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Abstract: Myopia is far beyond its inconvenience and represents a true, highly prevalent,
sight-threatening ocular condition, especially in Asia. Without adequate interventions,

the current epidemic of myopia is projected to affect 50% of the world population by

2050, becoming the leading cause of irreversible blindness. Although blurred vision, the
predominant symptom of myopia, can be improved by contact lenses, glasses or refractive
surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding
complications such as glaucoma, myopic maculopathy and retinal detachment, prompting the
need for prevention. Epidemiological studies have reported an association between outdoor
time and myopia prevention in children. The protective effect of time spent outdoors could

be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.)

of sunlight that are lacking in artificial lighting. Concomitantly, studies in animal models

have highlighted the efficacy of light and its components in delaying or even stopping the
development of myopia and endeavoured to elucidate possible mechanisms involved in this
process. In this narrative review, we (1) summarize the current knowledge concerning light
modulation of ocular growth and refractive error development based on studies in human and
animal models, (2] summarize potential neurobiological mechanisms involved in the effects
of light on ocular growth and emmetropization and (3) highlight a potential pathway for the
translational development of noninvasive light-therapy strategies for myopia prevention in

children.
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Introduction

Myopia results from a mismatch between the
axial length of the eye and the power of its refrac-
tive components leading images to be focussed in
front of the retina and causing blurred vision at
distance.! The prevalence of myopia exhibits
wide geographical variations in the world. In
developed nations, the prevalence of the condi-
tion among adults ranges from 15% to 49%,? and
rises up to approximately 69% in 15-year-olds
under cycloplegia.> In developing countries, the
rate of myopia in 15-year-old adolescents is much
lower, between 14.7% and 16.2% in Colombia
and 5.5% in Africa.3”> Singapore and East Asian
countries like China, Taiwan, Hong Kong and

South Korea are the most affected (Figure 1(a)).6-11
While myopia prevalence ranges from 29% in
7-year-olds to 53.1% in 9-year-olds in the school-
based population of the Singapore Cohort Study
of Risk factors for Myopia (SCORM) (Figure
1(b)),? it can reach 69% in 15 years of age with
86% of affected population being Singaporean-
Chinese.? In young adults, the prevalence of myo-
pia is even higher with 82.3% of Chinese male
military conscripts having myopia and 13.1%
high myopia. This is particularly worrying as
patients with high myopia [more than —5 Dioptres
(D)] are at risk of developing pathologic myopia
and other associated sight-threatening ocular
conditions such as glaucoma, retinal detachment,
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Figure 1. Average myopia prevalence: (a) in young adults of East Asian Countries during 2012-2020 and (b} in
Singapore across different age groups during 1999-2001.

myopic macular degeneration and choroidal neo-
vascularization.!2:13 Pathologic myopia is a major
cause of visual impairment and blindness in Asian
populations.!* The risk of developing high myo-
pia increases drastically with the early onset and
progression,15:16 especially in Asian populations
where myopia progresses faster.!” Although the
precise mechanisms of myopia onset and progres-
sion are not completely understood, it is admitted
that it involves multiple genetic and environmen-
tal factors.

Genetic factors have been mainly related with the
finding that children with myopia have myopic
parents.”18:19 Genome-wide association studies
(GWAS) and whole-exome sequencing studies
on European populations have identified over
200 genetic loci associated with refractive error
and myopia.2%2! Genome-wide meta-analysis for
refractive error on European and Asian cohorts
revealed 24 additional loci (BICCI, BMP2,
BMP3, CACNAID, CD55, CHD7, CHRNG,
CNDP2, GRIA4, CYP26A1, GJD2, KCNY2,
KCNQ5, LAMA2, MYO1D, PCCA, PRSS56,
RASGRF1, RDHS5, RORB, SIX6, TOX, ZIC2
and ZMAT4) associated with myopic features.22
Some of these novel loci are known to be impli-
cated in the development of eye, ion transport,
retinoic acid metabolism, neurotransmission and
extracellular matrix production.?? Conversely to
the rising myopia prevalence worldwide, genetic
predisposition has not significantly changed over
the past few decades, which implies that environ-
mental factors, potentially interacting with genetic

traits, are mainly at the origin of the ongoing
myopia epidemic.?3

Environmental factors influencing myopia onset
include, but are not limited to, level of education,
near work and time spent outdoors.24-28 Increased
time outdoors has been emphasized as an impor-
tant modifiable environmental factor for myopia
control.2%:30  TIrrespective of physical activity,
increased time outdoors is associated with a
reduced odds ratio of myopia, even when children
perform a high amount of near work.31:32 In addi-
tion, Donovan ez al.3® have found myopia pro-
gression to be slower during the summer, possibly
because of increased outdoor exposure. The exact
protective feature(s) of the outdoor environment
against myopia are still unclear, but may include
variations in accommodation due to uniform
dioptric space, increased pupil constriction,
increased retinal focus and decreased blur as well
as increased spatial frequency and changes in the
characteristics of light exposure.34

While epidemiological studies can only highlight
associations between bright light exposure out-
doors and myopia prevention,3438 substantial evi-
dence from animal studies support a protective
effect of bright light on experimental myopia devel-
opment.3*-4! In addition, interventional studies in
humans have also shown a beneficial effect of both
outdoor3>#2 and indoor (classroom) exposure® to
increased but not so intense light levels. According
to Rucker,* the different patterns in luminance,
but also colour contrast, has a significant effect on
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the refraction and accommodation. In accordance
with findings in humans and animal models, a
recent meta-analysis of GWAS comprising
160,420 participants of cross ethnicity (European
and Asian) revealed 140 genetic associations linked
with light-dependent pathways which include
genes associated with novel pathways such as ante-
rior-segment morphology (TCF7L2, VIPR2 and
MAF) and angiogenesis (FLTI1). Furthermore,
genes involved in glutamate receptor signalling
(GNB3 and CLU) and dopaminergic pathway
(DRD1) were identified as key genes in the light-
dependent retina-to-sclera signalling cascade
potentially controlling ocular growth.*>

In this narrative review, we focus on the literature
investigating light-driven modulations of ocular
growth and refractive error development in
humans and animal models. We will also sum-
marize the current knowledge on neurobiological
and photoreceptoral mechanisms involved in the
putative effect of light against myopia onset and
highlight a potential pathway for the translational
development of noninvasive light-therapy strate-
gies to halt or delay myopia onset in children.

Light exposure and myopia in humans

Time outdoors and myopia

Increased time outdoors has been shown to pre-
vent or delay myopia onset in several studies.17-46-50
The protective impact of increased time outdoors
against myopia applies even in children performing
higher amounts of near work,!” and is predomi-
nantly attributed to intermittent exposure to high
levels of sunlight and independent of physical
activity.2%30:3547 Furthermore, increased outdoor
time has been shown to have a protective effect on
the cumulative incidence rate of myopia in chil-
dren enrolled in randomized clinical trials in China
and Taiwan.2%3%35 On the other hand, increased
near-work time and reduced outdoor activities
have been suggested to be at the origin of the
increased myopia prevalence in older children.5! In
the SCORM study, however, participants who
spent more time outdoors were less likely to be
myopic while the amount of near work did not pre-
dict outdoor activity. Therefore, outdoor activity
may be an independent factor and not merely the
reciprocal of near work.%® Interestingly, increases
in refractive error progression, axial growth rates
and less power loss which occur before myopia
onset also seem to be influenced by reduced time
spent outdoors.’? According to Lingham ez al.,>?

the potential protective effect of outdoor light
against myopia is most likely due to one or both of
the following factors which are suboptimal in
indoor lighting: (1) increased light intensity and
(2) favourable spectral composition of light.
Although little has been established on the involve-
ment of the spectral composition of light on ocular
growth in humans, it is interesting to note that
individuals with colour vision red/green colour
vision deficiency were reported to be less myopic
than individuals with normal colour vision.>3

Bright light and myopia

Epidemiologic research indicates that greater
average daily light exposure is associated with a
reduced axial elongation during childhood.?® A
study cluster-randomized intervention-controlled
trial conducted in Taiwan showed that exposure
to outdoor light leads to less myopic shifts,
reduced axial elongation and a 54% lower risk of
myopia progression.?> Cross-sectional studies
using objective methods (wearable light sensors)
to quantify illuminance have shown that
Australian myopic children aged 10-15 years had
lower average light exposure and lower amount of
outdoor time compared with emmetropic chil-
dren.’* Furthermore, comparisons between
Australian and Singaporean children aged 10-12
years showed that light exposure patterns are of
shorter durations and lower intensities in
Singaporean children, who tend to have a higher
risk of developing myopia.?¢ Short exposures of
spurts of light in Singaporean children are mostly
seen during the periods 9 a.m.—10:30 p.m., 12
p.m.—1 p.m., or 3 p.m.—4 p.m., possibly due to
child’s travel time to their school and home in
morning and evening.?®> In Australian children,
the peaks in outdoor light occur at similar tim-
ings, but with greater duration of exposure per
hour (10 min or more) when compared with
Singaporean Children.3¢ Patterns of light expo-
sure are known to be influenced by seasons.
Myopia progression and axial length elongation
are slower in summer compared with winter.33:5
A study in the United States has shown that chil-
dren aged 7.6 * 1.8 years spent more time out-
doors during summer time, compared with spring
and fall.57 The light exposure pattern was corre-
lated with the parents’ pattern, suggesting that
educational programmes promoting the increase
of time outdoors must start with parents.

To date, however, much remains unanswered
regarding the characteristics of outdoor light
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exposure necessary to circumvent myopia in
humans. For instance, what is the minimal
required outdoor light intensity (threshold) to
avoid the myopia onset (e.g. 1000 lux, 10,000
lux)? How long should the exposure to outdoor
light be (e.g. 40 min, 2 h per day)? Can the expo-
sure be intermittent or cumulative over time (e.g.
5000 lux for 1 h/day or 1000 lux for 5 h/day)?
Addressing these questions in humans, in longitu-
dinal studies using objective wearable light-track-
ing strategies is essential for the development of
effective outdoor programmes against myopia.

Outdoor programmes for myopia prevention
Outdoor preventive measures are vital to control
and lower myopia progression in children. For
children at risk of developing myopia, preventive
interventions should be initiated before the onset
of this ocular condition. Trackers that record and
quantify light levels3®> and outdoor time have been
proposed to encourage outdoor activities among
children with daily goal of 2 h per day and at least
14 h per week.® According to French er al>®
Australian children with baseline refraction of + 1D
at age 6 years should be targeted as an at-risk group
in prevention programmes for myopia, with the
goal of maintaining a slightly hyperopic refraction.
Intervention in East Asia might need to be earlier
than 6 years of age due to the high number of
early-onset myopes. According to a meta-analysis
performed by Ho et al.>® on the outdoor research
methods in Asian children aged between 4 and 14
years, outdoor exposure slows myopic refraction
by 32.9% and axial elongation by 24.9%.

Outdoor programmes in the schools and commu-
nity can be developed based on the longitudinal
data to increase time outdoors. Additional classes
involving outdoor activities can be added to each
school day or children can be encouraged to go
outside for outdoor activities during recess and
after school.5® Organizing community-based out-
door programmes on weekdays may also be ben-
eficial. Importantly, sun-protective strategies
such as tree shade, hat and sunglasses can still
allow high levels of light to reach the eye and can
potentially protect from the myopia develop-
ment.%® Nevertheless, given the competitive
nature of schooling systems in Asia and some-
times weather and pandemic constraints, increas-
ing time outdoors remains challenging. These
restrictions emphasize the need to rethink indoor-
based light-therapy strategies for the prevention
of myopia. Without a clear understanding of the

anatomical, physiological and neurobiological
impact of distinct light features (intensity, spec-
trum, timing, frequency) on ocular growth and
myopia development, the development of ade-
quate artificial light-therapy strategies remains
challenging.

Experimental research on light and myopia
While epidemiological investigations over many
decades highlighted the protective effect of out-
door bright light exposure on myopia,*” studies in
various animal models have scrutinized the
impact of various intensities and spectro-tempo-
ral modulations of light regimens on ocular
growth and refractive error development.®! These
studies, performed in controlled experimental
conditions, have tried to elucidate the underlying
mechanisms of the protective impact of light
against myopia.

Animal models for myopia

The use of animals for studying mechanisms
underlying refractive error development dates
back to the mid-1970s after Hubel er al.,%2 investi-
gating the cortical effects of monocular visual dep-
rivation in young macaques, serendipitously
reported that after eyelid suture for many months,
the eyes of animals developed high levels of myo-
pia. These findings were afterward established in
young tree shrews? and chickens.%* The initial
procedures to induce myopia by suturing the eye-
lids have been replaced with (1) form deprivation
myopia (FDM), via reduction of quality (e.g.
sharpness and contrast) of retinal image formation
using frosted goggles or (2) introducing controlled
hyperopic defocus (minus lenses), termed as lens-
induced myopia (LIM). Conversely, inducing
myopic defocus (plus lenses) leads to lens-induced
hyperopia (LIH).

The disruption of visual input, especially retinal
sharpness and contrast, is considered to be a sig-
nificant factor in driving the development of myo-
pia in children, particularly during the early
postnatal period.55:6 Within that framework,
FDM is presented as an open-loop model, where
ocular growth has no defined endpoint.
Conversely, LIM relies on feedback control using
visual signals and is classified as a closed-loop
condition, where aberrant ocular growth ceases
when the growth signal has been neutralized.®?
LIM and FDM involve different mechanisms of
action where optic nerve section reduces LLIM®
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but not FDM,%%70 yet in both processes, the levels
of retinal dopamine (DA) or vitreal DA metabo-
lites are reduced,’!>"2 while DA or its agonists can
inhibit myopia induction through stimulation of
the D2-receptor.”>7% According to Norton,””
induced development of myopia, in addition to
the normal refractive and ocular development, in
most animal species appears to mimic that in
human, wherein it is characterized mainly by an
abnormal enlargement of the post equatorial seg-
ment of the eye with a significant increase in axial
length. Irrespective of the animal model, induced
refractive error is also characterized by key factors
such as ocular vitreous chamber elongation, thin-
ning of the choroid,’®’ and thinning of the
fibrous sclera.8% All these features are also
observed in the myopic human eye.81,82

Commonly used animal models in experimental
myopia. The most commonly used experimental
animal models for myopia research are chickens,
guinea pigs, tree shrews, mice and some nonhu-
man primates (NHP).83

Chickens The chicken model is the most com-
monly used model in experimental myopia
research, owing to the animals’ rapid eye growth
(100 um per day), diurnal activity, and the repro-
ducibility of experimental paradigms.83 In addi-
tion, the chicken eye is relatively large (8-14
mm), has an excellent optical system and responds
quickly to a variety of environmental factors
including defocus, blur, and photic stimulations.
Despite its unique photoreceptoral complexity,
the overall spectral sensitivity to human-visible
light in chickens is not very different from
humans.8 Furthermore, differentially expressed
genes and proteins involved in either myopia or
hyperopia in chickens significantly overlap with
those implicated in the pathogenesis of sight-
threatening secondary disorders in humans.® On
the other hand, chickens display many anatomical
differences in ocular structures (e.g. cartilaginous
and fibrous sclera, lack of fovea, etc.) compared
with humans.8 Furthermore, the well-developed
circadian system in chickens is sensitive to con-
stant moderate light intensity and has a signifi-
cant impact on refractive development. These
findings of impact of light on circadian rhythms
are not extrapolatable to rhesus monkeys and
mice models.87-8 Findings on the impact of light
on ocular growth and emmetropization in the
chicken model may not be -easily/necessarily
translatable to humans.

Guinea pigs First presented as a model for experi-
mental myopia by Howlett and McFadden,%
guinea pigs are diurnal dichromatic mammals
with retinas comprising rods, and middle- and
short-wavelength cones. The cone proportion in
guinea pig retinal photoreceptors is high (8%—
17%) in comparison with other species.! The
guinea pig model has been identified as a con-
venient model for studying refractive error devel-
opment,®? given advantages such as easiness to
maintain and breed, in addition to their large eyes
(axial length around 8.0 mm) and pupils.
Furthermore, these small mammals, respond well
to form deprivation®? and lens-induced defocus.??
On the other hand, guinea pig retinas lack fovea
and the induction of myopia is at times challeng-
ing with strain variability. Also, studies requiring
lens mounting for long periods of time are chal-
lenging as guinea pigs tend to scratch and remove
the Velcro base holding the lens.

Tree Shrews Owing to its close association with
primates and rodents, tree shrews are widely used
for studying refractive error, and understanding
neurophysiological  mechanisms  underlying
emmetropization.”® The ocular morphology of
tree shrews is similar to humans; however, these
animals lack a fovea, have a thicker lens, and thin-
ner choroid void of choriocapillaries unlike in
humans.”” The tree shrews can develop myopia®*
and can actively compensate for defocus and
exhibit a single layer sclera similar to humans.
These animals possess dichromatic retinas com-
posed of ~95% of cones.?

Mouse Given its readily available whole-genome
sequence, which is 85% homologous to the
human genome, the mouse model has always
been a popular model for studying the visual sys-
tem.?%%7 Both FDM and LIM in the mouse can
be achieved by mounting diffuser or lens (gog-
gles) to eyes either by means of stitching around
the eye and reinforcing with glue or by mounting
custom-made assembly to hold the lenses intact.
On the other hand, the mouse model lacks a
fovea, possesses poor visual aptitudes, and has a
small eye (axial length of 3.3 mm) making ana-
tomic assessment troublesome. Nevertheless,
under photopic conditions, mice still retain ade-
quate spatial vision to respond to LIM and
FDM.% Despite the concerns for using the mouse
as a model for myopia, it has been established as
a useful model for pharmacological and genome
manipulation studies in the field of myopia.®®
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Rhesus monkeys Among NHPs, rhesus macaques,
belonging to the old-world monkeys, constitute
one of the most suitable models for refractive
error studies. The visual physiology of rhesus
monkeys is identical to that of humans with a rod-
based retina and a cone-based fovea.l% Raviola
and Wiesell®! have demonstrated the myopia
induction in rhesus macaques. The average axial
length of 21-day-old baby rhesus macaques is
14.15 mm, very much close to a human baby
which is 17.3 mm.192 Conversely, ethical con-
cerns, logistics, high operational cost, seasonal
breeding, low reproductive rate, difficulties in
handling infant monkeys, having a customized
myopia-inducing helmets/devices adaptable for
monkeys and prolonged experimental procedures
to obtain myopic shifts make it more challenging
to use rhesus macaques for myopia research.

The impact of light on refractive

error development

The protective effect of outdoor light exposure
against myopia could be attributed to multiple
factors,!7 also including light intensity, pattern,
and spectrum but also to reduced peripheral reti-
nal defocus and increased visual spatial frequency.
This section summarizes the current knowledge
about light modulation and ocular growth based
on controlled studies in animal models. Please see
Table 1 for more details.

Intensity of light. Findings from animal studies
support the notion that higher light levels, similar
to those encountered outdoors, are predominant
factors for myopia prevention. In chickens, dim
ambient lighting of 50 lux delivered as a 12 h/12 h
light—dark cycle is deleterious to emmetropiza-
tion,!93 while exposure to high illuminances of
light (15,000 lux) for periods of 5 or 6 h per day
delays the development of FDM by 60%.3° This
protective impact of light on FDM is dose-depen-
dent, with exposure to 40,000 lux of light-emitting
diode (LED) light for 6 h providing comprehen-
sive protection against the onset of FDM.1%4These
protective effects of bright light against myopia
have been associated with DA release and the D1
receptor signaling pathway (see ‘Light, dopamine
and refractive error regulation’ section for more
details).®1:105 Similarly, bright light exposure can
also reduce, but not overcome, the rate of compen-
sation for monocularly fitted negative lenses (=7D)
and enhance the rate of compensation for positive
lenses (+7D).% Alike chickens, tree shrews
exposed to bright light (16,000 lux) for 7.75 h/day

for 11 days display a reduced development rate of
FDM and LIM,1% while form-deprived eyes of
rhesus monkeys reared under 18,000-28,000 lux
of metal halide light (4200K) for 6 h a day over
~150 days are less myopic than those reared in nor-
mal light.#! Interestingly, in rhesus macaques,
25,000 lux of bright light for 6 h per day was not
sufficient for stopping LLIM, suggesting dissimilari-
ties in mechanisms responsible for FDM and
LIM.197 In guinea pigs, bright light (10,000 lux)
reduced the myopic shift induced by form depriva-
tion compared with normal lighting (500 lux).108
While in mice, bright light exposure (2500-5000
lux) for 6 h/day for 4 weeks prevented FDM and
presented a hyperopic shift and reduction in ocular
elongation compared with normal lighting (100—
200 lux).195 Analogously to bright light, albeit
through different mechanisms, short periods (~3 h/
day) of de-focusing lens removal or normal vision
per day, even in moderate light levels, can compen-
sate for LIM in chickens.!% Surprisingly, and con-
trary to earlier studies in chickens,!93 a recent study
in infant rhesus monkeys raised under dim light
(~55 lux) showed a hyperopic shift when compared
with the monkeys raised under normal light (~504
lux).119 These differences in response to between
dim light chickens and monkeys, may be due to
differences in the sensitivity of the circadian system
between birds and mammals.!!!

Timing and duration of bright light. Prevailing evi-
dence on the impact of light intensities on myopia
in animal models has raised the question of
whether the intensity of light and timing of expo-
sure are interlinked. This has gained more atten-
tion with the notion supporting the role of
circadian rhythms in ametropia.l’> Recently,
Nickla ez al.l!3 reported that myopic defocus in
chickens raised under light levels of 500 lux was
more effective at reducing ocular growth when
lenses were worn during the evening compared
with when lenses were worn in the morning. These
moderations were attributed to alterations in the
amplitude of the axial length rhythm. On the other
hand, constant daily light exposure (2000 lux) was
reported to be more effective at inhibiting myopia
than a 2 h dose of bright light (10,000 lux) deliv-
ered either in the morning, mid-day or evening.!14
Within that same study, however, 2 h of bright
light (10,000 lux) delivered midday was more effi-
cient in inhibiting ocular growth than the same
light protocol delivered in the evening.!!* More-
over, chickens exposed to ambient light (700 lux)
at night (between 12:00 a.m. and 2:00 a.m.)
showed alterations in axial length and choroidal
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thickness rhythms, which could no longer follow a
sinewave function with a 24 h period. This brief
light exposure caused a transient stimulation in
the ocular growth rate which may have subse-
quently resulted in myopic refractive error.!!>
Interestingly, Sarfare ez al.116 revealed that evening
bright light inhibits the effect of continuous hyper-
opic defocus and form deprivation while morning
bright light has a greater inhibitory effect on tran-
sient ‘2 h’ hyperopic defocus. These findings sug-
gest a peculiar interaction between the timing and
duration of defocus and bright light exposure that
the authors attribute to the duration and sign of
the defocus signal in operation immediately fol-
lowing the bright light exposures.11¢ The abolish-
ment of light/dark cycles has also been studied in
animal models and constant light has been shown
to disrupt LIM and FDM in chickens.!17:118 Cor-
neal flattening was also observed in chickens
reared under continuous bright light; however, no
distinct observation was made with chickens
reared in bright light with a diurnal pattern.11%120
This effect of continuous light on refractive error
development and emmetropization appears to be
unique to chickens, since rearing infant rhesus
macaques in ambient constant light does not affect
emmetropization.®® This interspecies variation
was attributed to difference between the avian and
mammalian circadian systems.!!! In smaller mam-
mals like mice, prolonged (18 h light/6 h dark)
exposure to light does lead to a myopic shift,
increased axial length and vitreous chamber depth
(VCD), reduction in retinal Egr-1 mRNA tran-
script level, and decreased scleral fibre diameters
in C57BL/6 in bred mice.!?!

Temporal frequency of light. Emmetropization in
chickens is dependent upon the temporal fre-
quency of the light exposure: high temporal fre-
quencies induce hyperopia and low temporal
frequencies, myopia.l?2123 Lan et al.'?* demon-
strated that intermittent exposure to bright light
at 15,000 lux for 1:1 and 7:7 min were more
effective in controlling FDM when compared
with continuous bright light exposure. A possible
underlying mechanism for such findings could be
that flickering light triggers the retinal ON and
OFF pathways, thereby stimulating DA release.!25
Guinea pigs raised in 0.5 Hz flickering light (600
lux) for 12 h/day for 12 weeks presented a greater
myopic shift in refraction and a larger increase in
axial length ocular length compared with guinea
pigs raised in 5 Hz flickering light (600 lux) or a
control group which was raised in steady light
(300 lux).126 In another study, guinea pigs exposed

to flickering light (505 nm, 600 lux, 0.5 Hz) for
12 h/day for 8 weeks showed a significant decrease
in refraction and increase in axial length com-
pared to animals exposed to 12 h/day of steady
control light (600 lux). Furthermore, not only the
levels of DA, but also of 3,4-dihydroxyphenylace-
tic acid (DOPAC) and homovanillic acid (HVA)
which are primary and secondary metabolites of
DA, respectively, were significantly increased in
the flickering light group, with DA D1 and D2
receptors upregulated compared with the con-
trol.127 Flickering rate and DA levels may hence
play a role in myopia development in guinea
pigs.12¢ Apart from DA, Li er al.128 found elevated
concentrations of 5-hydroxytryptamine (5-HT)
and 5-HT2A receptor expression in guinea pig
groups raised under flickering light (600 lux, 0.5
Hz for 12 h/day for 8 weeks), while norepineph-
rine and epinephrine levels were reduced com-
pared with control groups exposed to 300 lux of
light for 12 h/day. C57BL/6 (B6) mice exposed to
6 weeks of flickering light (2 Hz: with 500ms of
dark phase per second) for 12 h/day presented
with a myopic shift (~ —9D) in refraction and
increased axial length compared with the steady
light control.129

Spectral composition of light. The spectral com-
position of light has also been shown to play a key
role in ocular growth and emmetropization. In
chickens, exposure to red light (peak wavelength
range: 615-641 nm) has been reported to induce
myopia while rearing under ultraviolet light (UV)
(peak wavelength: 375 nm) or blue light (peak
wavelength range: 430-477 nm) induces hypero-
pia.130-132 Furthermore, ocular DA release and
metabolism, as well as vitreal and retinal metabo-
lomic profiles, were highly dependent upon the
spectral composition of light.132:133 Among plau-
sible explanations to this wavelength-dependent
refractive error regulation, ocular longitudinal
chromatic aberration (LCA), which leads to
wavelength defocus and higher refraction of
short-wavelength light compared with long-wave-
length light by ocular optics, was supported by
many authors.131:13%135 The hyperopic shift in
response to short-wavelength blue light has also
been reported in other, but not all, animal species
such as Cichlid fish,!3® guinea pigs!37-14! and
some rhesus monkeys.!42 Comparatively, red light
or eye-mounted red filters render tree shrew and
rhesus monkey eyes hyperopic, while blue flicker-
ing light induces myopia and increases VCD.143-145
Interspecie differences in the spectral responses
may to light not only to be due to protocol
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differences (e.g. duration of light exposure) but
also to differences in retinal photoreceptor com-
position and sensitivity accross species.146:147

The spectral composition of light also has a prom-
inent role in exerting protective effects against
FDM and LIM. Torii et al.'*® suggested that
exposure to violet light (VL:360-400 nm) can
suppress myopia progression in chickens through
the upregulation of the “myopia protective gene”
EGRI. Similarly, blue and UV light exposure
conferred a protective effect against myopia pro-
gression with a concomitant increase in the reti-
nal DA levels.132 However, the applicability of
near UV and UV light to humans is limited due to
the UV-blocking properties of the crystalline
lens14%150 and the nonavailability of near UV
receptors unlike in chickens and guinea pigs. In
addition, in guinea pigs, short-wavelength blue
light of 470 =5 nm with an intensity of 50 lux
showed inhibition of LIM, while long-wavelength
red light of 600 = 5 nm with an overall luminance
of 300 lux presented a myopic shift. The increased
sensitivity to blue light by 0.35 log units com-
pared with red light in guinea pigs may have con-
tributed to this short-wavelength mitigation of
eye growth.139

The spectral tuning of refractive error develop-
ment is also dependent upon the flicker frequency
of light. For instance, blue light exposures are
protective against myopic eye growth induced by
low-frequency flickering light in chickens, while 8
weeks of flickering green light (5 Hz) at 800 lux
was found to induce myopia and increase axial
lengths in guinea pigs.!5! These findings suggest
that high temporal frequencies may reduce the
effects of wavelength defocus on ocular refrac-
tion, such as at low temporal frequencies, visual
inputs are dominated by wavelength defocus sig-
nals, inducing hyperopic shifts at short wave-
lengths and myopic shifts at long wavelengths.
While at high temporal frequencies, a myopic
shift under blue light and a hyperopic shift under
green light is a result of visual inputs being domi-
nated by luminance signals and wavelength defo-
cus signals being weakened.152

Altogether, observational and experimental stud-
ies in humans and animal models suggest that
exposure to high-intensity light, both in continu-
ous or intermittent patterns, can slow the devel-
opment of myopia. However, this impact of
high-intensity light against myopia development

in animal models is dependent on the means of
myopia induction (i.e. more effective in FDM
compared with LIM). Furthermore, today there
is no clear consensus on a minimum or optimal
light intensity to promote emmetropization and
prevent or slow myopia development in humans.
Such a threshold is variable in animal models,
given differences in retinal circuitry and photore-
ceptoral composition. Conversely, a total of 40
min of outdoor time per day (i.e. a combination
of exposure to high-intensity sunlight, increased
spatial frequency, increased retinal focus, etc.)
seems to be protective against myopia in humans;
frequently, animal models for myopia, baring
strong myopiagenic stimuli, require longer dura-
tions of high-intensity light per day to alleviate the
development of this ocular condition. Although
the spectral sensitivity to refractive error develop-
ment in response to light has not yet been fully
established, existing studies in animals (chicken
and guinea pigs) and humans are in a fragile con-
sensus that short-wavelength light may be protec-
tive against axial myopia development. Studies in
NHP and tree shrews disagree with the latter
statement. Finally, exposure to high-intensity and
short-wavelength light needs to be timed carefully to
avoid any potential disruptions to the circadian tim-
ing system of children and adolescents. Considering
that all the parameters of light namely the inten-
sity, duration, spectrum, pattern, and timing of
light are synergetic, and given the scarcity of
interventional clinical studies using light, tailored
light-therapy strategies for myopia prevention are
yet to be established.

Physiological mechanisms mediating light-
induced myopia prevention

Experimental research has been instrumental for
elucidating the anatomo-physiological impact of
light on ocular growth refractive error develop-
ment. Although there are mixed opinions in the
myopia research community on the involvement
of light in the prevention of myopia,!®2 the protec-
tive effect of high/higher intensity light against
myopia cannot be ruled out, at least in experi-
mental animal models of the condition and inter-
ventions in humans.*> To date, however, the
exact spectro-temporal characteristics of protec-
tive light regimens remain unclear. Understanding
the wunderlying physiological and molecular
mechanisms mediating light-induced myopia pre-
vention is essential for data-driven successful
translational interventions (Table 2).
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Ocular pathways of myopia control

The sclera plays a vital role in determining the
shape and size of the eye; consequently, it has
long been of high interest for myopia interven-
tion strategies with emphasis given to under-
standing the mechanism of pharmacological
molecules on the scleral metabolism.!03
Nevertheless, subsequent studies have identified
that the retina is the key signal regulator in the
emmetropization process. Although there exist
more convincing reports on the involvement of
retinal signalling molecules which include DA
and acetylcholine during emmetropization, the
particular cell type and associated biochemical
pathway involved are yet to be unveiled.1%* It is
further hypothesized that these retinal molecules
act through a cascade to communicate with reti-
nal pigment epithelium (RPE) and choroid,
which in turn releases a series of different mole-
cules that regulate the scleral growth and remod-
elling!%* (Figure 2).

Light, dopamine and refractive error regulation
DA, a neurotransmitter implicated in several
physiological, cerebral and retinal functions, has
been shown to be involved in the biochemical sig-
nalling cascade that controls emmetropiza-
tion.105-167 In the retina, DA is released by
amacrine cells and/or interplexiform cells,
depending on the species.!8 A large body of evi-
dence is available to support the hypothesis that
DA is implicated in ocular growth’# and a dose-
response relationship has been established
between DA synthesis and light intensity.169-171

Light-associated DA activity is mediated possibly
through the D2 receptor pathway, thereby altering
the signal that triggers axial elongation. Among
DA receptor subtypes involved in the signaling,
D2-like (D2 and D4) receptor plays a key role in
FDM.172 The ocular refractive development relies
mainly on the balance between the activation of
D1-like and D2-like receptors. Overactivation of
D1-like receptor has been reported to induce
hyperopia and vice versa.l’”® DA can influence the
development of myopia via changes in spatial tun-
ing of cellular responses in the retina. Receptive
fields are adjusted based on D1 and D2/D4 recep-
tor activation via varied concentrations of DA. As
light influences the release of DA, it is believed that
different light conditions play a role in the spatial
tuning of retinal cellular responses.!” In the case
of rod—cone gap junctions in bright light condi-
tions, conductance is decreased as DA levels are

high. The binding of DA to D2/D4 receptors
reduces adenylate cyclase activity, leading to
reduced cyclic AMP (cAMP) production and pro-
tein kinase A (PKA) inactivity.174175 Rod—cone
gap junctions are thus left uncoupled, resulting in
reduced receptive field sizes and better visual acu-
ity. Under low light conditions, DA release is low
and rod—cone gap junctions are coupled in order
for dim objects to be detected.l’® Apart from D2/
D4 receptors, DA can also bind to D1 receptors.
Horizontal cell gap junctions and AIl amacrine cell
gap junctions are regulated via this pathway.177:178
In high light levels, DA binds to D1 receptors and
activates adenylate cyclase. Increased cAMP con-
centrations activate PKA, reducing conductance
between horizontal cell-horizontal cell gap junc-
tions. In AIl amacrine-All amacrine gap junctions,
the production of protein phosphatase 2A (PP2A)
is believed to reduce conductivity and coupling.!7®
Horizontal cell coupling is involved in image con-
trast optimization!8® while AIl amacrine cell cou-
pling is involved in the summation of identical
signals and removal of noise.!8! This control in
rod—cone, horizontal cell, and AIl amacrine gap
conductance optimizes spatial tuning in the retina
and allows for the production of high acuity images
with good contrast in different light conditions.
Light-regulated DA levels may thus control the
development of myopia by modifying the attrib-
utes of perceived images.

Retinal DA levels are decreased in chicken eyes
subjected to form deprivation,!82 but return to
normal levels upon cessation of the latter.183
Interestingly, Schwahn and Schaeffel!?2 were able
to prevent FDM but not able to retain DA con-
tent and release in the retina with the use of 12 Hz
at a duty cycle of 4% flickering lights. The change
in retinal DA levels for different durations of
flicker lights, however, did not correlate with the
level of inhibition of myopia. Conversely, ocular
DA levels are also dependent upon the spectral
content of light with a trend towards higher reti-
nal DA release under UV light compared with
white light.132 The protective effect of bright light
against myopia was also found to be dismissed
when chickens wearing diffusers were injected
with spiperone, a DA antagonist, before exposure
to bright light,*° indicating DA’s role in the light-
driven myopia-control pathway. In chickens that
were form deprived, exposure to 15,000 lux of
light resulted in partial rescue of retinal DA lev-
els, while it did not alter the levels of ZENK, an
immediate early gene in the amacrine cells
involved in the regulation of ocular axial length
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Figure 2. Schematic representation of the retina, retinal pigment epithelium, choroid, and sclera with
corresponding molecules modulated by light stimulation.

of 184185 Furthermore, retinal DA may modulate
choroidal thickening and a subsequent reduction
in axial length by triggering other neuromodula-
tors such as nitric oxide (NO).186

According to Hartline,'®” luminance-associated
visual information is decoded in the brain through
parallel pathways, namely, increments (ON) and
decrements (OFF). Low luminance and optical
blur which are considered as key risk factors of
myopia, trigger the ON luminance pathway and
thereby lower the release of retinal DA.188 The
role of ON and OFF pathways in refractive error
development is extrapolated using a genetically
modified mouse model wherein the 7ob mice were
subjected to FDM. The results from the study
exhibit that myopia development in mouse eye is
stimulated primarily due to defect in ON pathway
in addition to the low DA level and blurred vision
imposed by form deprivation which is evident

from the loss of visual function along the ON
pathway.189

Other neurotransmitters and signaling

molecules involved in light-mediated

refractive error regulation

Nitric oxide. NO is a neurotransmitter that is
involved in the regulation of retinal responses. Vit-
reous concentrations of NO are dependent on
ambient light conditions!° and may play a role in
the protection against developmental myopia. In a
study conducted by Carr and Stell,'°1 intravitreal
injection of NO synthase substrate I-arginine
(L-arg) or NO donor sodium nitroprusside was
able to dose-dependently inhibit the development
of myopic refraction and axial elongation. In addi-
tion, NO may also play a role in the regulation of
choroidal thickness, as intravitreal injection of NO
synthase inhibitor NG-nitro-L-arginine methyl
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ester rapidly and transiently inhibited choroidal
thickening and promoted choroidal thinning in
chicken eyes recovering from FDM and in eyes
mounted with +15D lenses.!92

Similar to DA, NO affects horizontal cell gap
junction conductance and coupling. In the pres-
ence of bright light, NO is released in amacrine
cells and activates guanylate cyclase after diffu-
sion into retinal neurons. This results in an
increase in cyclic guanosine monophosphate
(cGMP) levels and the activation of cGMP-
dependent protein kinase. Phosphorylation or
dephosphorylation of connexin 35 in chickens
and connexin 36 in mammals present in the reti-
nal gap junctions alters horizontal and amacrine
cell gap junction conductivity via NO, which in
turn stimulates retinal cell uncoupling.193-195
Subsequently, this increases the overall optoki-
netic contrast sensitivity in chicken eyes, espe-
cially at high spatial frequencies.!*®* NO may thus
contribute to the prevention of myopia develop-
ment by modulating the receptive field sizes and
spatial contrast sensitivity.197-198

Atropine. Although low-dose atropine eye drops
are used to prevent or slow myopia development
in children,'°® the underlying mechanisms of
atropine action remain poorly understood. Atro-
pine is a muscarinic antagonist that also acts as a
potential alpha 2-adrenergic receptor (a2A-ADR)
antagonist. In chickens, that lack muscarinic
receptors in the ciliary muscles, atropine can still
reduce experimental myopia development,!®® and
both atropine and other a2A-ADR antagonists
have been shown to stimulate DA release by acti-
vating the tyrosine hydroxylase immunoreactive
amacrine cells.200,201 Conversely, a2A-ADR ago-
nists strongly suppress the release of DA.200,201
Interestingly, the actions of atropine and bright
light of 8500 lux were recently reported as addi-
tive, increasing DA release in the vitreous of
chickens that received an intravitreal atropine
injection and were exposed to bright light for 1.5
h, compared with chickens that received the same
treatment but were exposed to 1.5 h of standard
light of 500 lux.201

EGR1 (ZENK]. Early growth response protein-1
(EGR-1) or ZENK is a protein encoded by the
EGR-1 gene. Lower levels of EGR-1 or ZENK
have been associated with increased axial elonga-
tion and vice versa.?> EGR-1 is considered as a
well-established and documented protective gene
for myopia.293-205 Upregulation of ZENK is

associated with inhibition of ocular elongation
linked with hyperopic defocus and the recovery
from form deprivation. The modulatory expres-
sion of ZENK is clearly evident in amacrine cells
containing glucagon. In chickens, EGR-1 sup-
presses ocular axial elongation and when EGR-1
is knocked down in mice, the eye exhibited dis-
tinct axial elongation.292 It was found that 30 min
of exposure to visual stimuli following form depri-
vation can regulate ocular growth by modulating
the expression of ZENK.185

The intensity of light exposure was reported to be
positively correlated with the ZENK expression
in chicken retinal amacrine cells; however, this
effect is not related to the duration of light expo-
sure.!85 Albeit, Ashby ez al.2%3 reported bidirec-
tional response of Egr-1 mRNA levels with a 50%
decrease and >200% elevation in Egr-1 mRNA
levels in lens-induced (—=5D) myopic eyes of
guinea pigs during the induction (day 7) and the
recovery periods, respectively.

ZENK-responsive bipolar cells are usually the
cone ON-bipolar cells; hence, the bipolar cells are
seen to have ZENK induction as a function of
light intensity.2%¢ Furthermore, EGR-1 mRNA
transcript levels are also dependent on the spectral
content of light; chickens reared under VL for 7
days (12 h light/dark cycle) showed upregulation
of EGR-1 in chorioretinal tissues, compared with
blue light exposure. In addition, the eyes exposed
to VL were significantly less myopic compared
with those exposed to fluorescent light.148

5-HT and 5-HT2A receptor. Serotonin [i.e.
5-hydroxytryptamine (5-HT)] is a neurotrans-
mitter synthesized in central nervous system.
Lens-induced myopic eyes of Guinea pigs have
significantly higher levels of 5-HT and 5-HT2A
receptor.207 Constant square-wave 0.5 Hz flicker-
ing light can induce myopia of progressive nature
in guinea pigs.!?8 The 5-HT and 5-HT2A recep-
tors were found to increase in both myopia due to
flickering light and form deprivation. This indi-
cates that 5-HT is possibly involved in the induc-
tion of myopia and it acts by binding to 5-HT2A
receptor.122The 5-HT2A receptor expression was
found to be increased and the concentrations of
norepinephrine and epinephrine were decreased
in guinea pigs’ eyes following both the exposure
to flickering light and form deprivation. As
hypothesized by Li ez al.128 by binding to 5-HT2A
receptor, 5-HT may strengthen scleral remodel-
ling and influence ocular axial growth.
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Gamma aminobutyric acid. Gamma aminobutyric
acid (GABA) is an inhibitory neurotransmitter in
the retina and brain. There are three types of GABA
receptors, the GABA(A) receptors facilitate the
feedback between horizontal cells and cones,
GABA(B) receptors regulate intracellular messen-
gers and neuronal function, and GABA(C) recep-
tors are involved in mediating GABAergic synaptic
functions in the outer and inner retinas. Eye growth
and refractive development in chickens is regulated
by these 3 receptors of GABA.208:209 GABA(C)
antagonists were found to be most effective at pre-
venting LIM, although other receptors can also
prevent myopia.?1® GABA(A) and GABA(C) ago-
nists decreases DA release in the retina, whereas
GABA antagonists increase DA release.20%:211
Moreover, amacrine cells release GABA molecules
which bind to fast-acting ionotropic receptors in
the retina.212213 [n FDM, the DA and GABAergic
neurotransmitter pathways interact. Exposure to
fluorescent lights (1500 lux) for 2 h lowers the
inhibitory activity of GABA in form-deprived
eyes.214This protective effect of bright light against
FDM while overcoming the effects of GABA ago-
nists involves an increase in the D2 DA receptor
activity.2!4 In contrary, goldfish retina demonstrated
an increase in GABA level directly proportional to
flashing light intensity.215

Retinoic acid. Retinoic acid (RA) is a lipid-solu-
ble metabolite derived from retinol or vitamin A,
which acts as a regulator of growth, differentia-
tion, and development of several cell types,
including epithelial and neuronal cells. RA also
acts as a neuromodulator that sends information
regarding the illumination to the outer plexiform
layer of retina.21®¢ McCaffery er al.217 first reported
the light-mediated increase in RA synthesis in
both retina and RPE samples of mice exposed to
bright room light for 10 min. This increase was
also directly proportional to the age of the mice,
wherein the older mice reported increased RA
release in response to light. Similarly, the impact
of 20 min of bright room light retina and RPE
samples revealed a strong RA activity when com-
pared with samples kept in darkness.?!8 Dirks
et al.?'® also noted that RA synthesis is light-
dependent and DA-independent in the carp eye
indicating that these two modulatory systems are
not inter-dependent but act in parallel. Apart
from this, studies in various animal models like
chickens,?19-221 guinea pigs??%223 and marmo-
sets?24 revealed that changes in RA synthesis are
species-dependent, where myopia induction led
to a decreased RA level in chickens, and increased

RA levels in guinea pigs and marmosets.222,224,225
Choroidal RA biosynthesis is regulated exclu-
sively by retinaldehyde dehydrogenase 2
(RALDH?2)226 and fundal tissue aldehyde dehy-
drogenase-2 (ADH2).21° In the sclera, RA and
glycosaminoglycan (GAG) levels observe an
inverse relationship; with increasing RA levels, the
GAG levels decreases and vice versa.?20:224:225 The
mechanism of action of RA might be through the
remodelling of scleral extracellular matrix??4 or
the modulation of cell coupling.227-228

Melanopsin and intrinsically photosensitive retinal
ganglion cells. Melanopsin is an atypical phot-
opigment expressed in ganglion cells, rendering
them intrinsically photosensitive.229230 These
intrinsically photosensitive retinal ganglion cells
(ipRGCs) complement the visual photoreceptors
and convey photo transduced signals to nonvisual
centres in the brain, including the suprachias-
matic nucleus governing most circadian rhythmic
expressions in the body (e.g. sleep, alertness, mel-
atonin secretion at night) (for review, see Najjar
and Zeitzer?3!). Melanopsin is predominantly
sensitive to bright blue light (~480nm), a wave-
length reported to induce hyperopia and reverse
experimental myopia in some animal mod-
els!30-133 and the increase in ocular DA levels
upon bright light exposure could potentially be
due to the stimulation of melanopsin and the syn-
aptic and functional connection between the
ipRGCs and dopaminergic amacrine cells.232:233
In addition, melanopsin knockout mice display a
decline in ocular DA levels,?3* and preliminary
findings highlight a direct, yet unclear, role of
melanopsin in refractive error development.?3> In
humans, some authors attributed a reduction in
sleep quality observed in highly myopic children
to a decreased ipRGC function in myopic eyes, in
addition to high demands at school and distress
over poor vision.23¢ Nevertheless, studies investi-
gating the pupillary light reflex reported no alter-
ations in the response in mild and moderate
myopic participants and no associations between
refractive error and the ipRGC inputs to the pupil
control pathway.237-238

The retinal clock plays an essential role in adapt-
ing retinal physiology and visual function to the
light/dark changes and holds with its outputs
(e.g. melatonin, DA) a major role in the regula-
tion of eye growth and refractive error develop-
ment in birds and mammals.?3® A additional,
potential pathway for photic ocular growth con-
trol involves the phase shifting aptitudes of the

32

journals.sagepub.com/home/oed


http://journals.sagepub.com/home/oed

AR Muralidharan, C Lanca et al.

retinal clock by light24? through the potential con-
tribution of ipRGCs, neuropsin (OPN5),24! rods
and/or middle-wavelength (MW) cones and excit-
atory influences upon dopaminergic amacrine
CCHS.242_244

The development of light-therapy

strategies for myopia

While increasing exposure to outdoor light levels
can successfully be implemented through national
outdoor programmes, to prevent the onset of
myopia and slow myopia progression in progress-
ing myopes, implementation remains suboptimal
in some circumstances.2>® On the other hand, the
optimization of architectural lighting or develop-
ment of light-therapy devices requires a holistic
understanding of the benefits and side effects of
light characteristics (intensity, timing, pattern and
spectrum) on ocular growth and neurophysiology
(e.g. circadian rhythms, sleep and alertness). Yet,
some studies have shown promising results by
either increasing light intensity indoors in school-
based interventions*> or adopting a daily light-
therapy approach.?’® According to Hua ez al.%3
increasing the ambient light levels to 558 lux at
the desk and 440 lux at the blackboard in class-
rooms can reduce the percentage of new myopia
onset. Concomitantly, a pilot study carried out in
China has shown that both students and teachers
can adapt to a bright classroom having a light
intensity between 1,330 and 4,060 1ux.260 These
findings suggest that moderately high intensities
of light indoors (e.g. classrooms) could yield suf-
ficient protection against myopia in children.4? In
accordance with the latter statement, yet adopting
a more individualized light-therapy approach
using light delivery glasses, Read er al.?5° showed
that exposure to ~500 lux for 30 min in the morn-
ing for 1 week increased in choroidal thickness in
young adults. Although Read er al. did not investi-
gate the impact of light therapy on refractive error
development per se, these results may be promis-
ing given the association between choroidal thick-
ness and refractive error development. The
spectral modulation of light reaching the retina
can also offer promising therapeutics for myopia.
A recent study by Ofuji ez al.?6! have shown that
wearing VL-transmitting glasses for 2 years, and
engaging in outdoor activity for 2 h can reduce
ocular axial length and increase choroidal thick-
ness in a child with high myopia. As reported by
Torii er al.,’*® an increased expression of EGRI
gene may have led to this protective effect of VL~
transmitting glasses against myopia. In addition, a

DA increase in response to the UV light could also
be postulated based on data available from the
form-deprived chicken model.132 Neuropsin
(OPNS), is a UV-sensitive and bistable (Amax:
380 nm and 470nm) photopigment that is ubiqui-
tously expressed in mammalian ganglion
cells.244:262 In a recent study, it was reported that
VL stimulation prevented myopia in mice and
identified OPN5-expressing retinal ganglion cells
as a key for emmetropization in this animal
model.24! On the other side of the spectrum, a
randomized controlled trial (ClinicalTrials.gov
Identifier: NCTO04073238) is ongoing at
Zhongshan Ophthalmic Center to test the efficacy
of low-level red light therapy (LLLT) to control
the progression of myopia, the authors hypothe-
size that effect of LLLT is potentially through
inhibiting scleral hypoxia and thereby improving
the choroidal blood perfusion. In a similar study,
slowing of myopia progression was shown among
children treated with low-level laser therapy for 6
months, probably by inhibiting the NO synthesis
and inflammatory cytokines thereby decreasing
the severity of oxidative stress.263:264 The effects of
the spectral composition of light have to be cor-
roborated carefully with its intensity, pattern, tim-
ing, and its effects on circadian system when
considering light therapy as a potential treatment
for myopia in children.

With the availability of inexpensive lighting sys-
tems and electronics nowadays, many nonmedi-
cal devices ranging from side lamps to wearables
are on the market, with the claim of alleviating the
myopia epidemic. Unfortunately, many of such
devices overstate their claims and are sometimes
not data-driven. Today, to optimize indoor light-
therapy strategies for myopia we would suggest
the following pathway:

I. Elucidate interspecies differences in the
light-driven emmetropization process;

II. Recognize the most suitable animal model(s)
for studying the impact of light on emme-
tropization. This model(s) should closely
mimic human ocular physiology and refrac-
tive error development;

Pinpoint anti-myopiagenic light parameters
in the selected animal model and test the
synergetic anti-myopiagenic aptitudes of
light parameters. For example, test dynamic
lighting and tailor the spectral composition
and timing of moderate light intensities
(indoor) across the day;

III.
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IV. Establish reliable short-term biomarkers
allowing a fast and reliable, evaluation of the
impact of light on refractive error develop-
ment in humans. Considered one of the ear-
liest observable ocular changes during the
development of refractive errors and ocular
growth, short-term changes in choroid
thickness may represent a reliable biomarker
for the signalling cascade that results in
longer term changes in ocular growth in
response to light. While myopiagenic stimuli
(e.g. accommodation, hyperopic defocus)
are often associated with a transient thin-
ning of the choroid as compared with anti-
myopiagenic stimuli (e.g. anticholinergic
agent, myopic defocus) which are associated
with a transient choroidal thickening;

V. Evaluate (1) the safety and (2) efficacy of

these light parameters in humans by investi-

gating short-term changes in biomarkers;

Confirm the preventive efficacy of these

light parameters in a randomized longitudi-

nal clinical trial;

Develop data-driven light-therapy strate-

gies/devices for myopia control in children.

VI

VIL

Conclusion

In this narrative review, we presented the current
knowledge on light-driven modulation of ocular
growth and emmetropization based on studies in
human and animal models. In addition, we also
highlighted potential neurobiological mecha-
nisms involved in the protective effect of light on
myopia onset and suggested a potential pathway
for the translational development of noninvasive
light-therapy strategies for myopia prevention in
children. Overall, available data from humans
and experimental animal models suggest that
high-intensity light even in discontinuous pat-
terns is capable of preventing myopia onset.
These findings support the need for well-devised
outdoor programmes in children, especially in
countries where myopia is prevalent. Nevertheless,
less intense light levels (~500 lux) delivered in
classrooms or using light delivery wearables may
also be protective against myopia. Similarly, the
spectro-temporal tuning of such moderate light
levels has shown promise for myopia control,
especially in animal models. However, the devel-
opment of tailored light-therapy strategies for
myopia control in humans remains challenging
given the gaps in understanding the synergetic
impact of light parameters within other environ-
mental features. In addition, while working on

this review, our team noticed a lack of standard-
ized reporting of experimental light characteris-
tics between studies. The standardization of light
reporting through a reporting guideline could
allow for a better comparison of findings and pro-
tocols between studies, and enable more effective
meta-analyses.

During this COVID-19 pandemic, toddlers, chil-
dren and teenagers alike are exposed to unprece-
dented amounts of indoor time, sparking concerns
over an ever more severe myopia boom.265-268
Notwithstanding these peculiar circumstances,
today there is a need for consensus on optimal,
feasible and noninvasive light interventions for
myopia prevention in children be it through
increased time outdoors or adapted architectural
lighting or light-therapy devices.
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