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INTRO DUC TIO N

While the posterior structural changes that accompany 
myopia are well established both clinically1,2 and histo-
pathologically,3,4 it is unclear whether more subtle biome-
chanical changes to the sclera manifest across the anterior 

segment.5– 9 Although variation in anterior scleral thickness 
with myopia has not been widely observed,8,10,11 more re-
cently, thinning has been noted at discrete points along 
the inferior,12,13 temporal and nasal meridia.13 Dynamic 
changes to the anterior sclera in eyes with myopia have also 
been reported; changes in scleral shape14 and thinning15 
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Abstract
Purpose: Topography of the in vivo anterior segment is of relevance in under-
standing its role in myopia and in the development of ocular surgical procedures. 
Using 3D magnetic resonance (MR) images of the human eye, regional variations in 
surface area (SA) and bulbosity of four anterior segment regions were investigated 
in association with refractive status (Rx), axial length (AL) and total ocular volume 
(OV).
Methods: T2- weighted ocular MR images from 43 adults aged 18– 40 years 
(mean ± SD; 28.65 ± 6.20) comprising 20 non- myopes (≥−0.50) 0.57 ± 1.38  and 23 
myopes (<−0.50) −6.37 ± 4.23 MSE (D) were collected. 2D representations of each 
quadrant (superior- temporal [ST], superior- nasal [SN], inferior- temporal [IT] and 
inferior- nasal [IN]) of the anterior section (3.5– 9 mm) were fitted with second- order 
polynomials. Polynomials were integrated and rotated about the x- axis to gener-
ate SA; dividing the SA by 4 provided relative quadrantial SA. The x2 coefficient 
provides indices of bulbosity. OV was derived from the 3D MRI scans. Rx and AL 
were measured using cycloplegic autorefraction and the Zeiss IOLMaster, respec-
tively. One-  and two- way repeated- measures ANCOVAs tested differences in SA 
and bulbosity for Rx, gender, ethnicity and age. Pearson's correlation coefficient 
tested the relationship between MRI- derived metrics and biometry.
Results: Significant differences in SA were observed between quadrants (p < 0.001) 
with differences between ST versus IN, IN versus IT and SN versus IT. An interaction 
effect (p = 0.01) for Rx suggested smaller temporal (ST and IT) and larger nasal (SN 
and IN) SA in myopes. AL and myopic Rx were negative correlated (p < 0.05) with 
SA at IN, SN and IT. OV was significantly associated with SA at ST. Bulbosity showed 
no regional differences nor an effect of AL or Rx.
Conclusion: Significant regional variation in SA exists across the anterior segment 
that is modulated by Rx and AL. It is unclear whether these structural character-
istics are a precursor or consequence of myopia and may warrant investigation 
when developing biomechanical interventions.
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were observed to be greater during accommodation in 
myopes, while Niyazamand et al.5 reported that high my-
opes  exhibited greater thickening with increasing levels 
of convergence. Posterior and equatorial eye shape are 
also known to alter in myopia,16,17 but few studies that as-
sessed the anterior surface shape suggested myopic eyes 
to be less asymmetric6,18 and demonstrated greater nasal 
sagittal height.18 Observations of larger anterior chamber 
depth and flatter corneal curvature in myopic eyes suggest 
a putative involvement of the anterior segment in myopia 
development and progression.19– 21

An accurate depiction of the anterior segment shape is 
of relevance to many areas of clinical work including scleral 
contact lens design,22 intraocular lens geometry,23,24 trans-
scleral drug delivery,25 intravitreal injections,26 scleral col-
lagen cross- linking,27,28 as well as any surgical procedures 
involving the anterior sclera.29,30 The accessibility of the 
anterior aspect of the eye is a major advantage, but tech-
nical challenges related to imaging through the sclera and 
determining suitably valid and sensitive metrics for iden-
tifying physical alterations in vivo pose another difficulty. 
Several investigators have attempted to model the anterior 
scleral shape via corneoscleral topography5,18,22,31 and op-
tical coherence tomography (OCT),18,32,33 but these are lim-
ited to assessment of only the exposed scleral and corneal 
surfaces and imaging along discrete meridia and depth.22 
Restrictions as to how far posteriorly the in vivo anterior 
segment can be imaged with OCT has constrained assess-
ment of the sagittal height to 15- mm chord lengths22 and 
thickness measurements to 6 mm posterior to the scleral 
spur.8,13 Moreover, effects of refractive distortion and tis-
sue curvature and tilt further compound OCT imaging.34

To evaluate comprehensively the topography of the an-
terior segment, an assessment of the three- dimensional 
(3D) eye shape in vivo is valuable.35,36 Magnetic resonance 
imaging (MRI) is based on high- contrast delineation of the 
vitreo- retinal interface, and thus provides a determination 
of the internal surface of the eye. As an in vivo method 
of non- contact imaging, MRI allows depiction and inves-
tigation of the internal ocular globe. The utility of MRI 
in humans in evaluating ocular features such as retinal 
and posterior vitreous chamber shape,18,37 linear dimen-
sions,38,39 surface area (SA) and curvature40,41 and ocular 
and orbital volume.42– 44 has been demonstrated. Despite 
its use in these studies,45,46 application of MRI has not been 
extended into the evaluation of structural characteristics 
within the anterior segment of the globe.

It is well documented that myopia results from the an-
terior segment components failing to compensate for the 
concurrent growth of the posterior vitreous chamber.47,48 
Specifically, the observation that the ciliary muscle has 
been identified as restricting the anterior processes gov-
erning crystalline lens flattening with axial length (AL) 
expansion may be the basis for myopic growth.49,50 MR 
imaging of the anterior segment provides a unique oppor-
tunity to characterise the internal morphometry of the an-
terior segment without the effects of the overlying tissues 

nor the constraints of the anterior– posterior limits of OCT 
and topography. To encompass the region of the ciliary 
muscle43,50 as well as previous work pertaining to the an-
terior segment structure,6– 9,18,23,24 a novel metric to assess 
MRI- derived SAs and bulbosity of four anterior segment 
quadrants was assessed. The influence of refractive status 
as well as associated AL and ocular volume (OV) on these 
structural characteristics was also investigated.

M ETHO D

Forty- three young adult subjects were scanned using a 
whole body MRI scanner (3- Tesla Trio, Siemens, sieme ns- 
healt hinee rs.com). Ethical approval was obtained from 
Aston University Ethics Committee and the study was 
performed according to the tenets of the Declaration of 
Helsinki. Written informed consent was obtained from 
each subject prior to the commencement of the study. 
Eligibility to take part in the study was confirmed after 
subjects completed a screening questionnaire. Exclusion 
criteria were as follows: previous history of ocular surgery, 
trauma or pathology, ocular medication, astigmatism >1.75 
D as well as standard criteria51 for MR scanning. Individuals 
suffering from connective tissue– related disorders were 
also excluded due to their known effect on collagen com-
position and, hence, its probable effect on scleral biome-
chanics and eye structure.

Acquisition of MR images

Magnetic resonance images were acquired using an eight- 
channel phased- array head coil, which allows simultane-
ous scanning of both eyes with a high signal- to- noise ratio. 
T2-  weighted scans were obtained using an imaging proto-
col that allowed high- definition delineation of the ocular 
surfaces. These scans were performed using a protocol re-
ported previously.17,42 Subsequently, the T2- weighted MR 
images (voxel thickness of 0.5 × 0.5 × 1.0 mm) produced by 

Key points

• Topography of the in vivo anterior segment is 
of relevance in understanding its role in myo-
pia and in the development of ocular surgical 
procedures.

• Using 3D magnetic resonance images of the 
human eye, regional variations in surface area 
and bulbosity of four anterior segment regions 
were investigated.

• Significant regional variation in surface area ex-
ists across the anterior segment that are modu-
lated by refractive error and axial length.

http://siemens-healthineers.com
http://siemens-healthineers.com
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this sequencing were optimised to allow discrimination of 
the eye's fluid- filled chambers from the rest of the head 
scan. Scanning required a distance refractive correction as 
subjects were asked to fixate on a distance target viewed 
through an angled mirror mounted on the head coil; any 
subjects who required such a refractive correction were 
fitted with best- sphere daily disposable contact lenses to 
facilitate accurate fixation. The average scanning time was 
5 min and 40 s.

Analysis of MR images

Magnetic resonance images were analysed using a spe-
cially modified version of the freeware software, mri3dX.17,52 
Analysis of the T2- weighted image voxels was conducted 
as per previous work to produce 3D depictions of the eye 
shape.42,43,52 Vector co- ordinates of the 3D surface poly-
gons were designated as superior- temporal (ST), superior- 
nasal (SN), inferior- temporal (IT) and inferior- nasal (IN) to 
determine the regional conformation of the globe. These 
divisions are based on a standardised co- ordinate system 
where the longitudinal axis of symmetry is projected from 
a line connecting the geometric centre of the eye to the 
anterior corneal pole. Although the procedure cannot ac-
count fully for the discrepancy between the visual and 
optical axis (i.e., angle alpha), this discrepancy can be con-
sidered relatively small for anterior regions of the globe.

To illustrate the morphological features of the globe, 
the 3D array of polygons was then collapsed to provide a 
2D representation of each quadrant. Data were extracted 
initially for 15%– 100% along the AL for all quadrants; 15% 
(approx. 3.5 mm posterior to the cornea apex) along the 
AL allows avoidance of the cornea and assessment of the 
globe from beyond the corneo- limbal junction while 100% 
denotes the most posterior aspect of the eye (Figures 1 and 
2). This technique provides good correlation with partial 
coherence interferometry measurement of AL and allows 
repeatable and reproducible results.52

To encapsulate the entirety of this region of special in-
terest, the anterior section lies between ~3.5 and 9 mm, 
equivalent to approximately 15%– 40% along the AL 
(Figure 2). A second- order polynomial (Equation 1) was fit-
ted to each quadrant for this range (Figure 2). As AL is used 
as the reference for extracting the 15%– 100% range of MRI 
data, inter- subject variability in AL influences the width of 
this range and, hence, affects the size of the anterior region 
(15%– 40%) of interest. The study protocol presently ad-
opted controlled, in part, for this source of error. Since the 
anterior 3.5 mm (15% along the AL) is likely to vary with AL, 
maintaining a constant end point at 9 mm (i.e., 40% along 
the AL) ensured that the extent of the region assessed re-
mained relatively constant between subjects.

Surface area was generated by integrating and rotating 
the second- order polynomial about the x- axis. Dividing 
the segment area by four provided a measure of the rel-
ative SA for each quadrant (Equation 2). The coefficient of 

the x2 polynomial offers a measure of the bulbosity of each 
respective quadrant.

The values a, b and c represent coefficient values for the 
polynomial.

where t1 = b + 2al1, t2 = b − 2al2 and SA represents surface 
area.

The values a, b and c correspond to the polynomial 
equation values of y = ax2 + bx + c.

The values l1 and l2 (in mm) correspond to the respective 
15% and 40% x- axis values.

Biometric measurements

Refractive error was determined after inducing cycloplegia 
in each eye using 1 drop of tropicamide HCl 1% (Minims®, 
bausch.co.uk). Sufficient cycloplegia was designated as an 
amplitude of accommodation <2D. Objective measure-
ments of the refractive error and central corneal curvature 
were determined with an infrared, binocular, open- view 
autorefractor/keratometer (Shin- Nippon SRW- 5000, grand 
seiko.com). Five measurements were taken from each eye, 
which were averaged and converted to mean spherical error 
(MSE) (sphere power + 0.5 × cylinder power) and central 
corneal curvature (mm) readings. AL and anterior chamber 
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F I G U R E  1  Diagrammatic depiction of the 15%– 40% axial length 
range assessed.
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depth measurements were taken with the IOLMaster 500 
(Carl Zeiss Meditec, Inc., medit ec.zeiss.com). Five separate 
measurements were averaged for AL, whereas a single- 
capture shot automatically generated and averaged five 
measurements of anterior chamber depth.

Statistical analysis

Statistical evaluation was performed using SPSS version 25 
for Windows (ibm.com) and Microsoft Excel (Micro soft.com). 
Only data from the right eye (RE) were analysed. Multiple 
two- way mixed repeated- measures analysis of covari-
ance (ANCOVA) were performed to test for an effect of the 
between- subject factors: refractive status (myopes and non- 
myopes), gender, ethnicity (British White [BW] and British 
South- Asian [BSA]) and age (years) grouping ([18 > to ≤ 29] 
[>29  to ≤ 40]), on the within- subject factor SAs and bulbos-
ity, while controlling for the covariate factor AL. Additionally, 
Pearson's correlation coefficient was calculated to test the 
relationship between SAs and ocular biometry parameters 
(AL, OV, ACD, mean corneal curvature) for the whole subject 
group and then separately for the myopic and non- myopic 
subgroups. For all statistical tests, a p- value of <0.05 was 
taken as the criterion for statistical significance.

R ESULTS

Surface area and bulbosity were assessed in 43 healthy in-
dividuals (Table 1).

Surface area

Axial length was a significant covariate of SA (F1,41 = 4.96, 
p  =  0.03); hence, its effect was controlled on subsequent 
analysis. Significant differences were observed between 

F I G U R E  2  The profile of the right eye of subject 10. Data along 15%– 100% (blue) and 15%– 40% (green) along the visual axis plotted for (a) 
superior- temporal, (b) superior- nasal, (c) inferior- temporal and (d) inferior- nasal. The second- order polynomial fit for the 15%– 40% range for each 
quadrant is also presented.

T A B L E  1  Descriptive data (mean ± SD) for non- myopic (n = 20) and 
myopic (n = 23) subjects.

Non- myopes 
(MSE ≥ −0.50 D)

Myopes 
(MSE < −0.50 D)

n = 20 n = 23

Gender (male:female) 10:10 6:17

Ethnicity (BSA:BW) 9:11 10:13

Age (years)

Mean ± SD 29.25 ± 6.97 28.13 ± 5.55

Range 19 to 40 20 to 40

MSE (D)

Mean ± SD 0.57 ± 1.38 −6.37 ± 4.23

Range −0.50 to +4.38 −20.50 to −0.75

Axial length (mm)

Mean ± SD 23.37 ± 0.63 25.77 ± 1.27

Range 21.75 to 24.45 23.33 to 28.32

Ocular volume (mm3)

Mean ± SD 7524 ± 757 8744 ± 1132

Range 5036 to 8464 6724 to 11,777

Abbreviations: BSA, British South- Asian; BW, British White, MSE, mean spherical 
equivalent; SD, standard deviation.

http://meditec.zeiss.com
http://ibm.com
http://microsoft.com
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quadrants (F2.314,94.877  =  12.49, p < 0.001), with IN showing 
the largest SA and IT the smallest (Table  2). Bonferroni 
post- hoc test revealed statistically significant differences 
between ST versus IN, IN versus IT and SN versus IT.

Analysis showed no main effect for refractive status 
(F1,40  =  0.43, p  =  0.52). However, a significant interaction 
effect was noted between refractive status and regional 
differences (F2.412,96.498 = 4.27, p = 0.01) suggesting smaller 
temporal (ST and IT) and larger nasal (SN and IN) SAs in 
myopes (Table 2 and Figure 3). Neither gender (F1,40 = 0.08, 
p = 0.78), ethnicity (F1,40 = 0.06, p = 0.81) nor age grouping 
(F1,40 = 0.86, p = 0.36) showed a significant effect on SA.

Correlates of surface area

For the combined myopic and non- myopic groups, 
(Table 3a) as well as the separate myopic group (Table 3b), 
a more myopic refractive error and longer AL were nega-
tively associated with SAs for SN, IN and IT (Table 3a and b). 
In contrast, this relationship was not observed in the non- 
myopic group (Table 3c). Although ST SA showed no asso-
ciation with refractive error or AL, it was the only region to 

show a strong positive association with OV for all groups 
(Table  3a– c). Among the combined group, mean corneal 
curvature was positively associated with SAs in the SN, IN 
and IT quadrants but only in the IT and SN regions for the 
myopic and non- myopic groups, respectively. No relation-
ship was found between ACD and SAs.

Quadrant bulbosity

The curvature for each region was represented as bulbos-
ity and indexed by the x2 coefficient of the second- order 
polynomial over the ≈3.5– 9.0 mm section along the axial 
length (Table  4). Bulbosity failed to show any significant 
regional differences (F3,123 = 0.88, p = 0.45). None of the fol-
lowing parameters showed any significant effect on bul-
bosity: axial length (F1,41 = 0.78, p = 0.38), refractive status 
(F1,40 = 0.03, p = 0.87), gender (F1,40 = 2.02, p = 0.16), ethnicity 
(F1,40 = 0.03, p = 0.86) and age group (F1,40 = 0.70, p = 0.40).

D ISCUSSIO N

This study is the first to explore the utility of MRI- derived 
measures of anterior segment SA and bulbosity in eyes 
of different refractive groups. Notably, these novel metrics 
provide an evaluation of the internal shape of the anterior 
segment rather than the external surface, thus mitigating 
the effects of overlying tissues such as the sclera, epis-
clera, Tenon's capsule and conjunctiva. Regional differ-
ences in the SA between the ST versus IN, IN versus IT and 
SN versus IT quadrants were observed. Interestingly, other 
than IT versus IN, the SA differences seem to lie between 
the diagonal quadrants, that is, ST versus IN and SN versus 
IT, suggesting that most adjacent regions, both horizon-
tally and vertically, are congruent. Anterior scleral shape 
is known to demonstrate rotational asymmetry, with the 
sagittal height of the temporal sclera being greater than 
the nasal and the superior region larger than the infe-
rior.22,53 The insertion site of the extraocular muscles may 
influence such structural characteristics.32,33,54 For the 
temporal (7.0 mm) and superior (7.5 mm) meridia, the dis-
tance from the limbus to the insertion points is larger than 
for the nasal (5.5 mm) and inferior (6.5 mm) meridia.55,56 
It is possible that different biomechanical forces gener-
ated by the extraocular muscles across the various me-
ridia may result in regional disparity in anterior segment 
growth. Heterogeneity of the internal dimensions of the 
anterior segment has also been observed previously in 
regards to the magnitude of the vertical and horizontal 
meridia.23,24,57 Inconsistency in the internal dimensions of 
the anterior eye is likely to affect the overall conformation 
of the anterior segment and may further explain the vari-
ation in SAs found here. Such observations suggest that 
the anterior eye fails to exhibit the commonly assumed 
spherical shape, but, in fact, shows considerable regional 
variation in its morphometry.

T A B L E  2  Right eye surface areas of each quadrant (mm2) for all 
subjects.

Quadrant Mean ± SD Min Max

ST 106.07 ± 5.70 93.50 115.78

IN 109.74 ± 7.67 85.66 120.24

SN 108.46 ± 5.63 91.04 121.09

IT 104.14 ± 5.62 90.25 116.75

Abbreviations: IN, inferior- nasal; IT, inferior temporal; SN, superior nasal; ST, 
superior- temporal.

F I G U R E  3  Estimated marginal means (± standard error bars) for 
all four quadrants in the non- myopic group, myopic groups and for 
all subjects. Estimated marginal means provide the adjusted means 
after controlling for the covariate axial length for each group hence the 
effect of axial length was statistically removed.
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Measurements of the internal conformation may provide 
a more accurate depiction of growth changes in the myo-
pic eye, which may be a precursor to the observed exter-
nal scleral shape6,18 and thickness changes.12,13 Refractive 
status was found to have a significant interaction with 
the regional differences, with smaller temporal and larger 
nasal SA in myopic eyes. Aside from the ST quadrant, all SAs 
demonstrated reduction with longer AL and myopic refrac-
tive error. It is unclear whether these structural characteris-
tics are a precursor to or a consequence of myopia. There is 
little evidence in humans to suggest a genetic or environ-
mental factor that may result in such asymmetry with my-
opia. Differential levels of anatomical restriction offered by 
the medial and lateral walls during ocular expansion ante-
riorly, especially near the orbital margin, may partly explain 
the findings.58,59 Assuming a constant tissue volume,60 the 
smaller SA with increasing AL and myopic refraction may 

be a subsequent effect of the predominant equatorial and 
posterior expansion,17,61,62 which may lead to reduced tis-
sue mass across the anterior regions. The possible propen-
sity for greater globe expansion temporally63– 65 may partly 
explain why the temporal SA was smaller in myopic eyes. 
The ST SA uniquely failed to show any association with 
AL and refraction but demonstrated a consistent, positive 
relationship with OV, suggesting that this region may be 
a better indicator of overall globe expansion rather than 
longitudinal axial growth. Interestingly, the ST quadrant 
was observed to have the largest retinal SA and the higher 
incidence of retinal breaks.41,66 Nagra et al.44 noted that 
inter- quadrant differences in the retinal SA existed inde-
pendent of AL, suggesting that the susceptibility for retinal 
tears may be more associated with the inter- quadrant dif-
ferences rather than the absolute magnitude of the retinal 
surface. It is unclear how the anterior and posterior SA are 
related, but a biomechanical association may exist which 
might be modulated differently in myopic eyes.

Despite the findings of regional variation in anterior 
segment SA, no significant differences were observed be-
tween the bulbosity of different quadrants. Bulbosity is an 
index of the degree of protrusion of a particular element of 
shape, and hence, is independent of SA and volume. The 
present study did not assess curvature differences per se 
since bulbosity is a characteristic of curvature. Visualising 
the configuration of the anterior eye as an ellipse, having 
the same vertex curvatures yet different horizontal  and 
vertical dimensions,  with asphericity quantified as Q val-
ues may help to understand the dissociation with SA. 
Therefore, with regards to bulbosity, it is possible that ana-
tomical constraints imposed by the surrounding tissue en-
sure uniformity between the different quadrants assessed. 
These observations suggest that despite the SA reducing 
with increasing AL, the actual bulbosity of the quadrant re-
mains constant. Topographic observations of a more sym-
metrical anterior segment in myopic eyes support these 
findings.5,18 Neither ethnicity, gender nor age group were 
found to have a significant influence on SA and bulbosity.

There are several limitations to this study. The MR image 
analysis protocol used here provides quadrant reference 
points based on the geometric (optical) axis, rather than 
the visual axis. The discrepancy between these two axes 
is known as angle α. While this angle is present along both 
the horizontal and vertical meridia, its magnitude is smaller 
vertically. Angle α is notoriously difficult to assess and 

T A B L E  3  Univariate correlations (Pearson coefficients) between 
regional surface area and ocular biometrics: (a) combined group (both 
myopic and non- myopic subjects) (b) only myopes (n = 23) and (c) only 
non- myopic subjects (n = 20).

ST SN IN IT

(a)

SN ns

IN ns 0.67**

IT 0.41** 0.59** 0.74**

Refractive error ns 0.39** 0.63** 0.46**

Axial length ns −0.33* −0.52** −0.31*

Ocular volume 0.45** ns ns ns

Mean corneal 
curvature

ns 0.37* 0.40* 0.51**

(b)

SN ns

IN ns 0.63**

IT ns 0.54** 0.77*

Refractive error ns 0.59** 0.75** 0.63*

Axial length ns −0.58** −0.61** −0.44*

Ocular volume 0.56** ns ns ns

Mean corneal 
curvature

ns ns ns 0.44*

(c)

SN ns

IN ns 0.78**

IT ns 0.51* 0.66**

Refractive error ns ns ns ns

Axial length ns ns −0.52** ns

Ocular volume 0.45** ns ns 0.47*

Mean corneal 
curvature

ns 0.53* ns ns

Abbreviations: IN, inferior- nasal; IT, inferior- temporal; SN, superior- nasal; ST, 
superior- temporal.
*p < 0.05, **p < 0.001, ns, non- significant.

T A B L E  4  Right eye bulbosity represented as the X2 (coefficient of 
the second- order polynomials) for each quadrant.

Quadrant Mean ± SD Min Max

X2 ST 0.08 ± 0.02 0.04 0.12

X2 IN 0.07 ± 0.02 0.04 0.12

X2 SN 0.08 ± 0.02 0.04 0.15

X2 IT 0.07 ± 0.02 0.04 0.14

Abbreviations: IN, inferior- nasal; IT, inferior- temporal; SN, superior- nasal; ST, 
superior- temporal.
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account for67,68 but it can be assumed that for the anterior 
segment region assessed in this study, its effects should be 
minimal. Inter- subject variability in AL is likely to influence 
the initial 15%– 100% of the reference data set extracted to 
determine the size of the anterior segment region (15%– 
40%). Although a fixed end point comprising 40% of the AL 
was used, there is a likelihood that the size of the anterior 
portion varied with AL. In an attempt to account for this po-
tential variable, the statistical analysis controlled for AL as a 
covariate, hence minimising its influence on the outcomes.

CO NCLUSIO N

Modelling of the eye with MRI provides an invaluable 
opportunity to investigate how eye shape and growth, 
both anteriorly and posteriorly, vary in myopic eyes. 
Observations of regional differences in anterior SAs that 
are modulated by refractive status suggest that structural 
and biomechanical changes may be evident across the 
anterior segment. It is unclear if these changes are an in-
dicator or consequence of myopia, but further work is war-
ranted to determine this. The anterior segment provides 
a clinically accessible site for the administration of scleral 
collagen cross- linking for myopia as well as surgical proce-
dures relating to glaucoma and cataract. If refractive status 
affects the anatomical characteristics of the anterior eye, 
then improved knowledge of the optimal site for treat-
ment is necessary. Herein, the novel application of anterior 
segment SA and bulbosity derived from MRI data provides 
an avenue for future exploration, specifically in relation to 
the posterior segment eye growth.
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