme digestions according 

to manufacturer’s instructions.  
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Plasmid DNA maps were referred to identify particular restriction sites in all three different 

purified plasmids (Plasmid maps in appendix). Following restriction-digestion, fragments were 

separated on 1% agarose gel as described below.  

 

2.3.18.6.1 Restriction endonuclease digestion of purified plasmid DNA  

Plasmid DNA (1μg-1.5μg) was mixed with 2μl of 10X reaction buffer, 1μl of appropriate 

restriction endonuclease (Fermentas, USA) and the  volume made up to 20μl with deionized 

H2O. The digests were incubated in a water bath set to 37°C for 4h. Genomic DNA was digested 

as above except that digests were incubated at 37°C overnight to allow for complete digestion of 

genomic DNA. Finally, restriction enzymes were heat-inactivated at 80ºC in 20min according to 

manufacturer’s instructions. 

 

2.3.18.6.2 Agarose gel electrophoresis of digested plasmid DNA fragments 

1 % agarose gel was prepared by boiling an appropriate mass of agarose powder in Tris-borate 

EDTA buffer (89mM Tris; pH 7.6, 89mM boric acid and 2mM EDTA) (TBE) buffer until 

dissolved and 0.5µg/ml ethidium bromide (Fisher Scientific) was added. Then, agarose solution 

was gently poured into a horizontal mini-gel tank (10cm x 15cm) (Bio Rad, USA) and gel was 

allowed to set at room temperature for 10min with 12 well comb.  

DNA samples (volumes ranged from 2-50μl) were mixed with one-sixth volume of loading 

buffer (12% glycerol v/v, 60mM Na2EDTA, 0.6% SDS w/v, 0.003% bromophenol blue w/v, 

0.003% xylene cyanol w/v) and loaded onto the gel. Standard DNA ladder (New England Bio 

labs, UK) was run adjacent to DNA samples. They comprised of 1Kbp or 100bp DNA fragments 

and were diluted in loading buffer as before. Electrophoresis was carried out in 1X TBE at 150V, 

250mA for 1h. Gels were visualized using UV light on a transilluminator and images were 

captured by Polaroid camera (Kodak, Japan) (Figure 2.11). 
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2.3.19 Primer designing 

Primer sequences were designed  using ―Invitrogen Oligo design‖ on line software (Invitrogen, 

UK) referring to recommended sequences for pGL 3 (GL primer 2) and pGL 4 (RV primer 3) 

basic plasmids (Promega, UK) and the primer sequence for pGL 3 [nqo1/luc] designed according 

to the 5’-upstream region of NQO1 ( genomic walking) as described by Nio1 et al. (2003). All 

primers were synthesized by Invitrogen, UK and stored frozen as 100µM in 1xTE (10mM Tris 

base, 1mM EDTA, pH 8.0) buffer at -20°C until use. Annealing conditions were computed using 

the Wallace formula (Tm= [4(G+C) +2(A+T)] -5°C (Suggs et al., 1981) according to the 

recommended temperature range of Functional Genomic Labs, University of Birmingham, UK 

(Table 2.3).    

 

2.3.20 Sequencing of plasmid DNA 

In order to reassess further the presence of DNA consensus sequences; promoter region, 

enhancer and reporter in purified plasmid DNA samples. DNA sequence analysis was performed 

using 250ng of purified plasmid DNA in an ABI3730 DNA analyser (Applied Biosystems, USA) 

at the Functional Genomic Labs, University of Birmingham, UK. The DNA Reaction mixture 

was prepared as follows for each purified plasmid DNA sample (Table: 2.4). 
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Plasmid DNA 

Types 

 

Primer sequence 

(5’ to 3’) 

 

Annealing 

temperature 

(Tm) 

 

% 

GC 

 

Molecular 

Weight 

pGL3 

[nqo1/luc] 

CGCCTCGAGGCCCTC 

TGAATACTTTCAACAA 

      

      59°C 

 

    51 

 

        9401.2 

pGL3 

[3enh/coA/luc] 

CTTTATGTTTTTGGCG 

TCTTCCA 

 

      47°C 

 

     39 

 

        6978.6 

pGL4.74 

[hRluc/TK] 

GACGATAGTCATGCC 

CCGCG 

 

       53°C 

 

     53 

 

        6104.0 

 

Table 2.3  DNA sequencing specific primer. Single primers were designed as described in 

methods and were based on sequence information of plasmid manufacture and Genbank (NCBI, 

USA). 

 

 

 

Reagent 

 

Quantity 

    

pGL 3 [nqo1/luc] 

 
(1188.2ng/µl) 

 

pGL 3 [3enh/conA/luc] 

 

(1693.7ng/µl) 

   

pGL4.74 [hRluc/TK] 

 

(663.9ng/µl) 

 

    Plasmid DNA 

 

2.10µl (250ng) 

 

1.47µl (250ng) 

 

3.76µl (250ng) 

 

         Primer 

 

3.2µl 

 

3.2µl 

 

3.2µl 

 

   Deionised water 

 

4.7µl 

 

5.33µl 

 

3.04µl 

 

    Total Volume 

 

10µl 

 

10µl 

 

10µl 

 

Table 2.4  Composition of plasmid DNA reaction mixture. The reaction mixture for each 

purified plasmid was prepared according to the Functional Genomic Lab’s instructions. 
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Samples were loaded onto a 96 well plate and run in the automated process of ABI3730 DNA 

analyser. Big Dye terminator V3.1 (10µl) (Applied Biosystem) was added into each sample 

(10µl) by the ABI3730 analyser robot and the labelling reaction, PCR cycle sequencing cycles 

(Sanger sequencing method (Ramp at 96ºC for 10cycles/Ramp at 50ºC for 5cycles/Ramp at 60ºC 

for 240cycles and repeat further 24 and then total x 25 cycles) and purification of samples was  

performed Qiagen DyeEx plates (Qiagen, USA) according to size-exclusion principle to remove 

unincorporated dye and reagents from samples initially. Finally samples were analysed on the 

capillary sequencer ABI 3730 to produce the plasmid DNA sequence. The sequence of purified 

plasmids is shown in the appendix. 

 

2.3.21 Transient transfection of plasmid DNA into H9C2 myoblasts  

2.3.21.1 Optimisation of plasmid DNA transfection with Lipofectamine 2000 (Lipofection) 

One day before transfection, H9C2 myoblasts were seeded at 1.5 x 10
5
 cells/well in 1ml of 

culture medium (DMEM, 10% FBS and 4mM L-glutamine) without antibiotics in 24 well plates 

and the cells were incubated at 37°C in a humidified atmosphere of 5% CO2 and 95% air. After 

24h, H9C2 cells at 90% confluence were transfected with pGL 3 [nqo1/luc] plasmid for 

determination of Nrf2 activation or pGL 3 [3enh/conA/luc] for NF-κB  activation and control 

plasmid pGL4.74 [hRluc/TK] for thymidine kinase using Lipofectamine 2000 (Invitrogen, UK). 

The manufacturer’s standard protocol was modified in some steps to achieve optimum 

transfection efficiency. 

 

Initially, the total DNA to Lipofectamine 2000 ratio for each transfection was optimised using 

total DNA to Lipofectamine 2000 ratios of 1:2, 1:3 and 1:4 according manufacturer’s 

instructions. The total amount of DNA was held constant with varying amount of lipofectamine. 

Similarly, control plasmid DNA to experimental plasmid DNA ratio was optimised using 1:9, 

1:10 and 1:11 ratios as previously described elsewhere.  
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The amount of control plasmid DNA; pGL4.74 [hRluc/TK] was held constant with varying 

amounts of experimental plasmids; pGL 3 [nqo1/luc] or pGL 3 [3enh/conA/luc]. For each 

transfection, DNA/Lipofectamine complexes were prepared as follows. Each sample was diluted 

and gently mixed in 50µl of Opti-MEM I reduced serum medium (Invitrogen, UK) in 1.5ml 

polypropylene tubes.  

 

Then, an appropriate amount of Lipofectamine 2000 was diluted and gently mixed with 50µl of 

Opti-MEM I reduced serum medium and incubated for 25min (Dalby et al., 2004). After the 

25min incubation, the diluted DNA samples (1:10) were combined with diluted Lipofectamine 

2000 (Total volume=100ul) and incubated for 25min at room temperature to achieve the optimal 

complex formation as previously reported (Dalby et al., 2004). Meanwhile, cells were washed 

with PBS and Opti-MEM I reduced-serum medium and the medium in each well was replaced 

with 400µl of fresh Opti-MEM I reduced-serum medium. After a 25min incubation period, 

100µl of DNA and Lipofectamine 2000 complex was added to each well containing cells with 

400µl of medium and then the contents in each well were gently mixed by rocking the plate back 

and forth. Cells were incubated for a 24h period at 37°C in a humidified atmosphere of 5% CO2 

and 95% air. After the first 6h of transfection, wells were loaded with 500µl of culture medium 

containing 20% FBS and 8mM L-Glutamine to all transfected and non-transfected cells.  

 

Non-transfected cells served as controls for background luminescent measurements in luciferase 

assay. To test for transgene expression, cells were gently washed 2xPBS and loaded with phenol 

red-free medium (1ml/well) containing 2µM LPS and incubated for 4h period. It has been 

reported that LPS can induce NF-κB (Tsao et al., 1996) and Nrf2 (Rushworth et al., 2008) 

activation. Therefore, 10ng/ml LPS treatment was employed to activate these transcription 

factors as a positive control in luciferase assay. 
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2.3.21.2 Luciferase reporter gene assay 

To measure the luciferase reporter activity in transfected cells after exposure to hypoxia, a Dual 

Glo luciferase assay (Promega, UK) was performed according to an in-house modified protocol. 

Before conducting the luciferase reporter assay, plates were centrifuged at 300g for 3min to 

avoid loss of dying cells due to exposure to hypoxia or LPS treatment. Then, medium in each 

well was completely discarded and loaded with 100µl of serum and phenol red-free DMEM. To 

measure the Firefly luciferase activity, each transfected or non-transfected cell treatment was 

incubated with 100µl Dual Glo luciferase reagent and mixed gently to induce cell lysis on a 

rocker for 2min. Then, plates were incubated for another 8min at room temperature and Firefly 

luminescence was measured in a Spectramax luminometer (Molecular Devices, USA) at 

emission: 542nm and at room temperature.  

 

To measure the Renila luciferase activity for control gene expression and transfection efficiency, 

both transfected and non-transfected cells were incubated with 100µl of Dual Glo Stop and Go 

reagent and gently mixed for 2min on a rocker. After 6min incubation at room temperature, the 

Renilla luminescence was measured in a luminometer at room temperature, in the same order as 

the firefly luminescence measurement. In order to obtain optimal and consistent results avoiding 

inconsistencies with transfection efficiency, the ratio of luminescence of experimental reporter to 

control reporter was calculated as follows according manufacturer’s instructions.  

 

                Ratio of control firefly luminescence/Renilla luminescence=X 

Ratio of Experimental well firefly luminescence/Renilla luminescence=Y 

                Relative ratios; control = X/X=1 and experimental well=X/Y 
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2.3.22 Visualisation of transfection efficiency using cytochemical staining of β-galactosidase  

The transfection efficiency was determined using cytochemical staining of β-galactosidase 

expression. One day before lipofection, H9C2 cells at 90% confluence were seeded on 60-mm 

tissue culture dishes at a density of 1.5x10
5
 cells/dish and loaded with 5ml of culture medium 

(phenol-red free DMEM, 10% FBS, 4mM L-glutamine) without antibiotics and incubated for 

24h at 37°C in a humidified atmosphere of 5% CO2 and 95% air. Then, β-galactosidase plasmid 

DNA Lipofectamine 2000 complexes were prepared at 1:4 ratio in 0.5 ml Opti-MEM I reduced 

serum medium as previously described (Section 2.3.21.1). The β-galactosidase plasmid DNA 

was kindly donated by Dr Ann Vernallis (Aston University, UK).   

 

After 24h, the cell culture dish was washed with 2x PBS and 1x Opti-MEM I reduced serum 

medium and loaded with 2ml  Opti-MEM I reduced serum medium and return to 37°C 

humidified incubator with of 5% CO2 and 95% air. Once the DNA/Lipofectamine 2000 

complexes were ready, β-galactosidase plasmid DNA/Lipofectamine solutions were added 

evenly to culture dishes as appropriate and incubated for another 24-48h at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. After 6h of transfection, each dish was loaded with 2.5ml of 

culture medium containing 20% FBS and 8mM L-Glutamine and re-incubated for 48h.  

 

Cells were then washed with 2x PBS at room temperature and loaded with 5ml of cell fixative 

solution (2% v/v formaldehyde, 0.2% v/v glutaraldehyde, 1x PBS). After 2min, cells were 

washed with 1x PBS and loaded with 5ml of histochemical staining solution (5mM Fe3Fe[CN]6, 

5mM Fe4Fe[CN]6, 2mM MgCl2, 1x PBS, 1mg/ml X-gal (5-bromo-4-chloro-3-indolyl-β-

galactoside) and incubated for 24h at 37°C. Finally, cells were washed gently with 4x PBS and 

covered with 1ml of PBS to examine under a light microscope. The transfection efficiency was 

estimated by counting the relative numbers of stained and unstained cells. Mean transfection 

efficiency ~30% was estimated from three independent studies (Figure 2.12A and 2.12B).  

 



105 

 

 (A)  

 

(B)                                            

 

Figure 2.12  β-Galactosidase expression in H9C2 cells after 48h. H9C2 cell transfected with 

plasmid DNA harbouring β-Galactosidase. Cell monolayers were   histochemically stained with 

X-gal. (A) Transfected cells at 20x magnification (B) Transfected cells at 40x magnification.  

 

2.3.23 Statistical Analysis 

Results are presented as sample mean ± SEM. Statistical analysis was performed using Graphpad 

Prism TM software and tested by one-way ANOVA (nonparametric) using Tukey’s post-hoc 

test. All results are means of three independent experiments. P< (0.05)* was considered as 

significantly different from controls and P< (0.05) was considered as significantly different from 

treatments. 
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CHAPTER 3 

OPTIMISATION OF CONDITIONS FOR 

USE OF FLUORESCENT PROBES TO 

DETECT ROS/RNS 
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3.1 Preface 

This chapter describes the optimisation of conditions for use of various fluorescent probes in 

measuring intracellular ROS/RNS during hypoxia and hypoxia/reperfusion, and the validation 

and optimisation of the hypobaric chamber. Initial studies determined the optimum incubation 

time for detecting probe oxidation with ROS/RNS during normoxia, in respect of their 

fluorescent intensity and kinetics of formation. Subsequent experiments were conducted to verify 

whether the hypoxic system can render cells hypoxic without affecting the pH in culture medium 

over the period of hypoxia. The optimised protocol of fluorescence dye applications was used to 

measure intracellular ROS/RNS generation in in vitro cell culture system.  
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3.2 Introduction  

3.2.1 Fluorescent probes 

The production of ROS/RNS is associated with deleterious changes to biomolecules and/or 

changes in biochemical functions in cells (sections 4.2 and 5.2). ROS/RNS generation during 

hypoxia alone or hypoxia/reperfusion has been established in neuronal cells from the use of free 

radical scavengers (Abramov et al., 2007). Their detection by a validated probe is critically 

important to understand their associated role in cardiac cell toxicity during hypoxia ± 

reperfusion. It is hard to characterise ROS/RNS due to their short half-lives, the action of in vivo 

antioxidant defence and their high reactivity with a variety of substrates (Gomes et al., 2005; 

Tarpey et al., 2004; Tarpey and Fridovich, 2001).  

 

The use of probes in situ is an excellent approach to measure ROS/RNS due to their potential for 

sensitivity, simplicity in application and high resolution of images under the microscope. The 

development of reliable techniques for detecting ROS/RNS is vitally important to understand 

deleterious effects of hypoxia or hypoxia/reperfusion.  

The number of readily available direct and indirect methods may under- or over-estimate the 

level of ROS/RNS at an intracellular level as high background fluorescence may be due to probe 

leakage from the cell system; photoxidation of probe, their non-specific oxidation by other 

catalytic/redox cycling chemicals and therefore an increase in noise (Gomes et al., 2005).  

 

Recent reports have shown leakage of DCF fluorescent probes from skeletal muscle fibres and 

their extracellular photooxidation that increases background fluorescence (McArdle et al., 2005). 

However, Murrant et al. (1999) have suggested the ways of minimising background fluorescence 

and photo oxidation in experimental systems. Previously published work has described the use of 

probes over variable periods during hypoxia or ischaemia to assess ROS/RNS generation 

(Duranteau et al., 1998; Chandel et al., 2000; Chandel and Schumacker, 1999).  
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The presence of probe over longer time points may lead to increased autooxidation, time-

dependent decay of fluorescence and saturation/insufficient amount of probe for oxidation 

thereby this approach may not indicate an accurate estimation of ROS/RNS produced over 

period. Therefore, it is important to determine optimum oxidation time point(s) as measured by 

fluorescence spectrometry which gives minimum background noise with high signals. This 

chapter describes the quantitative optimisation of fluorescent probe oxidation conditions to 

minimise photo/autooxidation and fluorescent decay.  

 

It has been reported that mitochondria generate O2
-•
 as a by-product of oxidative 

phosphorylation. Approximately 1–3% of mitochondrial O2 consumed may produce O2
-•
 by 

interaction with "leaked" electrons at mitochondrial complex I, II and III (Hool and Arthur, 

2002; Guzy et al., 2005; Chandel et al., 2000). O2
-•
 is the primary ROS produced and can 

undergo further reactions to produce subsequent radical species. Therefore, a panel of probes has 

been selected for optimisation that has specificity for ROS/RNS and sources e.g. mitochondrial 

and non mitochondrial based-ROS/RNS.  

 

3.2.2   Hypobaric oxygen chamber 

Hypoxic chambers are widely used to achieve a hypoxic environment in in vitro or in vivo 

experiments. In such systems, reduced O2 tensions are perfused with continuous flow. 

Alternatively, hypoxic-mimic agents such as Co or Ni can be used to mimic cellular hypoxic 

events chemically (Chachami et al., 2004; Chandel et al., 1998). However, those studies are 

difficult due to metal toxicity induced cell death (Wang et al., 2000). Cell cultures can be made 

hypoxic by bubbling nitrogen gas through the medium; the gas should be sterile to avoid 

contamination (Killilea et al., 2000). Sample manipulations are also difficult during hypoxia; 

when cells are removed from hypoxia to normoxia, reoxygenation can cause additional stress 

and metabolic changes in the cells, leading to complications in the interpretation of results.  
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In kinetic studies of ROS generation during hypoxia, addition of fluorescent probes or inhibitors 

into cell culture plates or taking sample for dissolved gas analysis is a challenge in wet 

laboratory practice whilst maintaining stable hypoxic conditions inside the chamber without 

incorporation of ambient air into experimental samples. The maintenance of stable pH conditions 

in the culture medium during both hypoxia or normoxia and also stable dissolved O2 level are 

critical. It is difficult to achieve this without monitoring the changes by advanced instruments 

such as oxygen sensors and micro pH electrodes. Therefore, a closed environmental system with 

continuous perfusion of gas mixtures such as Sykes-Moor chambers or Billups-Rothenbergs 

advanced chambers are often preferred. In the methods section of this thesis, the invention of a 

simple and economical gas flow system is described to initiate hypobaric hypoxia in cell cultures 

while allowing simultaneous addition of experimental reagents without incorporation of ambient 

air.  

 

3.3 Results 

3.3.1 Optimisation of fluorescent probes 

To investigate the optimum incubation time to detect oxidation of each fluorescent probe with 

reactivity of intracellular ROS/RNS generated during inhibition of mitochondrial respiration (as 

might be expected during hypoxia), fluorescence was measured for various periods: 15min, 

30min, 45min and 60min after loading the probe into cells in the presence or absence of 

mitochondrial complex I inhibitor; rotenone (40µM) as described in section: 2.3.8.  

 

3.3.1.1 Superoxide detection by DHE  

H9C2 cells at 70-80% confluence were briefly washed with PBS and loaded with phenol red-free 

DMEM prior to addition of 20µM DHE in the presence or absence of mitochondrial complex I 

inhibitor; rotenone (40µM). Cells were incubated in the dark and fluorescence was determined 

after 15min, 30min, 45min and 60min under normoxia.  
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In order to minimise background fluorescence, existing culture medium was replaced gently with 

fresh medium 3min before the fluorescence measurements at optimal wavelengths for detection 

of 2-hydroxy ethidium (excitation at 488nm and emission at 570nm) as previously reported 

(Zhao et al., 2005; Zhao et al., 2003).  

 

As illustrated in figure 3.1, DHE fluorescence increased time-dependently and maximum 

oxidation was achieved at t=60min. There was a trend for lower DHE fluorescence after 30min 

in the presence of rotenone, but this was not significant compared to untreated cells. Therefore, 

incubation time; 45min was selected as an optimum oxidation period of DHE due to the stability 

of the oxidised products.  
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Figure 3.1 DHE oxidation at different incubation times. H9C2 cells were seeded at 

3x10
4
/well and grown until 70-80% confluence at 37ºC in 5% CO2 in humidified atmospheric 

conditions. Then cells were washed with PBS and loaded with phenol red-free DMEM. In the 

presence or absence of 40µM rotenone, the fluorescence was measured  after 60min, 45min, 

30min and 15min incubations with 20µM DHE in dark in a preheated (37°C) GEMNI 

fluorescence reader at Excitation: 488nm, Emission: 570nm, cut off filter: 560nm. Data 

represents the mean±SEM fluorescence of three independent experiments conducted in 

triplicates.  
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3.3.1.2 Kinetics of DCFH2-DA and DHR123 oxidation 

The optimum oxidation periods of DCFH2-DA and DHR123 were assessed in respect to 

cytosolic and mitochondrial ROS/RNS respectively. H9C2 cells at 70-80% confluence were 

briefly washed with PBS and loaded with phenol red-free DMEM. To show the sensitivity of 

DHR123 towards peroxide radicals; 20µM H2O2 + horse radish peroxidase (HRP) solution was 

employed as a positive control. Peroxynitrite solution (60µM) was also employed to demonstrate 

the sensitivity of DCFH2-DA for peroxynitrite anion radical. Cells were treated with 20µM 

DCFH2-DA or 20µM DHR123 in the absence or presence of 40µM rotenone and incubated for 

15min, 30min, 45min, and 60min. Then, fluorescence was measured after replacing the existing 

medium with fresh phenol red-free DMEM at 3min before the completion of incubation period. 

Both DCFH2-DA and DHR123 showed time-dependent increases in fluorescence with rotenone 

treatment. In the presence of rotenone, both probes achieved optimum oxidation at t=45min 

(Figure 3.2 A and 3.2B).  

 

In the positive control, DCFH2-DA showed sensitivity for ONOO
-
 with increase in fluorescence 

by 780±83% compared to controls (100±9%). DHR123 showed sensitivity for H2O2 with 

increase in fluorescence by 541±44% compared to controls (100±9%) in the presence of HRP 

only, confirming the requirement of the cofactor; HRP to reduce H2O2 (Hempel et al., 1999; 

Henderson and Chappell, 1993; Kooy et al., 1994; Royall and Ischiropoulos, 1993a). 

 

3.3.1.3 Optimisation of conditions for the nitric oxide detector; DAF-2-DA 

 H9C2 cells were cultured in DMEM, 10% FBS under basal conditions. At 70-80% confluence, 

cells were briefly washed with PBS and loaded with phenol red-free DMEM.  To determine the 

optimum oxidation period of DAF-2-DA, fluorescence was measured in the presence or absence 

of 40µM rotenone after incubating cells with 10µM DAF-2-DA for 60min, 45min, 30min, and 

15min. 
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Figure 3.2  Optimisation of conditions for (A) DCFH2-DA and (B) DHR123 oxidation at 

different incubation times. H9C2 cells were seeded at 3x10
4
/well and grown until 70-80% 

confluence at 37ºC in 5% CO2 in humidified atmospheric conditions. Then, cells were washed 

with PBS, loaded with phenol red-free DMEM, and experimental cells were treated with 40µM 

rotenone. The fluorescence was measured after 60min, 45min, 30min and 15min incubations 

with 20µM DCFH2-DA (A) or 20µM DHR123 (B) at 37ºC in a preheated GEMNI fluorescence 

reader at Excitation: 488nm, Emission: 520nm, cut off filter: 515nm. Data represents the 

mean±SEM fluorescence of three independent experiments conducted in triplicates. *** 

represent P < 0.0001, cells+DCF or DHR vs. cells+Rotenone+DCF or DHR (one-way ANOVA), 

Tukey’s post-hoc test. 

 

To minimise the background fluorescence, existing culture medium was replaced with fresh 

DMEM and plates were read after 3min before the completion of incubation period. A solution 

of 100µM spermine nonoate was employed as positive control to determine the DAF-2-DA 
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sensitivity for 
•
NO. The DAF fluorescence was increased by 210±18% compared to control cells 

(100±8%) in the presence of spermine nonoate (100mM); 
•
NO donor. As illustrated in figure 

3.3, DAF-2-DA oxidation showed a time-dependent increase in fluorescence from t=0 min to 

45min, but was not further increased at t=60min.  
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Figure 3.3  DAF-2-DA oxidation at different incubation periods. H9C2 cells were seeded at 3 

x10
4
/well and grown until 70-80% confluence at 37ºC in 5% CO2 in humidified atmospheric 

conditions. Then, cells were washed with PBS and loaded with phenol red-free DMEM and 

experimental cells were treated with 40µM rotenone. The fluorescence was measured after 

60min, 45min, 30min and 15min incubations with 20µM DAF-2-DA at 37ºC in a preheated 

GEMNI fluorescence reader at Excitation: 491nm, Emission: 513nm, cut off filter: 495nm. Data 

represents the mean±SEM fluorescence of three independent experiments conducted in 

triplicates.  

 

3.3.2 Validation and optimisation of hypoxia chamber  

Initial studies were performed to determine the stability of the hypoxic system i.e. whether it can 

maintain a stable hypoxic or normoxic environment. Therefore, dissolved O2 level was 

determined after pre-equilibrating the medium (HEPES-buffered, phenol red-free) for 18h at 2% 

O2 + 98 % N2 and/or 10% O2 + 90 % N2 using premixed gas in the chamber. Control medium 

was preequilibrated at 21% O2 + 79% N2. Following equilibration, the dissolved O2 level was 

routinely measured using the Winkler assay as previously described (Winkler, 1888; Grant & 

Griffiths, 2007) (Section 2.3.4.2).  
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After 18h, the dissolved O2 concentration in the medium was 0.23±0.04mg/L (pO2; 14.5 mmHg) 

at 2% O2 + 98% N2 which was a 26-fold decrease compared to O2 concentration in the medium 

equilibrated under normoxia. The equilibration at 10% O2 + 90% N2 resulted in a 2-fold decrease 

in O2 concentration compared to normoxic medium. The dissolved O2 concentration in the 

medium at 10% O2 was 2.78±0.77mg/L (pO2; 72.4 mmHg). The dissolved O2 concentration in 

control medium (normoxia at 21% O2) was measured as 5.93±0.23mg/L (pO2; 152.2 mmHg) 

(Figure 3.4). As shown in figure 3.4, the dissolved O2 level in the medium depleted dose-

dependently with decreasing O2 tension.  

 

To assess the stability of pH value, pH was measured before and after hypoxia. The pH of the 

medium was stable during both normoxic (pH 7.4 ± 0.30) and hypoxic exposures (severe 

hypoxia; pH 7.5 ± 0.21 and mild hypoxia; pH 7.5 ± 0.23) up to 24h period. The results suggest 

that this system could render cells hypoxia by depleting dissolved O2 concentration in the 

medium. This hypobaric chamber was adapted in subsequent experiments to induce hypoxia or 

normoxia. 
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Figure 3.4  The effect of hypobaric hypoxia on dissolved O2 level in the medium. HEPES 

buffered, phenol red-free DMEM were preequilibrated for 24h at different O2 tensions; 2% O2 + 

98% N2, 10% O2 + 90% N2 and 21% O2 + 79% N2 in the chamber. The dissolved O2 level in the 

medium (1ml) was then measured by the Winkler assay. Data represents the mean±S.E.M of 

three independent experiments conducted in triplicate.  
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3.4 Discussion 

3.4.1 Optimisation of fluorescent probes 

Fluorescent probes are important for in vivo and in vitro biological research as they can provide 

unique spatial and temporal information about ROS/RNS molecules. The quantitative oxidation 

of a non-fluorescent probe to a fluorescent product reflects the amount of ROS/RNS oxidized 

intracellularly as previously explained (Tarpey and Fridovich, 2001; Tarpey et al., 2004). 

Therefore, the intensity of fluorescence is proportional to the amount of ROS/RNS generated in 

the cell (Gomes et al., 2005). However, this may reflect an over estimate of ROS/RNS produced 

intracellularly as probes can undergo autooxidation outside the cell (McArdle et al., 2005; 

Murrant et al., 1999). To minimise contribution of artefactual oxidation, experiments were 

conducted in the dark and old culture medium was always replaced with fresh medium to 

minimise background fluorescence prior to analysis (Murrant et al., 1999).  

 

The methodology outlined in this thesis has avoided monitoring time-dependent kinetics of 

fluorescence as oxidised fluorescent products are susceptible to further excitation by the light 

intensity in the instrument (McArdle et al., 2005) and this results in poor fluorescent signal to 

noise ratio (Fennell and Baker, 2005). Therefore, the current protocol has been developed so that 

it uses a single exposure to light (under optimal excitation conditions) after completing the 

incubation periods; 15min, 30min, 45min and 60min at high signals to minimum fluorescent 

noise.  Killilea et al. (2000) reported the influence of pH on the oxidation of fluorescent probe in 

the culture medium, therefore, HEPES-treated medium was employed to maintain a stable pH 

over incubation periods (Killilea et al., 2000).  

According to other investigators, background fluorescence may reflect metal impurities in the 

medium (Wardman, 2007). The impurities in medium represents trace ions or catalyst, which can 

catalyse probe oxidation via Fenton reaction (Wardman, 2007). Principally, the mitochondrion is 

the major ROS/RNS generation site in many tissues and particular in muscle cells in respiration 

during normoxia (Jackson et al., 2002; Chandel et al., 1998 and 1997).  
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To evaluate the contribution of the mitochondrial electron transport system to produce ROS/RNS 

during normoxia, cells were treated with the mitochondrial complex I inhibitor; rotenone before 

adding the fluorescent detector probe. This method was adapted from Chandel et al. (1998). The 

pre-treatment of cells with rotenone mimics the hypoxic response under normoxia (Chandel et 

al., 1998). The optimal incubation time for a particular probe was assessed by considering 

stability of fluorescence and retention time of oxidised products in the cell before fluorescence 

decay in the presence or absence of rotenone.  

 

The fluorescence probes that were examined showed an optimal oxidation either at 45min or 

30min and subsequent experiments were applied accordingly. Zha et al. (2005) and (2003) 

suggested that DHE can only react with cellular O2
-•
 forming 2-hydroxyethidium (2-OH-E

+
), 

which has a distinct fluorescence spectrum of excitation at 490nm and emission at 570nm. 

Therefore, DHE fluorescence measurements were conducted according Zhao et al. (2005) and 

(2003). Dose response studies of DHE suggest that it does not react with singlet oxygen, 

hydroxyl radical, H2O2, 
•
NO and peroxynitrite (Fennell and Baker, 2005). There are other non-

superoxide-dependent ways of oxidizing DHE into E
+
 which is distinct from the fluorescence 

spectrum of 2-OH-E
+
 and intercalates into nucleic acids (Zhao et al., 2005; Zhao et al., 2003). 

This study suggests that the decrease in DHE fluorescence after rotenone pre-treatment is an 

indication of decreased production of O2
-•
 from mitochondrial complex I. It may be due to 

blockage of formation of ubisemiquinone by rotenone under normoxia (Duranteau et al., 1998). 

The decrease in DHE fluorescence after rotenone pre-treatment during normoxia is consistent 

with some, but not all previous reports (Chandel et al., 1998; Chandel and Schumacker, 1999).  

 

It has been reported that O2
-•
 and DHE reacts at a 1:1 molar ratio (Fennell and Baker, 2005). The 

total cellular fluorescence of DHE after incubation with cells for 45min may indicate not only 

O2
-•
 production from the mitochondria, but also from other sources such as NADPH oxidase, 

xanthine oxidase and NOS system (Pagano et al., 1998; Souza et al., 2002; Pou et al., 1999).  
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DCF fluorescence at 45 min in normoxia assesses the cytosolic basal ROS and RNS production, 

whereas the fluorescence of DHR123 at 45min reports mitochondrial basal ROS/RNS 

production during normoxia. DCFH2-DA and DHR123 showed their relative sensitivity for 

positive controls; ONOO
-
 and H2O2 + HRP respectively and suggest the generation of those 

radicals during basal normoxic respiration. The increase in both DHR123 and DCFH2-DA 

fluorescence in rotenone-treated cells suggests that overproduction of ROS/RNS is due to 

electron leak from mitochondria. The DCF fluorescence reflects the generation of ONOO
-
 and 

probably, peroxy radicals via Fenton-type reaction in the presence of peroxidase enzymes in 

cytosol or/and readily available HOCl (Killilea et al., 2000; Hempel et al., 1999). In contrast, the 

increase in DHR123 fluorescence supports a change in mitochondrial redox state and/or 

increased production of ROS/RNS of mitochondrial origin. 

 

 It has been reported that rotenone increases the mitochondrial ROS generation by blocking 

complex I. When complex I is inhibited with rotenone, electrons may leak into the matrix and 

may be reduced chemically to form ROS/RNS resulting in the increase in DHR123 fluorescence 

(Chandel et al., 1998).  
•
NO generation during normoxia was demonstrated by using the DAF-2-

DA probe under basal conditions.  

 

The sensitivity of this probe for 
•
NO was confirmed by its reactivity towards the positive control; 

spermine nonoate, confirming previous reports (Gomes et al., 2005; Tarpey et al., 2004; Kojima 

et al., 1998). Total DAF fluorescence represents the cellular 
•
NO production during normal 

physiological conditions by mitochondria or/and cytosolic reactions (Kojima et al., 1998; 

Strijdom et al., 2006; Nakatsubo et al., 1998). The cell membrane and mitochondrial membrane 

are permeable to DAF-2-DA, and the probe can only be reactive with 
•
NO after it is hydrolysed 

to a reactive form; DAF-2, by intracellular esterases (Nakatsubo et al., 1998; Kojima et al., 

1998). Extracellular probe cannot be oxidized by 
•
NO, however it may subject to background 

fluorescence due to autooxidation of the probe.  



119 

 

Previous studies have adopted the variable incubation periods including 30min, 2h and 6h of 

fluorescent probes in cell systems (Abramov et al., 2007; Chandel et al., 1998), but the present 

system indicates the oxidation of fluorescent probe at its optimum level, precluding non-specific 

and autooxidation.  

 

Fluorescent probes are often employed in fluorescence microscopy to monitor time dependent 

increase in fluorescence in specific cells or subcellular organelles with respect to ROS/RNS. 

Recently, it has been reported that laser exposure in fluorescence microscopy can induce photo-

toxicity or affect quantitative fluorescent assessments due to photooxidation as previously 

reported by Abramov et al. (2007) and McArdle et al. (2005). Therefore, the quantification of 

ROS/RNS by microscopy may need reliable methods under low light excitation. Supporting this 

suggestion, in the present method, replacement of old medium with fresh medium has avoided 

detection of any leftover photoxidised/autoxidised dye in the extracellular medium, resulting in 

minimum background fluorescence.  

 

Most investigators have omitted the method of minimising background fluorescence; instead 

they have followed continuous monitoring and kinetics of fluorescence (Abramov et al., 2007; 

Chandel et al., 1998; Chandel and Schumacker, 1999; Duranteau et al., 1998). In the present 

study, levels of fluorescence are not directly proportional between dyes, though; the 

stoichiometry of the reaction may be the same. This is evident with greater increase in 

fluorescence of some dyes more than another dye that has been exposed to same ROS/RNS. 

Cells respond to different probes in various ways and probes can leak by passive diffusion or 

rapidly by active efflux. The doses of probes employed in this thesis have been used by previous 

investigators (Becker et al., 1999; Zhao et al., 2003; Strijdom et al., 2006; Henderson and 

Chappell, 1993; Crow, 1997) and were found to be non-toxic.  
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This study has confirmed the generation of various ROS/RNS including O2
-•
 and 

•
NO under 

normal physiological state as consistent with previous authors (Coral and Michael, 2001; Kudin 

et al., 2005; Ramachandran et al., 2002; Robinson et al., 2006).  

The optimum incubation periods for each probe with H9C2 cells have been applied to the study 

of the time-dependent increase in ROS/RNS generation during hypoxia and hypoxia-reperfusion. 

The present study was aimed to adapt and optimise the use of probes to detect and quantify 

radicals in interest; O2
-•
 or 

•
NO production in subsequent experiments during hypoxia and 

reperfusion in H9C2 cardiomyoblasts. 

 

3.4.2 Hypoxic chamber 

Hypoxic chambers should provide a continuous flow of a perfusing gas mixture in order to 

achieve a stable hypoxic environment (Killilea et al., 2000). The chamber developed in this 

study is highly versatile, cost-effective and simple to use. The gas exposure system can be used 

with different compositions of mixed gases (e.g. hyperoxia, anoxia and tobacco smoke) in 

addition to the gas mixtures used in this thesis. This system allows a convenient approach of 

simulating a variety of environmental conditions. The suitability of the gas exposure chamber 

was demonstrated by determining the different dissolved O2 levels in hypoxic or normoxic 

culture medium during mild (10% O2) and severe (2% O2) hypoxia.  

 

The main advantages of this hypoxic chamber are; (a) minimal gas consumption compared to 

larger glove box or hypoxic incubators; (b) maximum culture space for 2-4 tissue culture plates 

or two T75 cell culture flasks in a single chamber; (c) fast recovery time and easy manual 

operation for conducting an experiment; (d) easy disassembly for cleaning; (e) an ability to resist 

high gas flow rates. The present study has determined the dissolved O2 concentration in hypoxic 

or normoxic-culture medium using the Winkler assay which has been modified to minimise 

incorporation of air.  
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Further validation studies proved the maintenance of a stable pH range (7.5±0.21) as measured 

by pH electrode (Appleton Woods, UK) under hypoxic or normoxic incubation periods; 30min 

and 4h. Therefore, these data confirm that changes in fluorescence were not affected by pH 

gradients established during hypoxia or normoxia and they are due to different O2 tensions 

established in culture medium. Since the completion of these studies, more advanced and 

accurate methods to monitor dissolved O2 and pH at the same time have become available such 

as the hydrogel micro array system, and such systems could have advantage for future studies to 

provide real time measurements (Lee et al., 2008). In summary, the present study describes a 

system that could permit convenient evaluation of ROS/RNS under a variety of environmental 

conditions using premixed gases, including hypoxia and reperfusion, in H9C2 cardiomyoblasts 

without a substantial investment of resources compared with other commercial chambers. 
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4.1 Preface 

This chapter examines ROS/RNS generation from cardiomyoblasts during hypoxia compared to 

basal ROS production. The hypoxia-induced ROS generation depends on the amount of O2
-•
 

produced from various sources. Therefore, global O2
-•
 generation was assessed by DHE 

fluorescent probe and visualised in live cells under confocal microscopy. The selective oxidation 

of DHE probe and basal O2
-•
 level were determined in the presence of superoxide dismutase 

mimetic; MnTBAP. During chronic, severe hypoxia, the contribution of mitochondria, NADPH 

oxidase complex, xanthine oxidase and NOS isoforms as O2
-•
 producers were assessed in the 

presence of inhibitors and uncouplers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

4.2 Introduction 

4.2.1 The production of O2
-•
 during hypoxia 

O2
•- 

generation during hypoxia alone and hypoxia-reperfusion or ischaemia-reperfusion have 

been widely studied, however, associated mechanisms of toxicity or survival in cardiac cells 

have not been clearly established. The O2
-•
 is an important precursor signalling molecule which 

can dismutate to H2O2 in the presence of SOD or spontaneously at a slower rate at physiological 

pH or reacts with 
•
NO to produce ONOO

-
. Both ONOO

- 
and H2O2 are signal transduction 

molecules and play a vital role in the maintenance of vascular homeostasis and pathogenesis. 

According to Griendling et al. (2000), O2
-•
 and H2O2 are the most important signalling molecules 

in the cardiovascular system. However, the large scale accumulation of O2
-•
 during hypoxia can 

have deleterious effects, leading to irreversible cardiac damage. Hypoxia can enhance O2
•-
 

generation in muscle cells, especially cardiac myocytes (Vanden Hoek et al., 1997; Becker et al., 

1999). An increase in ROS generation from cardiomyocytes during ischaemia appears to be 

paradoxical as the molecular O2 needed to be reduced is in low abundance and this can reduce 

ATP production. It is evident that ischaemia alone can trigger cardiac cell injury without 

reperfusion as described in previous reports (Vanden Hoek et al., 1997), but can also afford 

benefit, if the ischaemic period is short, i.e. ischaemic preconditioning. Therefore, understanding 

the role of O2
•-
 production during severe hypoxia is vitally important and may have clinical 

implications for design of interventions that improve cell survival during and after ischaemia 

(Becker et al., 1999).   

 

The antioxidants 2-mercaptopropionyl glycine and 1.10-phenanthroline added to culture medium 

during the ischaemia in cardiomyocytes attenuated oxidant generation, increased cell viability, 

and improved return of contraction after ischaemia or reperfusion (Vanden Hoek et al., 1997). 

Abramov et al. (2007) described an increase in ROS generation under the condition of reversed 

electron flow with less available O2 that depends on mitochondrial membrane potential 

differences (∆Ψm). The electron flux through the ETS, coupled to proton pumps from the matrix 

normally maintains the mitochondrial membrane potentials (Murphy, 2009).  
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Therefore, an inhibition of electron transport system should decrease the proton pumps, resulting 

in depolarization of the mitochondrial inner membrane. During hypoxia, NADH in complex I 

becomes increasingly reduced, driving electrons to O2, and leading to loss of ∆Ψm (Levraut et al., 

2003). Mitochondrial uncouplers can decrease membrane potentials and reduce O2
•-
 production 

as a protective measure.  

To support this hypothesis, partial mitochondrial uncoupling with a low dose of FCCP (Carbonyl 

cyanide 4 - (trifluoromethoxy) phenylhydrazone) significantly improved post-ischaemic 

recovery of rat hearts via a ROS-dependent pathway (Brennan et al., 2006b; Brennan et al., 

2006a).  Within the hypoxic heart, mitochondria are likely to be the main source of ROS in 

muscle cells (Vassilopoulos and Papazafiri, 2005; Turrens, 1997; Suleiman et al., 2001). Other 

sources such as the NADPH oxidase complex in vascular cells (Souza et al., 2002) or xanthine 

oxidase in endothelial cells, pulmonary cells and neuronal cells can generate O2
•-
 (Pearlstein et 

al., 2002; Abramov et al., 2007; Becker et al., 1999; Becker, 2004a). Moreover, NOS isoforms 

also can produce O2
•-
 and H2O2 when L-arginine substrate is limited in supply (Pou et al., 1999).  

However, the relative contribution of aforementioned sources for O2
•-
 production during hypoxia 

alone in cardiomyocytes has not been clearly established.  

 

4.2.2 The production of RNS during hypoxia 

Nitric oxide (
•
NO) is a unique biological messenger molecule with various effects in cells and 

cellular organelles such as mitochondria, including maintenance of mitochondrial integrity and 

defence during hypoxia. It has been reported that formation of ONOO
-
 in the presence of 

•
NO 

and O2
-•
, can activate protein kinase C (PKC), down regulate KATP channels and induce release 

of cytochrome c from mitochondrial complex IV, thereby  inducing caspase-3 activation. During 

hypoxia, 
•
NO generation is dependent on the degree of activity of NOS isoforms present in 

cytosol and mitochondria. Three isoforms of NOS are present in most cell types; the constitutive 

endothelial (eNOS) and neuronal (nNOS) isoforms, and the inducible (iNOS) isoform (Beckman 

and Koppenol, 1996; Pou et al., 1999; Porasuphatana et al., 2003).  

 



126 

 

Zanella et al. (2002) reported the presence of the three isoforms of mtNOS ( eNOS, nNOS and 

iNOS) in mitochondria of H9C2 rat myoblasts. It has been reported that mitochondrial NOS are 

constitutively expressed and they can be functionally up-regulated when cells are exposed to 

hypoxia (Lacza et al., 2001; Lacza et al., 2006). During hypoxia, an increase in [Ca
2+

] in the 

cytoplasm or mitochondria can activate eNOS to produce 
•
NO (Lacaza et al., 2001). Therefore, 

the increase in 
•
NO production is likely to be associated with eNOS activation in both cytosol 

and mitochondria. During normoxia, a low level of NOS activity was suggested to be a 

constitutive feature in mitochondria (Lacza et al., 2001). However, the expression of NOS 

isoforms in mitochondria is still under debate (Lacza et al., 2006).  

 

The baseline 
•
NO production in cardiac microvascular endothelial cells is eNOS-dependent and 

endothelial cells produce more 
•
NO than ventricular cardiomyocytes during normoxic 

respiration, demonstrating that eNOS activity is different between cardiac microvascular 

endothelial cells and ventricular cardiomyocytes (Strijdom et al., 2006). In contrast, Strijdom et 

al. (2006) demonstrated iNOS induction occurs in ventricular cardiomyocytes to produce 
•
NO, 

but not in microvascular endothelial cells during hypoxia. Hypoxia pre-exposure increases iNOS 

mRNA expression in myocardial cells and protects against subsequent damage from a second 

prolonged hypoxia. Lacaza et al. (2006) have suggested that rat heart mitochondria produce RNS 

via the respiratory chain rather than through an arginine-dependent mtNOS. 

  

This supports earlier findings of Zweier et al. (1999) who reported the generation of 
•
NO from a 

non-enzymatic pathway. Overall, the impact of 
•
NO accumulation during hypoxia is not yet 

clearly established. Therefore, the effect of 
•
NO on cell viability after exposure to hypoxia has 

been investigated using specific and non-specific NOS inhibitors and other metabolic inhibitors 

alone and with the RNS-sensitive fluorescent probe, DAF-2-DA.  
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4.3 Results 

4.3.1 Chronic, severe hypoxia significantly increased O2
-•
 production in H9C2 

cardiomyoblasts. 

H9C2 cells were cultured in DMEM, 10% FBS under basal conditions and at 70-80% 

confluence, cells were washed briefly with PBS and loaded with O2 preequilibrated (2% O2, 10% 

O2 and 21% O2 in independent experiments), HEPES buffered, phenol red-free DMEM.  

To determine O2
-•
 generation during 30min and 4h under severe (2% O2 + 98% N2) and mild 

hypoxic (10%O2 + 90% N2) conditions, cells were treated with 20µM DHE and incubated in the 

hypoxic chamber as described in methods (Sections :  2.3.9.1).  

 

DHE oxidation was determined at different times (30min or 4h) and O2 tension (2%, 10% and 

21% O2) to characterise O2
-•
 production during hypoxia. As illustrated in figure 4.1A, there was 

no significant increase in O2
-•
 production during acute, severe or mild hypoxia compared to 

normoxia. However, the increase in DHE oxidation (123.47±5.84% of normoxia control, 

P<0.001, 4h) during chronic, severe hypoxia compared to normoxia (100±3.66%; 4h) or mild 

hypoxia suggests a significant increase in O2
-•
 production during chronic, severe hypoxia (see 

Table 4.1 for summary of results). 

 

To find out the specificity of DHE fluorescence for O2
-•
 detection during hypoxia, cells were 

treated with 50µM MnTBAP prior to adding 20µM DHE. As shown in figure 4.1B, MnTBAP 

significantly reduced DHE fluorescence in hypoxia and normoxia cultured cells. The 

fluorescence of DHE in cells treated with MnTBAP was not different between hypoxia and 

normoxia indicating the selective oxidation of DHE probe with O2
-•
 during hypoxia. MnTBAP 

treatment significantly reduced the DHE fluorescence in normoxic controls indicating a basal 

level of O2
-•
 production under normoxia. 
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Figure 4.1  O2
-• 

production during mild and severe hypoxia for 30min and 4h. Cells were 

cultured for 48h in culture medium and were loaded with O2 equilibrated HEPES buffered-

phenol red-free DMEM (2% or 10% or 21% O2) after 3 x PBS washes. Experimental cells were 

exposed to hypoxia after treating cells with 20µM DHE, 45min prior to completion of 4h 

hypoxia and adding probe at t=0 for 30min hypoxia studies (A). Controls were maintained at 

normoxia (21% O2). Negative control cells were treated with 50µM MnTBAP 45min prior to 

complete 4h hypoxia or normoxia (B). After replacing the culture medium, fluorescence was 

measured at 37°C in Spectramax GEMINI EM fluorescence reader at Excitation: 488nm, 

Emission: 570nm and cut off filter: 560nm. Data represent the mean±SEM fluorescence of three 

independent experiments conducted in triplicates. ** represent P < 0.001 and *** represent P 

<0.0001 (one-way ANOVA), Tukey’s post-hoc test. 
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4.3.1.2 Live cell imaging of O2
-•
 generation during acute and chronic, severe hypoxia 

In order to confirm that O2
-• 

production is intracellular, real-time imaging of cardiomyocytes was 

undertaken under varying degrees of hypoxia and time (Section: 2.3.10). As visualized in figure 

4.2B, confocal microscopy images show stronger signals of DHE fluorescence during chronic, 

severe hypoxia compared to chronic, mild hypoxia and normoxia (Figure 4.2D & 4.2F). The 

intensity of DHE fluorescence signals was weaker in confocal images obtained during acute, 

severe or mild hypoxia compared to normoxia (Figure 4.2A, 4.2C and 4.2E) and is consistent 

with quantitative fluorescent measurements (Figure 4.1A).  

 

4.3.1.3 Effects of respiratory chain inhibition, uncoupling and inhibition of NADPH 

oxidase complex during mild and severe hypoxia 

To identify whether mitochondrial O2
-• 

is generated during hypoxia, the effects of H9C2 

incubation with mitochondrial complex I inhibitor; rotenone and the respiratory chain uncoupler; 

FCCP during chronic, severe hypoxia were investigated. Cardiacmyoblasts are reported to 

generate O2
-• 

via NOX and to investigate any possible contribution of the NOX-dependent 

respiratory burst to O2
-• 

generation during chronic, severe hypoxia, the inhibitor apocynin was 

included. Then fluorescence was measured after adding 20µM DHE in the presence of inhibitors 

during hypoxia as previously explained in section 2.3.12.  

 

In the presence of FCCP, DHE oxidation was increased significantly during acute, severe 

hypoxia and acute, mild hypoxia compared to untreated cells (Figure 4.3A and 4.3B). However, 

in the presence of rotenone, DHE fluorescence was significantly increased during acute, severe 

hypoxia (30min; 2% O2), but not acute, mild hypoxia (Figure 4.3A and 4.3B). The presence of 

either rotenone or FCCP reduced DHE oxidation significantly (~10% decrease) due to chronic, 

severe hypoxia (Figure 4.3D), suggesting the involvement of mitochondrial complex I in O2
-• 

production during severe hypoxia. However, only rotenone, but not FCCP or apocynin was able 

to attenuate DHE fluorescence significantly during chronic, mild hypoxia (Figure 4.3E). 
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The mitochondrial uncoupler, FCCP, the inhibitor of the respiratory chain (rotenone) and apocynin 

had no effect on DHE oxidation under normoxic conditions after 4h of treatment (Figure 4.3F) 

(see Table 4.1 for summary of results). 

 

4.3.2 Chronic, mild and severe hypoxia significantly increased 
•
NO production 

H9C2 cells were cultured in DMEM, 10% FBS under basal conditions and at 70-80% 

confluence, cells were washed briefly with PBS and loaded with O2 preequilibrated (2% O2 and 

10% O2), HEPES buffered, phenol red-free DMEM. To determine 
•
NO generation during 30min 

and 4h under severe (2% O2 + 98% N2) and mild hypoxic (10% O2 + 90% N2) conditions, cells 

were treated with 10µM DAF-2-DA at t=0min and incubated for 30min for acute hypoxia 

(severe and mild) and 4h for chronic hypoxia (severe and mild) in the chamber (See section: 

2.3.91).  

 

The same procedure was applied to normoxic controls at 21% O2 + 79% N2. Before 

measurement of the fluorescence, the old culture medium was replaced with O2-preequilibrated 

DMEM at t=27min for acute hypoxic cultures and t=3h and 57min for chronic hypoxic cultures. 

Then, fluorescence was measured at t=30min (for acute hypoxia) and t=4h (for chronic hypoxia).  

 

As illustrated in figure 4.4, there was no significant increase in 
•
NO production during acute, 

mild or severe hypoxia compared to normoxia. However, the DAF fluorescence was 

significantly increased during chronic, mild, (132.12±25.64% vs. 100% control, P<0.0001) and 

severe hypoxia (183.75±27.33% vs. 100% control, P<0.0001), compared to normoxia (see Table 

4.1 for summary of results). 
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Figure 4.3  Effects of mitochondrial uncouplers and inhibitors of the respiratory chain and 

respiratory burst on O2
-• 

generation during chronic hypoxia in cardiomyoblasts. H9C2 cells 

(3 x 10
4
/well) were cultured to 80% confluence, were washed three times with PBS and loaded 

with oxygen equilibrated HEPES buffered-phenol red-free DMEM (2%, 10% or 2% O2). Cells 

were treated with and without 20µM rotenone, 100 µM apocynin, 1µM FCCP, 100µM L-

NAME, 20µM Oxypurinol or vehicle control at t= -2min. DHE (20µM) was added at t= 0min for 

acute hypoxia; 2% O2 (A),10% O2 (B) and 21% O2 (C), whereas for chronic, severe hypoxia; 2% 

O2 (A),10% O2 (B) and 21% O2 (C), DHE (20µM) was added at t=3h 15min. At 30min or 4h, 

fluorescence was measured at 37°C using a microplate reader determining fluorescence at 

Excitation: 488nm, Emission: 570nm, cut off filter: 560nm and data are expressed in arbitrary 

units. Data represent the mean ± SEM fluorescence of three independent experiments conducted 

in triplicates. * represents P < 0.05, *** for P<0.0001 (one-way ANOVA), Tukey’s post-hoc 

test.  
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Figure 4.4  
•
NO production during mild and severe hypoxia for acute (30min) and chronic 

(4h). Cells were cultured for 48h in culture medium and were loaded with O2 equilibrated 

HEPES buffered-phenol red-free DMEM (2% or 10% or 21% O2) after 3 x PBS washes. Then, 

experimental cells were exposed to hypoxia whereas controls were maintained at normoxia (21% 

O2). Cells were treated with 10µM DAF-2-DA, 45min prior to completion of 4h hypoxia and 

probe was added at t= 0 for 30min hypoxia studies. After replacing the culture medium, 

fluorescence was measured at 37°C in Spectramax GEMINI EM fluorescence reader at 

Excitation: 491nm, Emission: 513nm. Data represent the mean±SEM fluorescence of three 

independent experiments conducted in triplicates. *** represent hypoxia vs. controls represent P 

< 0.0001 (one-way ANOVA), Tukey’s post-hoc test. 
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Figure 4.5  Effects of mitochondrial uncouplers and inhibitors of the respiratory chain on 
•
NO generation during severe hypoxia in cardiomyoblasts. H9C2 cells (3 x 10

4
/well) were 

cultured to 80% confluence, were washed three times with PBS and loaded with O2 equilibrated 

HEPES buffered-phenol red-free DMEM. Cells were treated with or without 20µM rotenone, 

1µM FCCP, 100 µM L-NAME, or vehicle control at t= -2min for all time points and DAF-2-DA 

(10µM) was added at t=0 min for 30min hypoxia; 21% (A) 10% (B) or 2% O2 (C) whereas dye 

was added at t= 3h.15min for 4h hypoxia; 21% (D), 10% (E) or 2% (F) O2. At 30min and 4h, 

fluorescence was measured at 37°C using a microplate reader determining fluorescence at 

Excitation: 491nm, Emission: 513nm, cut off filter; 495nm and data are expressed in arbitrary 

units. Data represent the mean ± SEM fluorescence of three independent experiments conducted 

in triplicates. * represents P < 0.05 and ** represent P<0.001 (one-way ANOVA), Tukey’s post-

hoc test.  

 

Severe 

Mild 

Normoxia 
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4.3.2.1 The effect of respiratory uncoupler, L-NAME and inhibition of NADPH oxidase 

complex on 
•
NO production during mild or severe hypoxia 

To identify whether NOS-dependent 
•
NO generation occurs during hypoxia, the effect of H9C2 

incubation with the non-selective NOS inhibitor; L-NAME on DAF-2-DA oxidation, was 

examined during acute and chronic hypoxia (Section 2.3.12). Cardiac myoblasts are reported to 

generate O2
-•
 and 

•
NO, therefore may form ONOO

-
 after reaction with O2

-•
 and 

•
NO at 1: 1 ratio 

(Jiao et al., 2009). Therefore, the contribution of O2
-•
 production from NADPH oxidase to 

modulate DAF fluorescence was investigated during hypoxia, by inhibiting NADPH oxidase 

complex with 100µM apocynin. 

 

Similarly, the contribution of mitochondrial based O2
-•
 to form DAF fluorescence during hypoxia 

was assessed by uncoupling respiratory chain with 1µM FCCP. In the presence of L-NAME, 

FCCP or apocynin, DAF-2-DA oxidation was not changed significantly during acute, severe or 

mild hypoxia or normoxia compared to untreated cells (Figure 4.5A, 4.5B and 4.5C). However, 

in the presence of L-NAME, DAF-2-DA oxidation was significantly reduced during chronic, 

mild hypoxia (79.9±1.8%, P<0.0001) and chronic, severe hypoxia (81.8%±2.5%, P<0.0001) 

compared to untreated cells of control, but not with FCCP or apocynin treatment (Figure 4.5D, 

E and F) (see Table 4.1 for summary of results). 

 

4.3.2.2 Live cell imaging of 
•
NO generation during acute and chronic, severe hypoxia 

In order to confirm that DAF-2 oxidation is intracellular, real time imaging of cardiomyoblasts 

was undertaken under chronic, severe hypoxia and normoxia as described in section 2.3.10. As 

visualised in figure 4.6A, confocal microscopy images show stronger signals of DAF 

fluorescence during chronic, severe hypoxia compared to normoxia (Figure 4.6B). Moreover, 

single cell imaging with DAF showed a concentrated fluorescence at the centre of the cell as 

visualised in figure 4.6C.  
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(A)        (B) 

 

                           
 

 

(C) 

  
 

 

Figure 4.6 Live fluorescence images showing 
•
NO generation during chronic, severe 

hypoxia vs. normoxia. Cells were cultured in slide chambers for 48h in culture medium and 

then loaded with O2 equilibrated HEPES buffered-phenol red-free DMEM (2% or 21% O2) after 

3 x PBS washes. The experimental cells were exposed to chronic, severe hypoxia (2% O2) 

whereas controls were maintained at normoxia (21% O2). Cells were treated with 10µM DAF-2-

DA, 45min prior to completion of 4h hypoxia. After completing hypoxic incubations, sealed 

chambers were mounted on the platform of the confocal microscope and cell images were taken 

at the fluorescence excitation at 480-490nm and emission at 510-520nm. (A) Chronic, severe 

hypoxia at 2% O2, magnification 20x (B) normoxia at 21% O2, magnification 10x and (C) DAF 

fluorescence from a single cell (Colour palette - glow yellow for DAF fluorescence). 
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4.4 Discussion 

4.4.1 Superoxide generation during hypoxia 

In summary, the present study demonstrates that mitochondria are the main site of O2
-•
 

generation in hypoxic cardiomyocytes. Other potential sources of ROS generation sites such as 

NADPH oxidase, NOS isoforms and xanthine oxidase do not contribute to global O2
-•
 production 

during both acute and severe hypoxia. In the current cellular model, the respiratory chain can 

function optimal at 10% O2 compared to hyperoxic stress-induced cells at 21% O2. Severe 

hypoxic stress (2% O2) in cardiomyocytes causes O2
-•
 production (see Figure 4.7 and Table 

4.1).  

 

The physiology of cells exposed to low levels of O2 (1-3% O2 hypoxia) is different from that of 

cells exposed to 0% O2 (anoxia) and 21% O2 (normoxia) (Chandel et al., 2005). ROS are 

important signalling molecules for adaptive response in cardiomyocytes as previously 

documented (Duranteau et al., 1998). Increased levels of ROS production during hypoxia, but 

not anoxia stabilise the transcription factor, HIF-1α (Chandel et al., 1998; Chandel and 

Schumacker, 1999). To confirm the production of O2
-•
 in H9C2 cells during 2% O2 hypoxia in 

the present model system, this study describes the systematic, time and dose-dependent kinetics 

of O2
-•
 generation as DHE oxidation during hypoxia in rat cardiomyoblasts. The cell culture 

system established in this study mimics a physiological ischaemic period through pre-incubation 

of media (in the absence of FBS and L-glutamine) for 18h under reduced partial O2 pressure and 

results in 14.5 mmHg in media under 2% O2. 

 

This work confirms that hypoxia causes significant changes in O2
-•
 generation from 

mitochondria in cardiomyoblasts during severe, chronic hypoxia as measured by DHE oxidation. 

In the presence of the superoxide dismutate mimetic, MnTBAP O2
-• 

production was significantly 

decreased which suggests the selective oxidation of DHE by O2
-•
 (Figure 4.1B). However, it is 

not clear why endogenous SOD in cardiomyoblasts does not completely scavenge O2
-•
 to 

dismutate it to H2O2 during normoxia.  
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This may indicate either that; (1) endogenous SOD is removed from the site of ROS production 

but DHE is available; and/or (2) that cells can tolerate lower O2
-•
 production due to respiratory 

chain leakage without upregulation of SOD at the given level. Other investigators have 

suggested that an increase in O2
-•
 during hypoxia is associated with loss of membrane potentials 

(∆Ψm) in mitochondria and results in the further leak of electrons to reduce O2 (Abramov et al., 

2007; Millar et al., 2007). However, the data obtained in cardiomyocytes reported here suggests 

only limited generation of O2
-•
  during acute, severe hypoxia and agrees with previous authors, 

possibly reflecting the sudden drop of O2 supply at early time points (Vanden Hoek et al., 1997). 

This could be due to loss of ∆Ψm and accumulation of O2
-•
 in the mitochondrial compartments 

that makes DHE less oxidized during early time points (Hool et al., 2005) as further observed in 

confocal images (Figure 4.2A) of acute hypoxia. Moreover, during hypoxia, a decrease in O2 

availability may reduce the rate of electron flow through the system, resulting in a slower rate of 

O2
-•
 production, even than the normoxic cells.  

 

Waypa and Schumacker, (2005) observed a decrease in O2
-•
 generation during severe hypoxia in 

pulmonary vasoconstriction and suggested this was due to the availability of O2 substrate in the 

medium. However, in Waypa and Schumacker’s, system of in vivo pulmonary vasoconstriction, 

partial O2 pressure (pO2) is less than 60mmHg in arteries (Longmore et al., 2001) where the 

system tested here is much more hypoxic with pO2 at 14.5mmHg. Hool et al. (2005) reported a 

40% significant decrease in DHE fluorescence in ventricular cardiomyocytes during hypoxia at 

pO2 of 15mmHg compared to normoxia (100%, 30min). This is very similar, except Hool et al. 

(2005) used HEPES treated-hypoxic buffer system where the present system used HEPES 

treated-DMEM medium. Other sources of ROS generation such as NADPH oxidase, xanthine 

oxidase and NOS isoforms have been reported in the intact heart (Porasuphatana et al., 2003; 

Souza et al., 2002; Li and Jackson, 2002). Xanthine oxidase (XO) is active in neurones 

(Abramov et al., 2007) and endothelial cells during ischaemia or hypoxia respectively and 

produces ROS, but the importance of this enzyme in cardiomyocytes, is unclear, and some 

workers have reported absence of xanthine oxidase in chick cardiomyocytes (Becker et al., 

1999).  
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Preliminary studies with oxypurinol, an XO inhibitor did not reduce hypoxia induced DHE 

oxidation (data not shown) and this suggests that XO is unlikely to generate ROS. Generation of 

O2
-•
 from NADPH oxidase complex has been reported (Touyz, 2008; Ushio-Fukai et al., 2002). 

However, the present study with apocynin did not cause a significant reduction in DHE 

oxidation in cardiomyoblasts, implying a lack of NADPH oxidase-dependent O2
-•
 production 

during chronic, severe or mild hypoxia (Figures 4.5D, 4.5E and Table 4.1).  

Nevertheless, such sources may contribute to produce O2
-•
 during reperfusion period (Abramov 

et al., 2007; Dodd-O and Pearse, 2000; Becker et al., 1999; Elisabetta et al., 2008). Three distinct 

isoforms of NOS (eNOS, iNOS and nNOS) are reported in rat myoblasts (Zanella et al., 2002). 

The inhibition of NOS isoforms with L-NAME did not reduce DHE oxidation as a measure of 

O2
-•
 production, suggesting that NOS isoforms are not participating in O2

-•
 production during 

hypoxia. The effect of FCCP on the ETS is not clear; however, it is assumed that the 

hydrophobicity of FCCP may allow diffusion into the mitochondrial matrix where disassociation 

of protons into the matrix would dissipate the proton gradient and would result in the collapse of 

∆Ψm.  

 

Rotenone inhibits the NADH dehydrogenase enzyme present in mitochondrial complex I, 

resulting in a decrease in NADH reduction which leads to loss of membrane potential in the 

absence of electron flux through ETS. An increase in mitochondrial O2
-•
 generation during acute, 

severe hypoxia is associated with the collapse of mitochondrial membrane potentials in the 

presence of FCCP or blockage of NADH oxidation at complex I in the presence of rotenone. 

Though, the similar effects could occur in normoxia, those effects may have led to a change in 

the oxidation state (NADH: NAD
+
 ratio) during acute, severe hypoxia and resulted in increase of 

O2
-•
 production (Abramov et al., 2007; Millar et al., 2007; Tahara et al., 2009). Moreover, 

uncoupling of mitochondria during acute, severe hypoxia allows the reducing equivalents that 

have been accumulated through the compromised respiratory chain to be discharged via electron 

leakage. Collectively, this enables the dissipation of reducing equivalents more readily 

(Abramov et al., 2007) (Figure 4.7).  
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Increased DHE fluorescence in the presence of apocynin indicates the activation of NOX 

complex via an unknown mechanism as H9C2 cardiomyoblasts are non-phagocytic cells as 

reported (Vejrazka et al., 2005; Touyz, 2008). Chronic, severe hypoxia caused a significant 

increase in O2
-•
 confirming many other reports (Li and Jackson, 2002; Vanden Hoek et al., 1998; 

Abramov et al., 2007), but this was not observed in chronic, mild hypoxia.  

When the cells were exposed to severe hypoxia, electron flow may be reversed through the ETS 

whilst the membranes are being depolarised under limiting O2 supply facilitating electron loss 

through complex I. When the mitochondrion is at rest during normoxic respiration, ∆Ψm 

provides the driving force for ATP synthesis and is generated by electron flow through the ETS 

from NADH or FADH2 (Figure 4.7). The mitochondrial membrane potential depends on the 

protons being pumped into mitochondrial intermembrane space. This is dissipated by the protons 

flowing back to couple with the membrane bound ATP synthase (complex V) along with pH 

gradients between intermembrane space and matrix. Therefore, the membrane potential reflects 

the balance between the rate of electron transport and the rate of ATP synthesis by the 

mitochondrion. Therefore, a loss of membrane potential in chronic, severe hypoxia would 

reduced the oxidation of NADH in complex I and FADH2 in complex II and result accumulation 

of more reducing equivalents. To support this hypothesis, Abramov et al. (2007) explained the 

reverse flow of electrons through the mitochondrial ETS with the accumulation of reducing 

equivalents during ischaemia. Reverse flow of electron in mitochondrial electron transport 

system may indicate as an adaptive response to recover mitochondrial membrane potentials 

during severe hypoxia.  

 

However, during low O2 tension, reverse electron flow may have led to greater electron leak to 

produce O2
-•
 within the mitochondrial matrix, offering an explanation for the data in current 

study. Moreover, mitochondrial ROS generation depends on the ratio of NADH/NAD
+
. 

Therefore, accumulation of more reducing equivalents, especially, more NADH may result in an 

increase in the NADH/NAD
+
 ratio. In support of this hypothesis, other investigators reported the 

significant increase in NADH concentrations in cells under severe hypoxia may create a more 

reductive environment in the mitochondria (Schumacker et al., 1993; Murphy, 2009).  
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The increase in NADH concentration is suggested to be an enzymatic adaptation when cells are 

exposed to prolonged hypoxia for 1-2h (Chandel et al., 1995). Therefore, accumulation of 

reduced intermediates in the mitochondrial electron transport system (ETS) would potentially 

support the leaking of electrons for O2
-•
 generation. The major site of O2

-•
 generation during 

severe hypoxia is the mitochondrion according to the current study.  

Mitochondrial complex I inhibition (rotenone) significantly attenuated DHE oxidation, 

indicating mitochondrial electron transport significantly contributes to O2
-•
 production during 

chronic, severe hypoxia (Figure 4.7). An increase in O2
-•
 in the presence of complex I inhibitor 

during acute, severe hypoxia may reflect the rapid leak of electrons to produce O2
-•
, though there 

is no apparent increase in O2
-•
 production in control cells under acute, severe hypoxia. During 

chronic, severe hypoxia, loss of voltage potentials of cytochrome oxidase should increase the 

reduction state of mitochondrial electron carriers upstream of cytochrome oxidase including the 

ubisemiquinone site of complex III. Therefore, this may increase the lifetime of reduced electron 

carriers (i.e: ubisemiquinone) and thereby, would increase the generation of O2
-•
 via univalent 

electron transfer to O2 in the mitochondria (Chandel and Schumacker, 2000; Chandel et al., 

2000). The mitochondrial complex I inhibition is upstream to the ubisemiquinone site; 

suggesting that complex I is the chief site where the ETS is blocked during hypoxia, causing 

significant increase in O2
-•
 production. This is consistent with previous authors who carried out 

studies with site-specific inhibitors (Duranteau et al., 1998; Chandel et al., 1998; Chandel et al., 

2000).   

 

It is difficult to understand how mitochondria can alter its redox state due to changes in 

extracellular O2 tensions. ―Peri-mitochondrial‖ pO2 can be much lower than the extracellular O2 

tension due to the difference in O2 concentration gradient between the plasma membrane and 

mitochondrial membrane (Chandel et al., 2000). The H9C2 cultured cells used in this 

investigation have been maintained and adapted to 21% O2 during routine culture over many 

passages (cells were used between 14-18 passages for this study) and are therefore expected to 

have adapted to living under high O2 tension.  
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This may have some impact on the levels of antioxidant enzymes (i.e.; Mn-SOD and GSH) 

present and therefore the cells ability to withstand ROS. Cells studied under 10% O2 do not 

exhibit any significant change in O2
-•
 production compared to 21% O2 (Figures 4.2B, 4.2E and 

4.1A), suggesting the optimal level of respiration at 10% O2. 

 

The presence of MnTBAP significantly decreased DHE oxidation as a measure of O2
-•
 

production during normoxia. Interestingly, MnTBAP treatment did not take DHE fluorescence to 

zero, suggesting autofluorescence was elicited under the conditions employed at 2% and 21%O2. 

Co-incubation of cells with FCCP during acute, mild hypoxia (10%; 30min) did increase the 

steady state level of O2
-•
 as seen with cells exposed to acute, severe hypoxia. This may reflect the 

fact that the respiratory chain is optimal at 10% O2 and disruption of a highly efficient metabolic 

process has catastrophic effects on the cells by increasing O2
-•
. Since the completion of these 

studies, highly selective and mitochondrial specific probes are available for detecting O2
-•
 in the 

cells or solution based systems and could have an advantage for future studies to provide real 

time measurements in mitochondrial-specific O2
-•
 generation. The characterisation of 

mitochondrial O2
-•
 production using fluorescence microscopy has clear advantages over cell-

based system with inhibitors such as they are less time consuming with exquisite precision and 

minimal impact on cell viability and function (Mukhopadhyay et al., 2007). 

 

4.4.2 
•
NO generation during hypoxia 

In summary, the significant increase in DAF fluorescence during chronic normoxia indicates 

•
NO production partly dependent on NOS, but also probably from non-enzymatic sources 

(Figure 4.7).  

It has been widely accepted that hypoxia can trigger 
•
NO generation intracellularly in various 

cell lines and in vivo models. 
•
NO has been implicated as a signalling molecule which may 

modulate cardiomyocyte death during ischaemia/reperfusion with the dysfunction of 

mitochondrial respiration (Beckman and Koppenol, 1996; Brown, 1999; Borutaite and Brown, 

2005).  
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Moreover, 
•
NO has been associated with the protection against ischaemic cell death (Rakhit et 

al., 2000). Therefore, the majority of reports suggest that 
•
NO may play a role between cell death 

and survival, that may be dependent on level of 
•
NO production and duration of exposure. 

 

The present study outlines how the duration and severity of hypoxia contributes to generation of 

•
NO. Many authors have reported an increase in 

•
NO production during hypoxia or ischaemia for 

30min and 3h in various cell lines, including cardiac myocytes (Zweier et al., 1995; Strijdom et 

al., 2006). The present data did not indicate the significant production of 
•
NO during acute, mild 

or severe hypoxia. Intracellular 
•
NO is produced by NOS isoforms through oxidation of L-

arginine to L-citrulline in the presence of available O2 and by non-enzymatic sources (Zweier et 

al., 1999). Two moles of O2 and 1.5mol of NADPH are required to produce one mole of 
•
NO 

(Lepore, 2000; Von Bohlen und Halbach, 2003). Both, chronic, mild and severe hypoxia 

significantly increased 
•
NO production as shown by an increase in DAF fluorescence. However, 

in the presence of L-NAME, the decrease in DAF fluorescence (~20%) during chronic, mild and 

severe hypoxia suggests that 
•
NO generation is at least partly NOS-dependent via the L-arginine 

pathway.  

 

Supporting this evidence, Strijdom et al. (2006) showed a significant decrease in 
•
NO production 

during hypoxia for 3h, when cardiac microvessel endothelial cells and ventricular 

cardiomyocytes rat were pre-treated with L-NAME.  In contrast, there are reports that suggest 

the generation of 
•
NO from non-enzymatic sources such as nitrites in rat hearts during ischaemia 

(Zweier et al., 1999) using EPR spectroscopy, to measure 
•
NO generation from rat hearts 

perfused with ischaemic bicarbonate buffer solution. Therefore, it is presumed that non-

enzymatic sources such as cellular nitrite stores or ETS are available or activated during hypoxia 

to generate 
•
NO/RNS and their contribution is greater than NOS-dependent 

•
NO generation. In 

support of this hypothesis, arbitrary value ~300 for 
•
NO during normoxia (4h) indicates the 

oxidation of DAF with 
•
NO generated from cellular nitrite stores under unstimulated conditions. 
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Lacza et al. (2001) and Zenebe et al. (2007) reported an increased activity of mtNOS to produce 

•
NO during hypoxia or hypoxia/reperfusion. Lacza, et al. (2001) demonstrated increased 

expression of eNOS in rats exposed to chronic hypoxia, whereas Zenebe et al. (2007) reported 

increased mtNOS activity to generate 
•
NO when cardiomyocytes were exposed to anoxia; 100% 

N2. It is evident in the present study that; the 
•
NO production during chronic, severe or mild 

hypoxia is partly NOS-dependent. However, it is difficult to explain the involvement of mt-NOS 

to produce 
•
NO in the current hypoxic model. Failure of apocynin treatment to curtail DAF 

fluorescence during chronic, severe hypoxia indicates that intracellular ONOO
-
 production is 

independent of NOX-dependent superoxide production.  

 

The uncoupling of mitochondrial ETS and mitochondrial depolarization with FCCP did not have 

any effect on 
•
NO generation during acute or chronic mild hypoxia, suggesting that 

•
NO 

generation is independent from the mitochondrial uncoupling and depolarization. DAF-2-DA 

was developed as a 
•
NO-detection probe (Kojima et al., 1998; Nakatsubo et al., 1998), and its 

specificity for 
•
NO has since been confirmed in a variety of cell types (Leikert et al., 2001; 

Lebuffe et al., 2003; Tiscornia et al., 2009) by validating results with other widely used 

indicators of 
•
NO production (Failli et al., 2001; Havenga et al., 2001).  

 

However, there are other reports, which describe selectivity of DAF-2-DA for ONOO
-
 

(Jourd'heuil, 2002; Peyrot and Ducrocq, 2007). Therefore, it is hard to exclude the possibility 

that ONOO
–
 contributed to changes in DAF-2-DA fluorescence in the present study, although 

the relative contribution of ONOO
-
 cannot be determined under current experimental conditions. 

There are a number of unresolved questions regarding the performance of these probes in 

biological systems that affect their utility in culture systems and targets of 
•
NO at intracellular 

level. The present study aimed to adapt and optimize the use of DAF-2-DA to detect and 

quantify 
•
NO production in hypoxia and reperfusion systems in which H9C2 cardiomyoblasts are 

grown in HEPES-treated culture medium.  
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(A) 

Condition Acute, severe hypoxia  

(2% O2, 30min) 

Acute, mild hypoxia 

(10% O2, 30min) 

Acute normoxia 

(21% O2, 30min) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

O2
-· Χ ↑ ↑ ↑ Χ Χ Χ ↑ Χ Χ Χ Χ Χ Χ Χ 

•NO Χ - Χ Χ Χ Χ - Χ Χ Χ Χ - Χ Χ Χ 

 

(B) 

Condition Chronic, severe hypoxia  

(2% O2, 4h) 

Chronic, mild hypoxia  

(10% O2 ,4h) 

Chronic normoxia  

(21% O2, 4h) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

       O2
-· ↑* ↓ ↓ Χ Χ Χ* Χ Χ Χ Χ Χ Χ Χ Χ Χ 

•NO ↑* Χ Χ Χ ↓ ↑* Χ Χ Χ ↓ Χ Χ Χ Χ Χ 

 

 

Table 4.1  Summary of results in acute (A) and chronic (B) hypoxia. 

Key:  Ctl - control, ROT-rotenone, FCP- FCCP, APO- apocynin and LNM- L-NAME. 

          ↑*  - Significant increase in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↓*  - Significant decrease in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↑    - Significant increase in treated cells vs. control cells at same O2 tension. 

          ↓    - Significant decrease in treated cells vs. control cells at same O2 tension. 

         Χ    - In treated cells, no significant difference vs. control cells at same O2 tension or if in  

                  control cells (2% O2 or 10% O2), no significant difference vs. normoxic cells or in  

                  normoxic cell shows the basal effect. 

          -      Not available. 
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Figure 4.7  Schematic diagram to represent effect of rotenone and FCCP on O2
-•      

production   during chronic, severe hypoxia.    - increase  or     - decrease. 
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CHAPTER 5 

HYPOXIA-INDUCED CELL DEATH 
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5.1 Preface 

The overproduction of O2
-•
 during hypoxia may contribute to cell death via necrosis or apoptosis. 

This chapter examines hypoxia-induced cell death during acute and chronic, mild and severe 

hypoxia compared to normoxic cell viability with respect to mitochondrial metabolic activity, 

necrosis and apoptosis. Quantitative necrotic cell death was assessed as PI uptake by damaged 

cells and nuclear morphology of necrotic or late apoptotic cells was further characterised by 

fluorescence microscopy. Apoptosis is initiated by proteolytic cleavage of procaspase-3 during 

hypoxia.  The quantitative measurement of procaspase-3 cleavage (the large fragment of cleaved 

caspase-3) was normalised to loading control; α-tubulin and assessed as the ratio between 

cleaved caspase-3 and procaspase-3. Mitochondrial metabolic activity during hypoxia was 

assessed as mitochondrial SDH activity. The contribution of ROS/RNS from mitochondria, 

NADPH oxidase and NOS isoforms, and Ca
2+

 flux to cell death via necrosis or apoptosis and the 

role of NF-κB activation in these processes were investigated.  The kinetics of hypoxia-induced 

protein carbonylation and ATP depletion and their association with cell death were analysed.   
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 5.2 Introduction 

5.2.1 Hypoxia-induced cell death 

ROS and RNS generation and associated oxidative/nitrosative stress leads to irreversible cell 

damage during hypoxia (Murphy, 2009; Brown and Borutaite, 2007). It has been reported that 

exposure of hypoxic cells to reoxygenation may result in exacerbated cell death compared to that 

seen with than hypoxia alone in many cells (Abramov et al., 2007; Kawahara et al., 2006; Chen 

et al., 1998). The amount of irreversible or reversible cell damage induced by hypoxia may 

depend on the severity, type of tissue and duration of hypoxia. There are at least two major 

forms of cell death, apoptosis and necrosis that are linked to over production of ROS during 

hypoxia (Crompton, 1999). Cellular necrosis is associated with prolonged anoxia or severe 

hypoxia; however, this is dependent on the type of cells in the myocardium, their cellular 

metabolic rate and the intrinsic adaptive mechanism of the tissues (Adrain and Martin, 2001; 

Bialik et al., 1999; Bromme and Holtz, 1996; Crow et al., 2004). 

 

Previous investigators have reported the appearance of apoptosis as caspase-3 activation at 

30min and DNA fragmentation at 60min in the ischaemic myocardium after a coronary 

occlusion without reperfusion in rat heart (Borutaite and Brown, 2003). Levrand et al. (2006) 

reported an increase in apoptosis and necrosis in ventricular cardiomyocytes due to increased 

production of ONOO
-
 during 2h reperfusion after 2h coronary occlusion. Cellular necrosis 

inevitably follows prolonged anoxia/ischaemia or chronic, severe hypoxia in which O2 supply is 

decreased relative to metabolic demand for ATP production in many tissues including 

cardiomyocytes (McCord, 1985). Cells undergo necrosis instead of apoptosis in the absence of 

ATP that is required for the activation of proapototic factors (Zhao., 2004; Eguchi et al., 1997; 

Tatsumi et al., 2003; Lieberthal et al., 1998). Several studies have shown that mitochondria play 

an important role in apoptosis during hypoxia (Chen et al., 2002; Bonavita et al., 2003). 

However, the interplay between mitochondrial reactive species; 
•
NO, ROS, ONOO

-
, and 

apoptosis during hypoxia is not well understood.  
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Overproduction of ROS and increased [Ca
2+

] is known to trigger cell death cascades in 

cardiomyocytes (Hajnóczky et al., 2006; Yamawaki et al., 2004; Chen et al., 2002).  Moreover, 

both intracellular Ca
2+

 overload and ROS play a role in modulation of contractility of 

cardiomyocytes through phosphorylation of PKC, which may then involve in ischaemic 

contractile dysfunction (Wang et al., 2001; Liao et al., 2002). An increase in mitochondrial Ca
2+

 

overload, depletion of ATP in cardiomyocytes and activation of glutamate receptors in neurons 

trigger cell injury during ischaemia and ischaemia/reperfusion (Crow et al., 2004; Tsujimoto and 

Shimizu, 2007; Eguchi et al., 1997; Crompton, 1999; Abramov et al., 2007).  

 

It has been reported that over-production of ROS during hypoxia or ischaemia/reperfusion leads 

to depolarisation and loss of mitochondrial membrane potentials (Crompton, 1999; Levraut et 

al., 2003; Banki et al., 1999; Yamawaki et al., 2004).  Also an increase in intracellular [Ca
2+

] has 

been reported in cardiomyocytes during hypoxia (Crompton, 1999; Levraut et al., 2003; Li and 

Jackson, 2002). It has been reported that an imbalance exists between Ca
2+

 influx by passive 

diffusion and Ca
2+

 efflux to the cytosol from the mitochondria through the mitochondrial 

permeability transition pores (MPTP), which results in an increase in [Ca
2+

] in the cytoplasm. 

Ca
2+

 concentration becomes high in the mitochondrial matrix. Eventually, opening of the MPTP 

causes mitochondrial swelling due to water influx as a result of the imbalance between solute 

concentrations in the mitochondrial matrix and the cytosol (Gottleb, 2003; Crompton, 1999). 

Consequently, this swelling in turn causes the rupture of mitochondrial membranes and release 

of pro-apoptotic factors such as cytochrome c and apoptosis-inducing factor (AIF) (Crompton, 

1999).  

Activation of procaspase-3 is necessary to induce the apoptotic cascade. The inactive form of 

caspase-3 is known as procaspase-3 (35kDa) and consists of larger fragment (17-24kDa) and 

smaller (10-12kDa) fragment. The cleavage of caspase-3 requires the aspartic acid at position 

175 (Nicholson et al., 1995). Then, cleaved caspase-3 cleaves the inhibitor of caspase-3-

activated DNase (ICAD) into 24-and 12-kDa fragments, releasing CAD. Subsequently, CAD 

translocates to the nucleus and cleaves genomic DNA which is an essential evidence of apoptosis 

(Crow et al., 2004; Enari et al., 1998; Sakahira et al., 1998; Sabol et al., 1998).  
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Mechanisms involved in triggering apoptosis or necrosis during hypoxia are not known in detail, 

but it is generally believed that the release and/or activation of various bioactive substances such 

as reactive oxygen species are important. Levraut et al. (2003) showed that the use of 

antioxidants throughout ischaemia seemed to be more protective against reperfusion injury than 

if applied only at reperfusion. Pharmacological agents used to inhibit mitochondrial complexes I 

and II reversibly are cardiac protective (Solaini et al., 2005). Some researchers have suggested 

that use of uncouplers such as FCCP, dinitrophenol (DNP) (Elz and Nayler, 1988; Brennan et al., 

2006a) and 3-NP (Turan et al., 2006) to inhibit complex II are cardioprotective. However, the 

use of antioxidants, metabolic inhibitors or mitochondrial inhibitors/ uncouplers to protect cells 

against hypoxia has not been studied thoroughly. Therefore, re-investigation of those inhibitory 

effects or uncoupler effects are important to understand the mechanism and the nature of cell 

damage during hypoxia.  

 

5.3 Results 

5.3.1 The effect of oxygen tension on metabolic activity and viability of cardiomyoblasts 

Following mild or severe hypoxia, MTT activity was determined relative to cells maintained 

under normoxia as described in sections 2.3.6.1.1. As illustrated in figure 5.1A and 5.1B, the 

exposure of cells to acute (30min) or chronic (4h), mild hypoxic conditions did not result in a 

changed metabolic activity of cells when compared to cells grown under normoxic conditions for 

the same time periods. However, cells grown in severe hypoxia showed a significant loss of 

metabolic activity after both acute (83±0.2%; 30min) and chronic exposures (65±1%; 4h) 

(Figure 5.1A and 5.1B). PI uptake was significant during acute, severe hypoxia (127.2±6.7% vs 

100.0±5.2%, P<0.05) and chronic, severe hypoxia (136.6±16% vs 100.00±13.6%, P<0.05) 

compared to normoxia, but not in acute or chronic, mild hypoxia (Figure 5.1C and 5.1D). A 

time-dependent reduction of cell metabolic activity was observed; 83.2±0.2% of control 

(100±4.2%) after 30min severe hypoxia (P<0.001) and 74.3±3% of control (100±1%) after 1h 

(P<0.001) with metabolic activity further reduced to 34±4% of control (100±3.7%) cells after 

24h hypoxia (P<0.0001) (Figure 5.2) (see Table 5.1 for summary of results). 
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Figure 5.1 Hypoxia reduces the metabolic activity and increases necrotic cell death of 

cardiomyoblasts. At the start of each experiment, the growth media of cells (80% confluent) 

was changed to HEPES buffered, phenol red-free DMEM (pre-equilibrated under 2% or 10% or 

21% O2 for 24h). Cells were immediately transferred to incubators pre-equilibrated to the same 

O2 tension. MTT was added 30mins (A: 30min, acute hypoxia) or 2h (B: 4h, chronic hypoxia) 

prior to the end of each experiment and then cells were lysed at the end of each experiment prior 

to analysis at 570nm. To assess necrotic cell death (C: 30min acute hypoxia and D: 4h, chronic 

hypoxia), following hypoxia the culture medium was removed and any detached cells were 

recovered by centrifugation. Attached and detached cells were suspended for 10µg/ml PI for 

20min at 4ºC and after 3xPBS washes, cells were resuspended in 10µg/ml Hoechst 33342 for a 

further 20min at 4ºC. Finally, cells were washed in 3 x PBS and resuspended in PBS. The dual-

fluorescence was measured at excitation 535nm/emission 617nm for PI and at excitation 

346nm/emission and 460nm for Hoechst 33342. * represents P < 0.05 and *** P<0.001 versus 

21% O2 control (one-way ANOVA), Tukey’s post-hoc test.  
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Figure 5.2 Hypoxia induced a time-dependent decrease in metabolic activity. H9C2 cells 

were seeded at 3x10
4
/well in 24-well plate and cultured until 80% confluence in DMEM, 10% 

FBS at 37°C in 5% CO2 humidified atmosphere. At 70-80% confluence, cells were washed three 

times with PBS solution and 2% O2 equilibrated, HEPES-buffered, phenol red-free DMEM was 

added and cells were exposed for hypoxia in a chamber at 2% O2 for 30min, 1h, 4h and 24h. 

MTT was added to cells at t=0min for 30min, t=0 for 1h, t=2h for 4h and t=22h for 24 hypoxia. 

After completing hypoxic incubation, cells were lysed and re-incubated for further 16h at 37° C 

in 5% CO2 humidified atmospheric conditions. An optical density was measured at 570nm. Data 

represents the mean±S.E.M of three independent experiments conducted in triplicates. *** 

represents P < 0.001 and ** represent P<0.001 (one-way ANOVA) Tukey’s post-hoc test. 

 

To further investigate whether the effect of hypoxia on MTT reduction was attributable to 

necrotic cell death or apoptosis, further analysis was undertaken using dual staining with 

Hoechst/PI. The assessment of cell death was undertaken as quantitative relative fluorescence 

measured by fluorescence spectrophotometer as described in methods (section 2.3.14). 

Microscopic analysis of apoptotic cell death was performed under Zeiss fluorescence 

microscopy as described in the methods (section 2.3.13.1).   
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(A)                       Acute hypoxia 

     

                              2% O2 - Hoechst                               2% O2 - PI 

(B) 

     

                              10% O2 - Hoechst        10% O2 - PI 

(C) 

      

         21% O2 - Hoechst                   21% O2 - PI 
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(D)                      Chronic hypoxia                                                                                                   

             

                           2% O2 - Hoechst                                  2% O2 - PI  

(E) 

            

                          10% O2 - Hoechst                                  10% O2- PI   

(F) 

            

                             21% O2 - Hoechst                                  21% O2 – PI 
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Figure 5.3  Hypoxia-induced necrotic cell death as visualized by propidium iodide and 

Hoechst 33342 stains. Cells were grown on cover slips in 24-well culture plates in DMEM for 

30min (A, B and C) and 4h (D, E and F) at 21% O2, 10% O2 and 2% O2. Immediately after 

hypoxia, cells were washed 3x with PBS and stained with PI (10µg/ml) and Hoechst 33342 

(10µg/ml) on ice for 10min in the dark. Cells were washed a further 3 x in PBS and necrosis 

visualised as PI positive staining nuclei relative to total nuclei (Hoechst stained) under a Zeiss 

fluorescence microscope at the following emissions; 460nm for Hoechst 33342 and 570-590nm 

for PI following excitation with a 405nm UV lamp.  

 

 

Necrotic cell death was increased significantly after 30min severe hypoxia and was further 

increased after 4h severe hypoxia compared to control cells incubated under normoxia for the 

same duration (Figure 5.1C and 5.1D). There was no significant increase in cell death under 

mild hypoxic conditions compared to normoxia at either time point studied. No significant 

effects on viability measured as PI uptake were observed in cells under normoxia after 30mins 

and after 4h (Figures 5.3C and 5.3F). Figures 5.3A and 5.1C illustrate the increased uptake of 

PI by cells maintained under 2% O2 for 30mins or 4h (Figures 5.3D and 5.1D) compared to 

cells maintained under 21% O2 for the same times. In addition, fewer cells remained attached to 

the microscope cover slip at lower O2 tension. Qualitative increases in PI uptake by cells 

occurred under severe hypoxia, visualised in figure 5.3, are confirmed by quantitative 

microplate fluorimetry in figures 5.1(see Table 5.1 for summary of results).   

 

5.3.2 Chronic, severe and mild hypoxia induce apoptosis  

It has been reported that hypoxia can elicit apoptosis in primary cardiomyocytes (Todor et al., 

2002). The proteolytic cleavage of caspases from precursor procaspase-3 is an early, sensitive 

indicator of caspase activation (Niquet et al., 2003; Levrand et al., 2006). In non-apoptotic 

cardiomyoblasts, procaspase-3 is detected as a single band (32kDa); during apoptosis caspase-3 

is cleaved into large (17-24 kDa) and small (10-12kDa) fragments (Todor et al., 2002).  
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Figure 5.4  Chronic, severe and mild hypoxia induce cleavage of procaspases-3. Whole cell 

lysates from cells exposed to hypoxia (30min and 4h) or normoxia-treated controls were 

resolved using 15% Tricine-SDS-PAGE and transferred to PVDF membranes. Lysate from cells 

exposed to 200µM H2O2 for 8h was employed as a positive control. Western blot analysis was 

performed using; anti-cleaved caspase-3 and anti-procaspase-3 (A). Immunoreactive bands were 

revealed by enhanced chemiluminescence. Densitometric analysis was performed as the ratio of 

cleaved caspase-3 to procaspase-3 (B). Integral data are expressed as mean±SE of three 

independent experiments. ** and * (control vs treatment) represent p<0.001 and p<0.05 

respectively (one way ANOVA), Tukey’s post-hoc test. 
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Following treatment (2% O2 severe hypoxia and 10% O2 mild hypoxia for 30min and 4h or 

normoxia) total cell lysates (20µg) were resolved by SDS-PAGE and transferred to PVDF 

membranes for immunoblotting against procaspase 3 and cleaved caspase 3. The larger cleaved 

fragment (18kDa) of procaspase-3 was detected in cardiomyoblasts exposed to chronic, severe or 

mild hypoxia. However, no cleavage band was detected in cells exposed to acute, hypoxia or 

normoxia at any time of the investigation (Figure 5.4). Lysates from H9C2 cells exposed to 

200µM of H2O2 (8h) were employed as a positive control as previously described (Park et al., 

2003). Chronic, severe hypoxia induced activation of caspase-3 as indicated by the increased 

ratio of cleaved caspase-3 to procaspase-3 (P<0.01; Figure 5.4B). Similarly, chronic, mild 

hypoxia induced procaspase-3 cleavage as illustrated by the increase in cleaved caspase-3 to 

procaspase-3 (P<0.01, Figure 5.4B) (see Table 5.1 for summary of results). 

 

 

5.3.4 The effect of metabolic inhibitors on viability and metabolic activity during mild and 

severe hypoxia 

To identify the contribution of different metabolic sources of O2
-•
 production to the toxicity of 

hypoxia, the effects of incubation with mitochondrial complex I inhibitor; rotenone (20µM), the 

respiratory chain uncoupler; 1µM FCCP, NADPH oxidase complex inhibitor; 50µM apocynin 

and the non-selective NOS inhibitor; 100µM L-NAME were examined during hypoxia (see 

section 2.3.12).  

Control cells received an equal volume of vehicle and were exposed to hypoxia or normoxia for 

30min and 4h. The mitochondrial uncoupler; FCCP, and the inhibitors of the respiratory chain 

(rotenone) and respiratory burst (apocynin) had no effects on metabolic activity (MTT reduction) 

or cell viability (PI/Hoechst assay) under normoxic conditions after either 30min (Figures 5.5C 

and 5.6C) or 4h (Figure 5.5F and 5.6F) of treatment. The presence of FCCP enhanced 

metabolic activity of cells in mild and severe hypoxia at 30mins (Figures 5.5B and 5.5A) 

compared to control cells maintained under normoxia (Figure 5.5C).  
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Similarly, non-selective inhibition of NOS isoforms with L-NAME showed a significantly 

increased metabolic activity compared to normoxia in cells incubated under 2% O2 for 4h 

(Figure 5.5D), although it did not have an effect on O2
-•
 production as determined by 

quantitative oxidation of DHE (Figure 4.3D). Other inhibitors did not show any significant 

effects on MTT reductive capacity at 30mins. During chronic hypoxia, the presence of the 

mitochondrial uncoupling agent, FCCP or the NOX inhibitor apocynin significantly reduced 

metabolic activity in H9C2 cells during mild, but not severe hypoxia (Figure 5.5E & 5.5D).  

 

In contrast, the presence of rotenone during chronic, severe hypoxia was associated with an 

increase in metabolic activity compared to untreated hypoxic control cells (Figure 5.5D), which 

was not significantly different from the MTT reductive activity of cells growing under normoxic 

conditions for 4h (Figure 5.5F). The inhibition of NADPH oxidase complex with apocynin and 

the uncoupling of the mitochondrial electron transport chain with FCCP failed to protect against 

severe hypoxia-induced loss of metabolic activity during chronic hypoxia (Figures 5.5D).  

 

To further investigate whether the effects of metabolic inhibitors during hypoxia on MTT 

reduction were attributable to perturbation of the respiratory chain or cell death, further analysis 

was undertaken using dual staining with Hoechst/PI. In the presence of metabolic inhibitors; 

mitochondrial complex I inhibitor; rotenone (20µM), the uncoupler 1µM FCCP, NADPH 

oxidase complex inhibitor; 50mM apocynin and non-selective NOS inhibitor; 100µM L-NAME 

an assessment of cell death was undertaken as quantitative relative fluorescence and by 

fluorescence microscopic analysis as previously described in sections 2.3.12, 2.3.13 and 

2.3.13.1.  
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Figure 5.5 Hypoxia-induced changes to cardiomyoblast metabolic activity are mitigated by 

modulators of mitochondrial metabolism. H9C2 cells were loaded with O2 equilibrated 

HEPES buffered-phenol red-free DMEM at 21% (C & F), 10% (B & E) or 2% (A & D) O2 with 

and without 20µM rotenone, 100 µM apocynin, 1µM FCCP or vehicle control at t=-2min. MTT 

was added at t=0min (for acute hypoxia) or 2h prior to completion of 4h hypoxia. MTT 

reduction was determined at 570nm in a microplate reader. Cell viability was analysed with 

respect to control cells maintained at the same O2 tension for the same time period. * represent P 

< 0.05, ** for P<0.01 (one-way ANOVA), Tukey’s post-hoc test. 
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Figure 5.6 Quantitative effects of mitochondrial uncoupling and metabolic inhibition on 

hypoxia-induced necrotic cell death, determined by propidium iodide (PI) and Hoechst 

33342 fluorescence. Cells were grown to 90% confluence on coverslips, washed with PBS and 

exposed to 2% O2, 10% O2 and 21% O2 for 30mins (A-C) and 4h (D-F) in the presence of 

ROS/RNS inhibitors. Following hypoxia, cells were harvested into 10µg/ml PI for 20min at 4ºC 

and after 3xPBS washing, were resuspended in 10µg/ml Hoechst 33342 for further 20min at 4ºC. 

Finally, cells were washed in PBS and dual-fluorescence was measured by excitation at 

535nm/emission at 617nm for PI and excitation at 346nm/emission at 460nm for Hoechst 33342. 

Data is expressed as a relative fluorescence ratio. * represent P < 0.05 (one-way ANOVA), 

Tukey’s post-hoc test. 
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In the presence of the complex I respiratory chain inhibitor rotenone, PI uptake was reduced 

significantly during acute, severe hypoxia (30min, 2% O2) (Figures 5.6A) and chronic, severe 

hypoxia (4h, 2% O2) (Figure 5.6D and 5.8A) by 16% and 26% respectively (p<0.05) compared 

to hypoxia treatment alone (Figure 5.3D). This effect was associated with normalised MTT 

reductive capacity (Figure 5.5D) and less DHE oxidation (Figure 4.3D) under severe, chronic 

hypoxia in the presence of rotenone. The NADPH oxidase inhibitor apocynin, prevented severe 

hypoxia-induced PI uptake by 25% after 4h (p<0.05) (Figure 5.6D and Figure 5.8B). This 

associated with a small reduction in DHE oxidation (Figure 4.3D) but no effect on MTT 

reductive activity (Figure 5.5D).  

 

Co-incubation of H9C2 cells with the mitochondrial uncoupler FCCP, had a profound effect on 

PI uptake in acute, mild hypoxia conditions, but not chronic hypoxia as visualised by 

fluorescence microscopy and by independent analysis using spectrofluorimetry (Figure 5.6B).  

FCCP increased cell death by 18% (p<0.05) over 30min at 10% O2 but this effect was no longer 

evident after 4h (Figure 5.6E). Fewer cells were analysed after FCCP treatment for 4h under 

mild hypoxia compared to 30min mild hypoxia, possibly reflecting lysis of dead cells and 

analysis of resistant cells only. The effects of acute, mild hypoxia on PI uptake paralleled 

previous observations on MTT reductive capacity (Figure 5.5B vs 5.6C) of H9C2 cells, which 

increased significantly in the presence of FCCP under acute, mild hypoxia and acute, severe 

hypoxia. Severe hypoxia induced cell death was not prevented by the presence of FCCP after 

30mins as observed in 4h hypoxia (Figures 5.6D and 5.8C) (see Table 5.1 for summary of 

results). 

 

5.3.5 Chronic, severe hypoxia causes ATP depletion 

It has been reported that depletion of ATP during hypoxia can contribute to cell death via 

necrosis or/and apoptosis (Lieberthal et al., 1998).  
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To test whether loss of ATP associated with cell death under the time and severity of hypoxia 

studies, ATP production was assessed under different hypoxic conditions using an ATP 

luminescent assay as previously described in section: 2.3.6.1.2.  

 

Cellular ATP was reduced significantly during chronic, severe hypoxia by 52% compared to 

normoxia control cells (786±15 vs 1656±29, P<0.05) and by 28% during mild hypoxia 

(1192±69) (Figure 5.7A). ATP production during hypoxia was also assessed in the presence of 

the mitochondrial complex I inhibitor; rotenone (20µM) and uncoupler; FCCP (1µM), which 

inhibit cell death during severe hypoxia. Under normoxic conditions (4h), ATP production was 

significantly reduced by 22% in the presence of rotenone (P<0.0001) and 12% in the presence of 

FCCP (P<0.0001) compared to untreated normoxic controls (Figure 5.7B) in the absence of any 

cytotoxicity. In the presence of FCCP, ATP production was significantly reduced by 43% during 

both chronic, severe (443±21 versus 786±15, P<0.0001) and mild hypoxia (673±28 versus 

1192±69, P<0.0001) compared to non-inhibited, hypoxia-exposed controls (Figure 5.7D).  

Similarly, in the presence of rotenone, ATP production was markedly reduced by 48% during 

chronic, mild hypoxia (P<0.0001) (Figure 5.7C) and 38% during chronic, severe hypoxia 

(P<0.0001) (Figure 5.7D) (see Table 5.1 for summary of results).   

 

5.3.6 Mitochondrial complex-I inhibition protects cells against chronic, severe hypoxia 

induced apoptosis 

It has been reported that increased intracellular O2
-• 

levels can activate the apoptotic cell death 

pathway (Lièvre et al., 2000). However, the relative contribution of O2
-• 

produced from different 

metabolic sources during hypoxia to induction of apoptosis is unknown. Therefore, the effects of 

incubation with the mitochondrial complex I inhibitor; rotenone, the uncoupler; FCCP, NADPH 

oxidase inhibitor; apocynin and the non-selective NOS inhibitor; L-NAME were examined  by 

western blotting for cleavage of procaspase-3 as previously described in section 2.3.12, 2.3.16 

and 2.3.16.1.  
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(B)                   Normoxia                      (D) Chronic, severe hypoxia 
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Figure 5.7 Hypoxia and metabolic inhibition causes depletion of ATP in H9C2 cells. 
Confluent (80%) H9C2 cells were pre-incubated with 20µM rotenone or 1µM FCCP for 30min 

prior to loading with O2 equilibrated HEPES buffered-phenol red-free DMEM (21% (A, B); 10% 

(A, C); or 2% (A, D) O2). After incubation for 4h, total ATP content was assessed in each lysate 

using the ATP luminescent assay. Luminescence was measured at 37°C in Spectramax GEMINI 

EM plate reader at 542nm. Data represent the mean ± SEM luminescence of three independent 

experiments conducted in triplicates. *** represents P < 0.0001 (one-way ANOVA), Tukey’s 

post-hoc test. 
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(A)                                                                        

Procaspase 3   (32kD) 

Cleaved caspase 3 (18kD)    

α-Tubulin                                         

2% O2 Hypoxia       +      +     -     +         +          +          +      

Rotenone        -            +         -     -           -          -           - 

21% O2 Normoxia       -            -         +           -          -          -           + 

Apocynin        -            -         -           +          -          -           - 

FCCP         -            -         -            -         +          -           -          

L-NAME        -            -         -            -          -          +          - 

H2O2                                                     -            -         -            -          -          -           + 
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Figure 5.8  The effect of inhibitors on cleavage of procaspase–3 during severe hypoxia Total 

protein lysate (20µg) from cells exposed to severe hypoxia (4h) was resolved using 15% Tricine-

SDS-PAGE and transferred to PVDF membrane. Western blot analysis was performed using the 

primary antibodies; anti-cleaved caspase-3, procaspase-3 and loading control; anti-α-tubulin (A). 

Immunoreactive bands were revealed by enhanced chemiluminescence. Densitometry analysis 

was performed and results are expressed as the ratio of cleaved caspase-3 to procaspase-3 (B) 

and the ratio between cleaved caspase-3 to α-tubulin (C). Total protein lysate from cells exposed 

to 200µM of H2O2 for 8h was employed as a positive control. Results are expressed as mean±SE 

where n=3.  *, ** and *** represent p<0.05, p<0.001 and p<0.0001 respectively (one way 

ANOVA), Tukey’s post-hoc test. 

 

As illustrated in figure 5.8A, rotenone treatment suppressed the cleavage of procaspase-3 during 

chronic, severe hypoxia when compared to untreated and treated control cells. In the presence of 

rotenone, caspase-3 activation was suppressed as indicated by a 15-fold decrease (P<0.0001, 

0.047±0.014 vs 0.687±0.141) in the ratio of cleaved caspase-3 to loading control to α-tubulin 

(Figure 5.8B) and a 17-fold decrease (P<0.001, 0.051±0.01 vs 0.863±0.263) of the ratio between 

cleaved caspase-3 and procaspase-3. In contrast, apocynin treatment was not able to suppress the 

procaspase-3 cleavage (Figure 5.8A) induced by severe, chronic hypoxia (P<0.0001, 

0.594±0.091 vs hypoxia alone control). However, FCCP and L-NAME treatment afford some 

significant protection against procaspase 3 cleavage when analysed relative to α-tubulin 

expression but not caspase-3 content (FCCP; 0.186±0.002 and L-NAME; 0.309±0.044) (Figure 

5.8A).  
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The positive control showed a 7-fold increase in the ratio between cleaved caspase-3 to 

procaspase-3 (0.258±0.047 vs 0.030±0.005) (Figure 5.8B and 5.8C) (see Table 5.1 for 

summary of results). 
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Figure 5.9 The effect of inhibitors on cleavage of procaspase-3 during chronic, mild 

hypoxia. Total protein lysate (20µg) from cells exposed to chronic, mild hypoxia in the presence 

of inhibitors (4h) was resolved using 15% Tricine-SDS-PAGE and transferred to PVDF 

membrane. Western blot analysis was performed using the primary antibodies; anti-cleaved 

caspase-3, anti-procaspase-3 and loading control; anti-α-tubulin (A). Immunoreactive bands 

were revealed by enhanced chemiluminescence. Densitometry analysis was performed as 

previously described (B and C). Mean±SE and n=3. ** and *** (control vs. treatment) represents 

p<0.001 and p<0.0001 respectively (one-way ANOVA), Tukey’s post-hoc test. 

 

Several studies indicate that cleavage of procaspase-3 in cells can be stimulated by short term 

exposure to O2
-• 

(Madesh and Hajnoczky, 2001). In contrast, figure 5.9 shows that chronic, mild 

hypoxia induced procaspase-3 cleavage even in the absence of a detectable increase in O2
-• 

production. To investigate whether O2
-• 

preferentially activates caspase-3 compared to reaction 

with DHE or whether other radical species may be important, the effects of inhibiting different 

metabolic sources of O2
-• 

and 
•
NO generation were studied.  
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5.3.7 The inhibition of NADPH oxidase complex and NOS isoforms significantly protect 

cell against chronic, mild hypoxia-induced apoptosis 

To identify any roles for ROS/RNS as inducers of apoptosis and to suppress the execution phase 

of apoptosis during chronic, mild hypoxia, cells were treated with rotenone (20µM), FCCP (1 

µM), apocynin (100 µM) and L-NAME (100 µM) prior to exposing cells to chronic, mild 

hypoxia. Apoptosis was examined by western blotting for cleavage of procaspase-3. 

 

As illustrated in figure 5.9A, apocynin (100µM) treatment completely suppressed the cleavage 

of procaspase-3 during chronic, mild hypoxia. In control cells exposed to hypoxia alone, the 

ratio between cleaved caspase-3 and procaspase-3 (P<0.0001, 0.403±0.038 vs. 0.024±0.014) 

(Figure 5.9B) and the ratio of cleaved caspase-3 to α-tubulin (P<0.0001, 0.214±0.014 vs. 

0.002±0.002) (Figure 5.9C) were significantly increased compared to normoxia.  

 

In the presence of rotenone, chronic, mild hypoxia-induced procaspase-3 cleavage was 

suppressed but apoptosis was not completely suppressed as indicated by a 10-fold higher 

(P<0.0001, 0.109±0.021 vs. 0.002±0.002) ratio of cleaved caspase-3 to loading control; α-

tubulin and also the 8-fold higher (P<0.001, 0.2001±0.061 vs. 0.024±0.014) ratio between 

cleaved caspase-3 and procaspase-3 when compared to control cells maintained under normoxia 

(Figure 5.9A, B and C). In the presence of FCCP and L-NAME, the collapse of mitochondrial 

membrane potentials (Ψ) or inhibition of NOS isoforms respectively suppressed the cleavage of 

procaspase-3 partially during hypoxia (Figure 5.9C), though  the rotenone treatment failed to 

suppress procaspase-3 cleavage during chronic, mild hypoxia (see Table 5.1 for summary of 

results).  
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(A)                                                           

Procaspase-3                     

Cleaved Caspase-3           

α Tubulin                          

21%O2+200µM H2O2           +           -           -         -         -         -          

21%O2 +LNAME             -           +           - -         -         -                       

21%O2 +Rotenone             -            -          +         -         -         -         

21%O2+Apocynin             -            -           -        +         -         -         

21%O2+FCCP             -            -           -         -         +        -    

21%O2+L-NAME             -            -           -         -         -        +         
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Figure 5.10  Metabolic inhibitors do not induce procaspase-3 cleavage during normoxia 

Total protein lysate (20µg) from cells exposed to normoxia in the presence of inhibitors (4h) was 

resolved using 15% Tricine-SDS-PAGE and transferred to PVDF membrane. Western blot 

analysis was performed using the primary antibodies; anti-cleaved caspase-3, anti-procaspase-3 

and loading control; anti-α-tubulin (A). Immunoreactive bands were revealed by enhanced 

chemiluminescence. Whole cell lysate from cells exposed to 200µM of H2O2 for 8h was 

employed as a positive control. Densitometry analysis was performed as the ratio of cleaved 

caspase-3 to procaspase-3 and α-tubulin (B and C). Mean±SE and n=3. *** (control vs. 

treatment) represent p<0.0001 (one way ANOVA), Tukey’s post-hoc test. 

 

 

Lysates from cells exposed to 200µM H2O2 for 8h at 21% O2 were employed as a positive 

control and showed at least 20-fold increase in procaspases-3 cleavage ((Figure 5.10A, 5.10B 

and 5.10C)). As illustrsted, all inhibitors and metabolic uncoupler did not activate significantly 

the cleavage of procaspase-3 during normoxia (Figure 5.10A, 5.10B and 5.10C). 
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Figure 5.11   Hypoxia-induced protein carbonylation during 30min but not 4h. H9C2 lysate 

was analysed for protein carbonyl content by ELISA after hypoxia and normoxia. Data are 

expressed as mean±SE and n=7. * represents p<0.05 (one way ANOVA), Tukey’s post-hoc test. 

 

 

5.3.8 Acute, but not chronic, severe hypoxia induced protein carbonylation in H9C2 

myoblasts 

Increased levels of carbonylated proteins are associated with the early stages of apoptosis or 

necrosis (England et al., 2003). However, the effects of severity and duration of hypoxia on 

protein carbonyls remains unknown and therefore, carbonyl levels were examined for any 

relationship to cell death. Total amount of protein carbonylation (nmol/mg) was assessed using 

whole cell lysate extracted from H9C2 cells after exposing to hypoxia and normoxia. As shown 

in figure 5.11, there was a significant increase in protein carbonylation during acute, severe 

hypoxia (P<0.05, 0.767±0.216nmol/mg, 30min) compared to normoxic controls 

(0.110±0.216nmol/mg, 30min). A 40% decrease in protein carbonylation was observed during 

chronic, severe hypoxia (0.506±0.131nmol/mg) compared to acute hypoxia. Acute or chronic, 

mild hypoxia did not elicit a substantial difference in protein carbonylation compared to 

normoxic controls (Figure 5.11) (see Table 5.1 for summary of results). 
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5.3.9 Effect of NF-κB inhibition and preventing extracellular Ca
2+ 

uptake during hypoxia-

induced cell death     

It has been reported that NF-κB activation and modulation of intracellular and/or mitochondrial 

Ca
2+

 mediate cellular defence mechanism against hypoxia-induced cell death (Lu et al., 2009; 

Regula et al., 2004; Bolli,2000; Talukder et al., 2009; Persson-Rothert et al., 1994; Zhou et al., 

2009). To investigate this hypothesis, cells were treated with NF-κB inhibitor; SN-50 (5 µM or 

10µM) or EGTA (5mM or 10mM) which were added to culture medium in separate experiments 

prior to exposing cells to chronic, severe hypoxia. Cell viability was measured by the MTT 

assay. The inhibitors had no effect on H9C2 cells under normoxic conditions (Figure 5.12A). 

 

The metabolic activity of cells was significantly reduced during chronic, severe hypoxia alone 

compared to that of control cells at 21% O2 in the presence of NF-κB inhibitor (5 µM; 

0.473±0.014, P<0.001 and 10 µM; 0.390±0.0104, P<0.001) and EGTA (5mM; 0.543±0.011, 

P<0.001 or 10mM; 0.467±0.007, P<0.001), suggesting that hypoxic cell injury is increased with 

the inhibition of NF-κB and Ca
2+

 (Figure 5.12B) (see Table 5.1 for summary of results). 
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Figure 5.12  NF-κB and intracellular Ca
2+

- mediated cellular protection against cell death 

during chronic, severe hypoxia. H9C2 cells at 70-80% confluence were loaded with O2 

equilibrated HEPES buffered-phenol red-free DMEM at 21% (A) or 2% (B) O2 and then 

immediately cells were  treated with 5µM or 10µM NF-κB  inhibitor (SN-50) or 5mM or 10mM 

EGTA and vehicle for control cells at t= -2min and exposed for  2% O2 chronic, severe hypoxia. 

MTT was added 2h prior to completion of 4h hypoxia and MTT reduction was determined at 

570nm in a microplate reader. Cell viability was analysed with respect to control cells 

maintained at the same O2 tension for the same time period. *** (control vs. Treatment; SN-50 

or EGTA) represent P < 0.001 (one-way ANOVA), Tukey’s post-hoc test. 
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5.4 Discussion 

In summary, the present study shows that rat cardiomyoblasts under acute, severe hypoxia die by 

necrosis, but depletion of ATP during has not contributed to significant necrotic cell death. 

Mitochondrial complex I inhibition affords protection against apoptosis and necrosis, but 

mitochondrial uncoupling protect cells against necrosis only during acute, severe hypoxia. In 

contrast, apocynin treatment or inhibition of NOS isoforms protect cells against mild hypoxia 

induced apoptosis. Moreover, the activity of redox sensitive transcription factor, NF-κB and 

extracellular [Ca
2+

] is required to maintain metabolism during chronic, severe hypoxia (see 

Figure 5.13 and Table 5.1).  

 

Cell death is a critical cellular process involved in the pathogenesis of myocardial hypoxia and 

hypoxia-reperfusion injury. Hypoxia-induced cell death can take place via apoptosis or necrosis.  

However, investigation of the significance of myocyte-initiated cell death to overall myocardial 

injury in vivo is technically difficult due to the heterogeneity of cell types in the heart, 

involvement of neurohormonal systems and inflammatory tissue damage. Therefore, cultures of 

cardiomyoblasts provide a convenient approach to overcome those complications. The data show 

that severe hypoxia can induce a time-dependent reduction in metabolic activity in viable cells as 

measured by MTT assay, and impaired mitochondrial energy production and ion homeostasis 

may lead to cell injury and cell death. In an MTT assay, in the presence of oxidised equivalents 

from the mitochondrial respiratory chain, 3-[4, 5-dimethylthiazol-2-yl] - 2, 5 

diphenyltetrazolium bromide (MTT) is reduced by succinate dehydrogenase (SDH) in viable 

cells to insoluble violet formazan crystals (van de Loosdrecht et al., 1994). Crawford et al. 

(2003) reported a decrease in activity of SDH in mitochondrial complex II during hypoxia. 

Changes to the activity SDH affects the efficiency of MTT reduction in hypoxic cells, but this 

may be independent of cell death. In contrast, Hohl et al. (1987) demonstrated an increase in 

SDH activity during hypoxia and which was sensitive to rotenone treatment. Kinnula and 

Juujärvi. (1976) reported the absence of SDH activity during 3h anoxia in newborn rat heart and 

liver cells. An increase in PI uptake during both acute and chronic, severe hypoxia indicates 

necrotic cell death and probably late apoptotic cell death too.  
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This is further reflected in the decreased mitochondrial metabolic activity during acute, severe 

hypoxia. However, there was no evidence for cells with fragmented nuclei that may reflect late 

apoptotic conditions. Cellular necrosis is associated with tissue inflammation and cytolysis in 

cell cultures when they are exposed to hypoxia. Cellular ATP depletion that occurs in apoptosis 

may lead to necrosis; therefore mechanisms of cell death are quite likely to be overlapping via 

both necrosis and apoptosis (Lieberthal et al., 1998). Therefore, technically it is difficult to 

understand particular cell death mechanism in a cell culture system as these processes are 

frequently overlapped during hypoxia. It is mainly due to cells undergoing with natural apoptosis 

and their apoptotic bodies may not be cleared out, as there is not a phagocytic clearance system 

in in vitro cell culture system. Even though the sequence of cell death events is widely accepted, 

most probably with necrosis, the associated mechanisms and temporal relationship to events of 

apoptosis in the mitochondria during hypoxia are enigmatic to date.  

 

Recent reports describe an elevation of intracellular [Ca
2+

], which can cause depolarization of 

mitochondria during hypoxia (Kim et al., 2003; Crow et al., 2004; Crompton, 1999). The present 

study did not assess intracellular Ca
2+

 level; however, the experiments reported here show that 

blockade of Ca
2+

 uptake into cells by chelation of extracellular Ca
2+

 with EGTA increased cell 

death in hypoxia but not normoxia, suggesting that Ca
2+

 influx is important in mediating cellular 

defence against hypoxia-induced cell death. This is consistent with finding of Persson-Rothert et 

al. (1994) who demonstrated. Intracellular Ca
2+

 is important to maintain mitochondrial 

membrane potential via Ca
2+

 buffering (Crompton, 1999). However, the majority of studies 

report that chelating Ca
2+

 may disrupt Ca
2+

 influx into mitochondria and thereby reduce MPTP 

opening and consequently reduce apoptosis (Halestrap et al., 2004). Other sources of Ca
2+

 

available including endoplasmic reticulum stores (Hajnóczky et al., 2006; Gibson and Huang, 

2004; Crompton, 1999), may release Ca
2+

 and increase the intracellular Ca
2+

concentration to 

induce cell death during hypoxia. There is evidence for the accumulation of oxidised DNA, 

protein and lipids during ischaemia (England et al., 2003; Berlett and Stadtman, 1997). Indeed, 

the present studies show an increase in protein carbonyls in H9C2 cell lysates after severe 

hypoxia for 30mins, but this does not persist at 4h.  
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Therefore, an increase in O2
-• 

production may have contributed to form protein carbonyls whilst 

maintaining steady state of O2
-• 

production or early accumulation of oxidised proteins in the 

absence of a detectable increase in ROS may arise from the absence of effective proteaosome 

induction or autophagy (Asa B. Gustafsson and Roberta A. Gottlieb, 2008). Early accumulation 

of oxidised proteins may cause severe damage to cells, and selective death may remove the cells 

that are heavily oxidised resulting in less protein carbonyl detection in resistant cells at later 

times (4h) (Yaglom et al., 2003). This is consistent with the evidence for cell death (PI: hoechst 

ratio) after 30 min of severe hypoxia. In conditions where severe hypoxia is prolonged for 4h, 

cardiac myoblasts display increased PI uptake and reduced MTT reductive activity compared to 

control cells or cells under acute, severe hypoxia. This was associated with a significant rise in 

O2
-• 

levels, measured as DHE oxidation. Cleavage of procaspase-3 in cells can be stimulated by 

short term exposure to O2
-• 

(Madesh and Hajnoczky, 2001). However, chronic, severe hypoxia-

mediated apoptosis was prevented only in the presence of rotenone. The prevention of necrosis, 

measured as PI uptake, and MTT reductive activity was also preserved by L-NAME.  

 

Taking these findings together, indicates that increased ROS/RNS levels detected during 

chronic, severe hypoxia are associated with toxicity and that inhibiting ROS/RNS affords 

protection. The cleavage of procaspase-3 suggest the opening of MPTP during chronic, severe 

hypoxia possibly as a response to increased O2
-• 

production (Kim et al., 2003; Crompton, 1999). 

However, inhibition of NOS isoforms indicates that limited production of 
•
NO has contributed to 

reduce the cellular toxicity, probably by forming less ONOO
-
. There are several reports which 

claim that cardiac cell death is induced by increased production of ONOO
- 
(Levrand et al., 2006; 

Borutaite and Brown, 2005). It has been reported that a reduction of cardiac dysfunction is 

observed in hypoxic mice when they were pre-treated with 2mM L-NAME (Mammen et al., 

2003). The suppression of procaspase-3 cleavage in the presence of rotenone and associated 

reduction of DHE oxidation indicate that mitochondrial-based O2
-• 

is responsible for the 

induction of apoptosis during severe hypoxia. Indeed, others have shown the cardiac protection 

of ischaemic-rabbit hearts in the presence of rotenone with decreased production of ROS from 

mitochondrial complex I (Lesnefsky et al., 2004).  
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Therefore, the present study confirms cardiac protection observed during chronic, severe 

hypoxia in the presence of FCCP and rotenone and is consistent with previous findings (Brennan 

et al., 2006b; Brennan et al., 2006a; Lesnefsky et al., 2004). 

  

 (A) 

Condition Acute, severe hypoxia  

(2% O2, 30min) 

Acute, mild hypoxia 

(10% O2, 30min) 

Acute normoxia 

(21% O2, 30min) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

Metabolic 

activity 

↓* Χ ↑ Χ Χ Χ Χ ↑ Χ Χ Χ Χ Χ Χ Χ 

Necrosis ↑* ↓ ↓ Χ ↓ Χ Χ ↑ Χ Χ Χ Χ Χ Χ Χ 

ATP 

depletion 

Χ - - - - Χ - - - - Χ - - - - 

Apoptosis Χ - - - - Χ - - - - Χ - - - - 

Protein 

carbonyls 

↑* - - - - Χ - - - - Χ - - - - 

 

(B) 

Condition Chronic, severe hypoxia  

(2% O2, 4h) 

Chronic, mild hypoxia  

(10% O2 ,4h) 

Chronic normoxia  

(21% O2, 4h) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

Metabolic 

activity 

↓* ↑ Χ Χ ↑ Χ* Χ ↓ ↓ ↓ Χ Χ Χ Χ Χ 

Necrosis ↑* ↓ Χ ↓ ↓ Χ* Χ Χ Χ Χ Χ Χ Χ Χ Χ 

ATP 

depletion 

↑*  

¤ 

↑ ↑ ­ ­ ↑* ­ ­ ­ ­ Χ ↑ ↑ - - 

Apoptosis ↑* ↓ ↓ ↑* ↓ ↑* ↑* ↑* ↓ ↓ Χ Χ Χ Χ Χ 

Protein 

carbonyls 

Χ* ­ ­ ­ ­ Χ* ­ ­ ­ ­ Χ ­ ­ ­ ­ 

 

Table 5.1  Summary of results in acute (A) and chronic (B) hypoxia.  

Key:  Ctl - control, ROT-rotenone, FCP- FCCP, APO- apocynin and LNM- L-NAME. 

          ↑*  - Significant increase in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↓*  - Significant decrease in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↑    - Significant increase in treated cells vs. control cells at same O2 tension. 

          ↓    - Significant decrease in treated cells vs. control cells at same O2 tension. 

          Χ   - In treated cells, no significant difference vs. control cells at same O2 tension or if in  

                  control cells (2% O2 or 10% O2), no significant difference vs. normoxic cells or in  

                  normoxic cell shows the basal effect. 

           Χ*- No significant effect in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

           ¤   - Significant increase in control cells (2% O2) vs. cells at 10%O2     

           -       Not available. 
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Chronic, mild hypoxia has induced procaspase-3 cleavage even in the absence of detectable 

increases in O2
-• 

production and lack of ATP production (25% ATP depletion during chronic, 

mild hypoxia). This is associated with significantly increased 
•
NO production in the absence of 

increased O2
-•
. Procaspase-3 cleavage was inhibited in the presence of L-NAME, reducing NOS-

dependent 
•
NO production. In contrast, the absence of necrotic cell death or change in MTT 

reductive activity indicates steady state mitochondrial function. However, MPTP opening is 

required for the activation of procaspase-3. Crompton et al. (1999) reported procaspase-3 

cleavage that associated with MPTP opening in the absence of mitochondrial O2
-•
. This probably 

occurred via the induction of pro-apoptotic factors with available ATP, the other authors noted 

that apoptosis was induced during chronic, severe hypoxia, when 50% of ATP was depleted. 

Interestingly, the suppression of procaspase-3 cleavage in the presence of apocynin may suggest 

a NOX-independent effect as there is no O2
-• 

produced during chronic, mild hypoxia (Heumuller 

et al., 2008; Touyz, 2008).  

 

It has been reported hypoxia-induced HIF-1α activation is associated with transcription of 

cellular antioxidant genes. The NF-κB transcription factor is known as both a death factor and a 

survival factor during oxidative stress. The present study indicates that inhibition of NF-κB 

exacerbates the hypoxia induced cell death, suggesting that NF-κB mediates a hypoxia-induced 

antioxidant defence mechanism as previously reported ischaemia in rat cerebral endothelial cells 

(Lee, 2003). Therefore, NF-κB may play a vital role in hypoxic defence mechanism, probably by 

expression of antioxidant genes including MnSOD.  
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Figure 5.13  Hypoxia or hypoxia/reperfusion-induced ROS/RNS generation and cell death. 
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CHAPTER 6 

HYPOXIA/REPERFUSION-INDUCED 

ROS/RNS GENERATION AND 

ASSOCIATED CELL DEATH 
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6.1 Preface 

This chapter describes the generation of O2
-•
 and 

•
NO during acute, severe hypoxia/reperfusion 

and chronic, severe hypoxia/reperfusion and their association with mitochondrial metabolic 

dysfunction. O2
-• 

and 
•
NO combine at diffusion controlled rates to produce ONOO

-
 and may 

affect cell function. The independent contribution of different radical sources was investigated 

using inhibitors of mitochondrial uncoupling, the superoxide scavenger MnTBAP, and a 
•
NO 

donor. The goal of this chapter was to identify whether ROS/RNS generation was more 

significant during reperfusion than hypoxia alone and to understand the sources of ROS/RNS. 
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6.2 Introduction  

6.2.1 Hypoxia/reperfusion-induced ROS/RNS generation 

Reperfusion of hypoxic tissue is an important mechanism of cell and tissue injury. 

Hypoxia/reperfusion (H/R) increases ROS/RNS and attenuation of these radical species can 

protect cardiomyocytes from the irreversible damage of hypoxia/reperfusion (Li and Jackson, 

2002).  While the rapid restoration of blood supply to hypoxic tissue is imperative to minimise 

injury, paradoxically, reperfusion itself can lead to excessive injury in the form of cardiac 

dysfunction, reperfusion arrhythmias and irreversible myocardial infarction. The severity of 

hypoxia influences the outcome for cell damage during reperfusion. Hypoxic tolerance for 

various tissues differs and depends on their metabolic rate and intrinsic adaptive potential (Li et 

al., 2002). Acute, sublethal hypoxia has no reported deleterious effects and can enhance 

resistance to reperfusion injury (preconditioning). The extent of cellular injury after 

hypoxia/reperfusion is due to a balance of energy availability, mitochondrial ROS/RNS 

generation and adaptation. Other sources of ROS in cardiovascular tissue include the NADPH 

oxidase complex (Lopez-Barneo et al., 2001) and xanthine oxidase (Lee et al., 2009). ROS 

production during hypoxia/reperfusion may be due to other sources than mitochondria.  

 

The membrane associated NADPH oxidase complex that generates O2
-•
 under normoxic 

conditions has been implicated in ROS generation during ischaemia/reperfusion (Walder et al., 

1997). NADPH oxidase is a major source of ROS generation in the intact heart, whose activity 

appears to be increased by several stimuli such as PKC, angiotensin II, and TNFα in vascular 

diseases (Murdoch et al., 2006). Moreover, the membrane oxidase complex is an important 

source of ROS in ischaemic mouse lungs and other oxygenated tissues (Li and Jackson, 2002). 

•
NO has favourable and unfavourable activities in cardiac ischaemia/reperfusion injury (Brown 

and Borutaite, 2007); many of the deleterious effects in cardiomyocytes can be attributed to the 

overproduction of 
•
NO by NOS isoforms, most probably due to activation of iNOS and/or eNOS 

during hypoxia (Zenebe et al., 2007). During the early stage of reperfusion, the myocardium 

produces a large concentrated burst of 
•
NO.  
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At the same time that 
•
NO is being produced, large amounts of O2

-• 
are also generated and these 

molecules combine at diffusion controlled rates to produce ONOO
-
. 

•
NO outcompetes SOD for 

O2
-• 

(Beckman and Koppenol, 1996), so under normoxia the dismutation of O2
-•
 by SOD is likely 

to predominate over ONOO
- 

genesis due to the low concentration of 
•
NO available. However, 

when both 
•
NO and O2

-• 
increase during reperfusion, 

•
NO can outcompete intracellular SOD for 

the reaction with O2
-•
.  

 

It is worthwhile to consider that in a physiological CO2/HCO3
-
 environment, 

•
NO reacts with 

CO2 to form nitrosoperoxycarbonate anion (ONOOCO2
-
). The protonation and homolytic 

cleavage of this molecule results in NO2, 
•
OH and CO2 and ultimate cellular injury is associated 

with highly reactive NO2 and 
•
OH in addition to peroxynitrite (Zweier et al., 1999; Lepore, 

2000). The accumulation of ONOO
-
 is associated with cell injury or cell death, possibly due to 

lipid peroxidation and nitration of tyrosine residues. It has been reported that ONOO
-
 can 

irreversibly inhibit mitochondrial complexes I, II, IV and V. Further, ONOO
-
 can react with 

NADH present in complex I and change the mitochondrial redox state. Jiao et al. (2009) and  

Lalu et al. (2002)   showed an increase in tissue injury with 
•
NO/ONOO

-
, where cardiac cell 

death was attenuated by inhibiting ONOO
-
 formation. 

•
NO from mtNOS can combine with O2

-•
 

to form ONOO
- 
within the mitochondrial compartments (Ghafourifar and Cadenas, 2005).  

 

This ONOO
- 
derived from mtNOS can cause oxidation of mitochondrial components and result 

in release of key mitochondrial pro-apoptotic factors such as cytochrome c (Ghafourifar et al., 

1999) and thereby activate caspase-3 cleavage in apoptotic cell death. In contrast to the cytotoxic 

effects of 
•
NO, 

•
NO generation during ischaemia-reperfusion may act as an antioxidant in 

mitochondria to attenuate hypoxia/reperfusion injury. 
•
NO can inhibit lipid peroxidation and 

exert protective effects in many in vitro and in vivo hypoxia/reperfusion models (Li and Jackson, 

2002). The pre-exposure of cardiomyocytes to hypoxia increases iNOS mRNA and protects 

against subsequent chronic ischaemia (Rakhit et al., 2000). ONOO
-
 can also act as a signalling 

molecule in cardiac protection during reperfusion-injury (Ottenheijm et al., 2006).  
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The non-selective NOS inhibitor; LNAME, blocked cardiac preconditioning, but addition of the 

•
NO donor; S-nitroso-N-acetyl-L-penicillamine (SNAP), protected cells during reoxygenation 

(Gonon et al., 2004; Li et al., 1999b). Therefore, the protective effects of 
•
NO depend critically 

on the severity of hypoxia (pO2), its duration and the balance of 
•
NO and O2

-•
 production at 

intracellular level (Huang et al., 1997).  

 

6.2.2 ROS generation from NADPH oxidase 

Structurally, NADPH oxidase is a multimeric enzyme that is constructed of core membrane-

bound flavocytochrome comprising a catalytic NOX subunit and smallest p22phox subunit. 

Currently, there are five NOX isoforms (NOX1–5) which have been identified in different 

tissues (Bedard and Krause, 2007). Among them, NOX2 and NOX4 are the main isoforms of 

NADPH oxidase complex that are expressed in cardiac cells (Bendall et al., 2002). In order to 

activate, NOX4 or NOX2 (or gp91phox), the complex association of cytosolic regulatory 

subunits (p47phox, p67phox, p40phox and Rac1) are required (Bedard and Krause, 2007). The 

GTPase binding protein Rac1 regulates membrane NADPH oxidase activity, NF-κB activation 

and mouse liver necrosis during liver ischaemia-reperfusion (Ozaki et al., 2000). The increase in 

subunit expression and/or the translocation of regulatory subunits (in particular p47phox) from 

cytosol to the membrane are necessary to stimulate NOX2 activation and ROS production 

(Bedard and Krause, 2007).  

 

Recently, it has been reported that NADPH oxidase activity is increased in the left and right 

ventricle of myocardium of patients with end-stage of heart failure (Elisabetta et al., 2008). In 

summary, there are many possible sources of ROS/RNS that may contribute to 

hypoxia/reperfusion injury and their respective roles in affecting cardiac myocyte metabolism 

are investigated in the following chapter. 
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6.3 Results 

6.3.1 Hypoxia/reoxygenation decreased metabolic activity and viability of cardiac 

myoblasts 

The overproduction of ROS/RNS during hypoxia/reperfusion may lead to mitochondrial 

dysfunction with associated cell death (Petrosillo et al., 2005; Abramov et al., 2007).  To test this 

hypothesis, the following experiments were performed to determine acute or chronic 

hypoxia/reperfusion-induced metabolic change and cell death. As illustrated in figure 6.1A, 

hypoxia (30min)/reoxygenation (2h) did not induce a significant reduction in cell viability or 

mitochondrial metabolic activity compared to normoxia or hypoxia-maintained control cells 

(91.78±4.81% vs. 100.00±6.13%, P>0.05). However, the hypoxia control at 2% O2 for 2.5h 

showed a significant reduction in metabolic activity and cell viability compared to the normoxia 

control (78.05±4.26 vs. 100.00±6.13%, P<0.0001). Moreover, hypoxia (30min)/reoxygenation 

(2h) promoted mitochondrial metabolism by 14% compared to the hypoxia-maintained control 

during the reoxygenation period (91.78±4.81% vs. 78.05±4.26%; P<0.05).  

 

When cells were exposed to reoxygenation (2h) after chronic, severe hypoxia (2% O2, 4h), and 

mitochondrial metabolic activity was measured by MTT assay, figure 6.1B, shows a significant 

reduction in metabolic activity compared to normoxia controls (85.21±1.41% vs. 100.00±1.77%, 

P<0.001). Chronic, severe hypoxic controls showed a greater loss of mitochondrial metabolic 

activity compared to normoxia controls (77.78±1.51% vs. 100.00±1.77%, P<0.0001). However, 

total protein concentration after chronic, severe hypoxia/reoxygenation showed the greatest trend 

for loss (Figure 6.1C) (see Table 6.1 for summary of results). 
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Figure 6.1  Hypoxia/reoxygenation effects on metabolic activity and protein concentration 

of cells. H9C2 cells were seeded at 3x10
4
/well in 24-well plate and cultured until 70-80% 

confluence in DMEM, 10% FBS at 37°C in 5% CO2 humidified atmosphere. At 70-80% 

confluence, cells were washed three times with PBS solution and 2% O2 equilibrated, HEPES-

buffered, phenol red-free DMEM was added and cells were exposed for hypoxia in a chamber at 

2% O2 for 30min (acute hypoxia, A) or 4h (chronic hypoxia, B) and protein concentration (C). 

After hypoxia, the medium was replaced with reoxygenated (21% O2+79% N2) medium for 

experimental cells (hypoxia/reoxygenation) and normoxic controls, and fresh O2 pre-equilibrated 

(2% O2 + 98% N2) medium in hypoxic control cells (sustained hypoxia). Then, experimental and 

control cells were treated with MTT reagent and incubated for 2h in either severe hypoxia or 

normoxia in the chamber. After 2h incubation, cells were lysed and re-incubated for further 16h 

at 37°C in 5% CO2 in humidified atmospheric conditions. The optical density was measured at 

570nm. Data represents the mean±S.E.M of three independent experiments conducted in 

triplicates. * represents P < 0.05 and *** represents P < 0.001 (one-way ANOVA), Tukey’s 

post-hoc test. 
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Figure 6.2 Hypoxia/reoxygenation-induced O2
-•
 and 

•
NO generation. H9C2 cells were seeded 

at 3x10
4
/well in 24-well plate and cultured in DMEM, 10% FBS at 37°C in 5% CO2 humidified 

atmosphere. At 70-80% confluence, cells were washed three times with PBS solution and 2% O2 

equilibrated, HEPES-buffered, phenol red-free DMEM was added and cells were exposed for 

hypoxia in a chamber at 2% O2 for 30min or 4h. After hypoxia, the medium was replaced with 

reoxygenated (21% O2+79% N2) medium for experimental cells and normoxic controls, and 

fresh O2 pre-equilibrated (2% O2+98% N2) medium for hypoxic control cells and then exposed 

for 2h reoxygenation or normoxia. Then, cells in acute hypoxia were treated at t=1h and 45min 

with 20µM DHE for acute hypoxia/reoxygenation (A) whereas, cells in chronic, severe hypoxia 

were treated at t=5h and 15minMTT with 20µM DHE (B) or at t=5h and 30min with 10µM DAF 

(C) and further incubated until completion of 2h reoxygenation. Then, cells were lysed and 

fluorescence was measured at 37°C in Spectramax GEMINI EM fluorescence reader at 

Excitation: 488nm, Emission; 570nm, cut off filter; 550nm. The optical density was measured at 

570nm. Data represents the mean±S.E.M of three independent experiments conducted in 

triplicates. ** represents P < 0.01 and *** represents P < 0.001 (one-way ANOVA), Tukey’s 

post-hoc test. 
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6.3.2 Hypoxia/reoxygenation induced O2
-•
 generation 

A greater, significant increase in O2
-•
 production during hypoxia/reperfusion than hypoxia alone 

was previously reported to result in mitochondrial dysfunction and triggered cell death during 

reperfusion (Li and Jackson, 2002). To investigate whether hypoxia/reoxygenation may increase 

O2
-•
 production more than hypoxia alone in rat myoblasts, O2

-•
 production was measured as 

described in section 2.3.9.2. 

 

 As shown in figure 6.2B  but not figure 6.2A, DHE fluorescence was significantly increased 

after 2h but not 30min reoxygenation compared to hypoxic and normoxic controls, suggesting a 

significant increase in O2
-•
 production during the reoxygenation period alone after chronic, 

severe hypoxia (161.96±14.00% of normoxic control, P<0.0001). The DHE fluorescence in cells 

after reoxygenation increased by ~14% compared to that of cells maintained in chronic, severe 

normoxia (100%), but was not significantly different under the conditions employed in this 

study. Hypoxic controls alone significantly increased DHE fluorescence compared to normoxia 

(142.25±13.69%, P<0.001). In contrast, acute, severe hypoxia/reoxygenation did not 

significantly increase DHE fluorescence, however acute hypoxia alone showed an increasing 

trend of DHE fluorescence compared to normoxia (Figure 6.2A).  

 

6.3.3 Hypoxia/reoxygenation increases 
•
NO generation 

It has been reported that an increase in myocardial 
•
NO production occurs during 

hypoxia/reperfusion. To test this hypothesis, 
•
NO generation during chronic, severe 

hypoxia/reoxygenation was measured by quantitative oxidation of DAF-2-DA (a fluorescent 

probe for 
•
NO/ONOO

-
) following the method described in section 2.3.9.2. As illustrated in 

figure 6.2C, chronic, severe hypoxia/reoxygenation significantly increased DAF fluorescence 

compared to normoxia (141.26±21.83% vs. 100.00±15.92, P<0.001). In control hypoxic cells, 

the increase in DAF fluorescence was also significant compared to normoxia (128.35±19.71% of 

control, P<0.01).  

  

  



190 

 

Chronic, severe hypoxia/reoxygenation showed a trend towards an increase in DAF fluorescence 

compared to the hypoxic control, but was not statistically significant (Figure 6.2C). 

 

6.3.4 Respiratory chain inhibition or uncoupling, or inhibition of NADPH oxidase complex 

decrease DHE oxidation during chronic, severe hypoxia/reoxygenation 

To identify whether mitochondria and NADPH oxidase-dependent production of O2
-•
 are 

implicated in the toxicity of hypoxia/reperfusion, the effect of H9C2 incubation with 

mitochondrial complex 1 inhibitor rotenone (20µM), the uncoupler FCCP (1µM) or the NADPH 

oxidase (NOX) inhibitor apocynin (100µM) were examined during chronic severe hypoxia (4h) 

and reoxygenation (2h). Control cells received an equal volume of vehicle and were exposed to 

hypoxia or normoxia for 6h. MnTBAP was employed as a O2
-•
 scavenger. 

 

As illustrated in figure 6.3C, the mitochondrial uncoupler FCCP, and the inhibitor of respiratory 

chain rotenone, had no effect on DHE oxidation during the last 2h of normoxia. However, the 

presence of rotenone or FCCP reduced DHE oxidation significantly during chronic, severe 

hypoxia/reoxygenation and chronic, severe hypoxia alone (FCCP; 62.42±2.21% or rotenone; 

62.42±7.05% of control, P<0.0001) (Figure 6.3A and 6.3B).  

 

In contrast, apocynin treatment significantly reduced DHE oxidation by 19% during chronic, 

severe hypoxia/reoxygenation (81.00±2.47% compared to untreated H/R cells P< 0.05) (Figure 

6.3A). In control hypoxic or normoxic cells, apocynin failed to protect against DHE oxidation as 

shown in figures 6.3B and 6.3C. In the presence of MnTBAP, DHE oxidation was significantly 

decreased during chronic, severe hypoxia/reoxygenation, or hypoxia and normoxia (Figures 

6.3A, 6.3B and 6.3C) (see Table 6.1 for summary of results). 
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(C)            Normoxia (6h) 

C
ontr

ol

R
ote

none

FC
C
P

A
pocy

nin

M
nTB

A
P

0

100

200

300

400

Inhbitors-21%Nmx-4H+21% O2Nmx--2H

***

D
H

E
 o

x
id

a
ti

o
n

/

m
g

 o
f 

to
ta

l 
p

ro
te

in

 

Figure 6.3  Effects of mitochondrial uncouplers and inhibitors of the respiratory chain and 

respiratory burst on O2
-•
 generation during chronic, severe hypoxia/reoxygenation. H9C2 

cells were seeded at 3x10
4
/well in 24-well plate and cultured for 48h in DMEM, 10%FBS at 

37°C in 5% CO2 in humidified atmosphere. At 70-80% confluence, cells were washed three 

times with PBS solution and 2% O2 equilibrated, HEPES-buffered, phenol red-free DMEM was 

added. Control cells were maintained in 21% O2. After 4h hypoxia, old culture medium was 

replaced with reoxygenated (21% O2+79% N2, A) medium in experimental cells and fresh O2 

pre-equilibrated (2% O2 + 98% N2, B or 21% O2 +79% O2, C) medium in control cells. 

Experimental cells were independently treated with 1µM FCCP or 20µM rotenone or 100µM 

apocynin or 50µM MnTBAP. Control cells received an equal volume of vehicle. Then, cells 

were exposed to reoxygenation for 2h at 21% O2 in the chamber and at t=5h and 15min, cells 

were treated with 20µM DHE and further incubated for 45min.The fluorescence was measured 

at 37°C in Spectramax GEMINI EM fluorescence reader at Excitation: 488nm, Emission: 

570nm, cut off filter: 550nm. Data represent the mean±SEM fluorescence of three independent 

experiments conducted in triplicates. * represents P < 0.05 or ** for P<0.001 or *** for 

P<0.0001 (one-way ANOVA), Tukey’s post-hoc test. 
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(A)      Hypoxia (4h)/reoxygenation (2h)               (B)                   Hypoxia (6h) 
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             (C)           Normoxia (6h) 
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Figure 6.4  Effects of mitochondrial uncouplers, inhibitors of the respiratory chain and 

NOS isoforms on RNS generation during chronic, severe hypoxia/reoxygenation. H9C2 

cells were seeded at 3x10
4
/well in 24-well plate and cultured for 48h in DMEM, 10%FBS at 

37°C in 5% CO2 in humidified atmosphere. At 70-80% confluence, cells were washed three 

times with PBS solution and 2% O2 or 21% O2 equilibrated, HEPES-buffered, phenol red-free 

DMEM was added. After 4h hypoxia, culture medium was replaced with reoxygenated (21% 

O2+79% N2, A) medium in experimental cells and fresh O2 pre-equilibrated (2% O2 + 98% N2, B 

or 21% O2 +79% O2, C) medium in control cells. Cells were independently treated with 1µM 

FCCP or 40µM rotenone or 100µM L-NAME. Control cells received an equal volume of 

vehicle. Then, cells were exposed to reoxygenation for 2h at 21% O2 in the chamber and at t=5h 

and 15min, cells were treated with 10µM DAF-2-DA and further incubated for 30min.The 

fluorescence was measured at 37°C in Spectramax GEMINI EM fluorescence reader at 

Excitation: 491nm, Emission; 513nm, cut off filter; 495nm. Data represent the mean±SEM 

fluorescence of three independent experiments conducted in triplicates. * represents P < 0.05 or 

** for P<0.001 or *** for P<0.0001 (one-way ANOVA), Tukey’s post-hoc test. 
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6.3.5 Respiratory chain inhibition, uncoupling and inhibition of NOS isoforms decrease 

DAF-2-DA oxidation during chronic, severe hypoxia/reoxygenation 

It has been reported that up-regulation of NOS isoforms increases 
•
NO during 

hypoxia/reperfusion (Lacza et al., 2001). In contrast, Lacza et al. (2006) reported that the heart 

mitochondrion is capable of significant RNS production via the respiratory chain which is 

independent of the mitochondrial NOS and arginine pathway. To investigate this hypothesis, 

hypoxia/reperfusion induced 
•
NO production was assessed during reoxygenation period, in the 

presence of mitochondrial complex I inhibitor rotenone (40µM), uncoupler; FCCP (1 µM) and 

non-selective NOS inhibitor; L-NAME (100 µM). Hypoxic and normoxic controls received an 

equal volume of vehicle and were exposed to hypoxia (6h) or normoxia (6h). 

 

As illustrated in figure 6.4C, the mitochondrial uncoupler FCCP had no significant effect on 

DAF oxidation during last 2h of normoxia (6h). The presence of rotenone, FCCP and non-

selective NOS inhibitor reduced DAF oxidation significantly compared to untreated normoxic 

cells during  last 2h of hypoxia (rotenone; 70.32±6.83%, P<0.0001, L-NAME; 80.85±6.02%, P< 

0.05 of control DAF fluorescence) (Figure 6.4B). The effect of the inhibitors; rotenone or L-

NAME and the mitochondrial uncoupler FCCP had a similar effect on DAF oxidation during 

hypoxia/reoxygenation too (Figure 6.4A).  

 

The presence of rotenone, FCCP or L-NAME reduced DAF oxidation significantly during 

chronic, severe hypoxia/reoxygenation (rotenone; 61.00±11.74% FCCP; 66.32±12.15% and 

69.30±14.62% as % of controls in the absence of inhibitors) or chronic, severe hypoxia 

(rotenone; 59.29±3.27% FCCP; 78.95±5.39% and L-NAME; 76.44±4.52 as % of control in the 

absence of inhibitors) (see Table 6.1 for summary of results).  

 

 



194 

 

6.3.6 The effect of MnTBAP and L-NAME on metabolic activity during hypoxia   

/reoxygenation 

To identify whether O2
-•
, 

•
NO and/or ONOO

-
 production are implicated in the toxicity of 

hypoxia/reoxygenation, the effects of MnTBAP and L-NAME were studied during chronic, 

severe hypoxia/reoxygenation. As illustrated in figure 6.5A, treatment of hypoxic cells with 

MnTBAP during the reperfusion period resulted in a significantly increased mitochondrial 

metabolic activity compared to untreated cells. In contrast, inhibition of NOS isoforms with L-

NAME showed an exacerbation of hypoxia/reoxygenation-induced impairment of mitochondrial 

metabolic activity by ~17% compared to untreated cells (83.17±1.23% of control P<0.05) 

(Figure 6.5A).  

 

In cells maintained in hypoxia in the presence of L-NAME during the last 2h of sustained 6h 

hypoxia, the mitochondrial metabolic activity was also increased (~12%) significantly compared 

to untreated cells (111.66±3.42% of control P<0.001), suggesting that 
•
NO production may 

contribute to impaired metabolic activity (Figure 6.4B). MnTBAP treated cells also showed a 

significantly enhanced metabolic activity during hypoxia.  

 

Treatment with the 
•
NO donor, spermine nonoate, did not significantly affect 

hypoxia/reoxygenation induced mitochondrial metabolic activity compared to untreated, and L-

NAME treated cells (spermine nonoate, 99.94±9.4% vs. L-NAME; 83.17±1.23% , P<0.001), 

Spermine nonoate, L-NAME and MnTBAP had no effect on metabolic activity during normoxia 

for 6h (Figure 6.5C) (see Table 6.1 for summary of results). 
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(A) Hypoxia (4h)/reoxygenation (2h)            (B)                   Hypoxia (6h) 
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Figure 6.5   Effect of MnTBAP, L-NAME and spermine nonoate on hypoxia/reoxygenation 

induced cell death in rat cardiomyoblasts. H9C2 cells were seeded at 3x10
4
/well in 24-well 

plate and cultured for 48h in DMEM, 10% FBS at 37°C in 5% CO2 and humidified atmosphere. 

At 70-80% confluence, cells were washed three times with PBS solution and 2% or 21% O2 

equilibrated, HEPES-buffered, phenol red-free DMEM was added. After 4h hypoxia, culture 

medium was replaced with reoxygenated (21% O2+79% N2, A) medium in experimental cells 

and fresh O2 pre-equilibrated (2% O2 + 98% N2, B or 21% O2 +79% O2, C) medium in control 

cells. Cells were independently administered with 10µM SN-50 or 50µM MnTBAP or 100µM 

L-NAME or 100µM spermine nonoate. Untreated cells received an equal volume of vehicle. 

Then, cells were treated with the MTT reagent and experimental cells were reoxygenated for 2h 

at 21% O2 in the chamber whereas control cells at hypoxia and normoxia. After completing 

hypoxic or normoxic incubations, cells were lysed at t= 6h and reincubated for further 16h at 

37°C in 5% CO2 in humidified atmospheric conditions. The optical density was measured at 

570nm. Data represents the mean±S.E.M of three independent experiments conducted in 

triplicates. *** represents P < 0.0001 and ** for P<0.001 (one-way ANOVA), Tukey’s post-hoc 

test. 
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6.3.7 Inhibition of NF-κB did not exacerbate or inhibit changes to metabolic activity during 

hypoxia/reoxygenation. 

As shown in figure 6.5A, the inhibition of NF-κB activation with SN-50 during reoxygenation 

period did not affect the cellular metabolic activity compared to untreated cells. Treatment with 

SN-50 in control hypoxic cells during the last 2h of hypoxia did not cause a significant change in 

metabolic activity (Figure 6.5B), unlike the inhibition of NF-κB activation with SN-50 during 

chronic, severe hypoxia (Figure 5.12B). 

 

6.4 Discussion 

6.4.1 Hypoxia/reoxygenation-induced ROS/RNS generation and cell death 

Reperfusion refers to the restoration of an oxygenated blood supply to a tissue after a period of 

ischaemia, which has the potential to save tissue from hypoxic/anoxic cell death, but, 

paradoxically, oxygenation may result in permanent damage. Growing evidence from animal 

studies and clinical observations indicates that reperfusion itself can cause cellular or tissue 

injury by increasing free radicals and/or other inflammatory factors as reported by many authors 

(Li and Jackson, 2002; Penna et al., 2009; Jiao et al., 2009; Dhalla and Duhamel, 2007). 

However, the specific mechanism(s) of reperfusion injury, the nature and extent of free radicals 

produced and the effects of severity and duration of previous hypoxia within the cardiac cells 

have not been well documented.  

 

It is clear from the present work that chronic, severe hypoxia (4h) and reperfusion (2h) cause 

overproduction of O2
-• 

/ 
•
NO in rat cardiomyoblasts, probably thereby reducing metabolic 

activity. However, during the present conditions, acute, severe hypoxia (30min)/reoxygenation 

(2h) does not cause any increase in O2
-•
. 
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 Two important sources of O2
-•
/
•
NO generation; mitochondria and NOX have been identified in 

neurones during 2h reoxygenation after 30min ischaemia (Abramov et al., 2007) and 

mitochondria during 15min reoxygenation after 30min ischaemia in cardiomyocytes (Petrosillo 

et al., 2005). In contrast, the present work has shown that acute, severe hypoxia/reoxygenation 

did not elicit increased production of O2
-•
. This was actually a reduction in O2

-•
 production from 

mitochondria, probably due to restoration of the membrane potentials during reoxygenation. 

Chapter 5 showed that during 30min severe hypoxia alone, cell death and the decrease in 

metabolic activity was manifest in the absence of a detectable change in O2
-•
 production (Figure 

4.1). Metabolic recovery of cells during reoxygenation after a brief period of severe hypoxia 

(30min) compared to sustained hypoxia that restores metabolism to normoxic controls is 

consistent with the cardiac protection during reperfusion as previously reported by Serviddio et 

al. (2005).  

 

Sirviddio et al. (2005) showed the recovery of mitochondrial function in rat hearts during 40min 

reperfusion period after 45min ischaemia in respect of mitochondrial glutathione and protein 

oxidation levels. However, the Sirviddio et al. (2005), reperfusion strategy followed hypoxia 

with 3min reperfusion with 150mmHg O2 and 47min reperfusion with 600mmHg O2 .  

 

Reperfusion after chronic, severe hypoxia also elicited a significant recovery of mitochondrial 

metabolism compared to hypoxia alone as measured by the MTT assay, but cells did not recover 

to the extent seen in normoxia. It may suggest that reperfusion after chronic, severe hypoxia is 

the turning point between irreversible cell damage or hypoxic recovery. Jiao et al. (2009) 

recently reported significant apoptotic and necrotic cell death during 3h reperfusion after 30min 

ischaemia induced by coronary occlusion in mouse heart. Potential sources of free radicals 

during hypoxia/reperfusion include mitochondria, NADPH oxidase, NOS isoforms and xanthine 

oxidase as previously reported (Abramov et al., 2007; Meneshian and Bulkley, 2002; Giordano, 

2005; Asimakis et al., 2002; Frantseva et al., 2001).  
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The relative contribution of these systems to cellular outcome during reperfusion after different 

severities of hypoxia has not yet been elucidated. The evidence for the presence of xanthine 

oxidase is lacking in H9C2 cardiomyoblasts and cardiomyocytes. Moreover, Elisabetta et al. 

(2008) showed the failure of xanthine oxidase inhibitor; oxypurinol to inhibit ROS production 

during hypoxia/reperfusion in H9C2 myoblasts. Initial studies in this thesis were not able to 

demonstrate any effect of oxypurinol and therefore, its application was not considered further. In 

the present study, cardiomyoblasts exposed to chronic, severe hypoxia/reoxygenation showed an 

increase in intracellular O2
-•
 and 

•
NO production as measured by DHE and DAF-2-DA 

fluorescent probes respectively. O2
-•
 generation during the reoxygenation phase after hypoxia 

was remarkably suppressed by the superoxide scavenger MnTBAP and this scavenger exerted 

significant protection against chronic, severe hypoxia-induced metabolic inhibition, measured by 

MTT assay.  

 

In the presence of FCCP (mitochondrial uncoupler) and rotenone (complex 1 inhibitor), the 

increase in O2
-•
 and 

•
NO production during chronic, severe hypoxia/reoxygenation and chronic, 

severe sustained hypoxia was abolished, suggesting the contribution of mitochondria as a major 

source of ROS/RNS production during sustained hypoxia and hypoxia/reperfusion. The O2
-•
-

inhibitory effect of FCCP suggests that the loss of mitochondrial membrane potential in 

sustained hypoxia and reoxygenation was the crucial effect. In contrast, Abramov et al. (2007) 

reported a lack of protective effect of FCCP on O2
-•
 generation in neurons during 

ischaemia/reperfusion, which may indicate the contribution of alternative sources of O2
-•
 

production including NADPH oxidase and/or xanthine oxidase or metabolic differences between 

the cell types. Harrison et al. (2003) reported differences in ATP synthase activity in 

compensating ATP demand in neurones and cardiomyocytes.  

In the present study, a significant reduction in O2
-• 

production was obtained during 

hypoxia/reoxygenation but not sustained hypoxia, with apocynin. This indicates the activation of 

NADPH oxidase was responsible for some of the global O2
-•
 production in chronic, severe 

hypoxia/reoxygenation in addition to mitochondrial O2
-•
.  
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The failure of apocynin treatment to inhibit O2
-•
 production in control hypoxic cells (6h) 

indicates the absence of NADPH oxidase activity in these cells. Therefore, these findings 

suggest that activation of NADPH oxidase complex occurs during reoxygenation to produce O2
-•
 

and is in agreement with other investigators (Elisabetta et al., 2008). Others have used different 

hypoxia/reoxygenation conditions and systems than employed in the present study.  

 

Elisabetta et al. (2008) made H9C2 cells anoxic in an anaerobic medium (serum, glucose and 

pyruvate free, 95%N2 and 5%CO2) for 24h and then followed up for 60min during reperfusion in 

normoxic culture medium. Abramov et al. (2007) made neurones chemically anoxic for 30min in 

culture medium (serum and glucose free, 100% N2 or argon) and then exposing cells for 1h 

normoxia. Both investigators reported the sole contribution of NADPH oxidase complex to O2
-•
 

production during the reperfusion phase. Use of 2% O2 tension in the presence of glucose is 

more pathophysiologically likely and has been used here to study free radical generation under 

oxidative stress. Cellular O2 depletion occurs at a faster rate than glucose depletion during 

hypoxia, and inhibition of glucose metabolism in the absence of O2 accelerates consumption of 

the reductant, glutathione, which depends on cellular NADPH for regeneration from the oxidised 

glutathione disulphide form, and poses an additional stress before reperfusion occurs. The 

current strategy has supported the assessment of individual contributions and balance between 

mitochondria and NADPH oxidase to produce O2
-•
 during reperfusion. Therefore, activation of 

different complexes to produce O2
-•
 mainly depends on the severity and duration of hypoxia 

and/or reperfusion and the cell type. 

 

The present data also confirm 
•
NO production during hypoxia/reoxygenation; the inhibition of 

mitochondrial complex I with rotenone blocks electron flux from mitochondrial complex I and 

has a significant impact on 
•
NO generation during sustained hypoxia or reoxygenation. DAF 

fluorescence increases following intracellular oxidation by 
•
NO and/or ONOO

-
. Increased 

production of both O2
-•
 and 

•
NO during hypoxia/reoxygenation may increase ONOO

- 
formation.  
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During reperfusion, at high concentrations, 
•
NO can outcompete intracellular SOD for reaction 

with O2
-•
. ONOO

- 
is formed at a ratio of 1:1, 

•
NO and O2

-•
 (Jiao et al., 2009). In addition, SOD 

activity may be diminished during reperfusion by O2
-•
 (Maulik et al., 1995). As a result, there 

may be sustained ONOO
- 
production. Therefore, the significant reduction of DAF fluorescence 

in the presence of FCCP or rotenone may indicate the absence of O2
-•
 to form ONOO

- 
with 

modest available 
•
NO. Moreover, the disruption of the mitochondrial respiratory chain either 

reduces NOS (mtNOS) activity or the 
•
NO that can be generated by either direct 

disproportionation or reduction of nitrite to 
•
NO under the acidic and highly reduced conditions 

of hypoxia is eliminated (Zweier et al, 1999). Zenebe et al. (2007) and Lacza et al. (2001) 

reported activation of mtNOS in rat hearts by increasing Ca
2+

 during hypoxia/reperfusion, 

thereby enhancing ONOO
-
 and triggering apoptosis.  

 

The reduction in DAF fluorescence in rotenone or FCCP-treated cells during severe 

hypoxia/reoxygenation support the hypothesis of greater contribution of mitochondria to 

generate 
•
NO or ONOO

-
 under these conditions. In the presence of L-NAME, decreased DAF 

nitrosation was observed during sustained hypoxia and hypoxia/reoxygenation and that 

significant reduction may reflect the NOS-dependent 
•
NO production. However, ~30% decrease 

in DAF fluorescence in the presence of L-NAME during reoxygenation and ~20% decrease in 

DAF fluorescence during sustained hypoxia suggests ineffective inhibition or significant non-

enzymatic production of 
•
NO/related species. Lacza et al. (2006) reported the heart 

mitochondrion is capable of significant 
•
NO production via the respiratory chain which is 

independent from mitochondrial NOS and cellular arginine pathway. Lacza et al. (2006) further 

suggested pre-accumulated mitochondrial nitrosothiols could act as 
•
NO donors to produce RNS 

after reaction with O2
-•
. However, functional up-regulation of 

•
NO production from nitrosothiols 

during mild hypoxia is not demonstrated by the current study; therefore further work is 

warranted to clarify the issue.  
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Overproduction of ONOO
-
 can induce lipid, protein and DNA oxidation and ultimately lead to 

cellular dysfunction, induce necrosis and/or apoptosis. Therefore, attempts at blocking either 

•
NO and O2

-•
 overproduction during hypoxia/reperfusion may attenuate tissue injury. The current 

study has demonstrated the inhibition of cells with non-specific NOS inhibitor, L-NAME can 

attenuate 
•
NO production via NOS isoforms and reduce DAF fluorescence during 

hypoxia/reoxygenation whilst the SOD mimetic and ONOO
-
 scavenger, MnTBAP can block the 

formation ONOO
-
 and O2

-•
 (Levrand et al., 2006; Levrand et al., 2005). In contrast to the effects 

of L-NAME, dismutation of O2
-•
 with MnTBAP elicited significant protection against 

hypoxia/reoxygenation-induced loss of metabolic activity, providing evidence for mitochondrial 

metabolic recovery. In the presence of L-NAME during the last 2h of sustained severe hypoxia 

(6h), cells were protected against hypoxia (6h)-induced metabolic loss. The effect of L-NAME 

during sustained hypoxia (6h) alone underlines the efficacy of blocking one arm of ONOO
-
 

formation and the resulted protection against irreversible cell damage induced by hypoxia. This 

data is consistent the protective role of L-NAME against chronic, severe hypoxia-induced 

necrotic and apoptotic cell death as previously described in sections 5.4.4 and 5.4.7. To support 

this, increased 
•
NO production by mitochondria may have deleterious effects for mitochondrial 

regulation (Li et al., 2002). During the late stage of severe hypoxia (2% O2; 4h or 2% O2, 6h), 

•
NO production was significantly increased.  

 

Recent reports suggest the functional activation of the NOS system to produce more 
•
NO during 

hypoxia in cardiomyocytes and coronary microvessels under lower O2 tension (Strijdom et al., 

2006). In contrast, in the presence of L-NAME, the complete inhibition of 
•
NO production via 

NOS isoforms worsens the hypoxia/reperfusion injury. The addition of the 
•
NO donor, spermine 

nonoate (200µM) did not affect the loss of cell viability compared to the viability of control 

hypoxic cells. However, the release of 
•
NO from spermine nonoate was not confirmed by the 

Griess assay, nor was a dose response curve established – it is known that the effects of 
•
NO to 

protect or damage biological systems are highly dose dependent.  
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Therefore, the cardiac protective role of 
•
NO during reperfusion period requires further 

investigation. In support of this hypothesis, Li et al. (2002) reported significantly worsened 

effects of lung injury during air ventilation when cells were pre-treated with L-NAME. These 

authors showed an accumulation of NOS substrates in lungs that were exposed to 

ischaemia/reperfusion. Moreover, Li et al. (2004) suggested an antioxidant effect of 
•
NO that 

protected against ischaemia/reperfusion in lung injury. Kawahara et al. (2006) reported the 

enhanced production of 
•
NO in cardiomyocytes that was critical in compromising cellular ATP 

supply, but conferred a protective role against ischaemia-reperfusion injury. Taken together, the 

current study suggests that the decrease in cell viability or metabolic loss during 

hypoxia/reoxygenation can been attributed to overproduction of ONOO
-
 in the face of 

significantly increased O2
-•
 with partially or increasingly available 

•
NO (Lalu et al., 2002, 

Yasmin et al., 1997). In support of this, Radi at al. (2002) reported a 100-fold increase in ONOO
-
 

production with 10-fold increase in 
•
NO and O2

-•
.  

 

6.4.2 NF-κB activation during hypoxia/reoxygenation 

Inhibition of NF-κB with SN-50 did not exacerbate hypoxia/reoxygenation-induced or hypoxia-

induced metabolic change during the last 2h of normoxia (reoxygenated cells) or hypoxia 

(control cells). In contrast, when SN-50 was added to cells for 4h during severe hypoxia, loss of 

metabolic activity was significantly increased as measured by MTT reduction (Figure: 5.12). 

These data suggest that NF-κB is activated during hypoxia, probably to induce antioxidants 

or/and protective genes but that further exposure to hypoxia (+2h) or reoxygenation (+2h) cause 

a reduction in metabolic activity that is NF-κB independent.  

 

In summary, the present study has confirmed the dual contribution of mitochondria and NADPH 

oxidase to produce O2
-•
 during the early phase of reoxygenation (2h) after chronic, severe 

hypoxia (4h). Chronic, severe hypoxia (4h)/reoxygenation (2h) and sustained hypoxia (6h) 

decrease metabolic activity, but reperfusion only partially restores the metabolic activity.  
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Acute, severe hypoxia (30min)/reoxygenation (2h) did not significantly increase O2
-•
 production, 

and cells recovered from metabolic loss during the reoxygenation period. The 
•
NO production 

during chronic, severe hypoxia/reoxygenation is partly NOS-dependent. The NOS-dependent 

•
NO generation during reoxygenation after hypoxia is cardiac protective against 

hypoxia/reoxygenation-induced cell dysfunction. 

 

Condition Chronic, severe 

hypoxia/reperfusion 

Sustained, severe hypoxia 

Control (2% O2, 6h) 

Normoxia 

Control (21% O2, 6h) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

O2
-· ↑* ↓ ↓ ↓ Χ ↑* ↓ ↓ Χ Χ Χ Χ Χ Χ Χ 

•NO ↑* ↓ ↓ - ↓ ↑* ↓ ↓ - ↓ Χ Χ Χ - Χ 

Inhbitors Ctl MnBP SPN APO LNM Ctl MnBP SPN APO LNM Ctl MnBP SPN APO LNM 

Metabolic 

activity 

↓* ↑ Χ - ↓ ↓*   

 

↑ Χ - ↑ Χ Χ Χ - Χ 

 

 

Table 6.1  Summary of results of chronic, severe hypoxia/reperfusion induced-ROS/RNS 

                  generation and metabolic inhibition.  

Key:  Ctl - control, ROT-rotenone, FCP- FCCP, APO- apocynin, LNM- L-NAME, MnBP-  

           MnTBAP and SPN- spermine Nonoate. 

          ↑*  - Significant increase in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↓*  - Significant decrease in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↑    - Significant increase in treated cells vs. control cells at same O2 tension. 

          ↓    - Significant decrease in treated cells vs. control cells at same O2 tension. 

          Χ   - In treated cells, no significant difference vs. control cells at same O2 tension or if in  

                  control cells (2% O2 or 10% O2), no significant difference vs. normoxic cells or in  

                  normoxic cell shows the basal effect. 

          Χ*-  No significant effect in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ¤   -  Significant increase in control cells (2% O2) vs. cells at 10%O2     

          -       Not available. 
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CHAPTER 7 

ANALYSIS OF REDOX-SENSITIVE 

TRANSCRIPTION FACTORS; NF-κB AND 

Nrf2 DURING HYPOXIA AND 

REOXYGENATION 
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7.1 Preface  

This chapter describes the optimisation of transfection conditions including DNA to 

Lipofectamine ratio to achieve the highest transfection efficiency and determine the activity of 

nuclear factor kappa B (NF-κB) and nuclear factor erythroid-2 related factor 2 (Nrf2) after 

exposing cells to hypoxia alone and hypoxia/reoxygenation. Activation of redox sensitive 

transcription factors; NF-κB and Nrf2 was studied during chronic, severe hypoxia and chronic, 

severe hypoxia/reoxygenation. To find out any cytoprotective role of NF-κB expression, cell 

viability of H9C2 cardiomyoblasts was assessed with inhibition of NF-κB during chronic, severe 

hypoxia. The activation of redox sensitive transcription factor Nrf2 was studied during hypoxia 

and hypoxia/reoxygenation. Nrf2 activation was further assessed in the presence of the SOD 

mimetic; MnTBAP, NOS inhibitor; L-NAME and the nitric oxide donor; spermine nonoate to 

determine the contribution of O2
-•
, 

•
NO and related species such as ONOO

-
 to activate Nrf2 

during chronic, hypoxia and hypoxia/reoxygenation. A possible mechanism for Nrf2 activation 

during hypoxia and hypoxia/reperfusion is discussed. 
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7.2 Introduction  

7.2.1 NF-κB activation during hypoxia 

Hypoxia is a stress condition of low O2 concentration. It has clinical significance in 

cardiovascular disease-related conditions such as myocardial infarction, ischaemia reperfusion 

and heart failure. However, cells have their own natural defence mechanisms to protect against 

hypoxia-induced deleterious effects by expressing a number of genes as a result of transcription 

factor activation during hypoxia. The regulated genes/transcription factors include erythropoietin 

and vascular endothelial growth factor by hypoxia inducible factor (Hif-1α), heat shock proteins 

by heat shock factors. However, the cellular signals that mediate the activation of transcription 

factors by hypoxia alone have not been clearly elucidated. It has been reported that growing 

numbers of stress-related genes are involved in the activation of transcription factor, NF-κB 

(Kukreja, 2002). It is evident that activation of NF-κB occurs rapidly upon ischaemic insult in 

many tissues such as renal epithelial cells (Lee and Han, 2005), brain, liver and myocardium 

(Kukreja, 2002). Li et al. (1999a) reported a 2-fold increase of NF-kB DNA binding activity in 

rat heart following a brief period of ischaemia. 

 

The NF-κB-dependent activation of gene transcription does not require de novo protein synthesis 

and this is a characteristic feature of early response gene inducers. This feature allows activated 

NF-κB to bind to a promoter site where it can initiate the rapid synthesis of protective and 

signaling proteins after exposure to various stress conditions including hypoxia. The activation 

of NF-κB during hypoxia or ischaemia or reperfusion is complex as the family of transcription 

factors autoregulate themselves. There are three distinct subunits of NF-κB found in a cells; p50, 

p65 and IkBα. The major isoforms of NF-κB is inactive in the cytoplasm with the inhibitory 

subunit, IkBα, bound to the p50-65 heterodimer. Upon activation, phosphorylation of the IkBα 

subunit takes place and results in the cleavage of IkBα. Then, the p50-p65 heterodimer complex 

is translocated from the cytoplasm to the nucleus where it binds with high affinity kB binding 

motifs.   
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In vitro studies have shown that c-AMP-dependent kinases, membrane-associated kinases and 

heme-regulated kinases are responsible for the activation of NF-κB (Lee, 2003; Kukreja, 2002; 

Guro et al., 2001). It has been reported that ROS, TNF-α , PMA and LPS cause activation of 

membrane associated kinases (src, ras and raf) which lead to dissociation of IkBα and the 

activation of NF-κB  (Kukreja, 2002). NF-κB has been reported to regulate iNOS gene 

expression in rat glioma cells stimulated by TNF-α and LPS (Lee et al., 2003) and increases the 

production of 
•
NO in LPS treated cells (Lee et al., 2003). Moreover, NF-κB activation induces 

anti-apoptotic genes and proteins such as cellular inhibitors of apoptosis (cIAP-2), Bcl-2, haem 

oxygenase-1 (HO-1) and MnSOD (Koong et al., 1994; Lee, 2003). It has been documented that 

activation of NF-κB may reflect an early response for the transcription of redox-sensitive genes 

whose products may have a vital role during defence mechanism against hypoxia. Indeed, the 

activation of the NF-κB signaling pathway is sufficient to suppress cell death of ventricular 

myocytes during chronic, severe hypoxia for 24h (Regula et al., 2004).  

 

In contrast, it has been reported that reduction of infarct size occurred in rat hearts when NF-κB 

activation was inhibited by specific peptide inhibitors; PR11 and PR39 (Adrienn et al., 2003). 

Moreover, Zingarelli et al. (2002) have reported that the sesquiterpene lactone parthenolide; the 

inhibitor of Ikk and NF-κB activation, reduced reperfusion injury in rat hearts. Xuan et al. (1999) 

reported that activation of NF-κB is essential to achieve ischaemia preconditioning after 24h. 

However, prolonged activation of NF-κB may contribute to cardiac dysfunction and 

ischaemia/reperfusion injury through over expression of myocardial cytokines (Kukreja, 2002). 

Therefore, various explanations about the role of NF-κB during hypoxia or ischaemia with 

regard to cell death and cardiac protection must be investigated. 
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7.2.2 Nrf2 activation during hypoxia and hypoxia/reperfusion 

It has been widely accepted that exposure to ischaemia or hypoxia or reperfusion leads to 

induction of protective genes, however, the mechanism of their induction remains unclear. 

Transcriptional up-regulation of cytoprotective genes is responsible for buffering the cell’s 

―antioxidant capacity‖. These genes are responsible for maintenance of cellular glutathione 

content and conjugational activity. Moreover, they play a vital role in detoxification of damaging 

radical products of oxidative stress which include glutathione S-tranferase, aldehyde 

dehydrogenases, haem oxygenase-1, ferritin and quinine oxidoreductases such as NADPH 

quinone oxidoreductase (Nioi et al., 2003).  

 

Nrf2 activation during hypoxia or ischaemia/reperfusion occurs due to an alteration in the redox 

state of cells by increased amounts of ROS/RNS which can activate an antioxidant response to 

protect themselves from future oxidant damage (Nioi et al., 2003). Nrf2 is a flavoprotein which 

catalyses the two electron reduction of quinones, thereby inhibiting redox cycling of xenobiotics. 

Recent studies indicate that Nrf2 is essential for transcriptional activation of mouse NQO1 and 

other cytoprotective genes following treatment with electrophiles (Itoh et al., 1997). Therefore, 

Nrf2 transcription factor is reported as a master regulator of this specific antioxidant phenotype 

(Mathers, 2004).  

 

The promoter regions of the Nrf2 dependent genes are cis-acting sequences and antioxidant 

response elements (AREs). AREs have been identified in variety of genes including NQO1. The 

consensus sequence of ARE is important in transcriptional activation of NQO1 upon oxidative 

stress. During oxidative stress, Nrf2 can bind with the ARE sequence and thereby increased 

antioxidant-gene expression occurs (Itoh et al., 1997). During normoxia, this transcription factor 

is held in the cytoplasm by a cytoskeletal-associated inhibitory protein; Kelch-like ECH-

associated protein 1(KEAP1), however, Nrf2 is constantly targeted for proteasomal degradation.  
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During oxidative stress, thiol oxidation occurs in cysteine residues of the hinge region of 

KEAP1, resulting in a conformational change in KEAP1 with the loss of Nrf2 binding and 

proteosomal targeting of KEAP 1 (Li et al., 2004). Then, Nrf2 accumulates and localizes to the 

nucleus and with its cofactors, up-regulates cytoprotective genes through the transcriptional 

activation of ARE. A reduction in infarcted volume is observed following focal cerebral 

ischaemia in the presence of the Nrf2 inducer; sulforaphane (Shah et al., 2007).  

 

Moreover, Lee and Johnson, (2004 ) showed that neural cells that lacked Nrf2 (Nrf2-/- mice) 

were more susceptible to oxidative stress than control neurons from control animals (Nrf2 +/+ 

wild mice), however, when the cells (Nrf2-/- mice) were transfected with a functional Nrf2 

construct, they became resistant to oxidative stress. Dhakshinamoorthy and Porter, (2004) 

reported that dominant negative-Nrf2 stable neuroblastoma cells were more prone to apoptosis 

induced by nitric oxide when they were silenced with siRNA.  

 

The contribution of 
•
NO and/or O2

-•
 or related species including ONOO

-
 to modulate Nrf2 

activity and thereby affect cell death has not yet been studied in detail during hypoxia or 

hypoxia/reperfusion. Excessive production of O2
-•
 and 

•
NO may result overproduction of ONOO

-
 

which is known to cause cell death and has been implicated in the pathophysiology of 

ischaemia/reperfusion and inflammation. However, ONOO
-
 produced in low amounts may serve 

as an intracellular signal molecule inducing the adaptive survival response to cellular stress. In 

this context, it has been reported that expression of several phase II detoxifying or antioxidant 

enzymes such as glutathione S-transferase and Mn superoxide dismutase (MnSOD) occurs in the 

presence of ONOO
-
 (Kang et al., 2002; Li et al., 2006). Moreover, ONOO

-
 has also been 

reported to induce HO-1 in rat liver in vivo (Motterlini et al., 1996). The underlying mechanisms 

of ONOO
-
 or other ROS/RNS including O2

-•
 and 

•
NO to protect cardiomyoblasts via modulation 

of NF-κB and/or Nrf2 during hypoxia/reperfusion remains to be clarified. 
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7.3 Results  

7.3.1 DNA: Lipofectamine 2000 ratio 

In order to achieve higher transfection efficiency, the ratio of total DNA and Lipofectamine 2000 

was optimised for each transfection with pGL 3 [nqo1/luc] plasmid for Nrf2 activation and pGL3 

[3enh/conA/luc] for NF-κB  activation and pGL 4.4 [hRluc/TK] for TKRL activation in control 

cells as described in section 2.3.21.1 and 2.3.21.2. 

 

Lipofectamine 2000 is supplied as a 1mg/ml solution. According to the manufacturer’s 

instructions, generally the mass ratio of DNA to Lipofectamine 2000 is 1:2 to 1:3; however a 

greater ratio can be employed in transfection. As shown in Figure 7.1, the amount of plasmid 

DNA is held constant at 1.2µg (experimental plasmid DNA to control plasmid at 1:10 ratio) and 

a significant increase in Con A promoter mediated luciferase gene expression was observed at 

1:4 ratio (DNA to Lipofectamine 2000), whereas a significant increase in ARE/NQO1 mediated 

luciferase gene expression was observed at both 1:3 and 1:4 ratio. Therefore, all subsequent 

experiments were conducted using 1:4, plasmid DNA to Lipofectamine 2000 ratio.  

 

7.3.2 NF-κB   and Nrf2 activation during chronic, severe hypoxia 

It has been reported that a marked increase in NF-κB activation occurs during hypoxia (Koong et 

al., 1994). To test the hypothesis that NF-κB  mediates a cellular defence mechanism during 

chronic, severe hypoxia, H9C2 cells at 90-95% confluence were co-transfected with pGL3 

[3enh/conA/luc]/ pGL 4.4 [hRluc/TK] : Lipofectamine at 1:4 ratio and incubated for 24h at 37ºC 

in a humidified atmosphere of 5% CO2 and 95% air. After 24h, cells were washed with PBS and 

loaded with 2% O2 equilibrated, HEPES buffered phenol red-free DMEM and incubated at 2% 

O2 for 4h and then firefly to renila luciferase luminescence was measured as previously 

described in Section 2.3.21.2. 
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Figure 7.1  Effect of plasmid DNA: Lipofectamine 2000 ratio on reporter transfection 

efficiency. H9C2 cells grown at 90-95% confluence in 24-well plates were washed with PBS 

and Opti-MEM and transfected with NF-κB  plasmid; pGL 3 [3enh/conA/luc]) DNA with control 

plasmid; pGL 4.4 [hRluc/TK] DNA in total of 1.2µg/ml DNA to Lipofectamine 2000 at 1:3 and 

1:4 ratios. Same procedure was applied to Nrf2 plasmid; pGL3 [nqo1/luc]/TKRL plasmid with 

pGL 4.4 [hRluc/TK]. Following transfection, cells were incubated for 24h. Then, cells were 

washed gently, loaded with phenol red-free medium containing 1µg/ml LPS and incubated for 

4h at 37ºC in a humidified atmosphere of 5% CO2 and 95% air. Plates were centrifuged and 

medium was replaced with 100µl of phenol red-free DMEM. Then, firefly to renila luciferase 

luminescence was measured at 542nm in a Spectramax luminometer at room temperature. Data 

were normalised as described in section 2.3.21.2. Data represents the mean±S.E.M of three 

independent experiments conducted in triplicates. *** represents P < 0.0001 and ** represents 

P<0.001 (one-way ANOVA), Tukey’s post-hoc test. 

 

As illustrated in Figure 7.2 and 7.3, an increase in luciferase gene expression suggest that 

chronic, severe hypoxia significantly increased the NF-κB /DNA  and Nrf2/DNA binding 

activity compared to control cells maintained at 21% O2 normoxia (P<0.001). Cells treated with 

the NF-κB inhibitor; SN-50 showed suppression of NF-κB - activation as indicated by a lower 

value ratio of firefly/renila luminescence. The suppression of NF-κB /DNA binding was 

significant in the presence of the NF-κB  inhibitor; SN-50 in positive LPS-treated controls, 

whereas LPS treatment-induced significant NF-κB  (Figure. 7.2) and Nrf2 activity (Figure. 7.3) 

compared to untreated control cells as indicated by luciferase gene expression and luminescence 

(P<0.001,control vs. treatment). 
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Figure 7.2  Effect of hypoxia on NF-κB /DNA binding activity in H9C2 cells subjected to 

chronic, severe hypoxia. H9C2 cells grown at 90-95% confluence in 24-well plates were 

washed with PBS and Opti-MEM and transfected with pGL 3 [3enh/conA/luc]/ pGL 4.4 

[hRluc/TK]  plasmids (1.2µg/ml): Lipofectamine 2000 complexes at 1:4 ratio for NF-κB  

expression and cells were then incubated for further 24h. Then, cells were washed gently, loaded 

with 2% O2 equilibrated, HEPES buffered phenol red-free DMEM and incubated at 2% O2 for 

4h. Positive control cells were loaded with phenol red-free DMEM, containing 1µg/ml LPS and 

incubated for 4h at 37ºC in a humidified atmosphere of 5% CO2 and 95% air. After 4h, plates 

were centrifuged and medium was replaced with 100µl of phenol red-free DMEM and firefly to 

renila luciferase luminescence was measured at 542nm in a Spectramax luminometer at room 

temperature. Data were normalised as described in section 2.2.8.9.2. Data represents the 

mean±S.E.M of three independent experiments conducted in triplicates. * represents P < 0.05 

(one-way ANOVA), Tukey’s post-hoc test. 

 

 

7.3.3 Nrf2 activation during hypoxia and hypoxia/reoxygenation 

A marked increase in the activation of antioxidant transcription factor Nrf2 during ischaemia- 

reperfusion has been reported (Leonard et al., 2006). To ascertain whether this occurs in H9C2 

cells during chronic, severe hypoxia or hypoxia/reperfusion, cells at 90-95% confluence were co-

transfected with pGL 3 [nqo1/luc] plasmid harbouring the  NQO1 promoter / pGL 4.4 

[hRluc/TK] control plasmid : Lipofectamine  at 1:4 ratio and incubated for 24h at 37ºC in a 

humidified atmosphere of 5% CO2 and 95% air.  
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After 24h, cells were washed with PBS and loaded with 2% O2 equilibrated, HEPES buffered 

phenol red-free DMEM and incubated at 2% O2 for 4h. For reperfusion, the medium was 

replaced with pre-equilibrated oxygenated medium and incubated for a further 2h at 21% O2. 

The firefly to renila luciferase luminescence ratio was measured as described in section 2.3.21.2. 

 

 

 

 

 

 

 

 

 

Figure 7.3  Effect of hypoxia on Nrf2/DNA binding activity in H9C2 cells subjected to 

chronic, severe hypoxia. H9C2 cells grown at 90-95% confluence in 24-well plates were 

washed with PBS and Opti-MEM and transfected with pGL3[nqo1/luc]/pGL 4.4 [hRluc/TK]  

plasmids (1.2µg/ml): Lipofectamine 2000 complexes at 1:4 ratio for NF-κB  expression and cells 

were then incubated for a further 24h. Then, cells were washed gently, loaded with 2% O2 

equilibrated, HEPES buffered phenol red-free DMEM and incubated at 2% O2 for 4h. Positive 

control cells were loaded with phenol red-free DMEM, containing 1µg/ml LPS and incubated for 

4h at 37ºC in a humidified atmosphere of 5% CO2 and 95% air. After 4h, plates were centrifuged 

and medium was replaced with 100µl of phenol red-free DMEM and firefly to renila luciferase 

luminescence was measured at 542nm in a Spectramax luminometer at room temperature. Data 

were normalised as described in section 2.3.21.2. Data represents the mean±S.E.M of three 

independent experiments conducted in triplicates. *** represents P < 0.0001 and ** represent 

P<0.001 (one-way ANOVA), Tukey’s post-hoc test. 
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Figure 7.4   Effect of severe hypoxia and hypoxia/reoxygenation on Nrf2/DNA binding 

activity in H9C2 cells. H9C2 cells grown at 90-95% confluence in 24-well plates were washed 

with PBS and Opti-MEM and transfected with pGL3 [3enh/conA/luc]/pGL 4.4 [hRluc/TK] 

(1.2µg/ml): Lipofectamine 2000 complexes at 1:4 ratio for NF-κB to TKRL expression and cells 

were then incubated for a further 24h. Then, cells were washed gently, loaded with 2% O2 

equilibrated, HEPES buffered phenol red-free DMEM and incubated at 2% O2 for 4h. Control 

normoxic cells were incubated at 21% O2 for 4h and positive control cells were loaded with 

phenol red-free DMEM, containing 100µM H2O2 and incubated for 6h at 37ºC in a humidified 

atmosphere of 5% CO2 and 95% air. After 4h, experimental cells were centrifuged and medium 

was replaced with pre-equilibrated (21% O2) medium and further incubated for 2h at 21% O2. 

Control pates were centrifuged and medium was replaced with preequilibrated medium (2% O2 

or 21% O2) accordingly and further incubated for 2h. After 6h (hypoxia/reoxygenation or 

sustained hypoxia or normoxia), plates were gently centrifuged and medium was replaced with 

100µl of phenol red-free DMEM and firefly to renila luciferase luminescence was measured at 

542nm in a Spectramax luminometer at room temperature. Data were normalised as described in 

section 2.3.21.2. Data represents the mean±S.E.M of three independent experiments conducted 

in triplicates. *** represents P < 0.0001 and ** represents P<0.001 (one-way ANOVA), Tukey’s 

post-hoc test. 

 

The transfection of H9C2 cells with pGL 3 [nqo1/luc] plasmid leads to ARE-mediated luciferase 

gene expression (Nioi et al., 2003). Figure 7.3 confirms that chronic,severe hypoxia promotes 

Nrf2 activity.  
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As illustrated in figure 7.4, Nrf2 DNA/binding activity was significantly increased during 

chronic, severe hypoxia/reoxygenation and sustained hypoxia alone when compared to normoxia 

alone (P<0.001, hypoxia vs. hypoxia/reoxygenation). However, Nrf2, DNA/binding activity after 

during hypoxia/reoxygenation was not significantly different to chronic, severe hypoxia (6h) 

alone. The positive control, LPS-treated cells showed a significant increase in Nrf2/DNA 

binding activity after 4h compared to control normoxic cells (Figure 7.3), whereas the positive 

control, H2O2 (6h) cells showed a trend for increased Nrf2/DNA binding response, but it was not 

significant compared to control normoxic cells (Figure 7.4) (see Table 7.1 for summary of 

results).  

 

7.3.4 Nrf2 activation during severe hypoxia/reoxygenation in the presence of SOD mimetic; 

MnTBAP, non-selective NOS inhibitor; L-NAME and 
•
NO donor; spermine nonoate. 

 

In order to find out the effect of O2
-•
 and 

•
NO on Nrf2 activation during severe 

hypoxia/reperfusion, cells were initially exposed to chronic, severe hypoxia for 4h and then  

subjected to reoxygenation (2h) in the presence of a SOD mimetic; 50µM MnTBAP, or a non-

selective NOS inhibitor; L-NAME or the 
•
NO donor; spermine nonoate.  

 

In the presence of MnTBAP, ARE-mediated luciferase gene expression in sustained hypoxia and 

hypoxia/reoxygenation was significantly reduced, suggesting the suppression of Nrf2/DNA 

binding activity in ARE/NQO1 promoter region compared to normoxia alone. It further showed 

that O2
-•
 is important in activation of Nrf2 gene transcription during both hypoxia and 

hypoxia/reoxygenation. The non-selective inhibition of NOS isforms in the presence of L-

NAME, resulted in a decrease in ARE/NQO1 mediated luciferase gene expression during 

sustained hypoxia (6h), but it was not significant compared to normoxic controls (Figure 7.5A).  
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In contrast, in the presence of L-NAME, ARE/NQO1 mediated luciferase gene expression was 

significantly reduced during hypoxia/reoxygenation compared to normoxic controls, suggesting 

that 
•
NO generation is important for Nrf2 activation during reoxygenation period.  

 

In the present study, there is no significant increase in Nrf2 activity in the presence of the 
•
NO 

donor; spermine nonoate as measured by luciferase gene expression during 

hypoxia/reoxygenation and normoxia. Perhaps, Nrf2 activation is 
•
NO concentration-dependent 

or may require alternative species to induce activation (Figure 7.5B and 7.5C).  

 

In the presence of MnTBAP, ARE/NQO1 mediated luciferase gene expression was not 

significantly changed during normoxia, suggesting that O2
-•
 generation during normoxia does not 

contribute to Nrf2 activation. Moreover, the addition of the 
•
NO donor; spermine nonoate during 

normoxia did not increase the activation of Nrf2/DNA binding significantly with ARE/NQO1 

promoter gene (Figure 7.5C), suggesting that 
•
NO alone is not responsible for Nrf2 activation 

(see Table 7.1 for summary of results). 
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(C)          Normoxia (6h)            
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Figure 7.5 ROS or RNS-dependent activation of Nrf2 gene expression during 

hypoxia/reoxygenation. H9C2 cells grown at 90-95% confluence in 24-well plates were washed 

with PBS and Opti-MEM and co-transfected with pGL 3 [nqo1/luc] plasmid / pGL 4.4 

[hRluc/TK] plasmid (1.2µg/ml): Lipofectamine 2000 complexes at 1:4 ratio and cells were then 

incubated for a further 24h. After that, cells were washed gently and loaded with 2% O2 

equilibrated, HEPES buffered phenol red-free DMEM and incubated at 2% O2 for 4h. After 

hypoxia, existing culture medium was replaced with pre-equilibrated reoxygenated medium 

containing 50µM MnTBAP or 100µM L-NAME or 100µM spermine (Sp) nonoate and further 

incubated for 2h at 21% O2. Hypoxic and normoxic controls were also treated as appropriate. 

After hypoxia (A) or reoxygenation (B) alone or normoxia (C), firefly to renila luciferase 

luminescence was measured at 542nm in a Spectramax luminometer at room temperature. Data 

were normalised as described in section 2.3.21.2. Data represents the mean±S.E.M of three 

independent experiments conducted in triplicate. ** represents P<0.001 and *** represents P < 

0.0001 (one-way ANOVA), Tukey’s post-hoc test. 
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7.4 Discussion 

7.4.1 NF-κB activation during hypoxia 

The present study indicates that the transcription factor, NF-κB may play a role in cardiac 

protection against hypoxic injury. This is supportive of previous data, that NF-κB activation may 

play a vital role in ischaemic preconditioning (Kukreja, 2002). Others have shown that the NF-

κB pathway is involved in the activation of apoptosis through suppression of bcl-2 as previously 

reported in aortic endothelial cells during hypoxia (Matsushita et al., 2000). In the present study, 

a significant increase in con-A promoter mediated luciferase gene expression suggests an 

increase in the activation of NF-κB /DNA binding during chronic, severe hypoxia compared to 

normoxia treated controls. The observed increase in NF-κB activation associates with O2
-•
 

production during chronic, severe hypoxia (section 4.4.1). The inhibition of NF-κB activation in 

the presence of the NF-κB inhibitor, SN-50 was associated with an increase in cell death by 40% 

and the presence of SN-50 reduced NF-κB activation to the same as observed in normoxia 

controls in the current reporter assay. 

 

 A statistically significant increase in LPS-induced NF-κB activation was observed, and was 

inhibited by SN-50 according to the conditions employed in present system. A significant 

increase in NF-κB activity occurred at 4h during glucose-oxygen deprivation in cerebral 

endothelial cells with a 10% reduction in cell viability after 8h of oxygen-glucose deprivation 

(Lee, 2003). In contrast, H9C2 cells showed higher sensitivity in the current cell-system of 2% 

O2 hypoxic medium containing 4.5g/L glucose and significant cell death was induced at 4h.  

Koong et al. (1994) showed the activation of NF-κB during 0.02% hypoxia for 4h in Jurkat-T 

cells grown in culture medium containing 10% FBS and 4.5g/L glucose. However, hypoxia-

induced cell death was not measured. Regula et al. (2004) reported a significant decrease in 

apoptotic cell death during hypoxia (pO2 <5mmHg, 24h) in ventricular myocytes transfected 

with luciferase reporter plasmid after activation of IkB-wt mediated NF-κB gene transcription 

compared to normoxic cells.  
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To test the role of hypoxia alone, measurement of cell metabolic activity during chronic, severe 

hypoxia in cardiomyoblasts transfected with the luciferase reporter plasmid containing NF-κB 

promoter site has been studied. Therefore, the present system investigates the balance between 

hypoxia-induced cell death and NF-κB activation-induced cell protection. 

 

It is presumed that redox imbalance during hypoxia may have led to IkBα phosphorylation and 

ubiquitination (4h), during chronic, severe hypoxia leading to NF-κB release. Subsequent 

nuclear translocation of the activated p65 subunit (containing transactivation domain) then 

activates the con-A promoter of the plasmid and thereby, induces luciferase gene expression in 

transiently transfected H9C2 cells (Gao et al., 2005). Ischaemic preconditioning is an important 

area for potential treatment of ischaemic reperfusion injury. Myocardial protection by NF-κB 

activation leads to a reduction of inflammation or upregulation of protective enzymes such as 

MnSOD and iNOS (Adrienn et al., 2003; Nguyen et al., 2009; Rushworth et al., 2008). In 

summary, the present study suggests NF-κB activation as a therapeutic target to protect cells 

against myocardial hypoxic injury. It has been reported that activation of NF-κB occurs during 

myocardial reperfusion (Regula et al., 2004). Therefore, further work should investigate the 

effect of hypoxia/reperfusion on NF-κB activation and its association with hypoxia/reperfusion-

induced cell death using this reporter cell line. 

 

7.4.2 Nrf2 activation during chronic, severe hypoxia and hypoxia/reoxygenation 

ROS/RNS generated during hypoxia, hypoxia/reperfusion have been proposed to act as 

signalling intermediates for cellular defence, or preconditioning, however downstream targets 

have not been fully elucidated. Nrf2 activation occurs due to an alteration in the redox state of 

cell in the presence of increased amounts of ROS/RNS. Therefore, the present study examined 

the pattern of Nrf2 mediated reporter gene expression during chronic, severe hypoxia and 

hypoxia/reperfusion (severe hypoxia for 4h+reoxygenation for 2h) and also has investigated the 

role of O2
-•
 and 

•
NO production in Nrf2 activation.  
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According to recent reports, Nrf2-mediated antioxidant gene expression affords a highly specific 

and co-ordinated response to protect the cells against hypoxia or hypoxia reperfusion-induced 

oxidative stress (Nguyen et al., 2009; Dreger et al., 2009; He et al., 2009).  

 

Moreover, the activation of Nrf2 has been identified as an inducer of antioxidant genes; NQO1, 

MnSOD, iNOS and the GST pathway (Rushworth et al., 2008; Nioi et al., 2003; Nguyen et al., 

2009). Evidence to support this has been gained by increased activation of ARE/NQO1 mediated 

Nrf2 reporter gene expression during chronic, severe hypoxia and hypoxia/reoxygenation 

compared to normoxic controls.  

 

The current study presents evidence that supports the concept that hypoxia and 

hypoxia/reoxygenation-dependent activation of Nrf2 is mediated through ROS/RNS production. 

This was evidenced through the use of superoxide dismutase mimetic; MnTBAP, which resulted 

in an inhibition of activation of Nrf2 during hypoxia and hypoxia/reperfusion. Previous work 

(chapter 4) confirmed the significant reduction of O2
-•
 production in the presence of MnTBAP, 

during chronic, severe hypoxia. Similarly, in the presence of the non-selective NOS inhibitor; L-

NAME, Nrf2 activation was significantly decreased during hypoxia reoxygenation, suggesting 

that 
•
NO generation may have contributed to Nrf2 activation, but not O2

-•
 generation alone.  

 

During hypoxia alone, the presence of L-NAME showed a trend to protect against Nrf2 

activation, but was not statistically significant. In contrast, in the presence of MnTBAP, 
•
NO 

generation from NOS would induce Nrf2, but no activation of Nrf2 was observed, suggesting 

that 
•
NO alone is not responsible for Nrf2 activation. This is further evident as there is no 

significant increase in Nrf2 activation upon addition of 
•
NO donor, spermine nonoate in hypoxia, 

hypoxia/reperfusion and normoxia.Supporting this, Li et al. (2006) reported that ONOO
-
 

activates Nrf2 via PI3K/Akt signalling and enhances Nrf2–ARE binding, which leads to 

upregulation of HO-1 expression in nitrosative stress in PC12 cells.  
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During hypoxia/reoxygenation in the presence of L-NAME, the significant inhibition of Nrf2 

activation suggests a requirement for 
•
NO production possibly to make ONOOˉ, as an Nrf2 

inducer. In contrast, Nrf2 activation during normoxia was not affected by the presence of 

MnTBAP, L-NAME and spermine nonoate. In summary, the present study concludes that Nrf2 

activation depends on O2
-.
 and 

•
NO, probably to generate ONOOˉ during hypoxia and 

hypoxia/reperfusion.  

 

(A) 

Condition Chronic, severe hypoxia  

(2% O2, 4h) 

Chronic, mild hypoxia  

(10% O2 ,4h) 

Chronic normoxia  

(21% O2, 4h) 

Inhibitors Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM Ctl ROT FCP APO LNM 

NFkB 

activity 

↑* ­ ­ ­ ­ ­ ­ ­ ­ - Χ Χ Χ Χ Χ 

Nrf2 

activity 

↑* ­ ­ ­ ­ ­ ­ ­ ­ - Χ Χ Χ Χ Χ 

 

(B) 

Condition Chronic, severe 

hypoxia/reperfusion 

Sustained, severe hypoxia 

Control (2% O2, 6h) 

Normoxia 

Control (21% O2, 6h) 

Inhbitors Ctl MnBP SPN APO LNM Ctl MnBP SPN APO LNM Ctl MnBP SPN APO LNM 

Nrf2 

activation 

↑* ↓ Χ - ↓ ↑* ↓ Χ - ↓ Χ Χ Χ - Χ 

 

Table 7.1  Summary of results of chronic, severe hypoxia and hypoxia/reperfusion 

                  induced - NFkB and Nrf2 activation.             

       Key:  Ctl - control, ROT-rotenone, FCP- FCCP, APO- apocynin, LNM- L-NAME, 

                  MnBP- MnTBAP and SPN- spermine Nonoate. 

          ↑*  - Significant increase in control cells (2% O2 or 10% O2) vs. normoxic control cells. 

          ↓    - Significant decrease in treated cells vs. control cells at same O2 tension. 

          Χ   - In treated cells, no significant difference vs. control cells at same O2 tension or if in  

                  control cells (2% O2 or 10% O2), no significant difference vs. normoxic cells or in  

                  normoxic cell shows the basal effect. 

          -       Not available. 
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8.1 Discussion 

Pathobiology of ischaemia‐reperfusion injury in the myocardium has long been established in in 

vivo and in vitro vascular research. Antioxidants in cardiomyocytes maintain redox homeostasis 

and any perturbation of its status has distinctive deleterious effects. It appears that while 

excessive generation of reactive species (Chapter 4 and Chapter 6) leads to cellular injury 

(Chapter 5 and Chapter 6), their regulated generation may cause transient and reversible 

modifications leading to signal transduction for induction of adaptive responses (Chapter 7). 

Taken together, the present study demonstrated that generation of reactive oxygen‐nitrogen 

species in cardiomyocytes plays a central role in mediating both cardiac injury and 

cardioprotection. 

 

It has been suggested that increased levels of ROS are produced during hypoxia although others 

have disputed this (Waypa and Schumacker, 2005; Toescu, 2004; Duranteau et al., 1998). Others 

propose that ROS production during hypoxia is an artifact of analytical methods, where 

hydroethidine may be acting as a mitochondrial membrane potential sensor detecting 

depolarisation that occurs during hypoxia (Budd et al., 1997). However, these arguments can be 

discounted if the fluorescence of superoxide-dependent oxidation product, 2-OH-E
+
 is analysed 

rather than oxidised ethidine and if changes observed after hypoxia are maintained in lysates; 

after lysis, all oxidised hydroethidine is released from organelles and effects on fluorescence due 

to different pH between subcellular compartmentalization are eliminated (Luetjens et al., 2000; 

Zhao et al., 2003).  

In this study, analysis of H9C2 cell fluorescence attributable to 2-OH-E
+
 was not different 

between lysates and intact cells supporting the hypothesis of present study that an increase in 

fluorescence during hypoxia is attributable to mitochondrial superoxide anion radical production 

(Chapter 4). Moreover, to minimize the contribution of artefactual oxidation due to 

photooxidation, all experiments were conducted in the dark and old culture medium was 

replaced with fresh pre-equilibrated medium to minimize background fluorescence prior to 

analysis (Chapter 3).  
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Fluorescence of DHE or DAF was measured or visualized according to optimum incubation 

times in respect to stability of oxidized probe, minimal fluorescent decay and low light excitation 

in order to minimise photo-activation (Chapter 4) (Abramov et al., 2007; McArdle et al., 2005; 

Murrant et al., 1999). 

 

The present study describes a systematic, time and dose-dependent study of the kinetics and 

effects of ROS/RNS formation during hypoxia in H9C2 rat cardiac myoblasts which show 

morphological, biochemical and electrophysiological properties of cardiac cells but with the 

advantage of being derived from a single clonal population (Hescheler et al., 1991). The present 

study has established a culture system which mimics a physiological ischaemic period. Cells 

were maintained in DMEM as O2 depletion occurs at a faster rate than glucose depletion during 

hypoxia, and inhibition of glucose metabolism accelerates consumption of the reductants, 

glutathione, as cellular NADPH is depleted, posing hypoxic cells under additional oxidative 

stress.  

 

Cardiac myoblasts exposed to 0.23mg/L O2 (severe hypoxia) showed a reduction in metabolic 

activity associated with oxidative phosphorylation and a reduction in membrane integrity (PI 

uptake) during acute and chronic, severe hypoxia. During acute, severe hypoxia, cell death was 

manifest in the absence of a detectable change in O2
-•
 or 

•
NO production (Table 8.1A), whereas 

others have reported induction of ROS/RNS in different hypoxic models (Abramov et al., 2007; 

Becker et al., 1999). Together these data suggest that either; (1) the steady state O2
-•
 or 

•
NO level 

is unchanged during an acute hypoxic event; or (2) the steady state of O2
-•
 in the cell is 

maintained although its rate of production may be increased as it is rapidly removed through 

dismutation by SOD and subsequent degradation by catalase or by reaction with other molecules 

e.g. proteins, lipids and DNA or production of ONOO
- 
(Aulak et al., 2004). In the present study, 

there was ample evidence for an accumulation of protein carbonyls during acute severe hypoxia 

which fits with this hypothesis (Kowaltowski and Vercesi, 1999; Levraut et al., 2003) (Table 

8.1A).  
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Intracellular 
•
NO production during acute, severe hypoxia may trigger tyrosine nitration which is 

a biomarker for 
•
NO generation in cells (Aulak et al., 2004). Present study has not described the 

investigation of tyrosine nitration, although it is warranted as a future direction. Cell death 

during chronic, severe hypoxia; metabolic loss, necrosis and apoptosis was associated with 

significantly increased O2
-•
 and 

•
NO levels, measured by DHE and DAF respectively. There is a 

high chance of ONOO
- 

formation with the increased production of both O2
-•
 and 

•
NO. 

•
NO 

production during chronic, severe or mild hypoxia is partly NOS-dependent as evident by the 

decrease in DAF fluorescence in the presence of L-NAME (Table 8.1A).  

 

It is presumed that mtNOS contributes to 
•
NO production during hypoxia and hypoxia 

reperfusion (Zenebe et al., 2007; Lacza et al., 2001; Kojima et al., 1998; Brown and Borutaite, 

2007), although eNOS or iNOS in the cytosol may also be important. The study of isolated 

mitochondria during chronic, severe hypoxia is warranted to measure 
•
NO generation in the 

presence of L-NAME. ONOO
-
 can cause irreversible damage to all mitochondrial compartments, 

leading to mitochondrial dysfunction (Brown and Borutaite, 2007; Brown, 1999; Borutaite and 

Brown, 2005). Therefore, cell death during hypoxia may reflect both ROS/RNS effects. The 

reported increase of NF-κB and Nrf2 activity during chronic, severe hypoxia suggests the 

activation of gene expression at a point of balance between protection and cell death (Table 

8.1A). However, ONOO
-
 is reported as an inhibitor of NF-κB/DNA binding (Levrand et al., 

2006; Levrand et al., 2005; Liaudet et al., 2009).  In contrast, Matata and Galiñanes, (2002) 

reported the activation of NF-κB using micro molar concentrations of ONOO
-
. It is likely that 

NF-κB activation or inhibition by ONOO
-
 is dose, time and cell type-dependent. The increase in 

PI uptake during acute, severe hypoxia suggests necrotic cell death during acute or chronic, 

severe hypoxia and is associated with accumulation of protein carbonyls (Shimizu et al., 1996; 

England et al., 2003). Closer examination by fluorescence microscopy confirmed the presence of 

both necrotic and ―late‖ apoptotic cells, during chronic, severe hypoxia, but not in acute, severe 

hypoxia. Necrosis can be initiated by quantitative ATP depletion (Gasbarrini et al., 1992; 

Nicotera et al., 1986) and elevation of intracellular Ca
2+

 which may disrupt the cytoskeleton and 

membrane integrity by activating Ca
2+

-dependent proteases (Shimizu et al., 1996).  
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However, the present study does not support this hypothesis as ATP depletion does not change 

during acute, severe hypoxia. Early accumulation of oxidized proteins in the absence of 

detectable increase in ROS/RNS may reflect rapid oxidation of protein carbonyls in the absence 

of effective proteasome induction or autophagy (Asa B. Gustafsson and Roberta A. Gottlieb, 

2008). The most severely damaged cells that are heavily oxidised may undergo selective death 

with the more adapted, viable cells exhibiting lower levels of protein carbonyls at 4h (Asa B. 

Gustafsson and Roberta A. Gottlieb, 2008) (Table 8.1A).  

 

However, the effects of significant ATP depletion during chronic, severe hypoxia, the likely 

elevation of intracellular Ca
2+

 and the activation of Ca
2+

- dependent proteases (Nicotera et al., 

1986; Gasbarrini et al., 1992) were excluded. Incorporation of 5 or 10mM EGTA into the 

medium exacerbated cell death during chronic, severe hypoxia. Instead dysfunctional 

mitochondria or other organelles due to increased protein carbonyl formation by overproduction 

of O2
-•
 or protein/tyrosine nitration induced by overproduction of 

•
NO/ONOO

- 
may account for 

toxicity of hypoxia.  

The increase in protein oxidation is likely to occur at the mitochondrion, thereby stimulating 

autophagy and may contribute to further organelle dysfunction under prolonged hypoxia (Zorov 

et al.,2006; Kowaltowski and Vercesi, 1999). In addition, triggering of the mitochondrial 

permeability transition (Crompton, 1999) may occur leading to apoptosis. Increased production 

of 
•
NO during chronic, mild hypoxia did not trigger loss of mitochondrial metabolism, necrosis 

or ATP depletion, but did trigger apoptosis (Brown and Borutaite, 2007; Brown, 1999; Davidson 

and Duchen, 2006). Therefore, the study of mitochondrial permeability transition, cytochrome c 

release or other apoptogenic factors in the cytoplasm is warranted after chronic, mild hypoxia. 

Activation of apoptosis observed under these conditions involved 
•
NO, as the presence of L-

NAME was associated with suppression of procaspase-3 cleavage. In contrast, a decrease in 

MTT activity in the presence of L-NAME indicates 
•
NO generation and its association to 

maintain balance of ETS, probably by contributing mitochondrial 
•
NO production from mt-NOS 

(Table 8.1A).  
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However, further works might be warranted to investigate this hypothesis to determine if 
•
NO is 

produced by cytosolic NOS or mt-NOS (Nagendran and Michelakis, 2009; Nisoli and Carruba, 

2006). Rotenone or FCCP treatment did not protect against chronic, mild hypoxia-induced 

apoptosis. The availability of ATP is important for cytoplasmic cytochrome c mediated 

oligomerisation of Apaf-1 and thereby formation of the apoptosome complex, after permeability 

transition has taken place and with the rupture of mitochondrial outer membrane. During 

hypoxia, the ATP requirement of apoptosis was met via the TCA with accumulated 

NAD
+
/FAD

2+
 or glycolysis with abundantly available glucose in the culture medium (Kim et al., 

2003; Tsujimoto and Shimizu, 2007; Eguchi et al., 1997; Enari et al., 1998; Tatsumi et al., 2003; 

Crompton, 1999). Indeed, apoptosis has been reported to occur in cardiomyocytes with exclusive 

supply of ATP through glycolysis (Tatsumi et al., 2003). ATP production from glycolysis and 

intracellular high energy stores can contribute 50% of total ATP production under anaerobic 

conditions (Kim et al., 2003).  

 

The effect of rotenone in mitigating the toxicity associated with severe, chronic hypoxia implies 

a different mechanism of toxicity at 4h compared to that toxicity at 30minutes that may be 

principally driven by accumulation of protein damage, but not ATP depletion at 30 mins (Becker 

et al., 1999), whereas at 4h, the ability of rotenone to prevent ROS formation is of greater 

significance (Table 8.1A). This hypothesis is supported by the observations that ATP levels drop 

by 50% during chronic (4h) hypoxia and are reduced by a further 50% in the presence of 

rotenone, however the additional depletion of ATP caused by rotenone is not associated with any 

further loss in viability, rather it protects cells against necrosis and apoptosis. It is interesting that 

suppression of apoptosis in the presence of rotenone during chronic, severe hypoxia associates 

with reduction of O2
-•
 production despite further ATP depletion. To support this hypothesis 

further, FCCP treatment during chronic, severe hypoxia elicited inhibition of a cleavage of 

procaspase-3, with further depletion of ATP, similar to rotenone treatment (Table 8.1A). In the 

presence of FCCP, uncoupling of mitochondria during severe hypoxia allows the dissipation of 

reducing equivalents more readily thereby allowing the TCA cycle to continue unhindered for 

removal of lactate in a situation when the cell is dependent on anaerobic glycolysis for ATP 
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production (Abramov et al., 2007). In the presence of L-NAME, chronic, severe hypoxia-

induced cell death via necrosis and apoptosis was significantly reduced, suggesting that 
•
NO is 

responsible for associated cytoxicity (Strijdom et al., 2006; Zweier et al., 1995). NOS isoforms 

are responsible in production of 
•
NO during chronic, mild hypoxia, and the induction of 

apoptosis where L-NAME treatment showed a significant protection against cell death. During 

chronic, severe hypoxia, fragmented cell structure/nuclei were observed in Hoescht 33342 

stained (blue) cells for early apoptotic cells and fragmented nuclei as stained with PI (red) for 

late apoptotic cells (Tsujimoto and Shimizu, 2007; Shimizu et al., 1996) in the absence of 

necrotic nuclei.  

 

Cellular ―acidosis‖ during chronic, severe hypoxia due to lactic acid accumulation inhibits pore 

opening and may act as a protective mechanism against apoptosis (Kim et al., 2003; Crompton, 

1999). However, in the present model, hypoxia induced ROS/RNS-mediated mitochondrial 

dysfunction is suggested to have overcome those inhibitory processes to induce apoptosis by 

cleaving procaspase-3. During chronic, severe hypoxia, when electron transport has ceased, it is 

reported that the membrane potentials are developed at the expense of ATP depletion by the 

mitochondrial ATP synthase (Kim et al., 2003). In the present model, ATP availability is 

assumed to be sufficient to promote apoptosis events. The decrease in metabolic activity during 

acute, severe hypoxia parallels the decrease activity of succinate dehydrogenase in mitochondrial 

complex II during hypoxia (Crawford et al., 2003). During acute or chronic, severe hypoxia, the 

mitochondrial membrane potential decreases lost owing to reversal of electron flow through ETS 

in the presence of a limiting O2 supply. Therefore, the loss of membrane potential would 

decrease oxidation of NADH in complex I and FADH2 in complex II, thereby decreasing the 

activity of both dehydrogenase enzymes present in complex I and II. Supporting this, increased 

production of O2
-•
 inactivates complex I; NADH dehydrogenase and complex II; succinate 

dehydrogenase (Powell and Jackson, 2003). However, the absence of ATP depletion during 

acute, severe hypoxia confirms the closely matched balance between ATP production and ATP 

demand when cells are metabolically compromised (Vogt et al., 2002).  
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•
NO alone can cause reversible inhibition of cytochrome c oxidase and complex I, and may 

therefore contribute to mitochondrial O2
-•
 production and irreversible damage caused by ONOO

-
 

(Arciello et al., 2010). Metabolic activity was retained during chronic, severe hypoxia in the 

presence of L-NAME, MnTBAP and rotenone independently, suggesting involvement of O2
-•
 

and 
•
NO, possibly via ONOO

-
 production to inhibit the ETS (Powell and Jackson, 2003; 

Hassouna et al., 2006; Levrand et al., 2006). Complex I generated O2
-•
 has also been implicated 

in altered neuronal cell metabolism during hypoxia (Guglielmotto et al., 2009). In contrast, 

mitochondrial complex II or III has been proposed as a O2
-•
 generation site in the rat heart 

(Chandel et al., 2000), but this has not been investigated in this thesis. Rotenone inhibits 

irreversibly the dehydrogenase enzyme present in mitochondrial complex I, and this probably 

results in a decrease in NADH oxidation which leads to greater loss of membrane potential in the 

absence of electron flux through ETS, thereby reducing O2
-•
 production. In support of this 

hypothesis, the irreversible inhibition of mitochondrial complex I in rabbit hearts showed 

protection against ischaemic damage by preserving of cardiolipin and cytochrome c content 

(Lesnefsky et al., 2004).  

 

Complex 1 is reported as the major ROS generation centre with complex III (Chandel and 

Schumacker, 1999; Chandel et al., 1998; Chandel et al., 2000; Duranteau et al., 1998; Chandel 

and Budinger, 2007). The electron leakage from complex I leads to formation of O2
-•
 via two 

mechanisms; forward and reverse electron transfer (Tahara et al., 2009). Forward transfer is due 

to electron leakage from NADH oxidation which may then generate O2
-•
 at different sites; the 

FMN group, low-potential Fe-S centres and Q binding sites within complex I. Rotenone blocks 

Q binding and maximizes FMN and Fe-S centre reduction (Tahara et al., 2009) in addition to 

inhibiting electron flux from NADH oxidation. Therefore, reduction of O2
-•
 production from 

complex I, in the presence of rotenone reduces the mitochondrial dysfunction due to O2
-•
 and 

ONOO
-
 mediated oxidation and inhibition, thereby promoting FADH2 oxidation via increased 

succinate dehydrogenase activity. Therefore, rotenone decreases production of O2
-•
 during 

hypoxia and reduces PI uptake; necrosis and apoptosis probably by reducing protein carbonyl 

and nitrotyrosine formation.  
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The suppression of procaspase-3 cleavage indicates the inhibition of one or more upstream 

processes; release of cytochrome c and  Apaf-1 after opening of the MPTP and ATP- dependent 

oligomerisation of Apaf-1 to induce apoptosome complex. ROS production during hypoxia has 

been attributed to NADPH oxidase activity by several authors (Abramov et al., 2007; Zulueta et 

al., 1997). Apocynin-inhibitable NADPH oxidase activity did not contribute to increased ROS 

production as neither DHE oxidation nor caspase 3 activity were altered in H9C2 cells 

maintained in chronic severe hypoxia. Apocynin did afford protection against necrosis induced 

by chronic severe hypoxia and apoptosis induced by chronic, mild hypoxia (Heumuller et al., 

2008; Touyz, 2008). Consistent with previous works, the present study did not show any 

protective effects of the xanthine oxidase inhibitor, allopurinol, neither on viability or detectable 

ROS production (Becker et al., 1999).  

 

The foregoing discussion has focused on the effects of 2% O2 hypoxia on O2
-•
 steady state levels, 

metabolic activity and viability of cardiacmyoblasts. For the purposes of current experiments, 

21% O2 conditions is referred as normoxia, although this is unphysiological (Zuurbier et al., 

1999). Instead, estimates of O2 tension in tissue vary between 10-14% O2 and will fluctuate 

during physiological stress and pathophysiological conditions which reduce O2 delivery to 

tissues (Zuurbier et al., 1999).   

 

In this regard, present studies of the effects of 10% O2 and on cardiac myoblasts and referred to 

this as mild hypoxia. The H9C2 cultured cells used in this investigation were maintained and 

adapted to 21% O2 during routine culture over many passages (cells between 14-18 passages 

were used) and are therefore expected to have adapted to living under high O2 tension. This may 

have some impact on the levels of ―antioxidant‖ enzymes present and therefore the cells ability 

to withstand ROS/RNS. Cells under 10% O2 did not exhibit any significant change in metabolic 

activity, propidium iodide uptake or DHE oxidation compared to 21% O2, except, 
•
NO 

generation during chronic, mild hypoxia. However, 
•
NO generation and apoptosis were increased 

in cells maintained at 10% O2 for 4h (Table 8.1A).  
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In the presence of FCCP, the increase in steady state metabolic activity and the significantly 

increased PI uptake, during acute, mild hypoxia suggest FCCP toxicity, although this effect did 

not persist under conditions of chronic, mild hypoxia. However, FCCP did not protect against 

changes to O2
-•
 steady state levels and increased 

•
NO levels, nor against PI uptake induced by 

chronic hypoxia alone despite FCCP being effective in ROS inhibition during severe hypoxia 

(Table 8.1A). This suggests that the respiratory chain is exquisitely sensitive to small fluxes in 

O2 tensions. The effects of uncoupling and inhibition of mitochondrial complex may have 

significantly reduced ATP production, although there is no observed necrotic cell death or 

decreased metabolic activity in the presence of rotenone and FCCP during mild, severe hypoxia 

which concurs with previous work  (Brennan et al., 2006b; Brennan et al., 2006a).  

 

As reperfusion has been considered a major inducer of ROS/RNS after hypoxia and cause of 

death, the kinetics and nature of their production was investigated in cardiomyocytes. The 

recovery of metabolic activity during acute, hypoxia/reperfusion compared to hypoxia indicates 

the capacity to restore membrane potential (Serviddio et al., 2005). However, an increase in 

irreversible necrotic cell death was expected, reflecting the increased PI uptake during acute, 

severe hypoxia alone, associated with protein carbonyl formation (Chapter 5) (Table 8.1A). In 

fact, 30min hypoxia followed by reoxygenation or sustained hypoxia had little effect on 

ROS/RNS or viability. During chronic, severe hypoxia/reoxygenation, the decrease in metabolic 

activity of H9C2 cells compared to cells grown under normoxia and measured by MTT reduction 

was associated with the increase in O2
-•
 and 

•
NO production (Table 8.1B).  

 

However, restoration of metabolic activity during chronic, severe hypoxia indicates 

repolarisation the mitochondrial membrane precluding the irreversible damage to mitochondrial 

complexes. It is interesting to speculate that  sustained reperfusion (2h)  after chronic, severe 

hypoxia is the turning point between irreversible cell damage and hypoxic recovery, as evident 

by significant viability loss after long periods of reperfusion (Jiao et al., 2009).  
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The irreversible damage reported during chronic, severe hypoxia in the present study resulted in 

necrotic and apoptotic cell death during chronic, severe hypoxia/reoxygenation. In the presence 

of rotenone or FCCP, the reduction in O2
-•
 and 

•
NO levels during sustained hypoxia or 

reperfusion indicated the contribution of mitochondria as a major ROS/RNS producer. Inhibition 

of enhanced O2
-•
 production during reperfusion in the presence of apocynin, but not during 

hypoxia alone indicates the induction of NADPH oxidase complex activation during reperfusion 

as a major contributor to O2
-•
 (Table 8.1B). However, its activation is evasive as there is a trend 

to increasing O2
-•
 during normoxia in the presence of apocynin. Apocynin may function as 

antioxidant rather than impairing NADPH oxidase complex in H9C2 cells which are non-

phagocytes (Heumuller et al., 2008).  

Other investigators reported the contribution of NADPH oxidase activity in H9C2 cells to 

generate ROS under different ischaemia/reperfusion periods in anoxic culture medium 

(Elisabetta et al., 2008). It appears that activation of different sources to produce O2
-•
 depends on 

severity and duration of hypoxia and/or reperfusion.  

 

Decreased 
•
NO production in the presence of L-NAME suggest 

•
NO generation is partly NOS-

dependent during chronic, severe hypoxia/reperfusion. There may be alternative non-enzymatic 

sources that are activated to generate 
•
NO (Lacza et al., 2006; Lepore, 2000; Brown and 

Borutaite, 2007; Zweier et al., 1999) or related species as evident by ~ 25% decrease in NOS- 

dependent 
•
NO production when normoxic cells were co-incubated with L-NAME. Having 

elucidated the temporal relationship between ROS/RNS generation, cell dysfunction and death 

during hypoxia and hypoxia/reperfusion, the possible effects of ROS/RNS in inducing gene 

expression were investigated using reporter assay for NF-κB and Nrf2.  
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Figure 8.1 Summary of chronic, severe hypoxia-induced O2
-•
/
•
NO generation and cell 

death.     - increase or     - decrease.  
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The significant increase in NF-κB/DNA binding suggests the increased activation of NF-κB 

during chronic, severe hypoxia and probably may be associated with the increased production of 

ROS/RNS (Baeuerle and Baltimore, 1996, Baldwin, 1996) (Table 8.1A). Therefore, use of 

ROS/RNS specific inhibitors or scavengers could be used to test this hypothesis. However, 

understanding of the mechanism of hypoxia-dependent activation of NF-κB remains limited 

(Taylor and Cummins, 2009). Cell death reported in the presence of NF-κB inhibitor, SN-50 

may describe the importance of NF-κB activation as an adaptive response during chronic, severe 

hypoxia. Several authors have reported the increased activity of NF-κB and associated cardiac 

protection during ischaemia and ischaemia/reperfusion (Li et al., 1999; Regula et al., 2004; 

Adrienn et al., 2003; Nguyen et al., 2009; Lee, 2003). In contrast, other authors reported that NF-

κB co-ordinates cell homeostasis during stress and control the balance between cell survival and 

cell death (Perkins, 1997).  Therefore, therapeutic interventions should be carefully weighed 

given its potential dual role (Adrienn et al., 2003).  Figure 8.1 illustrate the summary of key 

events in respect to ROS/RNS generation and cell death during chronic, severe hypoxia in the 

present study. 

 

A study by Lee and Johnson. (2004) showed that neural cells from Nrf2-/- mice were more 

sensitive to oxidative stress than were neurons from control animals, but, they became less prone 

to oxidative stress when the cells were transfected with a functional Nrf2 construct (Lee and 

Johnson, 2004 ). Similarly, transient ischaemia followed by reperfusion induced more extensive 

brain damage in Nrf2-/- mice than in WT mice (Shah et al., 2007). Moreover, Nrf2-KO diabetic 

mice showed increased apoptosis by increasing ROS compared to Nrf2-WT diabetic mice and 

the authors suggested that Nrf2 induced expression of antioxidant defence genes to scavenge the 

overproduced ROS (He et al., 2009). In the present study, Nrf2 activation during sustained 

hypoxia may mediate Nrf2-mediated antioxidant defence, probably by increasing expression of 

SOD1, NQO1 and/or GST when ROS/RNS are overproduced. In other words, when ROS/RNS 

are overproduced, Nrf2 is activated to scavenge ROS/RNS by increasing the expression of 

antioxidant genes or detoxifying genes (Figure 8.2). However, further work is required to 

resolve the importance of Nrf2 activation using Nrf2-KO/WT cell line under hypoxia and 

reperfusion. 
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In the presence of MnTBAP, cellular protection during reoxygenation was achieved in the 

absence of O2
-•
 and/or ONOO

-
, though 

•
NO is abundant. Due to unavailability of ONOO

- 
in the 

presence of MnTBAP, there is no Nrf2 activation, nor ONOO
-
 induced cytotoxicity. However, 

exacerbation of cell death in the presence of L-NAME during reoxygenation may be associated 

with the lack of 
•
NO-mediated protective mechanism against excessive generation of O2

-•
 during 

reoxygenation (Table 8.1B) (Figure 8.3). It has been reported that overproduction of O2
-• 

occurs
 

during hypoxia/reperfusion more than hypoxia alone in many redox models (Abramov et al., 

2007; Li and Jackson, 2002).  

 

But, the present system did not show an excessive generation of O2
-• 

during 

hypoxia/reoxygenation compared to sustained hypoxia, though the protective role of 
•
NO 

broadly agreed with other investigators (Beckman and Koppenol, 1996; Gonon et al., 2004; 

Dhakshinamoorthy and Porter, 2004; Jones et al., 1999) (Table 8.1B). A study by Kanno et al. 

(2000) showed that attenuation of myocardial ischaemia/reperfusion injury in eNOS-KO mice by 

super-induction of iNOS to produce 
•
NO during early ischaemia was an adaptive mechanism 

(Kanno et al., 2000), but, it occurred prior to reperfusion, probably to induced preconditioning 

pathway. However, 
•
NO mediated protection during reperfusion in the present system remains to 

be resolved.  

 

Similar to the effects observed in sustained hypoxia, the presence of MnTBAP (Figure 8.3B) 

and L-NAME (Figure 8.3A), the decreases in Nrf2 activation during reoxygenation possibly due 

to inhibition of O2
-•
- dependent formation of ONOO

- 
(Figure 8.3) (Table 8.1B). Supporting this 

idea, previous workers have shown that ONOO
-
 produced from NOS-dependent 

•
NO or 

exogenous ONOO
-
 donors, but not 

•
NO donors alone, caused an induction of GST gene 

expression in hepatoma cells via activation of Nrf2/ARE (Kang et al., 2002). In PC12 cells, 

ONOO
-
 activates Nrf2 via PI3K/Akt signalling and enhances Nrf2–ARE binding to upregulate 

HO-1 expression in nitrosative stress (Li et al., 2006).  
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The exacerbation of cell death was observed in the presence of L-NAME during reoxygenation, 

suggesting that NO-mediates protective mechanisms during reperfusion which is broadly in 

agreement with other investigators (Beckman and Koppenol, 1996, Gonon et al., 2004, 

Dhakshinamoorthy and Porter, 2004, Jones et al., 1999) (Figure 8.3A). Overproduction of O2
-•
 

during hypoxia/reperfusion compared to hypoxia alone has been reported redox models by many 

authors (Abramov et al., 2007, Li and Jackson, 2002), although, the present system did not show 

an excessive generation of O2
-•
 compared to sustained hypoxia (Table 8.1B). Kanno et al., 2000 

showed the attenuation of myocardial ischemia/reperfusion injury in eNOS-KO mice by 

superinduction of iNOS, with production of 
•
NO during early ischemia as an adaptive 

mechanism (Kanno et al., 2000), probably inducing a preconditioning pathway.  

 

Moreover, the absence of eNOS in mouse heart exacerbated the ischaemia/reperfusion injury in 

eNOS-KO mice (Jones et al., 1999). Similarly, the administration of 
•
NO donors prevents 

ischaemia/reperfusion injury (Mizuno et al., 1998). In contrast, other studies using 

pharmacological inhibition of NOS and eNOS-KO mice showed protective effects against 

ischaemia/reperfusion injury in the heart. Comparisons between these studies are difficult 

because of differences in agents and experimental design (Parrino et al., 1998). The mechanism 

involved in 
•
NO-mediated cellular protection and 

•
NO/O2

-•
 mediated activation during 

hypoxia/reperfusion is unknown. In the present study, targeting ROS/RNS formation has been 

proposed as a promising therapeutic strategy. Several approaches that have successfully reduced 

tissue damage in animal or cell culture models by scavenging ROS/RNS, but, have failed to be 

beneficial in clinical trials (Fang et al., 2009).  

 

Also, the present study reflects the clinical importance of 
•
NO donors or the therapeutic 

activation of NOS isoforms to induce 
•
NO during reperfusion after ischaemia in heart patients. 

Nevertheless, the beneficial effects in treating ischaemia/reperfusion injury by therapeutic NOS-

gene transfer has been reported very recently (Szelid et al., 2009). Improved understanding of 

•
NO dose and time-dependent effects on reperfusion injury is needed.  
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In contrast, cell metabolic activity was increased in conditions where Nrf2 activity was 

decreased in the presence of MnTBAP during both sustained, severe hypoxia and severe 

hypoxia/reoxygenation. Similarly, cell metabolic activity was increased in the presence of L-

NAME during sustained hypoxia, but not during reoxygenation (Table 8.1B). Therefore, Nrf2 

activation and cell survival in the present system may be independent during sustained hypoxia 

and reoxygenation. The association of cell survival and Nrf2 activation during sustained hypoxia 

and reoxygenation does not imply causality, although the given outcome in the presence of 

inhibitors. However, the effect of inhibitors depends on three factors; (1) specificity of inhibitor; 

(2) length of pre-incubation required to have an effect; and (3) concentration of inhibitor 

required to have an effect under conditions in the present study. 

 

According to hypotheses in the present study; (1) hypoxia increases ROS and RNS, and their 

effects may be cytotoxic and/or required for survival, with both pathways probably being 

activated during severe hypoxia (NF-kB being protective in first instance and Nrf-2 being 

protective), however the effects of ROS and RNS depends on their  relative concentration and 

duration; and (2) that chronic, severe hypoxia/reoxygenation further increases ROS/RNS and in 

this instance, the balance of outcome is a greater drive towards cell death, probably NF-κB 

mediated if apoptosis is occurring or independent of transcription factor activity during necrosis 

with death being O2
-•
 dependent and protected by 

•
NO. However, further increase in 

•
NO may be 

cytoprotective by scavenging a more damaging O2
-• 

anion and this effect may be gene expression 

dependent or independent. In addressing these hypotheses, the present study supports hypothesis 

1, but not hypothesis 2 as there is no significant increase in ROS/RNS or cell death during 

chronic, severe hypoxia/reoxygenation compared control cells in sustained, severe hypoxia 

(Table 8.1B). This is possibly due to presence of glucose in culture medium throughout hypoxia. 

Therefore, present model validates the current paradigm in which O2 depletion precedes glucose 

depletion in in vivo models. 
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8.2 Conclusion 

8.2.1 Hypoxia 

In the present work, both mitochondria and NOS are shown to contribute to overproduction of 

O2
-•
 and 

•
NO during chronic hypoxia. Rat cardiomyoblasts during chronic, severe hypoxia elicit 

a significant increase in O2
-•
/
•
NO production and ATP depletion with decreased metabolic 

activity. Cell death during chronic, severe hypoxia is via necrosis and apoptosis. Chronic, mild 

hypoxia induces apoptosis, with increased production of 
•
NO, ATP depletion and decreased 

metabolic activity. Significant production of O2
-•
, but not depletion of ATP during chronic, 

severe   hypoxia (2% O2; 4h) has contributed to significant necrotic cell death and induction of 

apoptosis. Treatment with rotenone afforded protection against apoptosis and necrosis, and this 

associated with a reduction of O2
-•
 production and enhanced metabolism during chronic hypoxia. 

L-NAME afforded protection against necrosis, but not apoptosis during chronic, severe hypoxia 

and this associated with the reduction of NOS-dependent 
•
NO production and enhanced 

metabolic activity.  

 

Significant O2
-•
 production during chronic, severe hypoxia did not change in the presence of 

apocynin, but apocynin afforded protection against necrosis, probably via its antioxidant 

property as previously reported (Heumuller et al., 2008). Induction of apoptosis during chronic, 

mild hypoxia associates with a significant production of NOS-dependent 
•
NO and reduction in 

•
NO levels by L-NAME treatment affords a protection against apoptosis. Rat cardiomyoblasts do 

not show any significant change in O2
-•
 steady state or ATP levels in acute, severe hypoxia 

despite being metabolically compromised, exhibiting elevated levels of protein carbonyls and 

showing evidence of necrosis. Autophagy may contribute to the observed loss of viability (Asa 

B. Gustafsson and Roberta A. Gottlieb, 2008), however, if mitochondrial respiration is 

uncoupled (i.e.: FCCP treatment) cell survival and metabolism under acute, severe hypoxia 

conditions are enhanced in the absence of necrosis. The inhibition of mitochondria at complex I 

during acute and chronic, severe hypoxia prevents necrosis.  
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Both mitochondrial uncoupling and complex I inhibition afforded protection during acute, severe 

hypoxia, via a O2
-•
-dependent pathway. These data suggest that it is the management of 

mitochondrial ROS and NOS-dependent 
•
NO levels rather than ATP that is required for 

improved survival during hypoxia. Chronic, severe hypoxia activates both NF-κB and Nrf2. Nrf2 

activation during severe, hypoxia is O2
-•
 and 

•
NO -dependant, probably via ONOO

-
. NF-κB 

activation during chronic, severe hypoxia mediates the cellular defence mechanism against 

hypoxia-induced metabolic inhibition via an unknown mechanism. Taken together, the data 

suggest delicate balance exists between cell survival (promoted by NF-κB mediated antioxidant 

system) and cell death (induced by O2
-•
 and 

•
NO produced during hypoxia). 

 

8.2.2 Hypoxia/reoxygenation 

Mitochondria, NOX and NOS contribute to significant ROS/RNS production during 

hypoxia/reoxygenation thereby, inducing metabolic inhibition in mitochondria. Chronic, severe 

hypoxia/reoxygenation partially restores the metabolic activity lost under hypoxia in the 

conditions employed in this study. The mitochondria and NOX jointly produce O2
-•
 during 

reperfusion after chronic, severe hypoxia in rat cardiomyoblasts. Mitochondrial inhibition or 

uncoupling during the reoxygenation period or the last 2h of sustained hypoxia significantly 

reduces O2
-•
 production. NOX appears to elicit O2

-•
 production during reoxygenation, but not 

during sustained hypoxia as evident by inhibition of DHE oxidation with apocynin treatment, 

although this remains to be confirmed with more specific NOX inhibitors.  

 

Both mitochondria and NOS contribute to 
•
NO production during reoxygenation and sustained 

hypoxia. 
•
NO generation during reoxygenation or sustained hypoxia partly depends on NOS and 

•
NO released from non-enzymatic sources. Also, mitochondrial inhibition and uncoupling 

reduced 
•
NO production during reoxygenation and sustained hypoxia. Significant production of 

O2
-•
 during reoxygenation or sustained hypoxia is cardiotoxic and causes metabolic inhibition. In 

contrast, 
•
NO generation during reoxygenation is cardiacprotective, but, it is cardiotoxic during 

sustained hypoxia. Cardiotoxicity of 
•
NO may associate with increased production of O2

-•
, 
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probably to make ONOO
-
 during sustained hypoxia. Therefore, cardiacprotection of 

•
NO during 

reoxygenation may associate with the activation of antioxidant defence in rat cardiomyoblasts, 

independent to Nrf2 activation. Cardio-protection or cardio-toxicity may depend on 
•
NO 

concentration, severity and duration of hypoxia or reoxygenation. Both sustained severe hypoxia 

and chronic, severe hypoxia/reoxygenation activates Nrf2 gene expression and depends on O2
-•
 

and 
•
NO, probably to make ONOO

-
. Cell survival mechanism and activation of Nrf2 may be 

independent in the situation of hypoxia/reoxygenation or sustained hypoxia. But, Nrf2 activation 

probably associate with antioxidant gene expression during hypoxia alone or 

hypoxia/reoxygenation if both O2
-•
 and 

•
NO are sufficiently available. 

 

8.3 Future directions 

In the present study, the molecular mechanisms underlying O2
-•
 and 

•
NO-mediated cell death via 

apoptosis remain unknown and warrant further investigation. Apoptosis is an ATP-dependent 

cell death programme in the myocardium; inhibition of this process may have cardioprotective 

effects under many pathological conditions and represents a potential target for therapeutic 

intervention to prevent ischemia/reperfusion damage. This work has demonstrated the 

suppression of apoptosis despite the depletion of ATP, by curtailing mitochondrial O2
-•
 

production in the presence of rotenone. Expressing of upstream targets of apoptosis; ATP 

dependent-pro-apoptotic proteins: Puma, Noxa, Bax and Bak, and anti-apoptotic proteins: Bcl-2, 

Bcl-xL may further clarify their roles during apoptosis via cytochrome c release during chronic, 

severe hypoxia. In order to further investigate the mitochondria as a source of 
•
NO that 

scavenges O2
-•
 during chronic, severe hypoxia, the assessment of 3-nitrotyrosine (3-NT) 

formation as a biomarker of ONOO
-
 formation is proposed. Peptide sequencing of those nitrated 

proteins may identify specific proteins undergoing nitration during chronic hypoxia and thereby, 

locate their organelle of origin. This information may assist understanding of ROS/RNS-

mediated cell death mechanism during chronic, severe hypoxia. Cells operate a delicate balance 

between the protective oxidants/antioxidant signalling versus deleterious effect of ROS/RNS.   
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It is now known that low concentrations of ROS/RNS play a vital role in induction of 

cardioprotective mechanism (Penna et al., 2009). In this thesis, the excessive generation of 

ROS/RNS in hypoxia/reoxygenation, their cytotoxic role, and finally their signalling effects to 

activate redox transcription factors; Nrf2 and NF-κB probably as a defence mechanism during 

hypoxia has been demonstrated. However, the site and specific ROS/RNS-mediated NF-κB 

activation and the effects of activation during chronic hypoxia still remain unknown. Therefore, 

O2
-•
 and 

•
NO effects on NF-κB activation and their targeted gene expression during chronic 

severe hypoxia warrants further investigation.  

 

The present study demonstrates that Nrf2 activation is O2
-•
/
•
NO dependent and there a high 

chance of making ONOO
-
 to induce Nrf2 activation. Therefore, finding the specific radical 

species required for activation of redox transcription factors; including Nrf2 and NF-κB may 

point to new avenues of therapeutic interventions. It is well established that the master regulator 

of antioxidant response element is Nrf2. The specific downstream targeted gene expression 

involved in antioxidant/detoxifying mechanisms and apoptosis during hypoxia/reperfusion 

remains to be elucidated. Therefore, future works are warranted to investigate Nrf2 mediated 

defence mechanism during hypoxia or hypoxia/reoxygenation using methods such as silencing 

Nrf2 activity with siRNA and gene expression systems for antioxidants (i.e.; MnSOD, GST and 

NOS) (Nguyen et al., 2009; Heiss et al., 2009; Jaiswal, 2004; Nioi et al., 2003).  

The present data suggest that NOS activation and probably, non-enzymatic 
•
NO production 

during reoxygenation is cardiacprotective.In contrast, the spermine nonoate 
•
NO donor (100µM) 

did not show any affordable protection during hypoxia/reoxygenation. Recent reports have 

shown dose-dependency of protection by an exogenous 
•
NO donor during ischemia/reperfusion 

injury in rat and guinea pig hearts (Schulz et al., 2004). Therefore, future works are warranted to 

investigate the dose dependency of exogenous 
•
NO donors in cardiacprotection of H9C2 cells 

during hypoxia/reoxygenation. Under the present conditions, the magnitude of enzyme-

independent 
•
NO generation exceeds the NOS-dependent 

•
NO generation during hypoxia and 

hypoxia/reoxygenation. Therefore, future works are warranted to understand its role in 

protection during hypoxia and hypoxia/reoxygenation.  
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Appendix I   Vector plasmid maps and DNA sequence information 

 

 

 

pGL3-Basic Vector 
 

This vector can be obtained from Promega Corporation, Madison, WI.  

 

 

pGL3-Basic Vector sequence reference points: 
 

Base pairs                                      4818 bases 

Promoter                                        (none) 

Enhancer                                        (none) 

Multiple cloning region                     1-58 

Luciferase gene (luc+)                        88-1740 

GLprimer2 binding site                     89-111 

SV40 late poly(A) signal                 1772-1993 

RVprimer4 binding site                     2061-2080 

ColE1-derived plasmid replication origin       2318 

beta-lactamase gene (Ampr)                 3080-3940 

f1 origin                          4072-4527 

Synthetic (upstream) poly(A) signal   4658-4811 

RVprimer3 binding site                     4760-4779 
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pGL4.74 [hRluc/TK] Vector        

 

This vector can be obtained from Promega Corporation, Madison, WI.  

 

 

 

pGL4.74 [hRluc/TK] Vector sequence reference points: 

 

Base pairs                                                 4237 

HSV-TK promoter                                            27-779 

hRluc reporter gene                                        815-1750 

SV40 late poly(A) region                                   1784-2005  

Reporter Vector primer 4 (RVprimer4) binding region      2071-2090 

ColE1-derived plasmid replication origin                  2330 

Synthetic beta-lactamase (Ampr) coding region             3119-3979 

Synthetic poly(A) signal/transcriptional pause region     4084-4237 

Reporter Vector primer 3 (RVprimer3) binding region      4186-4205 

   

Restriction enzyme that cut pGL4.74 [hRluc/TK] Vector; 

Enzyme: Hind III   No of Sites: 1   Location : 781 
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DNA sequence of chicken conalbumin (Con A) promoter and enhancer (3enh) region 

(1223bp). 

 

6041bp 
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pGL 3 [3enh/conA/luc] plasmid sequence analysis 
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DNA sequence of mouse Nqo1/ARE region (1120bp) 

 

5938bp 

Bam HI 
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pGL 3 [nqo1/luc] plasmid sequence analysis 
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