
The Importance of Noise Colour
in Simulations of
Evolutionary Systems

Abstract Simulations of evolutionary dynamics often employ
white noise as a model of stochastic environmental variation. Whilst
white noise has the advantages of being simply generated and
analytically tractable, empirical analyses demonstrate that most real
environmental time series have power spectral densities consistent
with pink or red noise, in which lower frequencies contribute
proportionally greater amplitudes than higher frequencies. Simulated
white noise environments may therefore fail to capture key
components of real environmental time series, leading to erroneous
results. To explore the effects of different noise colours on evolving
populations, a simple evolutionary model of the interaction between
life-history and the specialism-generalism axis was developed.
Simulations were conducted using a range of noise colours as the
environments to which agents adapted. Results demonstrate
complex interactions between noise colour, reproductive rate, and
the degree of evolved generalism; importantly, contradictory
conclusions arise from simulations using white as opposed to red
noise, suggesting that noise colour plays a fundamental role in
generating adaptive responses. These results are discussed in the
context of previous research on evolutionary responses to
fluctuating environments, and it is suggested that Artificial Life as a
field should embrace a wider spectrum of coloured noise models to
ensure that results are truly representative of environmental and
evolutionary dynamics.
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1 Introduction

Numerous modelling and simulation approaches in artificial life, biology, ecology, and other dis-
ciplines require initial input of a stochastic environmental time series to which agents or individ-
uals respond. Frequently the time series used represent white noise, as this is easily simulated and
generally regarded as a simple and useful way to introduce an environment that varies randomly.
Minimally, a white noise time series is defined as one without significant autocorrelation at any lag
other than zero. In practice, white noise is often created from a series of independent, identically
distributed random variables with zero mean and finite variance, with the generating distribution
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M. Grove et al. Noise Colour in Evolutionary Systems

often Gaussian. Due to the lack of autocorrelation, the power spectral density of white noise is
flat, with equal power in any given frequency band. It is this latter characteristic that gives white
noise its name, by analogy with the approximately flat power spectral density of white light over the
visible range.

Though there are many instances in which white noise is a valuable approximation of a fluctu-
ating environment—its stationarity, lack of memory (≈ autocorrelation), and long-term symmetry
are valuable properties that facilitate analysis—it is not realistic as a depiction of real environmental
fluctuation in the majority of cases. Empirically, most environmental and ecological time series fall
within the pink to red noise spectrum, in the sense that their power spectral densities display greater
power at lower frequencies. Empirical records of marine and terrestrial temperatures, precipitation
and river levels, and ecological phenomena such as population fluctuations, persistence times, and
times to extinction are all found to exhibit power spectral densities with these “reddened” prop-
erties (Cuddington and Yodzis, 1999; Halley & Inchausti, 2004; Inchausti & Halley, 2001, 2002;
Mandelbrot & Wallis, 1969; Miramontes & Rohani, 1998; Steele, 1985; Vasseur & Yodzis, 2004).
As an example, Figure 1(a) shows the terminal Pleistocene section of the North Greenland Ice
Core Project (NGRIP) benthic δ18O data (Rasmussen et al., 2014)—an isotopic ratio proxy for
temperature—with Figure 1(b) showing the power spectral density of these data.

The exponent (β) marked on Figure 1(b) is the (negative) slope of the black line, and is used to
measure the colour of the time series. The equation relating power ( p) to frequency ( f ) is then:

In (p) ∝ 1/ ln( f )β (1)

This format leads to the closely related concept of 1/f noise frequently encountered in the physical
sciences literature. In the format of Equation 1, β = 0 equates to white noise, β = 1 to pink noise,
and β = 2 to red noise. Perfect pink noise at β = 1 is a special case in that power is the exact
reciprocal of frequency, but in practice the definition of pink noise is often extended to refer to a
wider region around this particular case with 0.5 � β � 1.5. The NGRIP benthic δ18O data display
a power spectral density in the pink to red spectrum, as is common with empirical palaeoclimatic
and palaeoenvironmental time series.

Figure 2 shows examples of simulated white, pink, and red time series together with their associ-
ated power spectral density plots. In relation to empirical data it is important to note that time series
in the pink to red range—those with greater power at lower frequencies—allow for longer-term
excursions of the time series that result from increased autocorrelation. At millennial and longer
timescales, empirical palaeoclimatic signals are heavily influenced by long-term oscillations such as
those resulting from the Milankovitch cycles that affect the amount of solar radiation reaching the
earth and govern the transitions from glacial to interglacial periods. Though not all empirical records
are perfectly characterized by the linear approximation of Equation 1, the coloured noise framework

Figure 1. The Late Pleistocene section of the benthic δ18O record from the North Greenland Ice Core Project (NGRIP).
(a) shows the time series itself, and (b) its logarithmically transformed power spectral density. The black line fitted to
the data in (b) represents the equation ln(p) = 1/ ln( f )1.459, indicating that the time series has a power spectral density
between pink and red noise.

2 Artificial Life Volume 00, Number 00

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/doi/10.1162/artl_a_00354/1986825/artl_a_00354.pdf by Keele U
niversity user on 12 February 2022



M. Grove et al. Noise Colour in Evolutionary Systems

Figure 2. Examples of simulated white (a), pink (c), and red (e) time series. Respective power spectral densities are
shown (logarithmically transformed) in (b), (d), and (f). The black lines fitted to the data in these latter three plots
represent equations of the form ln(p) = 1/ ln( f )β . Exact values of β are given in the plots, and closely resemble white
(β = 0), pink (β = 1), and red (β = 2) noise.

remains a valuable shorthand for describing time series, and importantly includes white noise as a
special case.

Stochastic simulation models are highly important in many disciplines, and are a necessity when
dealing with responses to natural environments, which are highly variable through time and often
unpredictable. As there are many sources of environmental variability, and as these combine addi-
tively to create the fluctuations observed empirically, white noise (particularly Gaussian white noise)
seems at first to be a logical choice as a proxy environment. However, different sources of variation
act at different frequencies and provide contributions of differing amplitude to the overall pattern
of environmental fluctuation; empirical studies suggest that in general lower-frequency sources of
variation are of higher amplitude than higher-frequency sources of variation, and this finding sug-
gests that time series with pink to red power spectral densities may be more realistic as proxies for
real environments.

The fact that empirical environmental and ecological time series rarely conform to white noise
suggests that models could be made more realistic by extending them to encompass other colours
of noise. Critically, it is important to assess whether models of evolutionary processes that em-
ploy white noise produce results that differ from those employing more realistic pink or red noises
(Grove et al., 2020). Using a simple model of the trade-off between specialism and generalism,
Grove and colleagues demonstrate that markedly different results are generated when time series of
different colours are used as the environments to which agents adapt. Below, we report this model,
which we then extended to include differences in the reproductive rate of the species modelled
in order to study the interactions of noise colour, reproductive rate, and the specialism-generalism
trade-off. Reproductive rate (or life history more generally) is a fundamental part of a species’ adap-
tation; despite a growing interest in coloured noise environments among ecologists and environ-
mental scientists in recent years, however, the interaction of noise colour and life history remains a
largely neglected area of research.
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1.1 Coloured Noise Research in Ecology and Evolution
Coloured noise research within ecology in recent years has seen a focus on evolutionary
changes in population size, and particularly on the effects of noise colour on extinction risk. Ripa
and Lundberg (1996) applied the Ricker model of population growth (Ricker, 1954) to show that
redder noise lessens the risk of extinction, concluding that autocorrelation was critical in determin-
ing whether a population grew (under red noise) or declined, ultimately to extinction (under blue
noise, with β < 0). Similar results were obtained by Cuddington and Yodzis (1999), using another
variant of the Ricker model that explicitly included coloured noise (see also Petchey et al., 1997), ex-
tending the noise colours to encompass black noise with β → 3. Extremely high values were found
to be associated with increasingly long population persistence times compared to less reddened
noise (0.5 ≤ β ≤ 1), suggesting that evolution under highly autocorrelated noise produces robust
populations that can adapt effectively to rare but potentially highly significant environmental events.
The conclusions of Cuddington and Yodzis (1999) are confirmed by Halley and Kunin (1999) and
Inchausti and Halley (2001, 2002, 2003), all of whom note that the effect of reddening is to increase
the variance observed in longer time series but that, contrary to the expectation that populations are
more likely to become extinct in more extreme environments, evolution in such conditions is more
robust to environmental variance. Cuddington and Yodzis (1999) also note that white noise, with
its lack of autocorrelation, does not capture the features of the natural environments within which
evolution occurs. These simulations demonstrate that different frequencies of coloured noise pro-
foundly affect population dynamics, and that research must extend beyond traditional white noise
models to establish realistic simulations of environmental fluctuation.

Halley (1996) proposes pink noise as the most suitable model of a typical environmental time
series. His proposal rests on the fact that white noise, consisting of equal power at all frequencies and
lacking any form of autocorrelation, under-represents rare but significant disruptive events, whereas
red noise over-emphasises longer-term periodicities. Pink noise, however, gives equal weight to both
common and rare environmental events. Further to this, Inchausti and Halley (2002) demonstrate
that animal population dynamics display pink noise far more often than would be expected given
the power spectral densities of the environmental time series that the populations are exposed to.
Halley and colleagues suggest that time series towards the reddened end of spectrum, rather than
white noise, produce ecologically valid models of environmental variability; pink noise, with its
proportional power across the frequency range, its long memory, and its non-stationarity, shows
important characteristics present in empirical ecological time series (Halley & Inchausti, 2004).

Evolution responds to environmental variability over multiple timescales by mitigating the risk
associated with both short-term and long-term environment change, maximising immediate fit-
ness whilst also ensuring continued survival. Under real environmental fluctuations, evolution can
select for individuals who are generalists rather than specialists, favouring plasticity to increase the
long-term likelihood of population endurance (Haaland et al., 2019, 2020). To explore how different
colours of noise affect the trade-off between specialism and generalism in fluctuating environments,
Grove (2014) and Grove et al. (2020) developed a simple evolutionary model of this trade-off. They
confirmed that generalism was more likely to evolve as environmental variability became whiter,
whilst specialism was more likely to develop under redder environmental variability; importantly,
pink noise was found to be the point of balance between selective regimes favouring generalism
and specialism. However, Grove et al. (2020) note that since recombination events (a major gener-
ator of genotypic variation in sexually reproducing species) occur with less frequency in organisms
with longer generation times, there is potentially a confounding relationship between life history
and the development of environmental tolerance in populations experiencing different colours of
environmental noise.

1.2 Evolution in Fluctuating Environments
There is a substantial body of research in evolutionary biology examining the relationships be-
tween fluctuating environments and generalism, plasticity, niche breadth, and environmental tol-
erance (Baker, 1965; Grove, 2015; Levins, 1968; Mayr, 1965; Moran, 1992; Sol, 2008). Some of
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these terms are used interchangeably in the literature; although there are subtle differences, conclu-
sions can be generalised by stating that most previous research suggests that increases in temporal
environmental heterogeneity produce more eurytopic organisms. Eurytopic organisms are able to
tolerate a wide range of habitats and environmental conditions; this can be achieved via generalism
or plasticity, and necessitates increases in niche breadth and environmental tolerance.

An extensive series of analyses, beginning with initial genetic research by Levene, Dempster,
and others (Cohen, 1966; Dempster, 1955; Gillespie, 1973; Haldane & Jayakar, 1963; Levene, 1953;
Lewontin & Cohen, 1969) has suggested that temporal heterogeneity in environmental conditions
is likely to promote the evolution of various forms of flexibility or plasticity at the individual or
population levels. Much early research focussed on the maintenance of genetic polymorphisms via
mechanisms such as heterozygote advantage, but such research also provided a basic mathemati-
cal template for the study of evolutionary dynamics in fluctuating environments across far broader
scales (Lee & Doughty, 2003; Simons, 2002). In essence, the contrast between selection in spatially
and temporally heterogeneous environments rests on the distinction between the arithmetic and
geometric means. An organism that encounters differing environmental states across space (≈ si-
multaneously) will have an overall fitness that is the arithmetic mean of its fitnesses in those states.
If these environmental states differ only spatially, with each being constant through time, the arith-
metic mean will be identical in each generation for organisms utilising the same territory; there will
therefore be no variance in fitness between generations. If environmental states change through
time, however, such that subsequent generations experience different environmental mosaics, the
appropriate measure of fitness becomes multiplicative, and the geometric mean effect comes into play
(Carja et al., 2013; Lee & Doughty, 2003; Simons, 2002).

The geometric mean is highly sensitive to variance, and therefore the most successful lineages of
organisms in the long-term will be those that minimise variance in fitness between generations rather
than maximising (arithmetic) mean fitness within generations. Eurytopic organisms naturally fulfil
this criterion, whether via generalism or plasticity; they may never be the fittest organisms in a partic-
ular environment, but they are also rarely the least fit organisms in that environment. Dobzhansky’s
(1950, p. 216) observation that temporally variable environments “put the highest premium on
versatility rather than on perfection in adaptation” remains one of the clearest statements of
this principle. A series of more recent studies have explicitly examined fluctuations in autocorre-
lated environments, with a particular focus on the evolution of bet-hedging strategies (e.g., Carja
& Creanza, 2019; Libby & Ratcliff, 2019; Wang & Dai, 2019). Wang and Dai (2019) suggest that
generalist phenotypes evolve under intermediate levels of environmental correlation, while Libby
and Ratcliff (2019) argue that structured populations and dispersal can maintain sufficient genetic
variance at the population scale to reduce the risk of extinction in unpredictable environments.
Carja and colleagues (e.g., Carja & Creanza, 2019) extend such approaches to examine “cultural
bet-hedging” (see also Grove, 2018, 2019) and the evolution of diversity in populations of socially
learning organisms.

It is important to note, however, that the relationship between autocorrelation and noise colour
is neither linear nor simple. The equation for iteratively generating an autocorrelated time series is
frequently given as

φt+1 = αφt + ε(t+1) (2)

where φ is the time series, α is the autocorrelation parameter, and ε is a series of normally dis-
tributed random variates with zero mean and unit variance. It is then often assumed that the au-
tocorrelation parameter α relates to the β parameter in 1/fβ noise (at least in the region between
white [ β = 0] and red [ β = 2] noise) as α = β/2. However, there exists no simple linear relation
of this kind between autocorrelated and 1/f noise, as shown via simulation in Figure 3. Figure 3
shows the β value realised when simulating autocorrelated environments according to Equation 2;
beyond white noise, for which α = β = 0, the simulation results deviate considerably from the as-
sumed relationship of α = β/2. This deviation is caused by the fact that Equation 2 describes an
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Figure 3. The relationship between the autocorrelation parameter of Equation 2 and the noise colour of the resultant
time series. Each data point represents the median noise colour of 1,000 time series generated via Equation 2; whiskers
represent the full range of variation around the median. The red dashed line represents β = 2α where β is the
exponent of a coloured noise series 1/fβ and α is the autocorrelation parameter of Equation 2.

AR-1 process whereas coloured noise consists of self-similar patterns of recurrence across the entire
time series.

1.3 The Interaction of Life History and Environmental Fluctuation
Animals have been found to show substantial variation in life history variables, as characterised in
Pianka’s (1970) expansion of MacArthur and Wilson’s (1967) Theory of Island Biogeography. Pianka’s
(1970, p. 593) focus on r- and K-selected species differentiates between organisms of small body and
brain size, which develop rapidly, reach sexual maturity early, and have short lifespans (r-selected
species), and those of large body and brain size, which develop slowly, take longer to reach sexual
maturity, and show greater longevity (K-selected species). Though these conditions are necessar-
ily relative rather than absolute, and the theory has received considerable criticism (reviewed in
Reznick et al., 2002), the basic essence of the theory—that animals can be organised on a life his-
tory continuum between those that have “fast” reproductive rates (r) and those that have “slow”
reproductive rates (K )—is evidently true, and continues to permeate the literature (e.g., Engen &
Sæther, 2017; Lande et al., 2017; Wright et al., 2019). Importantly, Bromham (2009, 2011) notes that
if reproductive rates vary between species, then rates of potential evolution must also vary. This is
due to the fact that mutation rates vary considerably between species (e.g., Bromham et al., 1996;
Lanfear et al., 2010), with a substantial part of this variation correlated with life history variables
such as reproductive rate (e.g., Nabholz et al., 2008; Nikolaev et al., 2007). Since mutation provides
the raw material for evolutionary change, the potential for evolutionary change is greater in those
species with higher reproductive rates. This leads to the theory that rapidly reproducing species may
be more able to track environmental fluctuations via natural selection, whereas slowly reproducing
species may be more dependent upon behavioural adaptation, individual and social learning, and,
ultimately, cultural evolution (e.g., Grove, 2017, in press).

Modifications and extensions of Pianka’s (1970) classification are too numerous to cover in detail,
but of relevance to the analyses below is the finding of Bielby and colleagues (Bielby et al., 2007)
that there may not be a single axis of variation corresponding to the continuum between fast and
slow species. Whilst Stearns (1983) argued for the existence of both fast-slow and precocial-altricial
life history axes, factor analyses conducted by Bielby et al. (2007) suggest that, after controlling for
body size, the two main factors concern the timing of reproductive bouts and the reproductive
output per bout. Age at sexual maturity, inter-birth interval, and weaning age load heavily on the
first factor, with gestation length and litter size associated with the second factor. Modelling efforts
may ultimately have to incorporate these two factors separately, but overall measures of reproductive
output such as the maximum intrinsic rate of increase (rmax) remain useful as summaries of a species’
position on the classic life history continuum between fast and slow.
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The response of a species to environmental change has been found to be strongly affected by
life history. Chiba (1998) predicts that, under gradual climatic change, K-selected species inhabit-
ing previously stable environments would face the most serious risk of extinction, whilst modelling
by Benton & Grant (1996) and Tuljapurkar (1989, 1990) suggest that r-selected organisms would
be most severely impacted by rapid climate perturbation and catastrophic events. These outcomes
may seem contradictory, yet they make sense in terms of life history theory. K-selected species,
characterised by great competitive capability and high chance of survival to adulthood but low re-
productive yield, are anticipated to persist in stable environments (MacArthur & Wilson, 1967).
Such animals with slow life histories are found to be resistant to environmental disruption but lack
the ability to rebound from long-term change due to their low reproductive rate. On the other hand,
r-selected species have a higher capacity for reproduction and therefore tend to occupy more varied
environments in the short term, avoiding extinction by recolonisation and tracking environmental
change (Pribil & Houlahan, 2003). Behavioural and/or genetic adaptions allow animals with faster
generation times to react quickly to climate change, improving their likelihood of survival. This to-
gether suggests that there are likely to be complex evolutionary responses to environmental change;
crucially, species with differing life histories may respond in quite different ways to different types
of environmental change. Based on previous work, both slower life histories and “whiter” environ-
ments are predicted to produce increased selection for generalism as opposed to specialism, but
there has to date been no research into the interaction of these two effects.

To examine the interaction of noise colour and life history, the model described below extends
the work of Grove and colleagues (Grove, 2014; Grove et al., 2020) by varying the reproductive
rates of the simulated populations. Specifically, the model assumes a constant overall population
size while varying R, the proportion of individuals replaced each iteration. Modelling life history
in this way does not vary rmax (as the number of births is equal to the number of deaths in each
iteration of each simulation, which is equivalent to assuming a constant carrying capacity); instead,
increasing the replacement proportion mimics the effects of a faster life history in that it increases
the amount of genetic variation produced via recombination in each iteration. The replacement
proportion also acts as a viable proxy for both generation time and longevity, as both are directly
related to its reciprocal; both the average longevity of an agent (in units of iterations) and the average
number of iterations required to completely replace the existing population are equal to 1/R.

1.4 Environmental Variability in Artificial Evolutionary Systems
Artificial evolutionary systems, often employed in artificial life, evolutionary robotics, computa-
tional biology, and computational social sciences, employ a variety of methods to either inject noise
into the environment, or to vary the environment over time. Examples include the addition of
noise to external forces (Bongard & Pfeifer, 2003) or sensor inputs (Jakobi, 1997; Jakobi et al.,
1995) in evolutionary robotics; the application of an external environment (i.e., time-dependent
changing of objective functions) (Borg & Channon, 2012; Bullinaria, 2018; Grove, 2014, 2018); the
time-dependent determination of rewards/punishments (Canino-Koning et al., 2016); the varying
of task difficulty over time (either predetermined, or determined by the performance of agents)
(Borg et al., 2011; Jolley et al., 2016; Stanton, 2018; Stanton & Channon, 2013); and the exploration
of complex and noisy environments for the emergence of open-ended evolution (Channon, 2019;
Channon & Damper, 1998). In all of these examples, one thing is consistent—agents are expected
to adapt to changes or uncertainty in their environment. The approaches taken to implementing
this change or uncertainty vary significantly between systems. These implementations include the
application of coloured noise, typically white noise/Gaussian random noise (Jakobi, 1997; Jakobi
et al., 1995; Kouvaris et al., 2017) or, to a lesser extent, red noise/Brownian noise (Steiner, 2012;
Whitehead & Richerson, 2009). Other implementations include the use of sine waves to determine
environmental fluctuations over time, or variations on this theme (Borg & Channon, 2012; Grove,
2014, 2018; Khan et al., 2020; Stanton, 2018; Stanton & Channon, 2013). A final common ap-
proach is to predetermine a series of states which an environment could be in, and move between
these states given a certain frequency, this frequency determining the difficulty or harshness of
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environmental change (Asakura et al., 2015; Canino-Koning et al., 2016; Ellefsen, 2014; Nolfi &
Parisi, 1996; Ofria & Lalejini, 2016; Wilder & Stanley, 2015). One thing is common across all of
these approaches, they all rarely consider pink noise, or ground the method of environmental un-
certainty in empirical observations.

The application of environmental variability or noise is used to address a number of questions
concerned with the affects of environmental uncertainty. The most common amongst these are
whether changing environments affect: the emergence of phenotypic plasticity (Kouvaris et al.,
2017; Wilder & Stanley, 2015) and evolvability (Canino-Koning et al., 2016; Ofria & Lalejini, 2016;
Steiner, 2012); the evolution of robust controllers in 3D virtual creatures (Stanton, 2018; Stanton
& Channon, 2013) and robots (physical and simulated) (Asakura et al., 2015; Bongard & Pfeifer,
2003; Jakobi, 1997; Jakobi et al., 1995); and the evolution of versatile adaptations such as learn-
ing (Ellefsen, 2014; Nolfi & Parisi, 1996) and social learning (Borg & Channon, 2012; Bullinaria,
2018). What is common amongst all these questions and domains is that they are seeking to under-
stand the interaction between changing environments, specialist-generalist evolutionary dynamics,
and adaptability. The work of Grove (2014) provides a suitable general framework for address-
ing the question of specialist-generalist evolutionary dynamics under environmental variability in
artificial evolutionary systems, with Grove et al. (2020) demonstrating the benefits of accommo-
dating coloured noise under this framework, and the importance of considering coloured noise as
the basis for environmental variability and uncertainty as opposed to the more common methods
discussed above.

2 Methodology

The model is based on a population of 1,000 agents each possessing a chromosome consisting
of just two loci. These loci are continuous variables corresponding to the mean (Locus 1) and
standard deviation (Locus 2) of a Gaussian distribution that describes an agent’s environmental
tolerance. Locus 1 therefore represents the environment in which the agent achieves its optimal
fitness and can take any value, while Locus 2 represents how sharply the agent’s fitness declines
when the environment differs from this optimum and is necessarily positive. Agents with relatively
low values at Locus 2 can be considered specialists, whereas those with relatively high values at
Locus 2 can be considered generalists. Locus 2 can also therefore be considered a measure of an
agent’s niche breadth in a single dimension. At the start of each simulation, agents are initiated with
Locus 1 values randomly distributed as N(0, 0.1) and Locus 2 values as |N(0, 0.1) | with N(μ, σ)
a Gaussian random variable. During each iteration of a simulation, each agent is assigned a fitness
score calculated via a standard Gaussian function, given as:

F
(
ai,t

) = 1
σi,t

√
2π

e−
1
2

( Et−μi,t
σi,t

)2

(3)

where F(ai,t) denotes the fitness of agent i at time t, Et denotes the environmental value at time t,
and μi,t and σi,t denote respectively the values at Locus 1 and Locus 2 of agent i at time t.

Each iteration R individuals are chosen for reproduction via fitness-proportionate selection (henceforth
FPS); a mutated copy of each of these individuals is produced, with these copies taking the place
of the least fit R individuals in the population. Reproduction is therefore asexual, with the two loci
fully linked; alternative simulations utilising sexual reproduction with values at the two loci inherited
separately from two parents chosen independently via FPS did not appreciably alter the results. The
mutation equations differ slightly for the two loci due to the necessity for positive values at Locus
2. Mutation at Locus 1 is given by:

L′
1 = L1 + N(0, 0.1) (4)
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and mutation at Locus 2 by:

L′
2 = L2 · eN(0,0.1) (5)

where the prime indicates the mutated value at the respective locus in the new agent. The coloured
noise time series to which agents adapt are generated via the inverse fast Fourier transform (hence-
forth IFFT), which allows for accurate generation of coloured noise. Time series were generated
from a vector of frequencies f = t/2s/n, with t = (s, 2s, . . . , ns), a vector of sampling times, s the
sampling period, and n a scalar equal to the length of the vector t. The sampling frequency is there-
fore 1/s with the Nyquist frequency equal to 1/2s. The vector of desired amplitudes at each fre-
quency is then calculated as:

A =
√

1
2
|1/f β | (6)

where β is the log-spectral exponent (e.g., β = 0 for white noise, β = 2 for red noise). A is then
doubled in length from n to 2n by adding an inverted copy to the bottom of the existing vector. A
is then multiplied by an exponentiated vector of 2n random phase angles and passed to the IFFT,
with the final coloured noise series calculated as:

Eβ = R
(

IFFT
{

A ◦
(

e2πu
√−1

)})
(7)

where u is a vector of 2n uniformly distributed random numbers on the interval [ 0, 1], ◦ indicates
the Hadamard product (element-wise multiplication), and R indicates that only the real part of the
complex output is retained. The vector Eβ is now a coloured noise time series of length 2n with
log-spectral exponent β . Time series were scaled to have zero mean and unit variance before being
incorporated into the model. Two sets of tests were undertaken, the first with R fixed to replace half
of the population (also reported in Grove et al., 2020), and a second set of tests where R is varied.
For simplicity and to reduce padding during the IFFT procedure, s = 1 in all tests. In the first set of
tests n = 216 = 65,536, and in the second set of tests n = 212 = 4,096; this leads to coloured noise
series consisting of 2n = 131,072 and 2n = 8,192 timesteps respectively. The reason for reducing
the length of the coloured noise series in the second set of tests was that it was clear from the first
set of tests that simulations had stabilised early into the test and therefore did not require time series
of such length. To examine the interaction of noise colour and reproductive rate, simulations were
run on time series with log-spectral exponents from 0 to 2 in increments of 0.1 and reproductive
numbers R from 50 to 950 in increments of 50 (corresponding to a range of 5% to 95% of the
population replaced each iteration), yielding a total of 399 simulation runs. Population medians and
2.5th and 97.5th percentiles were recorded for Loci 1 and 2 each iteration. To produce a measure
of central tendency indicative of a whole simulation run, the median of all agents across the last
130,000 (in the first set of tests) and 8,000 (in the second set of tests) iterations was calculated for
both loci; to produce a measure of dispersion (population diversity) indicative of a whole simulation
run, the median distance across the last 130,000 or 8,000 iterations between the 2.5th and 97.5th
percentiles of the population was calculated for both loci.

3 Results

As first reported in Grove et al. (2020), our first set of simulations found that agents are more
successful at tracking environments under reddened noise (increased values of β), as shown in the
2,000-iteration snapshots of example runs in Figure 4. Conversely, greater tolerance is selected for
under whiter noise (β → 0) as agents are unable to closely track the environment. This pattern is
demonstrated by Figure 5 (top). We found that greater tolerance implies lower fitness (Figure 5,
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Figure 4. Three 2,000-iteration snapshots of single model runs where the proportion of agents replaced each itera-
tion = 0.5. Agents are better able to track reddened noise, whereas the trajectory for white noise suggests that agents
evolve towards the running mean of the environmental series and couple this with a broader environmental tolerance.

bottom) as agents are required to generalise to fluctuating environmental conditions rather than
specialise under relatively stable redder noise. Evolution under pink noise, however, provides an
intermediary between white and red noise. To understand the relationship between noise colour and
the rate of change in evolved tolerance, we applied a local polynomial regression method, known as

Figure 5. Tolerance and fitness values for populations evolving in environments characterised as white 1/f 0 to red 1/f 2

noise, where the proportion of agents replaced each iteration = 0.5. In line with the snapshots of Figure 4, whiter
noises require greater levels of tolerance and result in accordingly lower fitness. Points show medians, and error bars
show 2.5th and 97.5th percentiles, each over the last 130,000 iterations of a given run.
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Figure 6. A robust LOESS curve fitted against the first derivative of raw tolerance data where the proportion of agents
replaced each iteration = 0.5 (as seen in Figure 5). The fitted curve demonstrates that the rate of change in tolerance
against the noise exponent peaks at pink 1/f noise.

robust locally estimated scatterplot smoothing (LOESS), to the first derivative of the raw tolerance
data (see Figure 6). This shows that pink noise is the central point of the exponent, with the shift
from white to pink eliciting a rate of change in evolved tolerance that increases to its peak, which
falls away as the environment reddens beyond pink noise. Pink noise is thus the pivot between two
relatively stable evolutionary states: high tolerance in white noise environments and low tolerance
in red noise environments.

Similarly, in our second set of simulations, environmental tolerance values (as represented by
Locus 2) decreased as the environmental noise became increasingly reddened. However, a more
nuanced pattern is returned when considering the interaction between different noise colours and
reproductive rate. As shown in Figure 7(a), populations experiencing relatively white noise (β → 0)
evolved greater environmental tolerance under higher reproductive rates, whereas populations ex-
periencing relatively red noise (β → 2) evolved lower environmental tolerance under higher repro-
ductive rates.

To examine this result in greater detail, a more extensive series of simulations was carried out
from β = 0 to β = 2 in increments of 0.02 for reproductive rates of R = 50, 500, and 950. This
allowed for high-resolution examination of variation in evolved environmental tolerance levels at
three horizontal transects across the surface of Figure 7(a). Figure 8(a) shows these transects as
raw simulation output (median tolerance levels) with curves fitted via a robust LOESS procedure
with 25% span; Figure 8(b) shows the fitted LOESS curves relative to a baseline in which half the

Figure 7. (a) shows the median value at Locus 2 (tolerance or niche breadth) under each combination of noise colour
and reproductive rate. (b) shows population diversity at Locus 1 (measured as the distance between the 2.5th and
97.5th percentiles of the population) under each combination of noise colour and reproductive rate. Both plots show
medians over the last 8,000 iterations of each simulation run.
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Figure 8. Higher resolution simulations of evolved niche breadth across a range of noise colours for three reproductive
rates. (a) shows raw simulation output with fitted robust LOESS curves using a 25% span. (b) shows the resulting LOESS
curves plotted relative to a baseline in which half the population is replaced each iteration (shown by the green line in
(a)). PR = proportion of agents replaced each iteration.

population is replaced each iteration (R = 500). Figure 8 emphasizes the fact that conclusions drawn
from a simulation employing white noise (β = 0) would be the opposite of the conclusions drawn
from a simulation employing the more realistic pink noise (the transition from higher reproduc-
tive rates generating higher levels of tolerance to higher reproductive rates generating lower levels
of tolerance occurs at β ≈ 0.8). These results demonstrate not only that noise colour influences
evolved levels of environmental tolerance but also that the interaction between noise colour and
reproductive rate produces complex, nonlinear patterns in the response of this important evolu-
tionary variable.

As shown in Figure 7(b), the diversity of values at Locus 1 increases markedly with reproductive
rate under relatively white noise, but shows relatively little variation under reddened noise (β > 1.6).
Diversity at Locus 2 (not shown) follows a very similar pattern. This result demonstrates that the
effect of reproductive rate on population diversity depends heavily upon the colour of the envi-
ronmental noise experienced by the population; simulations employing white noise would produce
results qualitatively different from those employing the pink to red noises found more frequently in
natural ecological and environmental settings.

4 Discussion

The results presented above highlight that the colour of noise chosen to represent the environment
to which agents are adapting has a profound influence on model output. Gaussian (white noise)
and Brownian (red noise) signals are found to represent the two extremes of a wide spectrum of
noise colour variation, with the former eliciting selection for specialism, the latter generalism, and
pink noise a balance between the two. We also found a complex non-linear interaction between the
reproductive rate of the agents in a simulation and noise colour. Widely divergent and somewhat
contradictory responses in niche breadth and population diversity are reported when applying these
two most frequently used models for environmental signals to simulated populations with differing
life histories. Together, this highlights the need to give serious consideration to the colour of noise
applied in evolutionary simulations.

As originally reported in Grove et al. (2020), these results show that whiter environments gener-
ally require greater levels of environmental tolerance than those that exhibit redder power spectral
densities, demonstrated by Figure 4. This result is closely related to the geometric mean effect in
evolutionary biology, which states that under high levels of environmental variability (indicated here
by environments with white power spectral densities), selection acts to reduce the variance in fitness
over generations, even if this entails the sacrifice of highly fit individuals within any given generation
(Lewontin & Cohen, 1969; Phillipi & Seger, 1989; Simons, 2002). At macro-evolutionary timescales,
natural selection favours lineages with low variance in fitness over time rather than those with high
instantaneous fitness at any given time; put simply, in a highly variable environment high fitness
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today may mean low fitness tomorrow, whereas moderate fitness today may equate to moderate
fitness tomorrow (Figure 5). This is particularly true of white noise environments, due to their lack
of autocorrelation; in a white noise environment, today’s conditions are completely unrelated to
tomorrow’s conditions. In a red noise environment, by contrast, today’s conditions act as at least
a partial guide to tomorrow’s conditions. The unpredictability of white noise leads logically to the
evolution of greater generalism or tolerance, as this is the only strategy available when there are no
available cues to future conditions.

The above is coherent with Potts’ (1996, 1998, 2013) variability selection hypothesis, which ar-
gues that organisms develop greater versatility under varying conditions in order to deal with novel
and unpredictable environments in the future. Potts (1998) draws evidence from hominin evolution,
noting that key physiological and behavioural adaptations seem to have emerged in the hominin lin-
eage during times of heightened variability. Paleoenvironmental data from the archaeological site of
Olorgesailie reveal that whilst long-term evolutionary trends such as orbital cycles are detectable,
there is also strong evidence of significant abrupt fluctuations in climatic conditions; this suggests a
balance between low-frequency (≈red) oscillations and high-frequency (≈white) variability. If vari-
ability is considered to be the white noise component of a signal, then our results show support for
the variability selection hypothesis; however, a more complex pattern in the behavioural response
to environmental noise is reported above, requiring a careful consideration of the type of noise
assumed when simulating evolution in response to environmental change.

Figure 7(a) demonstrates that all simulated populations, regardless of reproductive rate, evolve
greater environmental tolerance under whiter noise; this is the primary output of the analyses con-
ducted above. However, the analyses also demonstrate an intriguing interaction with reproductive
rates in that under white noise, higher reproductive rates lead to greater levels of environmental
tolerance, whereas under red noise, higher reproductive rates lead to lower levels of environmental
tolerance. This latter result is made explicit by the analyses presented in Figure 8. As white noise and
red noise are the two most widely used forms of environmental fluctuation in stochastic simulation
models, the fact that they produce contrasting results in this regard suggests that more caution is
needed when interpreting the results of such models, and that more focus is needed to establish the
most appropriate form of environmental fluctuation for a given application.

It has been hypothesised that organisms with short life histories (and fast reproductive rates)
are less likely to exhibit signs of behavioural versatility and instead are likely to track environmental
fluctuations via genetic mechanisms (Grove, 2017; Grove et al., 2020). Encephalisation facilitates
behavioural versatility (Reader & Laland, 2002; Street et al., 2017), and, whilst standard life-history
theory in terms of the r/K division (Pianka, 1970; MacArthur & Wilson, 1967) does not directly con-
sider the relationship between encephalisation and reproduction rate, brain and body size are tightly
correlated in mammals (Herculano-Houzel et al., 2015; Jerison, 1975; Tsuboi et al., 2018). Indeed,
many studies have suggested that brain size is in fact a more likely determinant of life-history varia-
tion than is body size (e.g., Barrickman et al., 2008; Deaner et al., 2003; Isler & van Schaik, 2009a,b).
This makes sense in light of the expensive tissue hypothesis (Aiello & Wheeler, 1995), as the energy
required to grow and maintain a large brain may have elicited a reduction in the energy allocated to
reproduction (Isler & van Schaik, 2009a). Animals with lower reproductive rates have, on average,
smaller brains when compared to related taxa with longer generational times (Grove, 2017), and rel-
atively large-brained mammals show reduced annual fertility (Isler & van Schaik, 2009a). Over the
past five million years, empirical paleoenvironmental data have shown a steady increase in variability
(Lisiecki & Raymo, 2005), likely playing a key role in the increasing versatility observed in the ho-
minin behavioural record, as proposed by the variability selection hypothesis. As human ancestors
evolved slower life histories and larger brains, they would have become more dependent on cultural
rather than biological evolution to adapt to environmental challenges.

Reproductive rates are inherently linked to evolutionary rates in sexually reproducing organisms;
as recombination events are a major source of genotypic variation, species with faster reproduc-
tive rates produce more variation per unit time. The rate of molecular evolution varies consis-
tently with life history parameters such as generation time across a wide range of mammalian taxa
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(e.g., Bromham, 2011). Elevation of the mutation rate itself—not directly explored in the above
analyses—would be expected to produce an effect similar to an increase in reproductive rates (and
mutation rate alone governs evolutionary rates in asexually reproducing organisms). Whilst higher
mutation rates may permit faster evolution in a lineage, however, the vast majority of mutations are
deleterious to individuals, and thus selection for increases in mutation rate is considered to be ex-
ceptionally rare (e.g., Kimura, 1967). Selection for faster or slower life history, by contrast, depends
on a complex series of trade-offs; for example, a faster life history may be associated with greater
fecundity but lower survivorship, and numerous life history strategies may lead to equivalent fitness
(in the sense of the number of offspring surviving to reproductive age). The traditional dichotomy
between investment in offspring quantity (r-selection) in variable environments and investment in
offspring quality (K-selection) in stable environments may not be sufficient in cases where sexual
maturity is delayed by substantial energetic investment in brain development, with individual and so-
cial learning subsequently employed to provide solutions to the challenges posed by environmental
variability.

The results reported above agree with those of Halley (1996) that pink noise (broadly construed)
is likely the most appropriate model of typical environmental noise for understanding long-term
evolutionary dynamics. Both the niche breadth and the population diversity responses, depicted
in Figure 7, are most consistent with standard life history theory under pink noise scenarios, with
populations with higher reproductive rates exhibiting traits of specialists and populations with lower
reproductive rates exhibiting traits of generalists. Animal population dynamics typically exhibit pink
noise at a level that appears to be greater than would be expected from the environmental noise that
the populations are exposed to. As demonstrated by Grove et al. (2020), these results show that pink
noise is the pivot around which a change from high environmental tolerance (under white noise) to
low environmental tolerance (under red noise) occurs, offering a critical balance between the need
for plasticity during periods of high variability and to track longer-term environmental changes.

4.1 Conclusion
Our simulations suggest that populations evolving under increasingly reddened environmental
regimes will tend to be more specialised, with narrower niches and a lower tolerance of environmen-
tal variability. This is due to the higher autocorrelation of redder relative to whiter noise, which leads
in turn to redder environments being more predictable. However, there exists a complex interaction
between noise colour and reproductive rate: Populations experiencing relatively white noise evolved
greater environmental tolerance under higher reproductive rates, whereas populations experiencing
relatively red noise evolved lower environmental tolerance under higher reproductive rates. Thus,
conclusions drawn from simulations employing white noise would be the opposite of those drawn
from simulations employing red noise. Further to this, the effect of reproductive rate on popula-
tion diversity also depends heavily upon the colour of the environmental noise experienced by the
population. It is recommended that future simulations should be conducted using a wider range of
coloured noise models and that, where related empirical data are available, these should be analysed
to determine the power spectral density of the environment being studied. This should ensure that
simulation results are genuinely representative of both environmental and evolutionary dynamics.
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