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Abstract

This paper addresses the identification of
toxic, engaging, and fact-claiming comments
on social media. We used the dataset made
available by the organizers of the GermEval-
2021 shared task containing over 3,000 man-
ually annotated Facebook comments in Ger-
man. Considering the relatedness of the three
tasks, we approached the problem using large
pre-trained transformer models and multitask
learning. Our results indicate that multitask
learning achieves performance superior to the
more common single task learning approach
in all three tasks. We submit our best systems
to GermEval-2021 under the team name WLV-
RIT.

1 Introduction

The popularity and accessibility associated with
social media have greatly promoted user-generated
content. At the same time, social media sites have
increasingly become more prone to offensive con-
tent (Hada et al., 2021; Zhu and Bhat, 2021; Bucur
et al., 2021). As such, identifying the toxic lan-
guage in social media is a topic that has gained,
and continues to gain traction. Research surround-
ing the problem of offensive content has centered
around the application of computational models
that can identify various forms of negative content
such as hate speech (Malmasi and Zampieri, 2018;
Nozza, 2021), abuse (Corazza et al., 2020), aggres-
sion (Kumar et al., 2018, 2020), and cyber-bullying
(Rosa et al., 2019; Cheng et al., 2021; Salawu et al.,
2021).

GermEval-2021 (Risch et al., 2021) focuses on
identifying multiple types of comments in social
media. This year’s shared task is divided into
three distinct classifications of comments: i) Toxic,
ii) Engaging, and iii) Fact-Claiming. Like previ-
ous GermEval shared tasks (Struf} et al., 2019),
the detection of toxic content remains an integral

part of GermEval-2021. Regarding engaging com-
ments, there is an increasing desire from com-
munity managers as well as moderators to iden-
tify valuable user content (Kolhatkar and Taboada,
2017; Napoles et al., 2017). More particularly, ra-
tional comments that serve to encourage readers to
engage in a discussion. In a similar light, identify-
ing fact-claiming comments is equally important
as platforms need to consistently review and verify
user-generated content to uphold their responsibil-
ity as information distributors (Mihaylova et al.,
2018; Shaar et al., 2020).

We pose that multitask learning (MTL) is a suit-
able approach for this year’s GermEval as it enables
what is learned from each task to aid in the learn-
ing of other tasks. The current state-of-the-art ap-
proach for offensive language identification is neu-
ral transformers modeled using single task learning
(SLT) (Liu et al., 2019; Ranasinghe and Zampieri,
2020). It is well-known that training large neural
transformer models often result in long processing
times. As GermEval-2021 features three related
tasks, from a performance standpoint, we pose that
training a model jointly on three tasks is likely to be
computationally more efficient than training three
models in isolation. Moreover, as GermEval-2021
provides a single dataset for the three tasks, MTL
can also be used to help improving performance
across tasks. As such, we introduce multitask learn-
ing whereby one model can predict all three tasks
as an alternative approach.

In this paper, we present the methods and results
of the WLV-RIT submission to the GermEval-2021
shared task. We explore transformer architectures
in two different environments, single task learning
and multitask learning, and describe them in detail
in Section 4. We perform several experiments using
three transformer models that support German and
evaluate their performance on the GermEval-2021
dataset.



2 Related Work

The identification of offensive language in online
discussions is an extensive topic that has become
popular over the past several years. The majority
of the research related to this topic is centered on
English data due to the availability of annotated
datasets (Zampieri et al., 2019a; Rosenthal et al.,
2021). Notwithstanding this, offensive language
datasets are being annotated in other languages. Re-
searchers have examined offensive content across
multiple social media platforms and have both an-
notated and utilized data from different languages
such as Greek (Pitenis et al., 2020), Marathi (Gaik-
wad et al., 2021), Italian (Chiril et al., 2019), Por-
tuguese (Fortuna et al., 2019; Vargas et al., 2021),
Arabic (Mubarak et al., 2021), Turkish (Coltekin,
2020), and multiple languages of India (Ranas-
inghe and Zampieri, 2021a).

Past approaches to tackling the problem of offen-
sive content on social media have relied on using a
variety of computational models ranging from tradi-
tional machine learning classifiers such as Logistic
Regression and SVMs (Malmasi and Zampieri,
2018), to various deep learning models (de Gib-
ert et al., 2018). SemEval-2019 Task 5 (HatEval)
(Basile et al., 2019) presented the challenge of de-
tecting the presence of hate speech and identify-
ing further features in hateful contents, which in-
cluded two sub-tasks. For subtask A, which was the
hate speech (HS) category, the best performance
was achieved by training a support vector machine
(SVM) model with a radial basis function (RBF)
kernel. Several other high scoring teams used a
convolutional neural network (CNN) which was
traditionally the most popular approach to this topic
(Hettiarachchi and Ranasinghe, 2019). For TRAC-
1 (Kumar et al., 2018), the challenge was to de-
velop a classifier that could discriminate between
three levels of aggression in social media. The
results showed that with careful consideration, clas-
sifiers like SVM and even random forest could per-
form at par with deep neural networks. However, in
the end, more than half of the top 15 systems were
trained on neural networks which demonstrates the
approach’s effectiveness.

The introduction of BERT (Devlin et al., 2019)
spurred the use of pre-trained transformer mod-
els for classifying offensive speech (Ranasinghe
and Zampieri, 2021b). As a result, neural trans-
former based language models have increasingly
become more popular in offensive language iden-

tification. The use of pre-trained BERT models,
as well as BERT-based models, was shown to be
able to achieve competitive performance in popular
competitions such as OffensEval (Zampieri et al.,
2019b, 2020). Language-specific and multilingual
models have also been introduced to assist NLP
research in various languages such as GBERT for
German (Chan et al., 2020), AraBERT for Arabic
(Antoun et al., 2020), and the multilingual XLM-R
(Conneau et al., 2019) that has been been applied
to offensive language identification (Ranasinghe
and Zampieri, 2020, 2021¢).

3 Data

In the GermEval-2021 dataset, the focus has been
extended beyond the identification of offensive
comments to include two additional classes: en-
gaging comments that can motivate readers to par-
ticipate in conversations, and fact-claiming com-
ments. The dataset for this iteration of GermEval
comprises over 3,000 Facebook user comments that
have been extracted from the page of a political talk
show of a German television broadcaster. The train-
ing dataset has a total of 3,244 instances and com-
prises 1,074 instances without any toxic, engaging
or fact claiming content. In Table 1, we present
four different Facebook user comments along with
their annotation.

Toxic Engaging Fact-Claiming Training

0 0 0 1074

1 0 0 739

0 1 0 239

1 1 0 89

0 1 1 403

1 0 1 160

0 0 1 406

1 1 1 134
All 3244

Table 2: GermEval 2021 - Training Set User Comment
Distribution

4 Methods

Considering the success that neural transformers
have demonstrated across various natural language
processing tasks (Uyangodage et al., 2021; Jauhi-
ainen et al., 2021; Hettiarachchi and Ranasinghe,
2020a) including offensive language identification
(Ranasinghe and Zampieri, 2020, 2021b; Dai et al.,
2020) we used transformers to tackle this task too.



Comment

Subl Sub2 Sub3

”Die AfD sind genau so neoliberal und kapitalistische Zerstorer unserer Heimat, wie 1 0 0

die CDU, CSU, FDP, SPD und Griine auch.”

”Sarazin ist ein rechtsradikaler Mensch. Ein Menschenhasser. Sie kennen nur 1 0 1
Zerstorung. Die Geschichte hat es gezeigt.”

”@USER, du hast das Thema im Kern nicht verstanden” 0 0 1
”Ich frage dich, verlassen Menschen gerne ihre Heimat?” 0 0

Table 1: Annotation examples of four different Facebook user comments. Subl represents toxic comments, Sub2
stands for engaging comments, and Sub3 stands for fact claiming.

Parameter Value
learning ratet le™®
number of epochs? 3
adam epsilon le~8
warmup ratio 0.1
warmup steps 0
max grad norm 1.0
max seq. length 120

gradient accumulation steps 1

Table 3: Hyperparameter specifications. The optimised
hyperparameters are marked with 1 and their optimal
values are reported. The rest of the hyperparameter val-
ues are kept as constants.

We explored transformer architectures in two dif-
ferent environments; single task learning and multi
task learning.

Single Task Learning (STL) For the STL en-
vironment we trained three classification models
based on transformers. By utilizing the hidden
representation of the classification token (CLS)
in the transformer model, we predict the target la-
bels (toxic/non-toxic, engaging/non-engaging, fact-
claiming, non-fact-claiming) by applying a linear
transformation followed by the softmax activation

(0):
Vtask = 0(Wicrs) - hiers) + biers) (1)

where - denotes matrix multiplication, Wcr¢) €
RP3, bicrs) € RY2, and D is the dimension of
the input activation layer h. ;4 is the predicted
value of any of the three tasks.

We construct three separate classification mod-
els minimising the cross-entropy loss for each of
the three tasks as defined in the Equation 2, where
Ytowicr Yengage and Y rqc¢ represent ground truth la-

bels of each task. These particular losses are:

Liozic = — 22: (ytoxic ® log(f’tomc)) [4]

=1
2
Eengage = - Z <Yengage & IOg(yengage)) [Z]
=1
2
ﬁfact = - Z <Yfact & log(yfact)) M 2)
=1

where v[i] retrieves the ith item in a vector v and
® indicates element-wise multiplication. The cor-
responding STL architecture is shown in Figure
la.

Multi Task Learning (MTL) MTL was intro-
duced as an approach to inductive transfer (Caru-
ana, 1997). The main goal of which was to improve
generalization performance on a current task after
having learned a different but related concept on a
previous task. MTL is quite efficient as one model
can be utilized to predict multiple tasks so long
as they are related. In hate speech and offensive
language detection, MTL has been shown to out-
perform single-task environments as well as learn
task efficiently with the presence of little labelled
data per-task (Djandji et al., 2020). Despite this,
MTL has not been used much in the context of
offensive language detection. As such, we decided
to use multitask learning to compare the perfor-
mance within the two different environments using
different transformer models. We used the trans-
former as the base model for our MTL approach.
Our approach will learn the three tasks jointly, i.e.,
Toxic comment detection, Engaging comment de-
tection and Fact-claiming comment detection. The
implemented architecture shares the hidden layers
between the tasks. The shared portion includes a
transformer model that learns shared information
across the tasks by minimizing a combined loss.



Toxic Engaging Fact-Claiming

Model Environment P R F1 P R F1 P R F1
STL 0.4897 0.4421 0.4500 | 0.5421 0.5310 0.5380 | 0.5532 0.5093 0.5511
mBERT LM+ STL | 04921 0.4432 04512 | 0.5436 0.5314 0.5398 | 0.5669 0.5101 0.5521
MTL 0.5042 0.4449 0.4551 | 0.5472 0.5325 0.5401 | 0.5702 0.5113 0.5532
LM +MTL | 0.5063 0.4543 0.4665 | 0.5542 0.5341 0.5442 | 0.5732 0.5231 0.5555
STL 0.6449 0.5801 0.6102 | 0.6449 0.6312 0.6342 | 0.6812 0.6752 0.6852
¢BERT LM+ STL | 0.6552 0.5841 0.6173 | 0.6254 0.6442 0.6354 | 0.6821 0.6779 0.6872
MTL 0.7001 0.6321 0.6654 | 0.6777 0.6931 0.6841 | 0.7311 0.7211 0.7352
LM + MTL | 0.7124 0.6456 0.6796 | 0.6827 0.7027 0.6926 | 0.7450 0.7495 0.7472
STL 0.6551 0.5991 0.6227 | 0.6391 0.6482 0.6431 | 0.6954 0.7002 0.7045
¢ELECTRA LM+ STL | 0.6651 0.6078 0.6321 | 0.6422 0.6561 0.6555 | 0.7021 0.7102 0.7100
MTL! 0.7256  0.6603 0.6914 | 0.6895 0.6999 0.6947 | 0.7530 0.7407 0.7468
LM + MTL | 0.7542 0.6732 0.7112 | 0.6944 0.6924 0.6934 | 0.7354 0.7383 0.7369

Table 4: Results for the evaluation set in each task with Transformer models. For each model, Precision (P), Recall
(R), and F1 are reported on all tasks. The best result for each task has been marked with bold considering F1. The

experiments we submitted are marked with I
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(a) STL Architecture
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(b) MTL Architecture

Figure 1: The STL (top) and MTL (bottom)
transformer-based architectures experimented with the
GermEval-2021 dataset.

We assign equal importance to each task in our
experiments. The full loss is:

£to:pic + £engage + Efact
3 .

3)

[fmulti =

The task-specific classifiers receive input from the
last hidden layer of the transformer language model
and predict the output for the tasks. The corre-
sponding MTL architecture is shown in Figure 1b

5 Experimental Setup

We performed experiments using three transformer
models that support German; mBERT (Devlin
etal., 2019), German BERT-large (gBERT) (Chan
et al., 2020) and German Electra-large (gELEC-
TRA) (Chan et al., 2020) transformer models avail-
able in the HuggingFace model repository (Wolf
et al., 2020).

We used an Nvidia Tesla K80 GPU to train the
models. We divided the input dataset into a train-
ing set and a validation set using 0.8:0.2 split. We
predominantly fine-tuned the learning rate and the
number of epochs of the classification model man-
ually to obtain the best results for the validation set.
We obtained le™ 5 as the best value for the learn-
ing rate and 3 as the best value for the number of
epochs. We used a batch size of 8 for the training
process and the model was evaluated after every
100 batches. We performed early stopping if the
validation loss did not improve over 10 evaluation
steps. The rest of the hyperparameters which we
kept as constants are mentioned in the Table 3. For
both STL and MTL we finetuned the considered
transformer model on the GermEval 2021 train-
ing set using Masked Language Modeling (MLM)
(Devlin et al., 2019) objective which we call as



Toxic Engaging Fact-Claiming

Model Environment P R F1 P R F1 P R F1
STL 0.5081 0.4672 0.4781 | 0.5689 0.5561 0.5555 | 0.5763 0.5286 0.5761
mBERT LM +STL | 0.5162 0.4657 0.4782 | 0.5698 0.5561 0.5568 | 0.5871 0.5389 0.5780
MTL 0.5284 0.4672 0.4781 | 0.5690 0.5571 0.5678 | 0.5901 0.5364 0.5782
LM +MTL | 0.5243 0.4763 0.4871 | 0.5762 0.5590 0.5601 | 0.5983 0.5482 0.5782
STL 0.6692 0.6092 0.6354 | 0.6678 0.6572 0.6532 | 0.7095 0.6982 0.7011
¢BERT LM+ STL | 0.6752 0.6072 0.6342 | 0.6453 0.6683 0.6572 | 0.7063 0.6982 0.7041
MTL 0.7223 0.6532 0.6842 | 0.6954 0.7132 0.7041 | 0.7553 0.7493 0.7562
LM + MTL | 0.7321 0.6654 0.6941 | 0.7041 0.7298 0.7145 | 0.7653 0.7602 0.7652
STL 0.6752 0.6111 0.6498 | 0.6531 0.6679 0.6609 | 0.7178 0.7285 0.7265
¢ELECTRA LM+ STL | 0.6874 0.6231 0.6562 | 0.6666 0.6742 0.6731 | 0.7231 0.7303 0.7367
MTL! 0.7456 0.6802 0.7132 | 0.7001 0.7101 0.7198 | 0.7754 0.7652 0.7653
LM + MTL* | 0.7853 0.6997 0.7342 | 0.7132 0.7156 0.7190 | 0.7542 0.7563 0.7590

Table 5: Results for the test set in each task with Transformer models. For each model, Precision (P), Recall (R),
and F1 are reported on all tasks. The best result for each task has been marked with bold considering F1. The

experiments we submitted are marked with I

Language Modeling (LM). When performing train-
ing, we trained five models with different random
seeds and considered the majority-class self ensem-
ble mentioned in Hettiarachchi and Ranasinghe
(2020b) to get the final predictions.

6 Results

We show the results for the evaluation set in Ta-
ble 4. In all the experimented transformer mod-
els, the MTL approach outperformed the STL ap-
proach. Furthermore in most scenarios, the sys-
tems that included a LM component outperformed
those without the LM component. This corrobo-
rates the findings of previous research in offen-
sive language identification (Ranasinghe et al.,
2019). gBERT and gELECTRA models clearly
outperformed mBERT in all the tasks. For the
Task 1, gELECTRA model with LM and MTL
achieved the best result with 0.7342 F1 score, for
the Task 2 gELECTRA model with MTL, with-
out LM achieved the best result with 0.7198 F1
score and for the Task 3 too, the same model
achieved the best result with 0.7653 F1 score. Con-
sidering the overall performance we selected three
best models for the submission; gELECTRA with
LM+MTL, gELECTRA with MTL and gBERT
with LM+MTL.

The official leaderboard of the competition was
not yet released at the time of writing this paper,
therefore, after the organizers released the gold
labels for the test set, we calculated the Precision,

Recall, and F1 values for the test set. The results are
shown in Table 5. As shown in the results, the three
models we selected provided the top three results
for the test set too. MTL consistently outperformed
STL in all the tasks with all the transformer models
we experimented.

7 Conclusion and Future Work

In this paper, we presented the WLV-RIT entry
to GermEval-2021. GermEval-2021 provided par-
ticipants with the opportunity of testing compu-
tational models to identify toxic, engaging, and
fact claiming comments. We experimented with
neural transformer models in STL environment
and MTL environment. MTL environment con-
sistently outperformed STL suggesting that the
use of shared learning methods improves the per-
formance of individual tasks. Furthermore, we
observed that pre-trained language-specific trans-
former models trained for German such as gBERT
and gFElectra outperform mBERT. Finally, in addi-
tion to the transformer-based MTL approach, we
could observe that the use of language modelling
led performance improvement in some of the tasks.

In the future, we would like to carry out an er-
ror analysis on the output of our systems to better
understand the impact and limitations of MTL for
these three tasks. Finally, we would like to experi-
ment with multi-task learning in other languages,
particularly low-resource languages for which only
limited language resources are available.
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