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Abstract—In this paper, a new methodology is proposed that
allows for the low-complexity development of neural network
(NN) based equalizers for the mitigation of impairments in high-
speed coherent optical transmission systems. In this work, we
provide a comprehensive description and comparison of various
deep model compression approaches that have been applied to
feed-forward and recurrent NN designs. Additionally, we evaluate
the influence these strategies have on the performance of each
NN equalizer. Quantization, weight clustering, pruning, and other
cutting-edge strategies for model compression are taken into
consideration. In this work, we propose and evaluate a Bayesian
optimization-assisted compression, in which the hyperparame-
ters of the compression are chosen to simultaneously reduce
complexity and improve performance. Next, this paper presents
four distinct metrics (RMpS, BoP, NABS, and NLGs) that are
discussed here that can be used to evaluate the amount of com-
puting complexity required by various compression algorithms.
These measurements can serve as a benchmark for evaluating the
relative effectiveness of various NN equalizers when compression
approaches are used. In conclusion, the trade-off between the
complexity of each compression approach and its performance is
evaluated by utilizing both simulated and experimental data in
order to complete the analysis. By utilizing optimal compression
approaches, we show that it is possible to design an NN-based
equalizer that is simpler to implement and has better perfor-
mance than the conventional digital back-propagation (DBP)
equalizer with only one step per span. This is accomplished by
reducing the number of multipliers used in the NN equalizer
after applying the weighted clustering and pruning algorithms.
Furthermore, we demonstrate that an equalizer based on NN
can also achieve superior performance while still maintaining
the same degree of complexity as the full electronic chromatic
dispersion compensation block. We conclude our analysis by
highlighting open questions and existing challenges, as well as
possible future research directions.

Index Terms—Neural Network, Nonlinear Equalizer, Compu-
tational Complexity, Pruning, Quantization, Bayesian Optimizer,
Coherent Detection.
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I. INTRODUCTION

To achieve satisfactory optical performance in modern high-
speed optical transmission systems, the detrimental impact
of linear and, most importantly, nonlinear transmission im-
pairments that cap the systems’ throughput [1], [2], has to
be mitigated. Several digital signal processing (DSP) algo-
rithms specifically addressing optical fiber channel nonlinear-
ity mitigation have already been proposed [3]. However, the
“conventional” equalizers/soft-demappers, which are mostly
based on deterministic algorithms, have recently started to
lose their attractiveness in favor of designs incorporating
machine learning (ML) techniques [4]-[12]. In the meantime,
the possibility of using neural networks (NNs) in digital
communication systems was already discussed over 20 years
ago [13]. In general, various ML-based approaches and, more
specifically, deep artificial NNs, are rapidly finding their way
into the telecommunication sector. This is mainly due to NNs’
being universal approximators with virtually unlimited approx-
imation capabilities'. Thus, NNs can successfully reverse the
channel propagation function and, thereby, efficiently mitigate
transmission- and devices-induced impairments. Also, data
science-related approaches can flourish in optical communi-
cation applications since large datasets can be obtained in a
short period of time, which makes the (typically) data-hungry
learning process easier. However, despite several recognized
advantages and benefits of ML and, particularly, NNs in optical
transmission equalization, there are still many challenges that
can seriously hinder their success. One major challenge is
the typically high computational complexity of NN-based
algorithms, resulting in prohibitively strong requirements on
the speed and energy consumption of end devices performing
the equalization (although a lot of “traditional” approaches,
like digital back-propagation, are also deemed too complex).

It was demonstrated in [7] that, when the NN equalizer’s
complexity is not constrained, combining a convolutional layer
with a bidirectional long-short term memory (biLSTM) layer
yields the best performance (among several NN structures
studied). This is a consequence of the optical fiber channel’s
involving significant memory-related effects, primarily due
to chromatic dispersion (but optical line components can

The Universal Approximation Theorem [14] states that no matter what the
function is (with some fairly relaxed constraints on the function properties),
there exists a feed-forward NN that can approximate that function to any
desired degree of accuracy; a similar statement can be proven for recurrent
NNs [15].
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introduce memory as well), but the recurrent NN models
(to which the LSTM belongs) are apt for efficient memory
handling [16]. It was also shown in [7] that reducing the
overall computational complexity by limiting the number of
neurons, hidden units, filters, etc., of an NN may lead to
significantly worse optical performance. This can be attributed
to the infamous underfitting phenomena, i.e., the case when
the reduced-structure NN loses the capacity to reverse the
fairly complicated channel propagation function [17]. To ad-
dress this performance-complexity trade-off, two well-known
approaches can generally be considered. First, we can modify
the original NN equalizer architecture, which recovers just one
symbol at a time from a multisymbol input, so that multiple
symbols can be recovered at a time [11], [18]. This may
be achieved by using multidimensional regression predictive
modeling (or a multidimensional classification when a soft
demapper is coupled to the NN equalizing structure [18]). In
the case when the resulting multi-output NN architecture is
similar to the original one (that recovered just one symbol at a
time), the overall complexity per recovered symbol is reduced.
This is the first method incorporated into our approach here.
Second, we can use sophisticated NN model compression
techniques to reduce the number of multiplications and, af-
terward, diminish the hardware complexity by allowing low
bitwidth precision on the NN arithmetic operations. In this
work, we describe how to design a NN equalizer based
on the use of the aforementioned strategies, combining the
multidimensional regression approach with advanced model
compression techniques, namely pruning, weight clustering,
and quantization. It is shown that the resulting NN-based
equalizer is less complex than a standard (deterministic) and
non-optimized digital back-propagation (DBP) equalizer with
just 1 step-per-span (STpS). Furthermore, NN-based equalizers
can achieve better optical performance than multi-step DBP-
based ones with similar complexity. In this work, we:

o Compare various pruning approaches that use recurrent
layers. Our results are then used to prune the optical
channel equalizer model. We are not aware of such a
comparison being done even in ML literature.

o Enhance existing compression strategies by utilizing
Bayesian optimization (BO). BO enables improving opti-
cal performance while also reducing computational com-
plexity.

« Investigate the potential of weight clustering to reduce the
NN model’s complexity (studied for the specific case of
optical channel equalization), and calculate the achieved
reduction in the number of multiplications in the equalizer
model.

« Compare quantization strategies in the context of optical
channel equalization (using recurrent layers).

o Provide four metrics for evaluating the computational
complexity and explain when each one is adequate for
carrying out the models’ comparative analysis.

This paper is organized as follows. Sec. II introduces the
physical layer problem that we aim to mitigate using a post-
equalizer. In Sec. III, we describe the steps used to design
the combined biLSTM+CNN equalizer that recovers multiple

symbols following a multidimensional complex-valued re-
gression predictive modeling approach configuration. Sec. IV
presents the compression techniques that we address in this
work and describes how we can use the BO method to
optimize the trade-off between complexity and performance.
Sec. V describes the experimental and simulated setup used.
It also includes a description of the considered computational
complexity metrics and explains how to compute them when
compression techniques are used. Sec. VI contains the main
results, including the comparison between optical performance
and computational complexity achieved when employing the
different proposed strategies to reverse the channel propagation
function. Our findings are described in the conclusions, which
also include a discussion of open problems, challenges, and
research opportunities.

II. THE NONLINEARITY PROBLEM IN OPTICAL FIBER
COMMUNICATIONS

A. Propagation of Light in the Fiber

The fundamental equation used to describe the propagation
of light along an optical fiber is commonly referred to as
the nonlinear Schrodinger equation (NLSE) [19] and can be
derived directly from the Maxwell equations, which describe
the foundations of electricity and magnetism [20]. The NLSE
reads as:

OE . .
5, = L+ N)E, (1

where E is the electrical field as a function of the propagation
distance z and time ¢. D and NN, describe the linear and
nonlinear parts of the NLSE, which are given by:
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where o, B2 3, and y are the attenuation, the group velocity
dispersion (GVD), and the nonlinear coefficient, respectively.
If we substitute L and N from Eq. (2) into Eq. (1), it provides
the explicit form of the NLSE:
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Eq. (3) is suitable to model optical fiber transmission when
transmission along a single-polarization only is explored, e.g.,
intensity-modulation with direct-detection systems [19]. How-
ever, a coherent transceiver employs advanced digital signal
processing (DSP) which enables detecting a dual-polarization
signal, thus doubling the spectral efficiency of the system. In
this context, the linear and non-linear interactions between
the two signal polarizations must be taken into account.
Consequently, the NLSE of Eq. (3) is extended in a vectorized
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This pair of equations is commonly referred to as “the
Manakov equation”, and it involves both polarization states.
Here, E'x and Ey represent the two orthogonal polarization
components of the electric field E. In addition to the two
polarizations, Eq. 4 properly averages the impact of residual
birefringence that leads to fast polarization changes. Since
the polarization state of the electric field changes rapidly, the
resulting nonlinearities do not correspond to the ones from a
linearly or circularly polarized field but to an average over
the entire Poincaré sphere. The previous equations do not
take into account, for example, stimulated Raman scattering
(SRS). The SRS is a nonlinear effect that leads to the de-
pletion of power from short to long wavelengths, achieving
its maximum efficiency when the signals are separated by
~100 nm. The Raman effect has mainly been explored to
design distributed Raman amplifiers. Indeed, the SRS impact
is usually negligible in C-band only systems, which occupy
~35 nm. However, with the advent of ultra-wideband optical
systems, SRS will become the main transmission impairment
in optical networks [21].

B. Channel Capacity Limitations caused by Nonlinear Kerr
Effect

The non-linear part of Eq. (4) imposes a severe limitation on
the maximum achievable throughput in an optical fiber. In fact,
the information theory indicates that the capacity of a linear
channel increases monotonically by raising the transmitted
signal power (or rather signal-to-noise ratio, SNR) [22]. This
theoretical limit is also commonly referred to as Shannon’s
limit. However, in fiber optics, this tendency does not hold be-
cause the term (|Ex|? + |Ey|?) Ex,y becomes progressively
more important as the transmitted signal power increases, thus
causing phase distortions that limit the maximum throughput
in the network [23]. Consequently, there is an optimal optical
signal power that balances the achievable maximum SNR and
the signal distortion induced by the optical fiber’s nonlinear
behavior.

These peculiar aspects of fiber propagation have been
widely investigated, together with mitigation techniques, in
both the optical and digital domains. The next subsection pro-
vides a brief overview of some studies carried out to mitigate
the nonlinear Kerr effect in the digital domain. Nevertheless,
a more complete review can be found in, e.g., Ref. [3].

C. Mitigation of Fiber Propagation Effects

Eq. (4) is a multi-domain differential equation that does not
have a closed-form solution. A possible way to solve it is to
apply the “Split-step Fourier method” (SSFM). This method
assumes that the linear (ﬁ) and Kerr nonlinear (N ) effects
can be separated and solved independently when a propagation
step-size small enough is considered, alternating between them
along the optical fiber. A more detailed description of this
approach can be found in Refs. [24], [25]. The absence of
an analytical solution for the Manakov equations makes the
perfect compensation of transmission effects very difficult.
Additionally, and as an example, the loss of the phase in-
formation severally limits the compensation of transmission
effects in direct-detection-based receivers (RXs). However,
thanks to coherent detection, the amplitude and phase of the
transmitted signal can be simultaneously detected at the RX
input, which enables applying enhanced DSP algorithms to at
least partially compensate for transmission effects. Indeed, the
linear effects, such as GVD and polarization mode dispersion
(PMD), can be fully compensated for in the electronic domain
by using a frequency domain equalizer in conjunction with
a multiple-input multiple-output (MIMO) equalizer. On the
other hand, the compensation of the Kerr nonlinear effects that
induce a self- and cross-phase modulation (SPM and XPM,
respectively) on the transmitted signal is much more difficult.

The full compensation of the Kerr effect is troublesome
as the equalizer would require complete knowledge of the
propagation channel itself (for the SPM compensation), of
the neighboring channels (for the XPM compensation), and of
the amplified spontaneous emission (ASE) noise (intertwining
with both SPM and XPM). Nevertheless, several methods
have been proposed to digitally mitigate nonlinearities. Among
them, the most relevant ones that are worth to be explic-
itly mentioned and described are: 1) maximum likelihood
sequence estimation (MLSE); 2) Volterra-series based equal-
izers; 3) DBP; 4) NN-based techniques (we provide some
respective references below).

MLSE is the optimal method as long as there is no limitation
on the number of states of the trellis code, as shown by [26] for
coherent- and by [27] for direct-detection systems. However,
complying with this limitation means that it may become
too complex and its potential commercial application ended
with 10 Gb/s systems [28], where it has been mainly used to
compensate for GVD. At current high symbol rates, it seems
unrealistic to implement a sufficiently low-power-consumption
MLSE equalizer.

Volterra equalizers were proposed in the *70s for satellite
communications [29], and provide a nonlinear version of
the widely used finite impulse response (FIR) filters. They
are based on the mathematical technique developed by Vito
Volterra, which is an extension of Taylor’s series but for a
general function. Volterra equalizers can result in significant
improvements in transmission quality [30], [31] but, like in
the case of MLSE, their complexity is too high for realistic
implementation.
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DBP? gained momentum about a decade ago when the
article by Ip and Kahn [32] was published. The main idea
behind DBP is to extend the MIMO equalizer by adding a
nonlinear part, so that DBP would invert the nonlinear and
linear parts of Eq. 4 by applying the SSFM and solving the
propagation equation (4) backward at the RX. However, DBP
is effective only when combined with coherent detection and
is deemed as being relatively complex for realistic implemen-
tation. Several methods have been proposed to simplify the
DBP concept [33]-[35], but its complexity is still considered
to be high.

NNs are intrinsically nonlinear and, therefore, match well
with the type of effects we want to mitigate. Moreover, NNs
can still be employed even in the absence of link information
or in cases where the system configuration has changed as
they obtain the required information directly from the received
signal. However, NNs can be quite complex, often even more
complex than DBP [7], [36]. As this limitation is the most
relevant blocking point for the implementation of ASICs, this
work specifically addresses this paramount issue, covering
several hardware simplification techniques.

III. Low COMPLEXITY NEURAL NETWORK DESIGN

As described in [7], the bidirectional LSTM equalizer in a
configuration of many-to-one (1D regression task), i.e., when
a window of symbols is used to recover just the central
one, leads to a computational complexity in terms of real
multiplication per recovered symbol (RMpS) given by:

ChiLstm = 2n (4npn; + 4nj, + 3ny, +nony, ),

— =~ —~~ )

a b c d

where ng is the size of the input sequence in the time-
domain, n; is the number of input features, n, is the output
dimension (which is equal to 2 - the real and imaginary parts
of the symbol), and nj is the number of hidden units in the
LSTM cell. In Eq. (5), the addend a is attributed to matrix
multiplication of input and weights; b to matrix multiplication
of hidden states and weights; ¢ to pointwise multiplications
occurring internally within the LSTM cell; and d to matrix
multiplication of hidden states and output weights®. During
this investigation of computational complexity reduction, we
found that simply applying compression techniques would
not be enough to reduce the complexity beyond DBP level,
because such compression strategies reduce the multiplications
between input and weights, as in a, b, and d, but do not impact
internal multiplications as in c. As a result, the multiplication
nsny would become the bottleneck to achieving a reduction of
complexity. To mitigate this effect, we can follow two different
strategies. As suggested in [11], we can utilize basic vanilla
recurrent neural networks (RNNs) in our equalizers insofar
as they lack an intrinsic point-wise multiplier and, therefore,
do not suffer from this issue. The second possibility, again
indicated in Ref. [11], is to recover several symbols at a time

Not to be confused with the backpropagation through the NN layers used
for the training of NNs.

3Here, we consider that a flatten layer was applied to achieve a many-to-one
configuration. Instead, if the output comes from just one cell, the complexity
of the term d instead of 2nsnenyp, would read as: 2npno

rather than just the central one, which allows for eliminating
some of the n, multiplications.

Firstly, we tried using the vanilla RNN and optimizing
it using the BO. However, while comparable performance
was shown in Ref. [11] when using the LSTM and vanilla
RNNs, we observed quite different performances when using
these NNs (with both tuned using the BO). Indeed, and using
the standard DBP as the reference comparison scenario, as
is typically done in the literature, the vanilla RNN barely
outperformed the 1 STpS DBP, while the LSTM-based ar-
chitecture showed better performance than a 3 STpS DBP.
In this case, the BO showed substantially low (= 5.107°)
learning rates in the vanilla RNN scenario, in an attempt to
reduce the impact of exploding gradients (that such layers are
known to have). Consequently, the training process got stuck
in the local minima of the loss function landscape, which
limited the optical performance improvement attainable by the
equalizer. The LSTM cell, an enriched variant of the vanilla
RNN cell with several gating units that help propagate the
gradient and govern the flow of information through the NN,
solves this gradient problem. However, at the cost of additional
complexity.
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Fig. 1: Schematic of the biILSTM+CNN equalizer: the input

consists of M real (I) and imaginary (Q) parts of the symbols.
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The better performing LSTM equalizer is considered hence-
forth. However, we have enhanced it by recovering multiple
symbols with the same NN structure instead, as proposed in
Ref. [11]. To recover multiple symbols, we need to consider
that, since chromatic dispersion plays an important role in
fiber perturbation, if the NN equalizer processes a window
of M symbols as input, we will be able to recover M —
symbols only, where M is the number of input symbols and
z depends on the system memory length. Since the initial and
final symbols of the window will lack important information
from their neighbors (due to dispersion-induced memory), they
may not be recovered properly. The simplest way to reduce
the dimensionality of the time window tensor without losing
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Fig. 2: Illustration of the weight distribution of the recurrent kernel in the LSTM layer of our NN equalizer from the different
phases of the NN design in this paper. (a) Original trained NN; (b) The pruning phase; (c) The weight clustering phase; (d)
The quantization phase.

information is by using a 1D convolutional layer. For this
purpose, we use a 1D-CNN with kernel size ny, the padding
set to zero, the dilation and stride to 1, and just two filters
to represent the real and imaginary parts of each symbol.
In this case, the number of recovered symbols (the recovery
window) is M — n; + 1. We have used the BO to estimate
the appropriate values for M, ny, ng, learning rate, and mini-
batch size, limiting the number of hidden units to at most
150 for complexity constraint reasons. The equalizer scheme
is shown in Fig. 1.

The computational complexity of the bidirectional LSTM
+ 1D-CNN equalizer, in terms of RMpS, can be represented
using the formulae in Ref. [7], but this time taking into
consideration the parallel recovery of ns — nk + 1 symbols
as:

2ngnp (4n; + 4ny, + 3) 6
ng —ng + 1 ©)
The analysis of Eq. (6) shows that the number of multiplica-
tions has decreased when compared to that of the initial bil.-
STM equalizer, but compression techniques are still required to
further reduce the number of multiplications to a level at least
below 1 STpS DBP without affecting the resulting model’s

performance.

RMpSyy = + 2npnony,

IV. OVERVIEW OF DEEP COMPRESSION TECHNIQUES

Generally, the subject of deep NNs compression is vast [37],
[38], and new compression methods emerge almost continu-
ously. This section presents some chosen compression strate-
gies that can be efficiently used to overcome the constraints
limiting the real-time deployment of NNs. The strategies to
reduce the high processing resources as well as to cut down
on energy consumption will also be discussed. According
to Ref. [39], [40], the compression can often be accom-
plished with little loss of accuracy and, in some situations,
the accuracy may even rise [41]. Three methods of network
compression are discussed below: pruning, weight clustering,
and quantization. Fig. 2 illustrates how the weight distribution
of the NN changes after applying each of these compression
techniques.

A. Pruning

Pruning is the process of removing parameters, neurons, or
even layers or parts of a NN that do not significantly impact its

performance to reduce its computational complexity. The area
of NN pruning is wide and encompasses several subcategories:
(a) static or dynamic; (b) one-shot or iterative; (c) structured
or unstructured; (d) magnitude-based or information-based;
(e) global or layer-wise. Detailed information on the different
types of pruning can be found in, e.g., Refs. [39], [42]-[46].
In our work, we prune the lowest magnitude weights globally
throughout the NN [42]. This low complexity, traditional
unstructured global magnitude pruning has already proven to
be quite effective [40], [42], [47]-[49]. To be more specific,
we consider a static, iterative, unstructured, global magnitude-
based pruning. In this case, we remove weights offline from the
network after training and before inference. Moreover, iterative
pruning allows us to prune more weights while preserving
accuracy.

The four (most promising) strategies for the iterative-
pruning retraining process that are applied in our study are
schematically depicted in Fig. 3. The four approaches are
referred to as fine-tuning, weight rewinding, learning rate
rewinding, and Bayesian optimizer assisted.

1) Fine-Tuning approach: This method prunes the model
once it has been trained. In a second step, it trains the weights
that remain after pruning using a constant learning rate; the
latter is usually the same as the final learning rate of the
original training procedure. The first panel of Fig. 3 shows
how the fine-tuning scheme is implemented. After determining
the fine-tuning period, we use the traditional gradual pruning
method (a polynomial decay) [S0]. The pruning polynomial
decay approach quickly prunes the network at the beginning
when there are many redundant connections, and gradually
reduces the number of weights pruned each time. This proce-
dure results in a smooth loss function during the fine-tuning
period, which is beneficial for the learning process to maintain
an accuracy close to the original NN model.

This approach can be used when employing the other
“deterministic” methods for the equalization of optical fiber
nonlinearities. For example, this pruning technique can be used
(in a simpler way) to eliminate the less relevant coefficients of
the Volterra equalizers [51]-[53] and to trim the unimportant
triplets (making the triplet feature vector more sparse). It can
be used also when employing perturbation approaches [54]—
[56]. Several papers investigated the use of fine-tuning, mainly
in short-reach intensity-modulated systems [57]-[62], to re-
duce the complexity of the model. So far, the analysis of
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Fig. 3: A schematic of the fine-tuning, weight rewinding, learning rate rewinding, and Bayesian optimizer-assisted pruning
strategies is shown. A qualitative representation of the evaluation loss over the training time process is shown on the right-hand
side. H), is the set of hyperparameters suggested by the BO for the pruning phase.

pruning in optical channel equalization has been restricted to
the case of the feed-forward NN models only. In our work,
we will also present such an analysis for a recurrent equalizer
and deal with the case of coherent optical transmission.

2) Weight rewinding approach: This method was intro-
duced in Ref. [47] dealing with the lottery ticket hypothesis.
The main idea supporting it is that a dense NN with random
initialization contains a subnetwork that, when trained in
isolation, can match the test precision of the original network
after training. This approach is separated into three parts, as
shown in the second line of Fig. 3. First, during the initial
training process, the weights of each epoch are saved. Then, at
the end of the initial training, a percentage of the connections
are pruned and the remaining weights and the learning rate are
reset to their prior values (that we had at the k-th epoch of
the initial training); the choice of the particular epoch number
k, used in our work, is explained below. Subsequently, the
retraining restarts from the k-th epoch and goes up to the
last epoch, followed by a fresh round of pruning using the
remaining weights. The cycle of resetting weights and learning
rates is repeated until a specific degree of sparsity is achieved.
In this approach, the loss function oscillates over the pruning
time since the loss increases every time the weights are reset,
but the process tends to converge to the reference before
pruning.

In the context of channel equalization, to the best of our
knowledge, the first and only paper that applied this method

is the recent work by Koike-Akino et al. [63], where such
a technique has been tested in the feedforward model called
ResMLP. It was shown that this approach can give a sparsity of
99% compared to the initial overparameterized solution with
6 layers and more than 10° parameters. In this work, and
similarly to Ref. [63], we use rewinding of the first epoch,
meaning that £ = 1.

3) Learning rate rewinding approach: This method was in-
troduced in [49] and combines fine-tuning with weight rewind-
ing. The third panel of Fig. 3 shows how this method operates.
While the weight rewinding, described above, rewinds both
the weights and the learning rate, the learning rate rewinding
simply rewinds the learning rate, leaving the weights to be re-
trained after pruning from their values at the end of the initial
training phase (like in the fine-tuning approach described
above). In a nutshell, after initial training, a percentage of
connections are pruned and re-trained while just the learning
rate schedule is rewinded. This cycle is repeated until the
network sparsity is at the desired level. To the best of our
knowledge, this approach has not yet been evaluated in the
optical equalization task.

4) Bayesian optimizer assisted approach: The two previous
approaches were proposed because just fine-tuning the initial
hyperparameters of the NN does not guarantee that the perfor-
mance of the equalizer remains similar. A possible explanation
for this effect is that, once the pruning of the NN starts,
the optimization problem’s target changes. Consequently, the
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hyperparameters of the new architecture may also need to
be adjusted. Indeed, and as stated in Ref. [64], we may
lose performance if the hyperparameters are set to a default
value when fine-tuning the NN’s weights after compression.
Solutions as in [65] leverage reinforcement learning to provide
the model compression policy, determining layer-wise pruning
rates. Alternatively, we use the BO-based approach to not only
define the pruning policy, but also other important hyperpa-
rameters of the model (the number of tuning epochs, learning
rate, batch size, and initial/final sparsity) thus optimizing the
trade-off between performance and computational complexity.
We note that this is a completely new approach that has not
been tested in any other applications.

Let us briefly specify the BO approach* that seeks the
global optimum x* of a black-box function opt, where opt(x)
can be evaluated for any arbitrary x € X'. That is, z* =
arg minge v opt(z), where X' is a hyperparameter space that
can contain categorical, discrete, and continuous variables
[66]. For solving the problem formulated above, the BO
assumes that the function opt was sampled from a Gaussian
process. The BO maintains a posterior distribution for this
function when observations are made [67]. The observations,
for our application, are the outcomes of our performing the
NN-based equalization trials with different hyperparameters.
To choose the hyperparameters for the next trial, in this work
we have optimized the expected improvement over the current
best result, see more in Ref. [68].

In our case, the optimization process involves the following
procedure. After the initial training phase, the NN model
with hyperparameters H; € X, has a total computational
complexity (say, expressed in terms of real multiplications)
C;, and a certain performance P; (the P; is evaluated using
a testing dataset). Then, we use the BO to minimize the
following objective function:

(Pi*P;D)%v P >PP
K3
opt = - C;
Cy’
where P, and (), are the performance and computational
complexity observed when using a set of hyperparameters
H, € X in the pruning and fine-tuning process, respectively.
The two possible scenarios that may occur when pruning is
applied are covered by Eq. (7): i) the first one corresponds to
the usual case where P; is better than the pruned performance
P,. In such a situation, the goal of minimizing opt is equiv-
alent to minimizing the P; — P, gap and, at the same time,
reducing the number of multiplications C), when compared
to the initial ones, C;. ii) the second case takes place when
the pruned NN improves the performance, P, > F;. This
case occurs when pruning enables escaping a local minimum
thus improving the NN performance. The focus is then to
reduce the computational complexity. According to Eq. (7),
this means that the reduction of opt can only be achieved

; (7
if P, > P,

4The hyperparameter optimization can be done using methods other than
the BO, although, as mentioned in Ref. [66], [67], the hyperparameter opti-
mization strategy, the BO offers numerous advantages over search algorithms
in terms of finding good candidates with fewer interactions.

by reducing C), (since C; is constant). To the best of our
knowledge, this procedure is a new approach (even in the
ML science): it aims at identifying the best balance between
the model’s performance and computational complexity, by
selecting a good candidate for the parameters set H),.

B. Weights clustering

The weights clustering also referred to as the weight-sharing
compression approach, is another method that can be explored
to reduce the NN model’s complexity by reducing the number
of effective weights used by the model. This approach takes
into account that several connections may share the same
weight value, and then fine-tunes those shared weights. In
the case of feedforward structures, this strategy was already
successfully employed to minimize the complexity of NN
models [46], [69]-[71]. In this paper, we use the same method
as in [46], but modify it for the recurrent layers as well.
Following the selection of a centroids initialization technique,
[46], a minimal distance from each weight to such centroids
is used to determine the shared weights for each layer of a
trained network so that all weights in the same cluster share
the same weight value. The weights are not shared between
the layers to prevent further performance loss and because
sharing weights between sequential layers does not lower
computing complexity. Fig. 4 illustrates how this strategy is

NN pre-Trained
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Fig. 4: Scheme of weight clustering over dense layers using

the BO of its design. Once the NN weights are trained, a

selection of weights per layer is forced to be in the closest
centroid learned using stochastic gradient descent.

applied jointly with the BO. To apply the weight clustering, we
need to define three parameters: i) the number of clusters, ii)
the centroids initialization technique, and iii) the weights fine-
tuning process. The BO is used to select these parameters so
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that the performance degradation is minimized. The objective
function depicted in Eq. (7) was also used for the BO. Four
possible centroid initializers to choose from were provided to
the BO: linear-, random-, density-, and K-means-based. Using
the weight clustering approach has the advantage of reducing
the number of distinct multipliers in matrix multiplication to
at least the number of clusters per input element. Then, the
results of the multipliers are sent to the different adders. To
illustrate the weights clustering operation, consider the first
matrix in Fig. 4. Suppose that the input vector I, the output
vector O, and the weight matrix W before clustering are
linked as follows (to explain the method, we explicitly use
4-dimensional vectors and respective matrices):

w11 wWi2 Wiz Wig

W21 W22 W23 W24 . . . .
O=W xI= 11 12 13 4] -

W31 Wsz2 W33z W34

W41 W42 W43 Wy

®)
In Fig. 4, we cluster this matrix with 3 centroids, ¢, co, and
cs, so the new equation connecting input and output, becomes:

01 Ci1 €3 C2
02 Ca C3 C1 C2 .
= iy iy 43 4 &)
03 C3 C2 €3
04 C2 C3 C1 C2

This result shows that, in the worst case scenario, the new
number of multiplications would decrease from 16 (input size
X output size = 4x4) to (input size x number of clusters
= 4x3), because in this case we can carry out all possible
unique multiplications (¢1¢1, ¢1¢2, ... ,i4c3), and the rest of
the operations are additions. However, by properly designing
such a matrix multiplication, the number of multiplications
can even be further reduced. In the same example, we may
define the output O as follows:

01 1101 + (ig + i4)02 + 23¢3
09 _ .(i1 +22+Z4)63 +’L.3'62 (10)
03 i1¢o + (i2 +14)c1 +izc3
04 (il + ig)cl -+ (ig + i4)02

Notice that the number of multiplications is reduced to 8
unique multiplications in Eg. (10), which is half of its original
value (the number of additions remains the same). It is
important to note that the benefit resulting from using this
technique depends on the lengths of the input vector and the
weight matrix, as well as on how the learned weight pattern is
spread over the weight matrix. In addition, weight clustering
is also used as a form of heterogeneous quantization. In this
sense, when assuming a quantization of, for instance, 3 bits,
the weight clustering approach will try to identify the 8 unique
weights that can best describe the original weight distribution
of the NN model. In this case, this type of nonuniform quan-
tization is implemented by maintaining a codebook structure
that stores the shared weights, and the weights are grouped
by index after calculating the gradient of each layer [46],
[72]. Importantly, in our current problem, the weight clustering

contributes the most to the NN-based equalizer complexity
reduction. Moreover, we note that clustering has never been
used in the NN-based optical channel equalization.

Finally, it is worth clarifying how the learning process
occurs, when backpropagation is used to update the clusters
of centroids and the original weights. The TensorFlow imple-
mentation used in this paper works with a lookup table to hold
the centroid values during the model training, as described
in Ref. [73]. The weights array is populated with a “gather”
operation so that, during the backpropagation, the gradients
can be calculated in the usual way. The lookup table is then
adjusted using the cumulative gradient values for the weights
that correspond to the same centroid. The original weights are
also updated by using a straight-through estimator to overwrite
the non-differential structure of clustering with an identity
function, which allows all upstream gradients to be used in
the updated original non-clustered weights of the layer [73],
[74].

C. Quantization

Quantization is used to lower the bitwidth of the num-
bers participating in arithmetic operations along the signal
processing, which typically helps to significantly reduce the
computation complexity of the processing. This means that
a quantized model can use, for example, integers, instead of
floating-point numbers for some or all operations. Therefore,
quantization allows representing the model using less memory
and doing high-performance vectorized operations on a variety
of hardware platforms [75].

Quantization has demonstrated excellent and consistent
results when used during the training and inference using
different NN models [39], [75]-[77]. Particularly, it is es-
pecially effective during inference because it saves comput-
ing resources without significantly decreasing accuracy. NNs
benefit from quantization because NNs are remarkably robust
to aggressive quantization and extreme discretization. This
robustness emerges from the large number of parameters
involved in the NN, meaning that they are typically working
with over-parameterized models. In this subsection, we present
the categories of quantizations addressed in this work, in terms
of their mode (post-training quantization [78] or quantization-
aware training [79]) and quantization approach (homogeneous
[80] or heterogeneous [81]).

1) Homogeneous or Heterogeneous Quantization: Homo-
geneous is the most common quantization approach. The
homogeneous quantization consists of reducing the precision
of all NN weights to the same number of bits. In this case,
we use the same type of quantization and number of bits
across the entire NN model. However, because the layered
structure of multilayered NN models offers high quantization
flexibility, it is natural to assume that different layers may
impact the loss function differently, which favors a mixed-
precision quantization approach. The process of quantizing
the layers differently across the NN is known as heterogeneous
quantization, and it can be a critical step toward improving the
complexity-performance trade-off. In this case, we quantize
distinct layers with varying bitwidths into their fixed-point
representation, as in Ref. [81].
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Fig. 5: Schematic of the NN quantizer. BO can help with

the post-training quantization by finding the best bitwidth

precision per layer and with the quantization-aware training

by finding the best hyperparameters for the fine-tuning training
after quantization.

There are several different types of quantization that may be
used. In this work we focus on the uniform quantization [82],
the power of two quantization (PoT) [83], and the additive
power of two quantization (APoT) [84], since they have a wide
range of applications and usually deliver quite good results.
Regarding those types of quantization, they usually convert the
floating-point representation to a fixed-point representation,
thus using integer mathematics instead of a floating-point
one. This approach reduces both the memory and computing
requirements for the realization of a particular solution.

Uniform quantization is the most common and simplest
quantization approach. The uniform quantization applied to
the NN elements can be expressed as [82]:

1 2BW—1
Lunl(BW) == —170,:&23T7...7iw 5 (12)

2BW—1_1 amplitudes

where Q(...)... is the quantization operator, x is a real-valued
input (it can be weights or an activation function), BW is
the quantized bitwidth value, R(x,aL,y,;) is the function
that rounds x to the nearest element on the list L,,; that
contains all quantization levels, and « is a scaling level that
guarantees that the largest weight in the NN will not be
clipped. The quantization error is introduced by the rounding
functions, depending on the BW precision. Note that, in this
paper, we use a representation format that besides the “-1”
and “’0 values involves 28" ~! — 1 additional amplitudes,
defining a total of 28" — 2 positive or negative levels. The
int8 quantization (BW = 8) is one of the most widely
used uniform quantization schemes, not only for the ML
frameworks such as TensorFlow and PyTorch, but also for
the hardware toolchains such as NVIDIA TensorRT [85] and

Xilinx DNNDK [86]. The int8 quantization has the advantage
of typically not leading to relevant performance degradation
(as can be observed from our results as well - see Fig. 14). In
this work, we will not restrict ourselves to int8 quantization
only, but, in contrast, will also use the BO to determine the
best number of bits for the quantization process.

The PoT quantization is a logarithmic quantizer [87] de-
signed to approximate the weights to the closest power of two
in the range defined by the considered number of bits. Math-
ematically, we can represent the PoT quantization considering
2BW elements as [84], [87], [88]:

Q(x)BW = R(:C,aLpot(BW)), (13)
1 1
LPot(BW) - —170,157...,im (14)

2BW—=1_1 amplitudes

The POT quantization leads to much smaller computational
complexity when compared to the uniform quantization be-
cause all multiplications can be represented in terms of bit-
shift operations (since we have power-of-two values only).
However, as pointed out in several works [83], [84], [87],
[89], the performance of the PoT-quantized system can degrade
compared to the uniform quantized one due to this scheme’s
rigid resolution problem.

The APoT quantization was recently proposed to encompass
the benefits of PoT and uniform quantization types. As stated
in the original paper [84], the PoT and uniform quantizations
are special cases of APoT with specific design parameters.
The goal of APoT is to have fewer shift-adds than the uniform
quantization, but at the same time to take the advantage of its
non-uniform quantization levels as the PoT does. Mathemati-
cally, we can represent the APoT quantization [84] considering
2BW Jevels as:

Qsw (z) = R(z, aLapu(BW)), (15)
n—1
LAPOt(BW) = [_17 {sz}] ) (16)
=0
+ ! + 1 + ! 1
pi € |0 omg t o SR 2yenrir] | a7

2K —1 amplitudes

where n is the number of additive terms, k£ is defined as
k= (BW —1)/n, and {...} is the set containing all possible
combinations of n additions from the 2% different elements in
the list p;°. In this description, by setting n = 1 we have the
PoT case, whereas setting k = 1 leads to the uniform case®. In
this work, we have considered n fixed and equal to 2, 3, or 4.
We have also addressed the case from the original paper [84],
where k was fixed equal to 2. Importantly, we will show the

5To explain the notations better, consider the case where n = 2 and k = 3,
such that we have two sets, po = {p}, p3, p3}, and p1 = {pi,p?,p3}.
Then, {3, _opi} = {ps +p1, pb+p3, pb+pi, PE+pl. -, P3+p5).

SEqgs. (12), (14), (16) are valid forb,, > 1; when b,, = 1, we have the
same set of values, 1 or 0, independently of the type of quantization.
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drawback of using the APoT quantization with £ = 2 when
the model has already been pruned.

2) Post-Training Quantization: The post-training quantiza-
tion (PTQ) [75], [78], [82], [90] is a conversion technique in
which all trained weights and activations of the NN model are
converted to some fixed point representation, following some
quantization precision established after the training phase.
As indicated in Fig. 5, blue box, a quantization approach
is applied after training the neural network weights, and the
quantized weights are saved for future use. As a result, the
PTQ is an extremely fast method of quantizing NN models.
Moreover, we found that, when using the PTQ, a quick grid
search was already enough to analyze all possibilities and to
get a satisfactory result. Thus, we decided not to use the BO to
determine the optimal precision (bitwidth per layer). However,
this approach usually leads to a small degradation of the
model’s performance, independent of the selected quantization
approach.

3) Quantization Aware Training: As stated previously, the
inference performance of the quantized integer models is
generally worse than the one of the floating-point models due
to the information loss induced by quantization. To address
this limitation, a method known as quantization-aware training
(QAT) [75], [91], [92] was proposed. QAT accounts for the
loss of information during the training phase, resulting in
a smaller performance degradation during inference. In this
work, we use the QAT approach proposed in Ref. [93],
where the quantized weight levels are optimized. Afterward,
the quantization is reversed, but the final forward-propagated
values also include the errors aggregated by the weight quan-
tization scheme.

The implementation of the QAT is illustrated in the green
box in Fig. 5. In the QAT case, the fine-tuning block operates
as follows: 1) it receives the weights quantized via the chosen
quantization strategy; 2) then, it performs the forward propaga-
tion; 3) afterward, it converts all variables to float precision; 4)
finally, it does the backpropagation. This cycle is repeated until
the weights are definitively quantized. The inference giving the
quantized structure performance is then completed.

For practical reasons, the QAT scheme for learning depicted
in Fig. 6 is similar to the one used with weight clustering. In
the case of weight clustering, the quantizer box is an identity
since the cluster centroids are the alphabet that the NN is
training to learn (a nonuniform quantizer), and both centroids
and weights are updated in the training process. We can
instead force the centroids to be fixed into a defined alphabet
(e.g. uniform, Eq. (12); POT, Eq. (14); APOT, Eq. (16), and
update the weights only (the centroids will fall into one of
the possibilities in the quantization alphabet). For the forward
propagation, all weights in the NN, W, are quantized to the
nearest element of the quantized alphabet c,, resulting in the
quantized weights W that will be used to compute the loss
function. However, in the backpropagation stage, we compute
the gradients using the floating-point values (WW). This is
possible because the backpropagation engine is forced to
“ignore” the quantization step used in the forward propagation.

81/;6 = 1. As stated

The latter is done by assuming that

in [88], this process is known as a Straight-Through Estimator,
and it results in a smoother transition between consecutive
quantization levels in the learning process.
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Fig. 6: Quantization-aware training scheme for forward and
backpropagation. The forward propagation uses the quantized
alphabet ¢, to generate the quantized weights W, and, in the
backpropagation, such a weight is “skipped” by imposing its
gradient to be one (straight-through estimator, Ref. [88]).

Finally, BO was used to fine-tune, i.e., find the best hyperpa-
rameters, in the QAT. Note that, differently from the other two
compression approaches where the computational complexity
C is measured in terms of the number of real multiplications,
it is now measured in terms of the number of bit operations.

4) Quantization Applications in Optical Channel Equal-
ization: the Current State of the Art: Several quantization
strategies have already been proposed to equalize optical
channels. Regarding the post-training quantization, the authors
of Ref. [94] implemented an MLP-based equalizer with two
hidden layers in an FPGA (XCZU9EG FFVC900) using post-
training quantization with traditional uniform int8 precision;
the quantized equalizer was tested in an experimental setup of
a 50Gb/s PON with a 30 km SSMF link. Next, this time using
a recurrent NN-based equalizer, Ref. [95] tested the equalizer
in a PAM4-based 100-Gbps PON signal transmission over a
20 km SSMF fiber testbed and applied post-training quantiza-
tion changing the bitwidth of the weights from 8 to 2 bits, to
evaluate the BER degradation resulting from the quantization.
Also, the authors of Ref. [95] implemented such an equalizer
in an FPGA using the Xilinx Vivado toolset for high synthesis.
The authors of Ref. [96] focused on coherent transmission. In
this case, a complex-valued dimension-reduced triplet input
neural network was proposed and experimentally tested with
a 16-QAM 80 Gbps single polarization signal transmitted
along 1800 km of SSMF (100 km SSMF loop). In this
study, to validate the robustness of such a NN equalizer on
the quantization, they reduced the bit precision of weights
to up to 2 bits, observing mostly only minor performance
degradation. Finally, in [41], an MLP equalizer was used to
mitigate the impairments in a 30 GBd 1000 km system. In this
case, the PTQ strategy together with the traditional uniform
8 bits quantization was demonstrated using low-performing
hardware (Raspberry Pi and Jetson nano).

Regarding the QAT strategies description, an important
discussion on the quantization of NN weights was held
in Ref. [97] where it was emphasized that the equalizer
inference should be performed by a fixed-point system to
address a more hardware-friendly situation. An MLP-based
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equalizer was used, and its weights were quantized with
a PoT quantization strategy. The authors incorporated the
quantization error in the training of the equalizer by using
the Learning-Compression (LC) algorithm, which is a possible
QAT strategy. The authors of Ref. [98] used a deep CNN
equalizer to assess their proposed quantization strategy, which
combines QAT and post-equalization to find the most appro-
priate number of bits for uniform quantization. Considering a
theoretical dispersive channel with AWGN noise and ISI, the
CNN equalizer achieved performance comparable to the one of
the full-precision model when using only 5-bit weights. More
recently, the paper [63] demonstrated that the APoT strategy
could provide much higher resilience to quantization than the
ordinary PoT. In this case, a ResMLP equalizer was tested
( using simulation results) considering the transmission of
a dual-polarization 64/256QAM, 34 GBd 11Ch-WDM signal
over 22 spans of 80 km of SSMF.

V. ASSESSMENT OF PERFORMANCE OF NEURAL
NETWORK BASED EQUALIZERS

A. Experimental and Numerical Setups

The performance of the NN-based equalizers with reduced
complexity is assessed using data not only from numerical
simulations but also from a real experimental setup to make
the analysis as complete as possible. The setup used in our
experiment is depicted in Fig. 7. At the transmitter side, a dual-
polarized probabilistic shaped 64QAM (8bits/4D symbol)’
34.4 Gbaud symbol sequence was mapped out of data bits
generated by a Marsenner twister generator [99]. Then, a
digital root-raised cosine (RRC )filter with a roll-off factor
0.1 was applied to limit the channel bandwidth to 37.5 GHz.
The resulting filtered digital samples were resampled and
uploaded to a digital-to-analog converter (DAC) operating at
88 GSamples/s. The DAC outputs were amplified by a four-
channel electrical amplifier that drove a dual-polarization in-
phase/quadrature Mach—Zehnder modulator, modulating the
continuous waveform carrier produced by an external cavity
laser at A = 1.55pum. The resulting optical signal was
transmitted along 9x110 km spans of SSMF with lumped
(EDFA) amplification. The EDFA noise figure was in the 4.5
to 5 dB range. The SSMF is characterized atA = 1.55 um
by an attenuation coefficient o = 0.21 dB/km, a dispersion
coefficient D = 16.8 ps/(nm-km), and an effective nonlinear
coefficient v = 1.14 (W- km)~!.

At the Rx side, the optical signal was converted to the
electrical domain using an integrated coherent RX. The re-
sulting signal was sampled at 50 Gsamples/s with a digital
sampling oscilloscope and processed by an offline DSP based
on the algorithms described in [100]. First, the bulk accumu-
lated dispersion was compensated using a frequency domain
equalizer, which was followed by the mitigation of the carrier
frequency offset. A constant-amplitude zero autocorrelation-
based training sequence was then located in the received frame
and the equalizer transfer function was estimated from it.
Afterward, the two polarizations were demultiplexed and the

7We address in the experiment the PS case to show that the equalizer works
in a variety of different scenarios.

o
Random Driver
Bitstream Amp.
H
= — X
@ I
&
Symbols g
v
QoT
Estimation
A
E E E E =
P g o
2 @
: 8
& [a)
— CDC <—JADC
DSP < ADC
+
'—{ CDC+NN Rx B ADC ICR
DBP < ADC

Fig. 7: Experimental setup. The input of the NN (shown as the
red rectangle after DSP RX) is the soft output of the regular
DSP before the decision unit.

signal was corrected for clock frequency and phase offsets.
The carrier phase estimation was then done with the help of
pilot symbols. Subsequently, the resulting soft symbols were
used as input for the NN equalizer. Finally, the pre-FEC BER
was evaluated from the signal at the NN output.

The experimental transmission setup was mimicked by
simulation. In this case, the transmission of a DP-64QAM,
single-channel (SC) 34.4 Gbaud signal pre-shaped by an RRC
filter with 0.1 roll-off, with an upsampling rate of 8 samples
per symbol (275.2 GSamples/s) over the same fiber link is
assumed. We have also tested an additional simulated setup
consisting in the transmission of a DP-64QAM signal (but with
a symbol rate of 30 Gbaud) along 20 x 50 km SSMF spans.
The propagation of the optical signal along the optical fiber
was simulated by solving the Manakov equations (4) using the
split-step Fourier method (with a resolution of 1 km per step).
Each fiber span was followed by an EDFA with the noise
figure NF = 4.5 dB, which fully compensates for fiber losses
and adds amplified spontaneous emission noise. At the RX,
after the full electronic chromatic dispersion compensation
(CDC) by the frequency-domain equalizer and downsampling
of the signal to the symbol rate, the received symbols are
normalized to the transmitted ones. The performance of the
system was evaluated in terms of the Q-factor, defined as:
Q =20logyo [V2 erfc ' (2BER))].

Focusing now on the biLSTM + CNN NN implemented in
this work, the mean square error (MSE) loss estimator and
the classical Adam algorithm for the stochastic optimization
step [101] were used when training the weights and bias of the
NN. The training hyperparameters (mini-batch size and learn-
ing rate) and the NN design hyperparameters (output window,
hidden units of the LSTM, and kernel size of the 1D-CNN)
were found using the BO procedure described in [36]. An
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TABLE I: The best hyperparameters were found by the BO for the two transmission setups considered in this work. The same
NN configuration is employed for the numerical and experimental setups.

| Transmission Case Input Window | Output Window

Hidden Units

Kernel Size | Mini-Batch size | Learning Rate

20x50km SSMF link
221 171 100 51 3502 0.001
64QAM 30GBd
9x110km SSMF link
221 195 117 27 2153 0.0013
64QAM 34GBd

input window with 221 symbols was selected because it allows
recovering a large number of symbols simultaneously, thus
reducing the computational complexity. The BO optimization
cycle starts with the training of the NN via backpropagation
for 1000 epochs with a fixed set of hyperparameters. The
BER is evaluated after each training epoch. For training, we
used a fixed dataset with 220 data points (vector of symbols),
and, at every epoch, we picked 2'® random input data points
from this dataset. For testing, we used a never-seen-before
dataset with 2'® data points. Here we recap in more detail
the data generation for the training and testing phases. Our
multi-symbol equalizer, as described in Section III, takes M
symbols as input data point and recovers M, symbols as
output. This produces a level of parallelization of the solution,
which reduces the computational complexity per recovered
symbol. For training purposes, we need as much data as we
can produce to train our NN model. In this sense, each input
data point in the training dataset corresponds to the vector of
M symbols (I and Q for both X and Y pol) for every available
time k in the transmission, which at the end produces many
vectors with overlapped output symbols. In the testing phase,
the data was generated to simulate the real benefits of such
output parallelization. In this sense, for each input data point
created in time k, we will skip M, times before generating the
next point to ensure that all recovered symbols are unique and
BER can be calculated with distinct symbols, avoiding any
metric miscalculations. Fig. 8 summarizes the data creation
procedure in both the training and testing phases.

Training Phase Testing Phase

} Batch

T taps Input: (M-1)/2 taps
T taps Output: (M,-1)/2 taps

Fig. 8: Data flow generation for training and testing the NN-
based equalizer

Following the training phase, the best BER was fed to the
BO as an optimization target [36] (the optimizer assumes a
Gaussian conditional distribution of BERs). Using this input,
the optimizer updates the process model and generates a new

set of hyperparameters to be tested. After 20 Bayesian opti-
mizer cycles, we selected the set of hyperparameters leading
to the lowest BER. The BO grid space considered was: mini-
batch size [32 to 5000], learning rate [0.0001 to 0.002], hidden
units [1 to 150], and kernel size [1 to 200]. In this case, the
output window is directly defined by the input window and
the kernel size of the 1D-CNN. The BO was used to learn
the best hyperparameters for the two different transmission
setups considered in this paper. The results of the optimization
process are summarized in Table I. Here, we also emphasize
that the automated kernel acquired by the BO method can be
explained by the fact that shorter links are predicted to have
bigger nonlinear memory; hence, the BO discovered a larger
kernel memory for the 20timesS0km (ny = 51) link than for
the 9times110km link (ng = 27).

Finally, we would like to mention about the two benchmark
lines used in this paper. two benchmarks: (ii) one for the
complexity provided by the CDC and (ii) one for nonlinear
mitigation given by DBP, where we used the implementation
described in [33]. Our primary goal was to assess the complex-
ity of NN with respect to CDC, while guaranteeing a level of
nonlinear compensation comparable to the one of the widely
used DBP 8.

The CDC block was designed using a frequency domain
equalizer (FDE). FDE gets rid of dispersion by multiplying the
signal by the opposite of the transfer function for dispersion.
After the transmission, the amount of dispersion that has
built up is estimated, and based on that, the FDE changes its
parameters on the fly. In terms of computational complexity,
the CDC block corresponds to two linear steps of the DBP
method with 2 and 1 samples per symbol, respectively, and
its computational complexity in terms of the number of real
multiplications per transmitted symbol is [102]:

2N (loga N +1) N (logy N + 1)) (18)
(N—-Np,+1) (N—-Np, +1) ’

CCDE:4'(

where N is the FFT size and Np, = qrp/T, where 7p
corresponds to the dispersive channel impulse response and T’
is the symbol interval. Factor 4 in the expression corresponds
to the fact that one complex multiplication can be expressed
through four real ones.

The DBP used in this paper was also used in multiple
papers, as previously reported in Ref [33], [103], [104] .
In summary, this DBP is implemented using the symmetric

8The CDC benchmark is the most important because our primary goal is
to show the readiness of NN with respect to the already available algorithm
in commercial transponders. In contrast, none of the existing DBP versions
has reached the hardware level of implementation.
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split-step Fourier method. In this case, both the linear filter
parameters and the nonlinear operators are optimized to reduce
the equalized BER, and the nonlinear step was thought to
be completely static. Also, the DBP is implemented in the
frequency domain with oversampling factor equal to 2°, and
the FFT size is set to 256, which was not optimized any further.
In the case of a single channel, the computational complexity
of the DBP method in terms of the number of required real
multiplications per transmitted symbol can be estimated as
[102] :

(N—Np, +1)

N (logo N + 1
CpBp—1ch = 4NspNsipsp ((gQ)q + ) ,

(19)

where Ng), is the total number of spans, Ngsypsp is the num-

ber of propagation steps per span, and ¢ is the oversampling
factor.

B. Computational Complexity Evaluation Metrics

The accurate evaluation of computational complexity is
critical when designing a DSP (to assess the potential for
hardware implementation) [105]. Fig. 9 summarizes the four
most commonly used criteria for assessing computational
complexity, from the software to the hardware level.

Software Level

Number of Bit Operations
Number of Shift and Add Operations

Number of Hardware Logic Gates

# Hardware Level

Fig. 9: Computational complexity metrics diagram illustrating
the various levels of complexity measurement from software
to hardware.

We have introduced in [106] a general way of estimating the
computational complexity for different-type of NN layers. The
proposed metrics were the number of multiplications [105],
[107], the number of bit operations [71], [92], [108], the
number of shift and add operations [106] and the number of
hardware logic gates [109], [110]. A brief description of each
of these metrics is presented in Table. IL. In this subsection, we
focus on the expressions of computational complexity when
combining the biLSTM and 1D-CNN layers, and on how the

9All NN-based equalizers presented in this work operates with 1 samples
per symbol.

compression techniques impact the computational complexity
of NN equalizers.

Traditionally, the simplest estimation of complexity refers to
the number of real multiplications of the algorithm only. This
metric is also known as the number of real multiplications per
recovered symbol (RMpS) [7]. The RMpS corresponding to
the bidirectional LSTM + CNN equalizer is given by Eq. (6).
Since in this work we consider the unstructured pruning,
which prunes all layers in the same way, the number of
multiplications is:

2ngnp(4n; + 4ny,
RMpSyy = < " (_nk | ) + 2nhn0nk> (1—p)
6ngny
ng —np + 1’

(20)

where we assume that the achieved sparsity level is equal to
. The explanation for the variables entering Eq. (20) can
be found below Eq. (5). Note that the pruning coefficient
reflects the multiplications’ reduction only for the weight
multiplications. Since we are interested in the recurrent layers,
the number of pointwise multiplications that occur internally
in the recurrent cell is not affected by pruning. Aside from
pruning, we can also use weight clustering to reduce the
RMpS. As indicated in subsection IV-B, and also taking into
account the equations that describe the LSTM cell and the 1D-
CNN layer in Ref. [7], each LSTM cell depends on four input
kernel matrices, W%/, and four recurrent kernel matrices,
U?f:2¢. These four matrices for input and recurrent kernel are
usually treated as two matrices (say, W and U) with shapes
[, 4np] and [np, 4ny], respectively. Now, consider that in the
input matrix, W, we can identify some number of clusters,
¢;, and for the recurrent kernel matrix, U, we can identify
¢}, clusters. Therefore, the number of unique real multipliers
would be n; * ¢; for the multiplications involving the matrix
W, and np, * c;L for the multiplication with the matrix U 10,
Then, the contribution of unique multiplications to the overall
complexity of the LSTM, is:

CrLstm = Nis (nici + nhc;L + 3nh) , 21

For the complexity analysis, we also need to include the
contribution of the 1D-CNN layer. Since the 1D-CNN layer
receives the output of the biLSTM layer, the 1D-CNN layer
with kernel size n; and the number of filters n, will possess
a CNN kernel tensor with the shape [ng, 2nj, n,]. Suppose
that we have identified c;-’ clusters in each of n, the filter
and the biLSTM the output has the shape [ng, 2np]. Now
we can split the operation for the convolution of the biLSTM
output with a CNN filter as ¢/ multiplications between each
of the clustered kernel values to the sum of the selected input
elements which share the same clustered weight value. This
operation has to be repeated ns—ng-+1 times (the output shape
of the CNN layer) for one filter, and then for the total number
of operations we multiply this value by the number of filters

10Note that, once those multiplications are performed, a synthesis data-flow
/ routing algorithm [111] would be needed to distribute the result of such a
multiplier to the correct adders, but here we do not account for the complexity
of this design step.
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TABLE II: Overview of Main Metrics for Evaluating Computational Complexity in NN Models.

Metric Description

Usage

Number of Real Multiplications NN model.

Number of float point multiplications used in the

When comparing with reference solutions utilizing float point
operations, this metric is advised as an initial estimate.

Number of multiply-and-accumulate operations where

Number of Bit Operations

the number of multiplications is weighted with
the contribution of the quantization used by the input,
activation function and weights in the NN model.

This metric is recommended when the same quantization is employed,
but the bitwidth precision varies. These differences in bitwidth precision
need to be taken into consideration when comparing a solution’s
complexity and performance to a reference solution.

Number of fixed-point operations used in the NN

Number of Add and Shift Operations
bit shifters and adders.

model when multiplications are implemented with

This metric is recommended when different bitdwidth precision
and quantization strategies are used. For example, when the PoT
quantization is used and we want to show its complexity advantage
against the Uniform quantization. If different quantization strategies
are not used, the number of bit operations metric should be used.

Number of Hardware Logic Gates NN model in hardware.

Number of logic gates required to implement the

This metric is recommended when the size of hardware needs to
be assessed. It is highly dependent on the selected implementation
approach. As an example, it can be used to compare the size of
the NN model with other traditional blocks in ASIC.

n,. The remaining operations are just additions. Therefore,
we can eventually represent the 1D-CNN layer complexity
contribution as:

Conn = (ns —ni + 1) (nocf) . (22)
And now, the ultimate complexity for the biLSTM + CNN
equalizer with clustering and pruning, becomes:

forward backward
RMbS _ Cistm + Gl + Conn
p NNp+c —

ng —ng + 1 ’ 23)
We notice that the pruning simplifies the clustering method
since we have to group less weights. In summary, by doing
clustering first, we observed that the training was not that
efficient because the structural change was too abrupt, and
so the learning afterward was more complex. However, when
we prune first, the set of weights to be clustered and be fine-
tuned, drops to around 70% in its size, which, in our tests,
helped decrease the learning complexity of this new structure.
Also, when defining the number of clusters in each layer (c;,
cj,» and c7/), one of the clustered values is almost always zero.
Consequently, this cluster does not add multiplications, and
we have even lower computation complexity.

When comparing solutions that use floating-point arithmetic
with the same bitwidth precision, the RMpS is usually a
meaningful metric for comparative estimates. When moving to
fixed-point arithmetic, a second metric known as the number
of bit-operations (BOPs) should be adopted to understand the
impact of changing the bitwidth precision on the complexity''.
Because we can readily find the number of bit operations
required by the additions and multiplications, we can calculate
the BOPs associated with the NN inference process, expressed
in terms of multiply-and-accumulate operations (MACs) [71],
[92], [106], [108]. As described in Ref. [106], the BOP com-
plexity for the LSTM and 1D-CNN layers can be expressed
as:

""Two assumptions are made in the definition of the BoPs. First, we assume
that each parameter is only fetched once from an external memory; second,
the cost of fetching a b-bit parameter is assumed to be equal to b-BOPs [92],
[108]. Also, the bias is supposed to be quantized in the same way as the
weights.

BOPrstm = 4nsnhMult(ni, bw, bl)
+angnpMult(ny,, by, by)

24
+3n4n,b? 9
—|—9’I’Ls'flhACC(’l’Lh, bw7 ba)a
BOPcenn = OutputSize - nyMult(n;ng, by, b;) 25)

+nyAcc(ning, by, bi),

where, in the context of NNs, b,, is the number of bits used to
represent the weights of the NN, b; is the number of bits used
to represent the input, and b, is the number of bits used to
represent the NN’s activation functions. For the convenience
of further presentation, we have used short notations, Mult and
Acc:

Mult(ni, b, bl) = N;byb; + (ni—l)(bw—&-bi—k ]—logQ(nzﬂ),

and
Acc(ng, by, b)) = by + b; + [logs(n;)].

The Acc expression represents the actual bitwidth of the
accumulator'? required for MAC operations. Therefore, for our
NN-based equalizer (biLSTM+1D-CNN) with 4 input features,
2 output features, n; hidden units in the LSTM cell, ny
convolutional kernel size, and ns = M memory time window,
we can represent the required number of BoPs considering that
the output of biLSTM is the input of 1D-CNN, as follows:

BOP/r/brekward — 4 N, Mult(4, by, b;)
+4MnpMult(np, by, ba)

(26)
+3Mnyb?
—|—9MnhAcc(nh, bw, ba),
BOPCNN = (M —Nng + 1) . 2Mult(2nhnk, bw, bz) @7
+2Acc(2npng, by, b;),
orward backward
BoPr BoP{ g4 + BoPpasrwerd 4 BoPeny o)

M —n+1

12The accumulator is the register in which the intermediate arithmetic logic
unit results are stored. For more detailed explanation, see [106].
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Most real DSP implementations use a dedicated logic
macros (e.g., DSP Slice in FPGAs or MAC in ASIC),
where the BoP metric fits as a good complexity estima-
tion/comparison metric. However, with the advances in new
quantization techniques [63], [84], [112], [113], those mul-
tiplications can also be implemented using just bit shifter-
and adder-based algorithms [114]-[116], when the fixed-point
multiplications are used'. Therefore, to account for the impact
of our using different quantization strategies, we can utilize
the metric that evaluates the number of additions and bit shift
(NABS) operations.

Next, we discuss how to translate the complexity of the NN
equalizer from RMpS into the NABS metric, in the cases when
we utilize uniform quantization, PoT quantization, and APoT
quantization (see also Section IV.C). According to Ref. [106],
the NABSs metric takes into account the conversion of all mul-
tipliers into adders and shifters, and computes the complexity
of the total number of adders (including the pre-existing adders
of the NN structure) based on bit precision while ignoring the
cost of the bit shift operations. The NABSs complexity for the
LSTM and 1D-CNN layers can be expressed as [106]:

NABSLsT™M = 4ngny, [ni (Xuw+1)— 1}Acc(ni, b, bi)
+4ngny, [nh(Xw +1)+ 1]Acc(nh, b, ba)
+6nsnpbq.

(29)

NABScnn = OutputSize - nyg [nmk(Xw +1)— 1]

- Acc(ning, by, b;)
+nyAcc(n;ng, by, b;).

(30)

In these expressions, X represents the number of adders
required at most, to perform the multiplication when con-
sidering that the first bit represents the sign and the re-
maining ones contain the magnitude of the weight. For the
uniform quantization, we have: X = b,, — 2, whereas in the
case of POT quantization, we have: X = 0, because each
multiplication costs only a shift [88], [114]. Lastly, for the
APOT quantization, we have: X = n, where n denotes the
number of additive terms. These equations are in line with
the expected complexity behavior from Ref. [84], where it is
stated that by using the APOT with k£ = 2 (which means that
n = (b, —2)/2), the multiplication would be approximately 2
times faster than when using the uniform quantization. Thus,
for the biLSTM + 1D-CNN equalizer considered in our work,
we have the following expressions for the NABSs complexity
per recovered symbol:

NABSISAA S — 4Ny, [4(X, + 1) — 1] Ace(4, by, bi)
+4Mny, [nh (Xw —+ 1) —+ 1] Acc(nh, bw, ba)

+6Mnpb,,
(€20

3Note that the translation from multiplications to additions and shift
operations adds some quantization noise/error since we round the original
coefficients when converting them from a float representation to a fixed
representation. However, in the context of NNs, this can be partially mitigated
by training the NN with the quantized weights, as it was done in Refs. [63],
[112], [113] and in this current work.

NABScnn = (M —ny + 1) - 2[2npn (X + 1) — 1]
. Acc(2nhn;€, bw, bl)
+2Acc(2npng, by, b;),

NABS/grward | NABSPackward 4 NABSenn
M —ng+1 )

(32)

NABSnN =

(33)

Notably, the BoPs and NABSs expressions given above
do not take into account the effects of pruning and weight
clustering, but they can be corrected, similarly to how the
RMpS metric at the beginning of this subsection.

Finally, the metric that is even closer to the hardware level
is the number of logic gates (NLGs) that are used for the
hardware (e.g. ASIC or FPGA) implementation of a signal
processing device. It is different from the NABSs metric
because it indicates the real cost of implementation. Within
this metric, the cost of activation functions, represented by
look-up tables (LUTSs), is also taken into account. However,
this metric is not used in this work since it already depends
on the particular hardware type that we do not consider here.

VI. RESULTS
A. Multi-Symbol Equalizer Performance

We start by presenting the benchmark scenario obtained
using the nonlinear equalization, i.e. using the equalizers
without compression. In this case, we can see the increase
in optimum launch power after equalization and the corre-
sponding Q-factor improvement concerning the case without
nonlinear equalization. To speed up the training process and
the acquisition of results, we have trained our model at the
highest launch power and applied the transfer learning strategy
[118] for the remaining lower launch powers. For these lower
power levels, we fine-tuned the NNs for around five epochs.
Fig. 10 shows the results of Q-factor over launch power
dependence for three transmission scenarios. For the simulated
transmission with 20 x 50 km, the NN equalizer enabled
increasing the optimum launch power from -1 dBm to 2 dBm.
Furthermore, the maximum Q-factor increased by about 2.8
dB, showing a similar maximum performance as that achieved
by 3 STpS DBP. For the transmission over 9 x 110 km system,
which has a similar total transmission length but more than
doubled span length, we have the enhanced impact of ASE
noise. This effect can be observed in the results depicted
in Fig. 10 (b). In this case, the optimum power increased
from 4 dBm to 6 dBm and the optimum Q-factor improved
by around 1.3 dB due to the equalization. Although the
performance improvement enabled by the NN equalizer was
lower than in the previous case, it was still higher than the
one enabled by the 3 STpS DBP (about 0.7 dB performance
improvement). Finally, Fig. 10 (c) shows the results obtained
in the experimental setup described in Sec. V-A. In this case,
we observe that the NN equalizer leads to an increase in the
optimum launch power of about 1 dB, and an increase in the
maximum Q-factor of about 0.7 dB. In this case, we observed
that compared to the results of the numerical modeling of a
similar system (shown in Fig. 10 (b)), the NN allows us to
approach the performance of 50 StPS DBP closer, because the
probabilistic shaping (considered in the experimental setup,
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Fig. 10: Performance of the proposed NN equalizer, benchmarked against DBP [117] for three different transmission scenarios.

but not in the numerical modeling of Fig. 10 (b)) modifies
both signal-signal and signal-noise interactions at higher signal
powers [116] [119]. Also, the limited performance of DBP and
NN-based equalization within the experimental conditions can
be attributed to non-ideal conditions, such as the presence of
polarization effects and transceiver noise.

Following this initial analysis, we chose the best launch
power in each transmission setup to evaluate the performance
degradation resulting from using the different compression
approaches.

B. Pruning Study

We start our comparative study by doing an analysis similar
to what was done in Ref. [49] for image classification, but
this time in the context of coherent optical channel post-
equalization. Additionally, besides the fine-tuning approach,
the weight rewinding, and the learning rate rewinding, in our
work, the fine-tuning assisted by the Bayesian optimizer is
also considered.

The results for the three transmission setups obtained after
pruning are depicted in Fig. 11. Similarly to the results shown
in Ref. [49], the weight rewinding and the learning rate
rewinding outperform the fine-tuning when we have a high
level of compression (> 50%). As an example, for the 60%
sparsity and when employing the fine-tuning for retraining, the
Q-factor is reduced by 1.9 dB, 0.6 dB, and 0.3 dB for the three
considered transmission scenarios, as compared to the original
performance. If instead, the rewinding approaches are used, the
Q-factor degradation of only 1.1 dB, 0.2 dB, and 0.2 dB, and
of 1.4 dB, 0.2 dB, and 0.2 dB, are observed for the learning
rate and weight rewinding, respectively, when considering the
same three transmission scenarios. However, when the fine-
tuning is assisted by the BO to select the hyperparameters (as
described in Sec. IV-A4), we observe that the performance can
be significantly improved compared to the other approaches.
This approach enabled reaching high sparsity (even higher
than the 60% example mentioned above), leading to a Q-factor
degradation not exceeding 0.3 dB, 0.1 dB, and 0.1 dB for the
three considered transmission scenarios. This result shows the
potential of the BO-assisted fine-tuning approach, to outper-
form the previous model compression techniques.In our view,

the superior performance of the BO-assisted pruning comes
from the ability of this approach to cope with the dimension-
ality changes in multidimensional trainable parameters’ space
when the NN architecture is pruned. Therefore, the training
hyperparameters to achieve a good local minimum may differ
from the initial ones, and the BO is capable of identifying this
new set of training hyperparameters, while the other methods
use their previous values obtained before pruning. However,
we emphasize that the BO requires significant computational
effort, which means that this method is appropriate mainly for
offline applications. When we are interested in achieving the
result in the fastest way, the learning rate rewinding is the
recommended approach.

Interestingly, the weight rewinding approach performed
worse than the fine-tuning approach in cases where the sparsity
was lower than 50%, while the learning rate rewinding led to
similar or even better performance as compared to fine-tuning.
This result can be explained by recalling that the original
model was learned using the transfer learning approach, which
aids in the learning process by improving generalization and
avoiding local minima. When fine-tuning and learning rate
rewinding are used, the original weights are the starting point
of the pruning process, preserving the good initialization
provided by transfer learning. However, in the case of weight
rewinding, the weights are reinitialized randomly after the
pruning, which can be detrimental to training, thus leading
to higher performance degradation.

Regarding the computational complexity reduction in terms
of RMpS when using the BO plus fine-tuning (BO+FT)
approach, in the result depicted in Fig. 11 (a), the BO+FT
approach achieved a sparsity of 72%, which represents a
reduction from 1.29e+5 to 3.66e+4 in the RMpS value. In
the case of Fig. 11 (b), the achieved sparsity was 70%, which
represents a reduction from 1.42e+5 to 4.31e+4 in RMpS.
Finally, in the case depicted in Fig. 11 (c), the attained sparsity
was 61%, which gives a reduction from 1.42e+5 to 5.58e+4
in RMpS number.

C. Clustering Study

In this section, we evaluate the weight clustering compres-
sion technique. To the best of our knowledge, this is the first

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3234327

5.5 T T 8.5
o o — -
T‘\s\
st ]
@ @ o 8
= = =
5 o 45 E
3 s 4 5 | 3
N —8— Fine Tune = 21| —a—Fine Tune s —&— Fine Tune
© s Weight Rewinding i 4 Weight Rewinding © 751 Weight Rewinding
Learning Rate Rewinding Learning Rate Rewinding Learning Rate Rewinding
-©- BO+FT 4l -@- BO+FT -©- BO+FT
- - - Original (No Pruning) - == Original (No Pruning) - == Original (No Pruning)
7 [ 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80

Sparsity (%)

(a) Single Channel-DP 30GBd; 64QAM;
20x50km SSMF link (Sim1).

Sparsity (%)

(b) Single Channel-DP 34.4GBd; 64QAM;
9% 110km SSMF link (Sim2).

Sparsity (%)

(c) Single Channel-DP 34.4GBd; 64QAM (PS-
8bits/4D symbol); 9x 110km SSMF link (Exp).

Fig. 11: Optical performance when using different pruning techniques for several NN sparsity level. The optimum launch
power (without pruning) is set for each case in this study: (Sim 1) 2dBm; (Sim 2) 6dBm; (Exp) 2dBm

time that the trade-off between optical performance and com-
putational complexity when using such a technique in optical
communications has been assessed. Note that quantization and
clustering can be implemented by maintaining a codebook
structure that stores the shared weights for each layer. How-
ever, in this work, we have also used weight clustering as
a pre-step to simplify the problem for the next step, where
the traditional quantization techniques are used. The first goal
of this subsection is to assess if the weight clustering can
reduce the number of multiplications without impacting the
performance significantly. The BO described in Sec. IV-B is
used in this work to find the new training hyperparameters and
the number of k-weight clusters throughout the NN-structure,
so that the RMpS is given by Eq. (23).

Fig. 12 depicts the impact of weight clustering on the
performance and on computational complexity in the three
considered transmission scenarios. This Fig. demonstrates that
weight clustering leads to a small degradation in the Q-factor
while still allowing us to lower the computational complexity
considerably. In Sim1 in Fig.12, when 74 clusters were used,
we see a Q-factor degradation of 0.2 B and a reduction in
complexity from 36k to 20k RMpS, when compared to the
pruned architecture results. In Sim2 in the same figure, we
observe a similar degradation of the Q-factor and a reduction
of complexity from 43k to 19k RMpS when 68 clusters are
used. Finally, for our experimental data, and using 62 clusters
only, we observe that the Q-factor remains mostly unchanged,
and the complexity is reduced from 55k to 17k RMpS. We
observed that clustering the weights after pruning leads to
better results than clustering the original weights. Moreover,
the training time is also improved in the former case since
fewer parameters need to be learned during the training phase.

Now we focus our analysis on the complexity part of the
weight clustering technique, i.e., how much can the number
of weight clusters be reduced while still enabling relevant op-
tical performance improvement? Only the Siml transmission
scenario is considered in the analysis, as this is the case where
nonlinear mitigation shows the most noticeable improvement.

We assess the potential of the weight clustering technique
when using up to four distinct weights. Launch powers in
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Fig. 12: Optical performance (blue) and complexity (red)

evaluation of the pruning + clustering (darker colors) and prun-

ing only (lighter colors) approaches for the three considered
transmission systems (Siml, Sim2, and Exp).

the range from -1 dBm to 2 dBm are tested to assess if the
optimum launch power changes when using such an aggressive
compression approach. The achieved results are compared
to the ones obtained when using linear equalization only
(CDC) or 1 STpS DBP. Fig. 13 depicts the Q-factor for each
equalization approach, as well as the number of RMpS'4.
Fig. 13 shows that, when using the CDC, the optimum launch
power is -1 dBm, leading to the Q-factor of 7.8 dB (113 RMpS
are used in this case). If the reference 1 STpS DBP is used,
the optimum launch power changes to 0 dBm, enabling the Q-
factor of 9.2dB but requiring 1673 RMpS. We notice that the
NN-based equalizer enables outperforming the 1 STpS DBP,

4The sparsity of the NN structure was not preserved while doing the
clustering, because we observed that by allowing the zero-value weights,
where pruning removes the nodes, Fig. 2 (b), to acquire a different (small,
but non-zero) value helped in improving the overall performance when an
ultra-low number of weight clusters is used. Additionally, the training phase,
in this case, took much longer (10k epochs).
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Fig. 13: Optical performance and complexity results when

employing very aggressive weight clustering in the Sim1 trans-

mission scenario: 2 weights clustering [NN(2W)], 3 weights

clustering [NN(3W)], and 4 weights clustering [NN(4W)]. The

traditional CDC and reference 1 STpS DBP results are shown
as benchmark.

which is often used as a benchmark. Indeed, the NN with
4 clustered weights per layer [NN(4W) case in the figure],
enables achieving a Q-factor of 9.7 dB (at 1 dBm optimum
launch power) using 1091 RMpS. Instead, if only 3 clustered
weights are used [NN(3W) case in the figure], a Q-factor of
9.4 dB (at 1 dBm) can be reached, requiring 820 RMpS only.
As expected, using 2 clustered weights [NN(2W) case in the
figure] leads to the worst performance, where we can achieve
the Q-factor of 8.4 dB (at O dBm), thus still outperforming
the CDC, but at the expense of 549 RMpS complexity.

Finally, if we consider that the multiplier complexity is
proportional to b;b,, (as described in Sec. V-B), the savings in
complexity enabled by the clustering technique can be even
higher than the ones indicated above. Indeed, considering that
b; = 8 bits for all cases, the coefficients of the CDC and DBP
filters are also represented by 8 bits. However, for the NN
with 3 and 4 clustered weights, we can encode the weights
using just a 2-bit format. So, for the cases of 3W and 4W
NN, which performed better than 1 STpS DBP, the complexity
calculated as RMpS * b; * by, is just 1.82 and 2.42 times
higher than the CDC one (and 8.15 and 6.13 times lower than
the 1 STpS DBP), respectively. Here we note that the CDC
benchmark is the most important because our primary goal
is to show the readiness of NN with respect to the already
available algorithm in commercial transponders. In contrast,
none of the existing DBP versions has reached the hardware
level of implementation. In this context, Fig. 13 and the
previous analysis shows that an NN-based equalizer achieves
a performance close to that obtained with the “DBP” [33],
while approaching the complexity of the CDC block.

D. Quantization Study

Quantization is the other approach considered in this work
to significantly reduce the computational complexity of equal-
izers. The PTQ homogeneous, PTQ heterogeneous, QAT ho-
mogeneous, and QAT heterogeneous approaches are consid-
ered in this subsection, see Sec. IV-C for the approach details.
In each case, a combined biLSTM+CNN equalizer whose
weights have undergone the clustering procedure depicted in
Fig. 12 is quantized. The performance and complexity in terms
of BoPs and NABSs of the different quantization techniques
are further assessed for different bit precisions.

1) PTQ homogeneous approach: We start by assuming
that all weights in the structure are quantized uniformly and
with the same bit precision. Fig. 14 depicts the Q-factor
as a function of the bit precision for the three considered
transmission scenarios and using the APoT with 2, 3, and 4
additive terms quantization technique as well as the original
version in [84], the uniform quantization and PoT®.

From the results depicted in Fig. 14, we underline the
noticeable impact of sparsity. The PoT and APoT techniques
were purposely designed to have the majority of the quanti-
zation levels close to zero, since the weight distribution after
training also shows a concentration of weights close to zero
value, see Fig. 2. However, when pruning the NN structure,
such weights are removed, Fig. 2 (b), the quantization levels
above the pruning threshold are no longer used and, more
importantly, the remaining weights are underrepresented. Con-
sequently, the uniform quantization shows the best perfor-
mance (for the reduced bitwidth of the weights) in the case
shown in Fig. 14 (a), where the sparsity is 72%, whereas the
APoT and POT reveal a better performance in the scenario
depicted in Fig. 14 (c), where the sparsity is 60%. Interestingly,
up to 8 bits precision, we could always find a quantization
scheme that provides similar optical performance as when
using the original 32 bits precision for the three considered
transmission scenarios. For a high precision bitwidth, the
uniform quantization always shows superior results, whereas
for a lower bit precision (say, for less than 8 bits) and
when the weight distribution is not heavily compromised
by sparsity, the original APoT introduced in [84] results in
the best performance. Here we highlight that, when doing
with the PTQ strategy, the weight distribution must serve as
the main indicator to select the best type of quantization.
Also, note that, the POT has performed badly in all cases
studied in this subsection. As described in Ref. [84], the PoT
quantization does not benefit even in the case from more bits,
as we also observed in our work. The PoT quantization has
a rigid resolution, in which by adding an extra bit, all new
quantization levels concentrate around O and, thus, the PoT
cannot increase the model’s expressiveness efficiently enough,
as one would expect by addition more bits'®.

Now we assess the computational complexity of the differ-
ent quantization techniques. In our analysis, we considered

I5We have established a floor value of 0dB for the Q-factor since a lower
Q-factor just means the information is completely corrupted.

16This problem can be partially solved by training further the weights after
approximating, as described next in the QAT section.
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Fig. 14: Performance of the Post Training Quantization (Homogeneous Approach).

b; = b, = 16 bits and b,, changing between 12 and 2
bits. Fig. 15a depicts the BoP metric for equally compressed
models, showing that the BoP decreases almost linearly with
the value of b,,. Since the Sim2 transmission scenario requires
a NN structure with more hidden units and CNN filters than
Sim1, the number of BoPs for this case is also higher than that
for Siml. In this analysis, we are evaluating the total number
of operations needed, as it is usually done in the literature
[92], and therefore, do not account for the benefits stemming
from weight clustering.

Nevertheless, and as was mentioned in Sec. V-B, when com-
paring the use of different quantization strategies and bitwidth
precisions, the BoPs metric can not be recommended, as it,
actually, does not account for the effect resulting from different
quantization strategies. To have a better metric, the NABS
metric ought to be used, as it allows us to compare the result of
the model compression in terms of the number of additions and
bit shifts. Figs. 15b and 15¢ show the NABS as a function of
b,, (the bit-precision) for the different quantization strategies
employed in this work. As expected, the uniform quantization
technique leads to the highest complexity, whereas the PoT
quantization gives the smallest one. The APoT quantization
leads to a complexity in-between the uniform and PoT ap-
proaches. In the APoT case, the complexity depends not only

on b,, but also on the number of additive terms that are
considered. Interestingly, the least complex APoT strategies,
i.e., those with the smaller number of additive terms, are the
ones leading to better performance for the low bit precision
region, see Fig. 14. It is also interesting to note that, when
we reduce the bit precision to 5 bits, which already leads
to high-performance degradation, the NABS using uniform
quantization becomes the same as that when using the APoT
with 4 additive terms. If the bit precision is further reduced
to 4 bits, the NABS using uniform quantization is the same
as that when using the APoT with 3 additive terms. In the
same way, if the bit precision is reduced to 3 bits, the NABS
using uniform quantization is the same as that when using the
APoOT with 2 additive terms and, finally, if the bit precision
is reduced to 2 bits, the NABS using uniform quantization is
the same as that when using the PoT quantization.

2) PTQ heterogeneous approach: When using the hetero-
geneous approach, the bit precision and quantization method
are allowed to vary in different parts of the NN structure. For
simplicity, here we only consider the uniform quantization,
the original APoT, and the mix, where different types of
quantization are used throughout the NN structure.

Fig. 16 depicts 3D plots with the Q-factor as a function
of i) the bitwidth of the input and recurrent kernel of the
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Fig. 15: Computational complexity when using uniform quantization (a) and when different types of quantization are used
(b/c). b; and b, have 16 bit precision whereas b,, has a value in the range of 12 to 2 bits.
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Fig. 16: Performance of the Post Training Quantization (Heterogeneous Approach).

LSTM layer, and ii) the bitwidth of the filter kernel of the
CNN layer. A gradient of colors is used, with the warmer
colors corresponding to the higher Q-factor, so we can identify
which combination of b,, values gives the best performance.

Same as in the homogeneous approach (see Fig. 14), the
uniform quantization is the most interesting solution for the
Sim1 transmission scenario, whereas the APoT leads to better
performance for the Sim2 and Exp scenarios.

However, when using heterogeneous quantization, we ob-
serve that lower complexity can be achieved. For example,
considering the Siml transmission, and in order to achieve
the same optical performance as we have when using the
1 STpS DBP, we may quantize all weights with 6 bits
(homogeneous quantization), or we may further reduce the
recurrent kernel and CNN kernel to 5 bits using heterogeneous
quantization without any significant degradation in optical
performance. Similar results can be observed in the Sim2 and
Exp transmission scenarios.

In addition to using different bit precision in different parts
of the NN, we can also use different types of quantization
to improve the performance. For this objective, we have used

a grid search, testing different combinations of quantization
types. The result of this optimization is referred to in Fig. 16
as Mixed Quantization. By following such an approach, we
observe an improvement in the hot area of the Sim 1 results
when we quantize the input and CNN kernels with uniform
quantization and the recurrent kernel with APoT using the
original terms; for Sim2, we quantized the input with the
3 terms APoT and the recurrent and CNN kernels with the
original APoT. Unfortunately, no significant optical improve-
ment was observed when compared to using just the original
APoT. In this case, just an improvement of 0.1dB in Q-factor is
achieved in the mix quantization, where we quantize the input
and CNN kernels with the original APoT and the recurrent
kernel with the 2 terms APoT, compared to the case with all
weights quantized with the original APoT.

3) QAT homogeneous approach: We now evaluate the
potential of implementing quantization during the training
phase of the NN to mitigate the error introduced by the
low bit precision of weights. Since QAT leads to at least as
good performance as PTQ and the results depicted in Fig. 17
show that the optical performance is highly impacted when
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Fig. 17: Performance of the Quantization Aware Training (Homogeneous Approach).

the bitwidth decreases below 6 bits, we will focus the QAT
analysis in this region (between 6 and 2 bits).

Fig. 17 depicts the Q-factor as a function of the bit precision
for the three considered transmission scenarios. The consid-
ered quantization techniques are the Uniform, PoT, APoT with
2, 3, and 4 additive terms and the original version of APoT
that can be found in Ref. [84]. In order to better illustrate the
impact of QAT, we compare the results in Figs. 14 and 17.
As an example, let us assume that all weights are quantized
equally with 4 bits. For Siml, Fig. 14 (a) shows that the
uniform quantization provided the best performance with a Q-
factor close to 4 dB, whereas Fig. 17 (a) shows that using the
APoT original and following a QAT strategy enables reaching
Q-factor values close to 8.5 dB. Similar conclusions can be
drawn in Sim2 and Exp transmission scenarios: Fig. 17 (b)
and (c) show that optical performance is highly impacted when
weights are quantized to 4 bits whereas, when implementing
QAT, the original APoT provides Q-factor values close to
4.5 dB and 7.8 dB, respectively. These results demonstrate
the huge positive impact of QAT on the compression of the
NN model. Moreover, when further reducing the bitwidth, the
optical performance degradation is not as drastic as in the case
of PTQ.

The original APoT quantization technique leads to very
good optical performance in most of the cases depicted in
Fig. 17. This good performance is a direct consequence of
performing quantization during the training phase. Indeed, in
this case, the weights remaining after the pruning are no longer
underrepresented, but rather adjusted to the non-uniform levels
of quantization, leading to the good performance.

Nevertheless, the difference between PoT and APoT is
no longer as significant as the one observed in Fig. 14. To
highlight the Q-factor gains that training gives, we summarized
in Fig. 18 the Q-factor difference between the PTQ and QAT
both homogeneous for the Sim 1 case. In this case, we see
that APOT original and POT have benefit from the extra
training after quantization, mitigating almost completely the
impacts of such quantizations for certain number of bits (e.g. 6
bits). As a consequence, no universal conclusion can be drawn
about which is the best quantization technique for QAT. In
general, the original APoT and the APoT with 2 terms were

Q-factor Gain [dB]
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Fig. 18: Gain achieved by using Quantization Aware Training
vs Post Training Quantization in the SC-DP 30GBd; 64QAM;
20x50km SSMF link (Sim1) dataset.

the two techniques that performed the best for the range of
bitwidths studied and transmission scenarios. But, since the
APOT with 2 terms uses only one adder and bit shift for
each multiplication, it is probably the best choice in terms
of trade-off between optical performance and computational
complexity.

We would like to stress that the training of such NN
structures is unstable. Consequently, the model needs to be
monitored during training. In this work, early stopping was
not used for QAT. Instead, the quantized NN structure was
trained for 5000 epochs, with the intermediate NN models
leading to the best Q-factor being saved and used as the
final NN. As described in Ref. [120], the training phase of
the quantized model can suffer from learning problems (e.g.
exploration vs. exploitation trade-offs). As suggested in that
reference, we also used large mini-batch sizes (> 4000), since
“this shrinks the variance of the gradient distribution without
changing the mean and concentrates more of the gradient
distribution towards downhill directions, making the algorithm
more greedy”. As a result, we emphasize that when performing
the QAT, the training hyperparameters must be properly set,
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TABLE III: Results obtained using the Bayesian Optimizer. The performance results of both QAT and PTQ are depicted to
highlight the benefit of QAT.

Scenario bw Quant. Type Learning | Mini-Batch | Q-factor | Q-factor Q-factor
Input | Recurrent | CNN Input Recurrent CNN Rate Size PTQ QAT w/o Quant.
Siml 3 5 4 APOT Orig. APOT Orig. Uniform 0.00114 4347 0.18dB | 8.6 dB 10.31 dB
Sim2 4 3 4 APOT 2 Terms | APOT Orig. | APOT Orig. | 0.00132 6568 0 dB 4.5 dB 5.1 dB
Exp 2 3 2 APOT Orig. APOT Orig. | APOT Orig. | 0.00085 5253 0 dB 7.41 dB 8.1 dB

and the training will most likely require a higher number of
epochs as the bitwidth of the weights is reduced.

4) QAT heterogeneous approach: In this compression tech-
nique, and as described in Sec. IV, the BO is used to determine
the ideal bitwidth per layer as well as the type of quantization
in each layer (and other hyperparameters, like the learning
rate), seeking to improve the overall performance.

Similarly to the PTQ case, when going from the homo-
geneous to the heterogeneous approach, the bitwidths and
quantization types employed can be different in different parts
of the NN architecture. Like in Sec.VI-D2, the performance
of the heterogeneous approach is evaluated by considering the
different bit precision of the input kernel of the LSTM layer,
the recurrent kernel of the LSTM layer, and the filter kernel
of the CNN layer. The values obtained by the BO can be
found in Table III for the considered transmission scenarios
as well as the Q-factor achieved when i) the NN model is not
quantized (w/o Quant.), ii) the model is only quantized (PTQ),
and iii) the model is simultaneously quantized and fine-tuned
(QAT). This table shows that, at the low levels of bit precision,
the PTQ corrupted the NN model completely. Nevertheless,
the QAT adapts the weights in such a way that only a small
degradation of performance is observed.

To conclude, we evaluate the complexity of the different
approaches. We do this in terms of NABS insofar as we
employ simultaneously different bit precision and quantization
techniques (see V-B). Our reference complexity is the “tradi-
tional” uniform quantization with 8§ bits in all layers, which
we compare against the heterogeneous structures depicted in
Table III. For Siml, the reference complexity is 28.6M NABSs
while, for the heterogeneous architecture, the complexity is
10.9M NABSs, which translates into a complexity reduction of
~ 62%. Similarly, for Sim2 and Exp, the reference complexity
is 31M NABSs, whereas after heterogeneous QAT it is
~ 7.9M and ~ 7.4M NABSs, for the two cases, respectively,
representing a reduction of ~ 76%.

~
~

VII. CONCLUSIONS, OPEN PROBLEMS AND RESEARCH
DIRECTIONS

In this paper, a full-scale study focusing on the reduction of
the computational complexity of NN-based solutions was pre-
sented, evaluating them in the context of coherent transmission
equalization.

First, we demonstrate the complexity bottleneck resulting
from recovering one symbol at a time, showing the compu-
tational complexity benefit resulting from changing the NN
structure to recover multiple symbols instead.

Then, we introduced the first compression method evaluated
in the paper: the pruning strategy. We provided examples of

the three most well-known pruning techniques: fine-tuning,
weight-rewinding, and learning rate rewinding. We explained
their theoretical foundation and proposed a new strategy,
which results from combining fine-tuning with BO to improve
the learning of the hyperparameters of the pruning.Later,
we demonstrated that, at the cost of making the model’s
training more difficult, the latter leads to smaller performance
degradation and more sparsity when compared to the former.

Next, we present the second compression technique, known
as weight clustering (or weight sharing). We demonstrated its
application in both recurrent and feedforward layers, empha-
sizing its goal of reducing the number of effective weights
and effective multiplications required by the model. This
is achieved by having multiple connections that share the
same weight and then fine-tuning those shared weights. In
addition, we demonstrated the advantages of using the BO to
determine the number of clusters per layer and the training
hyperparameters for the fine-tuning phase.

Afterward, we provided a comprehensive overview of the
various aspects of quantization in neural networks. The dif-
ference between post-training quantization and quantization-
aware training was discussed, as well as how the Bayesian
optimizer can aid in the design process. In addition, the use
of different quantization types, such as uniform, APOT, and
POT quantizations, in the field of optical channel equalization,
was examined. It is challenging to compare the computational
complexity of two different NN structures with different
quantization types. As a result, we’ve covered several com-
putational metrics and discussed when they’re useful and how
to calculate them for our NN equalizer.

Finally, we evaluated the performance of the different
compression techniques considering three different transmis-
sion setups, comparing the Q-factor versus computational
complexity in all scenarios. As the most relevant result, we
observed that when using weight clustering and pruning, as
a nonuniform quantization step, for the Siml transmission,
we presented a Q-factor gain of 1.6 dB compared to the
CDC in the case of 3 clustered weights with the cost of
increasing the complexity by 182%, and a Q-factor gain of
0.6 dB at the expense of a 61% increase in complexity in
the case of 2 clustered weights. This result represents a big
step forward in reaching commercial implementation since we
are approaching the computational complexity of the existing
CDC block in the DSP chain.

Next, we describe some open problems in the design of
low complexity NN-based equalizers, with the aim of spurring
more research effort on advancing the design of machine
learning solution in optical communication systems.

1) The parallelization problem. Training and evaluating
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each node can be very time-consuming in large NNs. This
is unquestionably a bottleneck in the development of a high-
speed NN design suitable for optical communication appli-
cations. A possible solution is to parallelize such models
when implementing them in hardware. This topic was partially
covered in Ref. [121] for feed-forward layers. If recurrent
layers, like the LSTM layer proposed in this work, are in
demand for future industrial applications, it would be in-
teresting to investigate how to parallelize them in hardware
implementations.

2) Knowledge distillation. This is another possible type of
compression that was not investigated in this work, but that
is receiving increasing attention from the community [122].
The idea behind knowledge distillation is to train a distilled
NN model that has many layers and is truly computationally
complex, and then use it to train a more compact NN model.
An evaluation of the possible benefit of this technique in the
design of NN-based equalizers is an interesting direction for
future work.

3) Meta Learning Based Compression. In Ref. [123],
the authors have jointly considered network pruning and
quantization in an end-to-end meta-learning framework. Other
papers, e.g. Ref. [124], [125], used meta-learning to learn how
to quantize or how to prune the NN structure. We see this as
a potentially good alternative to the BO technique used in this
paper, which, perhaps, could provide the same or even better
solutions, but in a faster manner.

4) Stabilization of the quantization training for different
transmission scenarios. The effectiveness of quantization, as
mentioned in this work, is highly dependent on the difficulty
of the transmission equalization task and the learning process.
Several authors have already discussed the challenges and
possible solutions of the training process for the quantized
NN models [120], [126], [127]. To fully understand this
application for future industrial applications, e.g., in the optical
communications field, a deeper investigation into how to make
this training process more stable and faster, independently of
the transmission setup, is required.

5) Flexibility study after compression. In Refs. [128]-
[130], it can be observed that by using techniques such as
transfer learning and domain randomization, an NN-based
equalizer can operate in multiple distances, modulation for-
mats, launch powers, and symbol rates. However, in the
context of this study, the following question naturally arises:
Can the NN equalizer keep its re-usability and flexibility if its
representability capacity is drastically lowered by compression
approaches (such as pruning and weight sharing)?

Some works in the machine learning field [131]-[134] have
presented some of the good and bad aspects on the NN
flexibility when compression is applied in the NN model,
but a deeper report for the channel equalization task is also
required because flexibility is a key feature desired by the
telecommunications industry.
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