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We present the (numerically) exact phase diagram of a magnetic polymer on the Sierpińsky Gas-
ket embedded in three dimensions using the renormalization group method. For the first time,
we report distinct phases of the magnetic polymer, including paramagnetic swollen, ferromagnetic
swollen, paramagnetic collapsed, and ferromagnetic collapsed states. By evaluating critical expo-
nents associated with phase transitions, we located the phase boundaries between different phases.
If the model is extended to include a four-site interaction which disfavours configurations with a
single spin of a given type, we find a rich variety of critical behaviours. Notably, we uncovered a
phenomenon of re-entrance, where the system transitions from a collapsed (paramagnetic) state to a
swollen (paramagnetic) state, followed by another collapse (paramagnetic) and ultimately reaching
a ferromagnetic collapsed state. These findings shed new light on the complex behavior of (lattice)
magnetic polymers.

Magnetic polymers are a new class of functional poly-
mer with magnetic properties, including paramagnetic,
ferromagnetic, and ferrimagnetic phases[1, 2]. Although
they have weaker magnetic properties than cast magnets,
they have extensive and diverse applications ranging
from material science[3, 4], electronics communication[5],
acoustic, optical to biomedical applications including
drug delivery[6–9]. A magnetic polymer model of chro-
mosomes has been used to understand how genome or-
ganisation and epigenetic patterns are linked to each
other dynamically[10–13]. Using mean-field theory and
Brownian-Dynamics simulations, they showed the exis-
tence of three possible phases in the steady state and the
dynamics of the model generically entails uncontrolled
spreading of the dominant epigenetic mark, which is rem-
iniscent of epigenetic silencing dynamics in vivo. In spite
of its technological importance, the exact phase diagram
of a magnetic polymer and the critical exponents associ-
ated with various transitions remains elusive.

Thorpe [14] studied q-dependent spin-correlation func-
tions in a model of single magnetic polymer chain us-
ing the Freely-Jointed Chain model. The model de-
scribed some of the features of the magnetic polymer
but could not describe the influence of excluded-volume
effects. Barma[15] considered the excluded-volume in
presence of the spin-spin correlation function and showed
that it is proportional to the generating functions of the
probability function describing the spatial distribution
of the monomers. Using a mean-field argument, backed
up with Monte-Carlo simulations, Garel et al[16] studied
the critical behaviour of magnetic polymers in a good
solvent where the monomers carry a magnetic moment
which interacts ferromagnetically with near-neighbour
monomers. Unlike at an ordinary collapse transition,
the so called θ point, they observed a strong jump in
the polymer density and magnetization. Foster and
Majumdar[17] used a flat-PERM approach observed the
first-order character of simultaneous magnetic transition
and polymer collapse in three dimensions, but in two di-
mensions they found that this transition becomes second
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FIG. 1. 3d Sierpińsky Gasket with 5 step walk with nearest-
neighbour interactions shown. The walk shown would con-
tribute to A0 after one step of renormalization. (see text).
(color online)

order. The magnetic polymer has also been studied in
three dimensions using the fluctuating bond model[18–
22]. Interestingly, the transition was found to be crit-
ical and not first order, as in the non-bond fluctuation
model[16]. It appears that there is no clear consensus
about the phase boundaries between different phases.

Rodrigues and Oliveira recently studied the Ising- and
Potts-like magnetic polymers on the Bethe lattice[23].
The Bethe lattice does not allow loops, therefore, corre-
sponds to an extended mean-field like calculation, which
may not to capture all the features of the phase diagram.
In this context, a hierarchical lattice which allows for
loops, along with renormalization group (RG) technique,
should provide a good guide to the critical behaviour of
the model, even if the critical exponents may differ.

In this letter, we present the results for the Sierpińsky
Gasket (or 4-Simplex lattice) in three dimensions, for
which the generating function for the polymer chain can
be evaluated exactly. By splitting the generating func-
tion into a finite subset of partial contributions, it is
possible to write a closed set of recursion equations in
terms of a finite number of coupling constants. The vari-
ables in this set of equations are just the partial gener-
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ating functions corresponding to different polymer con-
figurations for a given size of the fractal lattice. The
recursion relations relate the possible configurations in
a block of side ba (as shown in Fig. 1) to equivalent
blocks of length a (as shown in Fig. 2), where b(= 2)
is the scaling factor and a being the distance between
nearest-neighbour sites. When applied to the infinite
lattice, these recursion relations correspond to an ex-
act Real-Space Renormalization Group (RSRG) scheme,
providing insights into thermodynamic phases. By vary-
ing the initial coupling constants, one can achieve differ-
ent fixed points corresponding to the various phases and
their phase boundaries. Coil-globule transitions[24–
26], adsorption transitions[27], mutually-attractive and
self-avoiding walks of DNA melting [28, 29] and Ising
models[30] are some of a few examples which have been
solved exactly for the 3-D Sierpińsky Gasket. At each
fixed point, the recursion relations were linearized and
the eigenvalues and principal directions calculated. The
singular part of the free energy per lattice site is expected
to scale near each fixed point as:

fsing = b−df̃(by1x1, b
y2x2, · · · ),

where {yi} is the scaling dimensions and the {xi} are
the scaling fields, i.e. how far we are from the fixed
point in each eigen-direction. The eigenvalues give the
distance moved in each iteration, so λi = byi and the
yi = log(λi)/ log(b). The scaling dimensions are related
to correlation-length exponents by νi = 1/yi. The direc-
tion i is only relevant if λi > 1.

Here, we consider a self-attracting self-avoiding walk
(SASAW) with ferromagnetic spins on the 3d Sierpiński
gasket and explore the complete phase diagrams. For
this, we introduce an interaction energy εnn < 0 be-
tween non-consecutive, nearest-neighbour visited sites,
each visited site also contains an Ising spin σi = ±1.
There are Ising-like interactions εij = −Jσiσj between
nearest-neighbour spins σi and σj . There are no spins
on the unvisited sites. The simple model of a mag-
netic polymer presented here has been studied on the
square and cubic lattices[16, 17, 31], however, the ex-
act phase diagram is not known. By using the exact
recursion relations, we obtain the phase diagram on the
Sierpińnsky gasket embedded in three dimension. We
demonstrate not only the coil-globule transition through
temperature or spin-spin interaction variations but also
establish the presence of swollen and collapsed phases.
Both these phases exhibit ferromagnetic and paramag-
netic characteristics, with distinct phase boundaries de-
marcating them. Here, we present a novel scenario in-
volving the existence of three tri-critical lines converging
at a multi critical point, which segregates three distinct
phases..

The restricted partition function, or weights, are shown
at first generation in Fig 2. In this figure we only show
the distinct weights, the other weights which are related
by a symmetry operation are the same (e.g flipping all
the spins together).
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FIG. 2. Figures show the initial weights of the restricted
partition functions used in recurrence relations. Wiggly lines
corresponds to steps of SAWs. The dotted and dashed lines
are interactions between spins of same type and opposite type,
respectively. (colour online)

The SASAW has been studied on the 4-simplex lattice,
which is the same as our lattice but where the tetrahedra
do not share common sites[24, 26]. The recursion rela-
tions found by real-space renormalisation group (RSRG)
are the same as for the Sierpińsky Gasket, but the con-
figurations that can be considered at the first generation
are different. In particular, as there are no common sites
when the tetrahedron from one generation are assembled
to make the next means that the walk is self-avoiding
even if it visits multiple sites within one tetrahedron.
Adding spins to this model, however, would require more
complex recursion relations and would require additional
“external” weights at each iteration to take account of
all the spin-spin interactions possible. By choosing the
Sierpińsky Gasket and imposing the self-avoiding condi-
tion we must restrict the walk to not take two consecu-
tive steps in the same tetrahedron. This is the same as
adding a local rigidity to the walk, which would not be
expected to change the critical behaviour at large length
scales. The model we study is defined by the configura-
tions shown in Fig.2 with the following initial weights:

A0 = xk, A1 = xk−1λ,
B0 = x2y4k6, B1 = x2y4λ and B2 = x2y4k−2,

(1)

where x = exp(−βµ) is the step fugacity, related to the
chemical potential µ. y = exp(−βεnn) is the weight for
nearest neighbour interaction, k = exp(βJ) is for same
type of spins and 1/k is for opposite spins. We have
introduced a four-site weight 0 ≤ λ ≤ 1 which penalises
single spins of a given type in a given tetrahedron. This
extra parameter will enable us to explore the entire phase
diagram and the contribution of each fixed point.
The weights include the standard interacting self-

avoiding walk in the limit k → ∞ with x → 0 keeping
xk = κ constant and setting λ = 1. It is therefore of
interest to study the alternative model weights: κ = xk,
τ = yk and α = k−2, which gives the standard SASAW
model for α = 0 (with all the spins aligned and frozen)
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and the walk with free spins when α = 1, where x = κ
and y = τ . This gives as first generation weights:

A0 = κ, A1 = ακ,
B0 = κ2τ4, B1 = κ2τ4α3 and B2 = κ2τ4α4.

(2)

The recursion relations are given below. To avoid index
overload, we label the generation after n iterations with
{Ai, Bi} and after n + 1 iterations with {Ãi, B̃i}. The
initial values of {Ai, Bi} (n = 0) are determined by the
weights x, y, k.
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The fixed points were found using multi-dimensional

Newton-Raphson from 10000 starting points chosen at
random in the unit hyper-cube. This procedure was
repeated several times, and we always found the same
fixed points. The fixed points of these recursion rela-
tions and the corresponding exponents ν are reported in
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FIG. 3. Schematic fixed Point Structure. The dashed lines
(blue) show the most dominant directions, in most cases to
the trivial fixed points (1) and (∞). This direction is the
temperature-like direction. The solid (black) lines give the
next most relevant position, the third level is represented by
dash-dotted (red) lines and the fourth by a dotted (green)
line. (color online)

Tables I and II. Once the fixed points determined and

the corresponding eigenvectors V⃗i and values λi calcu-
lated, we perturbed each fixed point in each relevant di-
rection. This was done by taking the vector of weights

W⃗ = (Ai, Bi) and adding εV⃗i to the weights and iterat-
ing. Since, the iteration is discrete, ε needs to be tuned
carefully. Too small or large the iterations will take us
to one of the trivial fixed points at 0 or ∞. Suitably
tuned the trajectory passes very close to the target fixed
point before diverging. Divergence is inevitable due to
rounding errors in the calculations of the eigenvectors.
For each direction, we use both ε > 0 and ε < 0. Fig. 3
shows the connections between the fixed points. Giving a
brief description, the fixed points are: 1 – empty lattice,
2 – dense ferromagnetic phase, 3 – Transition between
ferromagnetic dense phase and 4/2-paramagnetic dense
phase, 4 – 4/2-Paramagnetic dense phase, 5 – dense para-
magnetic phase, 6 – paramagnetic collapse transition, 7
– paramagnetic swollen phase, 8 – highest order multi-
critical point, 9 – collapse transition between ferromag-
netic swollen phase and 4/2 paramagnetic phase, 10 –
ferromagnetic collapse transition (θ transition) and 11
– the ferromagnetic swollen phase. Whilst we were un-
able to identify the flows from the high-order multicrit-
ical fixed point and the others, this point should occur
at the junction of all the phases and transitions, which
we will confirm later, and can be seen in Fig. 5 when
the extension of the figure to λ ≥ 0 is included. The
different phases will become apparent below as they ap-
pear in the phase diagram. The critical exponents are
given in Table II, but the transitions of similar type have
the same associated critical exponents (to numerical ac-
curacy), e.g. all the collapse transitions have leading
exponents around 0.525 ± 0.005. Fixed points 2 to 5
correspond to those found for the Ising model on the
3d Sierpińsky Gasket[30]. Their weights x, y correspond
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FP # A0 A1 B0 B1 B2

1 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.00000 0.00000 0.35688 0.00000 0.00000

3 0.00000 0.00000 0.33723 0.00000 0.11241

4 0.00000 0.00000 0.17844 0.00000 0.17844

5 0.00000 0.00000 0.08922 0.08922 0.08922

6 0.16667 0.16667 0.08333 0.08333 0.08333

7 0.21472 0.21472 0.01250 0.01250 0.01250

8 0.31441 0.00000 0.31677 0.00000 0.10952

9 0.33141 0.00000 0.17921 0.00000 0.16443

10 0.33333 0.00000 0.33333 0.00000 0.00000

11 0.42944 0.00000 0.04998 0.00000 0.00000

TABLE I. Fixed points found for the recurrence relations

FP # ν1 ν2 ν3 ν4 ν5

1 — — — — —

2 0.500 — — — —

3 0.500 0.553 1.000 ∞ —

4 0.500 0.500 — — —

5 0.500 — — — —

6 0.530 0.867 — — —

7 0.673 — — — —

8 0.522 0.570 0.854 1.034 1.154

9 0.523 0.526 0.847 0.865 —

10 0.530 0.868 1.062 — —

11 0.623 0.70 — — —

TABLE II. Values of correlation length exponents νi = 1/yi
for relevant directions.

to ours as follows: x = B0/B2 and y = B1/B2 with
A0 = A1 = 0. In their calculation B2 gives the renormal-
isation of the constant term in the Hamiltonian. Trans-
lating into our model, this gives rise to a renormalisation
of the fugacity, which needs to be kept distinct in our
model. In reference[30] they refer to two fixed points at
infinity, but here they, and the line between them, col-
lapse to fixed point 3.

It is one thing having the fixed-point structure, but
these fixed-points need to be linked to the parameters of
the physical model. In order to do this we fix the first
generation weights according to the weights given in ei-
ther Eq. 1 or Eq. 2 depending on the case. We will use
Eq. 1 as example. For fixed interaction weights y and k
we tune the fugacity x. The high temperature (low x)
phase is determined by the trivial empty lattice fixed-
point, whilst the low-temperature dense phase is deter-
mined by the fixed-point at infinity. We tune the fugacity
to 14 decimal places and determine the fixed point by the
one the iteration was closest to for a significant time. On
the whole there is little ambiguity.

We start by confirming the previously studied case of
the Interacting Self-Avoiding Walk[24]. In order to do

this we must take k → ∞ to freeze out the spins whilst
keeping xk finite, this is done by adopting the variables
κ = xk, τ = yk and α = 1/k2 and setting α = 0.
The transition line found using the protocol described is
shown in Fig 4a. The behavior for τ < τθ is governed by
the fixed point corresponding to a ferromagnetic swollen
phase and it is the first relevant direction which gives the
temperature-like behaviour, from which we read a corre-
lation length exponent ν = 0.623. For τ > τθ the be-
haviour is determined by fixed-point which corresponds
to a fully ferromagnetic dense phase (only B0 ̸= 0). This
fixed point only has one relevant direction with a corre-
sponding exponent ν = 0.500, consistent with a discon-
tinuity fixed point as ν = 1/d. where d is the fractal
dimension of the lattice, which is in turn consistent with
the expected first-order nature of the transition as the
fugacity is increased.
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FIG. 4. Phase diagrams are plotted using two equivalent pairs
of variables. Triangles and squares represent the ferromag-
netic and the paramagnetic θ points, respectively. Hexagons
correspond to the ferromagnetic swollen phase and circles to
the magnetized dense polymer. (Color online.)

Fig 4a shows the phase diagram extended to non-zero
α. We only observe the ferromagnetic swollen phase
when α = 0. As soon as α > 0, we transition to a param-
agnetic swollen phase with a similar value for ν = 0.673.
This gives rise to a cross-over exponent for the ferromag-
netic line given by ϕ = ν1/ν2 = 0.623/0.7 ≈ 0.89.
From the fixed-point structure it turns out that

the θ ferromagnetic fixed point is connected to the
paramagnetic-swollen phase fixed point and not to the
corresponding paramagnetic θ point as might have been
expected. This means that we should be able to observe
a transition from a paramagnetic swollen transition to
ferromagnetic collapsed transition via a continuous tran-
sition, as seen for the 2d-square lattice [17] for the self-
avoiding walk with only Ising like interactions. Whilst
the critical exponent will be the same, the cross-over ex-
ponent will be different, with ϕ = ν1/ν3 = 0.530/1.062 ≈
0.5 compared to ϕ = ν1/ν2 = 0.530/0.868 ≈ 0.61 with
the standard swollen phase. The line of squares separat-
ing the paramagnetic swollen phase from the paramag-
netic collapsed phase is a line of paramagnetic tri-critical
θ like points, with the same first two critical exponents,
and so should behave in every way like the usual θ transi-
tion for the lattice. The θ point thus extends into a line,
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now separating the paramagnetic swollen phase from the
ferromagnetic collapsed phase. We can see it clearly up
to α = 0.02 (k ≥ 7.1) and strong evidence that it exists
beyond this point. The difficulty is that the paramag-
netic collapsed phase enters between the paramagnetic
swollen phase and the ferromagnetic collapsed phase, be-
coming very narrow. It is difficult to locate the precise
point where it stops and the line of θ points start.

Figure 4b shows the phase diagram in the standard
coordinates. When y = 1, there are two transition
points, one between the paramagnetic swollen phase and
the paramagnetic collapsed phase which is separated
by a paramagnetic θ-like transition at x = 0.160836 ±
0.000001, k = 1.535125 ± 0.000004 with the same crit-
ical exponents ν and ϕ as the ferromagnetic θ point,
but with one less relevant direction in this model. The
second transition separates the paramagnetic collapsed
phase from the ferromagnetic collapsed phase. The tran-
sition points is at x = 0.120 ± 0.001, k = 1.705 ± 0.005.
The error bars indicate the region where there is ambi-
guity over the final fixed point.

We now change λ to allow us to bring into play the
other fixed points. Of particular interest is the case
λ = 0, which switches off A1 and B1. The phase diagram
for this case is shown in Fig. 5a. Now we can locate
exactly the most unstable multi-critical point. Setting
λ = 0, we set A1 ≡ 0 and B1 ≡ 0. This then leaves
k = (B0/B2)

1/8 = 1.14197, x = A0/k = 0.255321 and
y4 = B0/(x

2k6) = 1.884196 or y = 1.171605. In the
y − k plane, this point separates three lines. The first,
shown as dashed line, is a line of ferromagnetic θ points.
The second line, shown as a solid line, is a line of θ-like
collapse transitions from the ferromagnetic swollen walk
phase to a partially paramagnetic phase which only in-
cludes even spin occupancy on the tetrahedron making
up the lattice. The third line is a critical line correspond-
ing to the magnetisation of the system. The transition is
determined by a dense fixed point with B0 = 3B2 and the
other weights zero. The three phases are the Ferromag-
netic Swollen Walk Phase, the collapsed Ferromagnetic
phase and the 4/2 paramagnetic phase, where B1 = 0
and isolated spins are not allowed.

In Fig. 5b the phase diagram is shown when λ = 0.01.
This is small enough to retain some of the features of

the λ = 0 phase diagram, but the phases have changed:
the swollen phase has become paramagnetic, the small
k collapsed phase is now fully paramagnetic. What is
interesting is that there is still a transition from swollen
to ferro-magnetic collapsed which is a line of ferromag-
netic θ points. There is again a paramagnetic collapsed
phase that enters between the paramagnetic swollen and
ferro-magnetic collapsed phase.

In conclusion we have considered a magnetic poly-
mer model on the 3D Sierpinski Gasket employing ex-
act RSRG, exploring its different phases. We intro-
duced a four-spin interaction to explore all fixed points
of the model system. Without the four-spin interaction,
the system exhibited three distinct phases: the Para-
magnetic Swollen, Paramagnetic Collapsed, and Ferro-
magnetic Collapsed. When the ferromagnetic coupling
strength approaches infinity, we recover the standard in-
teracting self-avoiding walk model, with the well-known
θ transition. This transition separates a ferromagnetic
swollen phases from a ferromagnetic collapsed phase, as
expected.

Our extensive analysis of the phase diagrams reveals
the presence of a reentrant paramagnetic phase and a
transition from the paramagnetic swollen phase to the
ferromagnetic collapsed phase, both predominantly gov-
erned by the influential θ-point transition. Notably, this
reentrant phase occurred from the paramagnetic swollen
to the ferromagnetic collapsed phase. Remarkably, this
transition was found to be continuous in the 2D realm but
exhibited a discontinuous nature in 3D, corroborating the
findings of Foster and Debjyoti [17]. As for the Haus-
dorff dimension of the Sierpinski Gasket, it remained
consistent with that of the 2D case, standing firmly at
dH = 2. Our results for the magnetic walk with solvent
interactions on a 2D square and triangular lattice exhib-
ited qualitatively similar patterns, a topic that we intend
to explore exhaustively in forthcoming work [32].

An important finding when the parameter λ was set
to zero was a new phase emerged namely the partially
paramagnetic phase, and a new multi-critical point. This
identification of a novel multi-critical point regulated by
the highest order fixed point added an additional layer
of complexity which warrants further studies in our un-
derstanding of the magnetic walk preferably with fur-
ther experiments and simulations. Another surprising
result is the paramagnetic swollen phase shows reen-
trant behaviour into the paramagnetic collapsed phase
(see Fig 4). This behavior is tied to the interchange be-
tween paramagnetic and ferromagnetic interactions. On
the square lattice, the phase diagram exhibits symmetry
under k → 1/k, with the ferromagnetic phase mapping
onto an antiferromagnetic phase. However, this symme-
try is not present in our current context.

Interaction among monomers generally involve dipole
interactions. These long-range interactions are screened
by the ions in solution, and are effectively short-ranged.
When the screening is sufficiently effective, such interac-
tions can be represented by introducing a spin-spin in-
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teraction of the form J2S
2
i S

2
j , where the three-state spin

assumes the value −1,0 and 1.
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