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A B S T R A C T

In this article we reconsider high Reynolds number boundary layer flows of fluids with viscoelastic properties.
We show that a number of previous studies that have attempted to address this problem are, in fact, incomplete.
We correctly reformulate the problem and solve the governing equations using a Chebyshev collocation scheme.
By analysing the decay of the solutions to the far-field we determine the correct stress boundary conditions
required to solve problems of this form.

Our results show that both the fluid velocity within the boundary layer and the stress at the solid boundary
increase due to the effect of viscoelasticity. As a consequence of this, we predict a thinning of the boundary
layer as the value of the dimensionless viscoelastic flow parameter is increased. These results contradict a
number of prominent studies in the literature but are supported by results owing from an asymptotic analysis
based on the assumption of the smallness of the non-dimensional viscoelastic flow parameter.
. Introduction

Interest in the theory of viscoelastic boundary layer flows first
eveloped in late 1950s and early 1960s, some 50 years, or so, after
he fundamental contributions of Prandtl [1] and Blasius [2]. The early
orks of Srivastava [3], Bhatnagar [4], and Rajeswari and Rathna [5]

ought to develop the theory of, and approximate analytical solutions
o, the stagnation point boundary layer flow of viscoelastic fluids
escribed using Rivlin–Ericksen tensors [6].

Ultimately, each of these early studies suffered either from a misun-
erstanding of the governing physics and/or mathematical shortcom-
ngs. It was not until the slightly later study of Beard and Walters
7] that the first complete, correct, boundary layer analysis concerning
iscoelastic fluids was completed. In this study the authors begin by
onsidering an Oldroyd-B constitutive viscosity law and then choose
o restrict their attention to fluids with short relaxation times. This
estriction reduces their analysis to consider what we would now refer
o as a ‘second-order’ fluid model. In the absence of advanced numerical
echniques, the authors develop approximate analytical solutions using
n asymptotic expansion based on their assumption of the smallness of
he non-dimensional viscoelastic flow parameter. They conclude that
s viscoelasticity is increased, so does the stress at the solid boundary
nd, subsequently, the boundary layer is thinned when compared to its
ewtonian counterpart.

Following the work of Beard and Walters [7] there have been a
lethora of studies concerning boundary layer flows of viscoelastic flu-
ds characterised by the second-order fluid model (sometimes referred

∗ Corresponding author.
E-mail addresses: l.escott@aston.ac.uk (L.J. Escott), p.griffiths1@aston.ac.uk (P.T. Griffiths).

to as ‘fluids of second grade’). Rajagopal and co-authors have produced
numerous studies of this nature, see for example [8–12]. In these works
the authors cover the theory of second-order fluid boundary layer flows,
use the perturbation method introduced by Beard and Walters [7] to
analyse flows over wedges, investigate the effects of suction through a
permeable surface, use the idea of an augmented boundary condition
to arrive at new solutions to the stagnation point flow problem, and,
lastly, show that their stagnation point analysis can be extended, in a
local sense, to flows over wedges.

The use of Garg and Rajagopal’s augmented boundary condition
for problems of this nature has been discussed at some length in the
literature. Indeed, we will subsequently be required to revisit these
discussions as part of our analysis. At this stage, we refer the interested
reader to the work of Ariel [13], wherein the vast majority of suitable
references on this discussion point can be found.

Seeking to improve upon the aforementioned second-order fluid
analyses, in the mid 2000s, Sadeghy and co-authors focussed their
efforts on the study of viscoelastic boundary layer flows with an upper-
convected Maxwell (UCM) constitutive viscosity law (Sadeghy et al.
[14,15]). Given the relative limitations of the second-order fluid model,
the motivation for these studies came from a want to capture the
correct physics of these problems for larger values of the viscoelastic
flow parameter. However, in both studies, the authors relied upon
the problem formulation presented in Harris’ book ‘Rheology and Non-
Newtonian Flow’ (Harris [16]). Careful examination of this reference
shows that Harris made a rather a significant oversight when deriving
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the equations relevant to UCM boundary layers. As such, the analysis
presented by Sadeghy et al. fails to correctly capture the effects of
viscoelasticity for high Reynolds number flows. This realisation is
important, not only because of the need to produce mathematically
correct solutions, but also because of the number of subsequent studies
that have used this formulation type as a basis for their investigations.

To date, both Sadeghy et al. [14,15] have received well over
100 citations each, with studies involving flows over porous surfaces
(Hayat et al. [17]), flows involving the transfer of mass (Hayat et al.
[18]), magnetohydrodynamic flows (Abel et al. [19]) and rotating
flows (Mustafa et al. [20]), to name but a few, relying, via Sadeghy
et al., on the mathematical shortcomings first presented by Harris [16].
Interestingly, we note that there is a far smaller readership for the
work of Phan-Thien [21], published well in advance of both Sadeghy
et al. [14,15], who use the correct equation set, contrary to those
described by Harris [16]. This study conducted in the mid 1980s
considers the stagnation point flow UCM problem, and is overlooked
by Sadeghy and co-workers. The corresponding problem of the flow of
an Oldroyd-B fluid is reported in Phan-Thien [22], and we note that a
similar case study concerning the Giesekus fluid model is conducted by
Mirzadeh and Sadeghy [23]. Comparisons of our work with all these
investigations is presented in Section 4.

Studies of boundary layer flows of other common viscoelastic mod-
els have been undertaken more recently. For example, Olagunju [24,
25] consider a FENE-P constitutive viscosity law, which seeks to im-
prove on the Oldroyd-B model by introducing an elasticity which is
finitely-extensible. These investigations focus on a forced convection
boundary layer flow, and the calculation of local self-similar solutions
for the flat plate boundary layer problem, respectively. We also note the
work of Parvar et al. [26], who seek to extend the analysis presented
by Olagunju [25]. They combine semi-analytical results, in the sense
of local self-similarity, with full numerical results owing from Open-
FOAM simulations, showing a good agreement between the two sets of
solutions. We go on to show in Section 2 that the flat plate geometry
does not yield self-similar solutions for the Oldroyd-B model, and this
is indeed the case for the FENE-P model, as was originally shown by
Olagunju [25].

The motivation for this study stems from our work concerning the
injection of non-Newtonian fluids into otherwise Newtonian boundary
layer flows. In an effort to validate the results of our injection analyses,
for flows involving viscoelastic fluids, we explored the large injection
limit expecting our solutions to tend towards the known published
results for entirely viscoelastic boundary layers. When this was not the
case, we analysed the literature regarding flows of this nature and noted
the mathematical shortcomings mentioned above. Before presenting the
results of our much broader injection study we felt it important to
revisit, and correct, the current state of the literature.

In this article, we have improved on the aforementioned studies in a
number of ways. Firstly, where previously the necessity of a stagnation
point flow has been assumed for flows of a viscoelastic fluid, we
have worked independently of this assumption, and show analytically
that one is restricted to this case study in order to obtain fully self-
similar solutions. Secondly, we investigate the choice of stress boundary
conditions in a full and rigorous manner, where in other articles the
conditions are often simply stated or assumed without proper reference.
In addition to this, we provide a detailed explanation of our numerical
scheme, which we will show is highly accurate.1 Lastly, our solution
method benefits from the possibility of evaluating moderate levels of
viscoelastic effects. Previous studies [15,21–23] only show results for
a relatively low ratio of elastic to viscous effects, in some cases due to
the imposition of a boundary condition which restricts the validity of
the range of their dimensionless parameters.

1 Data created during this research can be found online at a location
rovided in Appendix C.
2

The outline of this article is as follows, in Section 2 we formulate
the problem, firstly in a general sense, and then derive the equations
relevant to the flow of viscoelastic fluids described using the Oldroyd-
B model, which similarly describes the UCM model by fixing a single
parameter. In Section 3 we outline the numerical scheme used to solve
the governing equations and present a range of results for fluids with
varying levels of viscoelasticity. In Section 4 we compare our results to
those in the literature and discuss our findings in this context. Lastly,
in Section 5 we provide a brief summary and outline some future
directions for work on problems such as this.

2. Formulation

Consider the steady flow of viscoelastic fluid over an impermeable,
semi-infinite, flat plate inclined at an angle of 𝑚𝜋∕(𝑚 + 1), from the
horizontal where 𝑚 is a constant that will be defined in due course.
The streamwise coordinate is 𝑥∗ and the wall normal coordinate is
𝑦∗ (asterisks denote dimensional quantities throughout). The flow is
governed by the continuity and Cauchy momentum equations

𝛁∗ ⋅ 𝒖∗ = 0, (1a)
∗(𝒖∗ ⋅ 𝛁∗𝒖∗) = −∇∗𝑝∗ + 𝛁∗ ⋅ 𝝉∗, (1b)

here 𝜌∗ is the fluid density, 𝑝∗ is the pressure, 𝒖∗ = (𝑢∗, 𝑣∗) is the
wo-dimensional velocity field with 𝑢∗ and 𝑣∗ being the streamwise and
all normal velocity components respectively. Lastly, we note that the
efinition of the stress tensor 𝝉∗, changes according to the form of the
iscoelastic model in question.

In this study we will focus our attention on three prominent vis-
oelastic models, these being the Oldroyd-B model, the
pper-convected Maxwell model and the second-order fluid model. For
he types of flows discussed in this article all, three models can be
escribed using the following constitutive viscosity law

∗ + 𝜆∗1
∇∗

𝝉∗= 2𝜇∗
0 (𝐄

∗ + 𝜆∗2
∇∗

𝐄∗), (2)

here 𝜇∗
0 is the total viscosity, 𝐄∗ =

(

𝛁∗𝒖∗ + (𝛁∗𝒖∗)T
)

∕2, is the rate
f strain tensor, 𝜆∗1 is the relaxation time, and 𝜆∗2 is the retardation
ime. We note that the velocity gradient is defined with the following
onvention in index notation:

(

𝛁∗𝒖∗
)

𝑖𝑗 = 𝛁∗
𝑖 𝒖

∗
𝑗 . The upper-convected

erivative for a (steady) tensor 𝐪∗ is defined as follows
∇∗
∗= 𝒖∗ ⋅ 𝛁∗𝐪∗ − (𝛁∗𝒖∗)T ⋅ 𝐪∗ − 𝐪∗ ⋅ (𝛁∗𝒖∗),

hich describes how a quantity is translated and rotated under the in-
luence of the flow field. In the case when the total viscosity, relaxation
ime and retardation time are all non-zero, (2) returns the Oldroyd-

model. If the retardation time is set equal to zero then this model
educes to the upper-convected Maxwell model. In the limit of short
elaxation times the equation of state (2) reduces to

∗ = 2𝜇∗
0𝐄

∗ − 2𝜅∗
0

∇∗

𝐄∗,

here 𝜅∗
0 = 𝜇∗

0 (𝜆
∗
1 − 𝜆∗2) (see Beard and Walters [7]). Now, the second-

rder fluid model is defined like so (see Morozov and Spagnolie [27])

∗ = 2𝜇∗
0𝐄

∗ + 2𝛼∗1
∇∗

𝐄∗ +4𝛼∗2 (𝐄
∗ ⋅ 𝐄∗).

hile we consider the use of the upper-convected derivative, it is
oted that other sources in the literature [28–30] use either the lower-
onvected or corotational derivative in order to describe the second-
rder fluid model. All definitions are equivalent so long as the material
onstants for the model are defined in an appropriate manner. Upon
omparison of the definitions of the stress tensors above, we see that
he limiting case of an Oldroyd-B fluid in short relaxation times does
ot capture the full general second-order fluid model [27], rather a
pecific case study. The simplest way of quantifying this is to set the
onstants 𝛼∗ = 0, with −𝜅∗ = 𝛼∗. However, we show in Appendix A
2 0 1
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that the full second-order fluid model is captured in our boundary layer
analysis, since the quadratic rate of strain term, 𝐄∗ ⋅ 𝐄∗, results in no
xtra contribution to the terms associated with either the velocities or
iscoelastic stresses. Rather, it provides a contribution to the isotropic
ressure term. Therefore, the final set of boundary layer equations are
ndependent of 𝛼∗2 under the relevant limit of time scales.

Here we solve the coupled system of equations ((1)–(2)) by ex-
licitly considering the independent stress components of 𝝉∗ in two-
imensions. However, Harris [16] uses a separate and incomplete
echnique (in the UCM case study where 𝜆∗2 = 0), which involves
he decoupling of velocity and stress. Firstly, Harris re-arranges equa-
ion (1b) to define 𝛁∗ ⋅ 𝝉∗, the stress divergence, precisely in terms
f the velocity and pressure. Then, the divergence operator is applied
o (2), with the aim of capturing all stress dependent terms as a function
f the same vector function, the stress divergence. One can see that,
f this were possible, the definition of 𝛁∗ ⋅ 𝝉∗ could be inserted into

this new equation such that we are left with one equation in velocity
and pressure only. However, it is not possible to describe the viscosity
law as such, since the upper-convected derivative and divergence are

not commutative operators: 𝛁∗⋅
∇∗

𝐪∗ ≢
∇∗

𝐐∗, where 𝐐∗ = 𝛁∗ ⋅ 𝐪∗, for any
general quantity 𝐪∗. We note that the vector equivalent of the (steady)

upper-convected derivative is defined as
∇∗

𝐐∗= 𝒖∗ ⋅ 𝛁∗𝐐∗ − (𝛁∗𝒖∗) ⋅𝐐∗.
To better visualise the inequivalence, we highlight a simple case

tudy, where the quantity 𝐪∗ represents an isotropic tensor 𝐈∗. The
pper-convected derivative of 𝐈∗ is some multiple of the rate of strain
ensor; since the identity tensor is homogeneous it has no spacial
r temporal dependence, and therefore the convective term depends
ntirely on the velocity gradient. It must also be the case that the upper-
onvected derivative is frame invariant, which reduces the quantity
o the symmetric component of the velocity gradient i.e., the rate of
train tensor. After the explicit calculation, we confirm that this is the

ase, and further show that the divergence of
∇∗

𝐪∗ reduces to a velocity
aplacian

∗⋅
∇∗

𝐈∗= 𝛁∗ ⋅
[

𝒖∗ ⋅ 𝛁∗𝐈∗ − (𝛁∗𝒖∗)T ⋅ 𝐈∗ − 𝐈∗ ⋅ (𝛁∗𝒖∗)
]

= −2𝛁∗ ⋅𝐄∗ = −∇∗2𝒖∗.

he other side of our non-commutative equation is represented by the
pper-convected derivative of 𝐐∗. From our definitions above clearly
∗ = 𝛁∗ ⋅ 𝐈∗ = 𝟎, and thus the upper-convected derivative of this
uantity must also be zero. This shows conclusively that the two
perators are not commutative.

We start the correct analysis with governing Eqs. (1) and (2), which
re made dimensionless via the introduction of the following variables

𝑥, 𝑦) =
(𝛿𝑥∗, 𝑦∗)
𝛿𝐿∗ , (𝑢, 𝑣) =

(𝛿𝑢∗, 𝑣∗)
𝛿𝑈∗ , 𝑝 =

𝑝∗

𝜌∗(𝑈∗)2
, 𝑇𝑖,𝑗 =

𝜏∗𝑖∗ ,𝑗∗𝐿
∗

𝜇∗
0𝑈

∗ ,

here 𝛿 = (𝜌∗𝑈∗𝐿∗∕𝜇∗
0 )

−1∕2 = Re−1∕2, is the standard boundary layer
ength scale, and 𝐿∗ and 𝑈∗ are characteristic length and velocity
cales, respectively. This choice of scaling leads to the definition of two
iscoelastic dimensionless parameters

i =
𝜆∗1𝑈

∗

𝐿∗ , 𝛽 =
𝜆∗1 − 𝜆∗2

𝜆∗1
,

here Wi, the ratio of relaxation time and the flow time scale, is the
eissenberg number and 1−𝛽 is the ratio of retardation and relaxation

imes respectively. We note that, under the definitions 𝜇∗
𝑠 +𝜇∗

𝑝 = 𝜇∗
0 and

∗
2 = 𝜇∗

𝑠𝜆
∗
1∕𝜇

∗
0 = 𝜆∗1(1 − 𝜇∗

𝑝∕𝜇
∗
0 ) with 𝜇∗

𝑠 and 𝜇∗
𝑝 the solvent and polymer

viscosities respectively, 𝛽 also represents a ratio of viscosities, which
must remain bounded: 0 ≤ 𝛽 ≤ 1.

In the first instance we will consider an Oldroyd-B (OB) analysis,
his being the case when Wi ≠ 0, and 𝛽 ≠ 1. In this instance,
iven the definitions of the dimensionless variables, it is relatively
traightforward to show that the boundary layer flow is governed by
he following system of equations

𝜕 𝑢 + 𝜕 𝑣 = 0, (3a)
3

𝑥 𝑦 t
𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = −𝜕𝑥𝑝 + 𝛿2𝜕𝑥𝑇𝑥𝑥 + 𝛿𝜕𝑦𝑇𝑥𝑦, (3b)

𝑢𝜕𝑥𝑣 + 𝑣𝜕𝑦𝑣 = −𝛿−2𝜕𝑦𝑝 + 𝛿𝜕𝑥𝑇𝑥𝑦 + 𝜕𝑦𝑇𝑦𝑦, (3c)
2𝜕𝑥𝑢 = 𝑇𝑥𝑥 + Wi [𝑢𝜕𝑥𝑇𝑥𝑥 + 𝑣𝜕𝑦𝑇𝑥𝑥 − 2(𝑇𝑥𝑥𝜕𝑥𝑢 + 𝛿−1𝑇𝑥𝑦𝜕𝑦𝑢)

+ 2(1 − 𝛽)𝛿−2(𝜕𝑦𝑢)2 + 4(1 − 𝛽)(𝜕𝑥𝑢)2 + 2(1 − 𝛽)𝜕𝑦𝑢𝜕𝑥𝑣

− 2(1 − 𝛽)𝑢𝜕𝑥𝑥𝑢 − 2(1 − 𝛽)𝑣𝜕𝑥𝑦𝑢], (3d)
𝛿−1𝜕𝑦𝑢 + 𝛿𝜕𝑥𝑣 = 𝑇𝑥𝑦 + Wi [𝑢𝜕𝑥𝑇𝑥𝑦 + 𝑣𝜕𝑦𝑇𝑥𝑦 − (𝛿−1𝑇𝑦𝑦𝜕𝑦𝑢 + 𝛿𝑇𝑥𝑥𝜕𝑥𝑣)

+ 3(1 − 𝛽)(𝛿−1𝜕𝑦𝑢𝜕𝑦𝑣 + 𝛿𝜕𝑥𝑢𝜕𝑥𝑣)

− (1 − 𝛽)𝑣(𝛿−1𝜕𝑦𝑦𝑢 + 𝛿𝜕𝑥𝑦𝑣)

+ (1 − 𝛽)(𝛿−1𝜕𝑥𝑢𝜕𝑦𝑢 + 𝛿𝜕𝑥𝑣𝜕𝑦𝑣)

− (1 − 𝛽)𝑢(𝛿−1𝜕𝑥𝑦𝑢 + 𝛿𝜕𝑥𝑥𝑣)], (3e)
2𝜕𝑦𝑣 = 𝑇𝑦𝑦 + Wi [𝑢𝜕𝑥𝑇𝑦𝑦 + 𝑣𝜕𝑦𝑇𝑦𝑦 − 2(𝛿𝑇𝑥𝑦𝜕𝑥𝑣 + 𝑇𝑦𝑦𝜕𝑦𝑣)

+ 2(1 − 𝛽)𝛿2(𝜕𝑥𝑣)2 + 4(1 − 𝛽)(𝜕𝑦𝑣)2 + 2(1 − 𝛽)𝜕𝑦𝑢𝜕𝑥𝑣

− 2(1 − 𝛽)𝑣𝜕𝑦𝑦𝑣 − 2(1 − 𝛽)𝑢𝜕𝑥𝑦𝑣], (3f)

where the notation 𝜕𝑘 denotes the partial derivative with respect to
𝑘. At this stage of our investigation, we restrict the OB model to, at
largest, moderate values of the Weissenberg number i.e., Wi ∼ (𝛿0),
and we note that different scalings are introduced if Wi is assumed to
be large. All that remains now is to determine the relevant boundary
layer scalings for the three stress components (𝑇𝑥𝑥, 𝑇𝑥𝑦, 𝑇𝑦𝑦). In the case
when Wi → 0, we must return the standard Newtonian boundary layer
equations. As such, it follows immediately that the correct scaling for
the shear stress component is, 𝑇𝑥𝑦 = 𝛿−1𝜏𝑥𝑦. Given this result, when
considering (3f), we see that in order to ensure the correct leading order
balance it must follow that 𝑇𝑦𝑦 = 𝛿0𝜏𝑦𝑦. Lastly, from (3d), we observe
that a non-zero shear stress will only be predicted in the case when
𝑇𝑥𝑥 = 𝛿−2𝜏𝑥𝑥.

Having now determined all the correct scales we replace 𝑇𝑖𝑗 with 𝜏𝑖𝑗
throughout (3b)–(3f), and take the limit as Re → ∞. We then arrive at
the OB boundary layer equations

𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0, (4a)

𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = −d𝑥𝑝 + 𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑦𝜏𝑥𝑦, (4b)
0 = 𝜏𝑥𝑥 + Wi [𝑢𝜕𝑥𝜏𝑥𝑥 + 𝑣𝜕𝑦𝜏𝑥𝑥 − 2(𝜏𝑥𝑥𝜕𝑥𝑢 + 𝜏𝑥𝑦𝜕𝑦𝑢)

+ 2(1 − 𝛽)(𝜕𝑦𝑢)2], (4c)
𝜕𝑦𝑢 = 𝜏𝑥𝑦 + Wi {𝑢𝜕𝑥𝜏𝑥𝑦 + 𝑣𝜕𝑦𝜏𝑥𝑦 − (𝜏𝑦𝑦𝜕𝑦𝑢 + 𝜏𝑥𝑥𝜕𝑥𝑣)

+ (1 − 𝛽)[3𝜕𝑦𝑢𝜕𝑦𝑣 − 𝑣𝜕𝑦𝑦𝑢 + 𝜕𝑥𝑢𝜕𝑦𝑢 − 𝑢𝜕𝑥𝑦𝑢]}, (4d)
2𝜕𝑦𝑣 = 𝜏𝑦𝑦 + Wi {𝑢𝜕𝑥𝜏𝑦𝑦 + 𝑣𝜕𝑦𝜏𝑦𝑦 − 2(𝜏𝑥𝑦𝜕𝑥𝑣 + 𝜏𝑦𝑦𝜕𝑦𝑣)

+ (1 − 𝛽)[4(𝜕𝑦𝑣)2 − 2𝑣𝜕𝑦𝑦𝑣 + 2𝜕𝑦𝑢𝜕𝑥𝑣 − 2𝑢𝜕𝑥𝑦𝑣]}, (4e)

noting that to leading order the pressure is a function of 𝑥 only;
this follows immediately from (3c). In order to remove the pressure
from the problem we consider the flow in the free-stream where the
streamwise velocity is a function of 𝑥 only, and the wall normal velocity
is identically zero. Outside of the boundary layer it must also be true
that the stress varies only in the streamwise direction. Therefore, in the
limit as 𝑦 → ∞, we have from (4b) that

𝑢𝐹 d𝑥𝑢
𝐹 = −d𝑥𝑝 + d𝑥𝜏

𝐹
𝑥𝑥,

where the superscript 𝐹 denotes a free-stream quantity. As a first
attempt to solve system (4a) we seek a self-similar solution of the form

𝑢 = 𝜕𝑦𝛹, 𝑣 = −𝜕𝑥𝛹, 𝛹 =
√

𝑥𝑢𝐹 𝑓 (𝜂), 𝜂 = 𝑦
√

𝑢𝐹
𝑥
,

where, at this stage, we do not specify any restrictions on the three
stress components. From (4b) we have that

𝑢𝐹 d𝑥𝑢
𝐹
[

(𝑓 ′)2 −
𝑓𝑓 ′′

2
− 1

]

−
(𝑢𝐹 )2𝑓𝑓 ′′

2𝑥
= −d𝑥𝜏

𝐹
𝑥𝑥 + 𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑦𝜏𝑥𝑦, (5)

where the primes indicate differentiation with respect to the similarity
variable 𝜂. In order to achieve a self-similar solution, we must guaran-
ee that all the terms in above equation have the same 𝑥 dependence.
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Given the form of the left-hand side of (5), this concisely forces the
definition of the free-stream velocity, such that, 𝑢𝐹 = 𝑥𝑚, where 𝑚
dictates the angle of inclination of the flat plate as noted at the outset
of this section. In turn, this implies that 𝜏𝑥𝑦 = 𝑥(3𝑚−1)∕2𝑠𝑥𝑦(𝜂), and that
𝑥𝑥 = 𝑥2𝑚𝑠𝑥𝑥(𝜂). Therefore, upon inserting these three functions of 𝑥
nto (5), we arrive at

[(𝑓 ′)2 − 1] −
(𝑚 + 1)𝑓𝑓 ′′

2
= −𝑥1−2𝑚d𝑥𝜏

𝐹
𝑥𝑥 + 2𝑚𝑠𝑥𝑥 +

(𝑚 − 1)𝜂𝑠′𝑥𝑥
2

+ 𝑠′𝑥𝑦.

t must then follow that 𝜏𝐹𝑥𝑥 = 𝐶𝑥2𝑚, where the constant 𝐶 is determined
rom the solution of (4c) in the limit as 𝑦 → ∞. One finds that, in this
imit, a general solution of (4c) can only be found in the instance when

is identically zero and we must then have that 𝑠𝑥𝑥 → 0, as 𝜂 → ∞.
In order to determine the range of values of 𝑚 for which self-similar

olutions can exist, we must investigate the form of the governing stress
quations. Analysis of (4c)–(4e) reveals that 𝜏𝑦𝑦 = 𝑥𝑚−1𝑠𝑦𝑦(𝜂), and that
independence can only be ensured in the specific case when 𝑚 = 1,

.e., when one considers stagnation point flow over a wedge inclined at
n angle of 𝜋∕2 from the horizontal. We provide a schematic diagram
f this flow configuration in Fig. 1. In this specific case we have that
= 𝑥𝑓 ′(𝑦), 𝑣 = −𝑓 (𝑦), 𝜏𝑥𝑥 = 𝑥2𝑠𝑥𝑥(𝑦), 𝜏𝑥𝑦 = 𝑥𝑠𝑥𝑦(𝑦), and that 𝜏𝑦𝑦 = 𝑠𝑦𝑦(𝑦).
e note that primes now indicate differentiation with respect to 𝑦.
In order to simplify the forthcoming analysis it proves useful to

ntroduce the following transformations 𝑥𝑥 = 𝑠𝑥𝑥, 𝑥𝑦 = 𝑠𝑥𝑦 − 𝑓 ′′, and
𝑦𝑦 = 𝑠𝑦𝑦 + 2𝑓 ′. Having done so, we are able to express the problem as
system of six coupled first order ordinary differential equations

𝑓 ′ = 𝑔, 𝑔′ = ℎ, ℎ′ = 𝑔2 − 1 − 𝑓ℎ − 2𝑥𝑥 −  ′
𝑥𝑦, (6a, 6b, 6c)

𝑥𝑥 = Wi [2ℎ(𝛽ℎ + 𝑥𝑦) + 𝑓 ′
𝑥𝑥], (6d)

𝑥𝑦 = Wi [𝑓 (𝛽ℎ′ +  ′
𝑥𝑦) − 𝑔(3𝛽ℎ + 𝑥𝑦) + ℎ𝑦𝑦], (6e)

𝑦𝑦 = Wi [2𝑔(2𝛽𝑔 − 𝑦𝑦) − 𝑓 (2𝛽ℎ −  ′
𝑦𝑦)]. (6f)

This system must be closed subject to six boundary conditions. Given
that the surface of the plate is impermeable we must have that 𝑣(𝑦 =
0) = 0, thus 𝑓 (𝑦 = 0) = 0. The no-slip condition at the surface implies
that 𝑢(𝑦 = 0) = 0, and hence 𝑔(𝑦 = 0) = 0. Given that the boundary layer
flow must match with the free-stream above, we have the condition
𝑢(𝑦 → ∞) → 𝑢𝐹 , which implies that 𝑔(𝑦 → ∞) → 1. Our final three
conditions must relate to the three stress components.

We have already shown that 𝑥𝑥(𝑦 → ∞) → 0, it remains, therefore,
for us to arrive at physically relevant conditions for the functions 𝑥𝑦
and 𝑦𝑦. We note that as we approach the limit of infinite distance from
the wall, both 𝜏𝑥𝑦 and 𝜏𝑦𝑦 must tend to functions of 𝑥, the variable of
flow direction, and be independent of 𝑦. This is not to say that the
functions must be zero, in fact we will go on to show that this is not the
4

case. However, we must have no change in the stress contributions with
respect to 𝑦, otherwise there will be a discontinuity in our solutions at
the free-stream. It follows that our final two boundary conditions are
then 𝑠′𝑥𝑦(𝑦 → ∞) → 0, and 𝑠′𝑦𝑦(𝑦 → ∞) → 0. In summary, we must solve
system (6) with respect to the following six boundary conditions

𝑓 (𝑦 = 0) = 𝑔(𝑦 = 0) = 0, 𝑔(𝑦 → ∞) → 1,

𝑥𝑥(𝑦 → ∞) → 0,  ′
𝑥𝑦(𝑦 → ∞) → −ℎ′∞,  ′

𝑦𝑦(𝑦 → ∞) → 2ℎ∞,

here the infinity subscript denotes evaluation in the limit as 𝑦 → ∞.
n order to determine the values for the constants ℎ∞, and ℎ′∞, we look
o the decay of the solutions in the far-field.

Given that the streamwise velocity function 𝑔 tends to unity as
→ ∞, then 𝑓 → (𝑦 − 𝛿1), where

1 = ∫

∞

0
(1 − 𝑓 ′)d𝑦 = 𝑦∞ − 𝑓∞,

s the displacement thickness. It proves useful, in what follows, to in-
roduce the shifted coordinate 𝑌 = 𝑦−𝛿1. Given the far-field conditions
n 𝑥𝑥, and  ′

𝑥𝑦, we have from (6c) that the function ℎ must satisfy
′ − ℎ′∞ = −𝑌 ℎ,

n the limit as 𝑦 → ∞. This ODE has the solution

→ 𝑐 e−(𝑌
2−𝛿21 )∕2 +

√

2ℎ′∞𝐷
(

𝑌
√

2

)

,

here 𝑐 is a constant of integration and 𝐷 is Dawson’s Integral function.
hen, from (6f) it immediately follows that

𝑦𝑦 →
4Wi

1 + 2Wi

[

𝛽 +
𝑌 (ℎ∞ − 𝛽ℎ)

2

]

,

as 𝑦 → ∞. In order to ensure matching with the free-stream it must
hen be true that ℎ∞ = 0: if this is not the case then the solution for
𝑦𝑦 grows linearly with respect to 𝑦 at the outer edge of the boundary
ayer. Given this form for the solution for 𝑦𝑦, in the limit as 𝑦 → ∞,

from (6e), one can show that

𝑥𝑦 → −𝑎1𝛽ℎ(3 − 2𝑎2 + 𝑎2𝑌 ℎ + 𝑌 2) − 𝑎1(1 − 𝛽)ℎ′∞𝑌 ,

where

𝑎𝑛 =
𝑛Wi

(1 + 𝑛Wi) .

Again, in order to ensure matching with the free-stream it must then
be true that ℎ′∞ = 0, if this is not the case then the absolute value of the
solution for 𝑥𝑦 grows linearly with respect to 𝑦 at the outer edge of the
boundary layer (note that this conclusion could also have been drawn
from analysis of the expression for 𝑦𝑦). Thus, the function ℎ decays to
zero exponentially, ℎ → 𝑐 e−(𝑌

2−𝛿21 )∕2, irrespective of the value of the
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Weissenberg number. Therefore, as 𝑦 → ∞, the three stress functions
decay to their respective constant values as follows

𝑥𝑥 → 𝑎1𝛽ℎ
2[1 − 2𝑎2ℎ(3𝑌 )−1 + (𝑎−11 + 2𝑎2 − 3)𝑌 −2] ∼ e−𝑦2 , (7a)

𝑥𝑦 → 𝑎1𝛽ℎ[𝑎2(2 + ℎ′) − (3 + 𝑌 2)] ∼ 𝑦2e−𝑦2∕2, (7b)

𝑦𝑦 → 𝑎2𝛽(2 + ℎ′) ∼ 2𝑎2𝛽 + 𝑦e−𝑦2∕2. (7c)

The result for the function 𝑥𝑥 follows directly from integrating (6d)
with the known large-𝑦 expression for 𝑥𝑦. This ODE has a decaying
solution that can be expressed in terms of the function ℎ, the upper
incomplete gamma function and the complementary error function. To
leading order, the terms involving upper incomplete gamma function
and the complementary error function can be approximated in terms of
powers and ℎ and 𝑌 , and the result above follows. In order to ensure
some level of brevity, the details of this calculation are included for the
interested reader in Appendix B.

Given the above analysis, we are now in a position to solve the
system of six coupled first order ODEs that govern OB stagnation point
flow, (6), subject to the six physically correct boundary conditions

𝑓 (𝑦 = 0) = 𝑔(𝑦 = 0) = 0, 𝑔(𝑦 → ∞) → 1, (8a)

𝑥𝑥(𝑦 → ∞) → 0,  ′
𝑥𝑦(𝑦 → ∞) → 0,  ′

𝑦𝑦(𝑦 → ∞) → 0. (8b)

3. Numerical method and results

We solve (6) subject to (8) using a spectral method, in particular
a variation on the Chebyshev collocation scheme. We split the one
dimensional domain, 𝑦 = [0, 𝑦∞], into 𝑁+1 points, including the surface
of the flat plate and the far-field location, which we define to be at
𝑦0 = 0 and 𝑦𝑁 = 𝑦∞, respectively. At this stage, we choose not to
associate a specific value with 𝑦∞, instead we keep the formulation
general and determine a value for 𝑦∞ based on the outcome of our
numerical testing procedure. The solution points are linearly related to
the Chebyshev collocation points 𝜒𝑛 = cos (𝜋𝑛∕𝑁), with 𝑛 = 0, 1,… , 𝑁 ,
such that 𝑦𝑛 = 𝑦∞

(

1 − 𝜒𝑛
)

∕2, covers the entire domain. The majority
of the interesting dynamics associated with this problem occur in a
close proximity to the flat plate, which can be better approximated by
these collocation points as opposed to a uniform grid, given the higher
concentration of points at both ends of the 𝑦-domain.

We approximate all the flow quantities, 𝑞, as a finite sum

𝑞(𝑦) =
𝑁
∑

𝑗=0

′′𝑎𝑗𝑇
∗
𝑗 (𝑦),

where ′′ denotes that the first and last terms of the sum are halved, 𝑎𝑗
represents the set of constants to be fitted from our discrete solutions,
and 𝑇 ∗

𝑗 is related to the 𝑗th Chebyshev polynomial of the first kind 𝑇𝑗 ,
applied at location 𝜒𝑛, via

𝑇 ∗
𝑗 (𝑦𝑛) = 𝑇𝑗 (1 − 2𝑦𝑛∕𝑦∞) = 𝑇𝑗 (𝜒𝑛).

This form for the yet unknown functions is applied to all the quantities
present in both the governing Eqs. (6), and boundary conditions (8),
including the stress components and their derivatives. The one exemp-
tion being ℎ′, which is obtained post-hoc. The polynomials themselves
then form a set of orthonormal basis functions which are widely used in
interpolation and optimisation problems, not least due to their property
of having a maximum magnitude of 1 in the range 𝜒 ∈ [−1, 1]. One can
define these functions using their orthogonality condition with respect
to the inner product in integral form, but a simpler definition follows
directly from the recurrence relation

𝑇0(𝜒) = 1, 𝑇1(𝜒) = 𝜒, 𝑇𝑗 (𝜒) = 2𝜒𝑇𝑗−1(𝜒) − 𝑇𝑗−2(𝜒).

Using the discrete orthogonality relation

𝑁
∑

𝑛=0

′′ 𝑇 ∗
𝑖 (𝑦𝑛)𝑇

∗
𝑗 (𝑦𝑛) =

⎧

⎪

⎨

⎪

0, 𝑖 ≠ 𝑗
𝑁∕2, 𝑖 = 𝑗 ≠ 0, 𝑁
𝑁, 𝑖 = 𝑗 = 0, 𝑁

,

5

⎩

d

we can then calculate the unknown constants

𝑎𝑗 =
2
𝑁

𝑁
∑

𝑛=0

′′𝑞(𝑦𝑛)𝑇 ∗
𝑗 (𝑦𝑛),

here 𝑞(𝑦𝑛) is the value of a flow quantity at a point in the discrete
omain. These definitions allow us to return a continuous function for
ny quantity 𝑞, which is known exactly at the 𝑁 + 1 distinct points.
urthermore, we may find the derivative of a generic quantity, 𝑞′,
hich is described by way of a differentiation matrix

𝑖𝑗 =
2𝑏𝑗
𝑁

𝑁
∑

𝑛=0

′′ 𝑇 ∗′
𝑛 (𝑦𝑖)𝑇 ∗

𝑛 (𝑦𝑗 ), 𝑏𝑗 =
{

1∕2, 𝑗 = 0, 𝑁
1, 𝑗 ≠ 0, 𝑁

,

hich satisfies 𝑞′(𝑦𝑖) =
∑𝑁

𝑗=0 𝐴𝑖𝑗𝑞(𝑦𝑗 ), where 𝑇 ∗′
𝑛 represents the deriva-

ive of Chebyshev polynomial 𝑇 ∗
𝑛 with respect to 𝑦. This statement holds

rue for general choice of flow quantity, which is particularly useful
hen 𝑞 itself is a derivative.

The governing equations (6) are converted into a set of 9 closed
quations, taking care to account for the number of boundary condi-
ions noted in (8). The first 4 equations represent the conservation of
omentum and constitutive stress relations. These are implemented at

very point in the 𝑦-domain, which therefore provides 4𝑁+4 equations
o solve. Where a flow quantity, for example, 𝑔, is known at either
oundary due to our imposed conditions, this value is implemented
irectly in the numerical scheme and is not solved for. We also note
hat the only function that is not directly determined as part of our
umerical scheme is ℎ′. Therefore, it is necessary to make explicit use
f the differentiation matrix 𝐴𝑖𝑗 , in the determination of this function
nly.

The remaining governing equations describe the first order deriva-
ives of the 5 primary flow functions 𝑓, 𝑔, 𝑥𝑥, 𝑥𝑦, and 𝑦𝑦. We do so by
aking use of the differentiation matrix as described above, solving,

espectively, for

(𝑦𝑖)
(

1 − 𝛿𝑖𝑁
)

= 𝐴𝑖0𝑓 (𝑦 = 0) +
𝑁
∑

𝑗=1
𝐴𝑖𝑗𝑓 (𝑦𝑗 ) − 𝛿𝑖𝑁𝑔(𝑦 = 𝑦∞), 𝑖 = 1,… , 𝑁

ℎ(𝑦𝑖) = 𝐴𝑖0 𝑔(𝑦 = 0) + 𝐴𝑖𝑁 𝑔(𝑦 = 𝑦∞) +
𝑁−1
∑

𝑗=1
𝐴𝑖𝑗𝑔(𝑦𝑗 ), 𝑖 = 1,… , 𝑁 − 1

 ′
𝑥𝑥(𝑦𝑖) = 𝐴𝑖𝑁𝑥𝑥(𝑦 = 𝑦∞) +

𝑁−1
∑

𝑗=0
𝐴𝑖𝑗𝑥𝑥(𝑦𝑗 ), 𝑖 = 0,… , 𝑁 − 1.

 ′
𝑥𝑦(𝑦𝑖) =

𝑁
∑

𝑗=0
𝐴𝑖𝑗𝑥𝑦(𝑦𝑗 ), 𝑖 = 0,… , 𝑁 − 1.

 ′
𝑦𝑦(𝑦𝑖) =

𝑁
∑

𝑗=0
𝐴𝑖𝑗𝑦𝑦(𝑦𝑗 ), 𝑖 = 0,… , 𝑁 − 1,

here 𝛿𝑖𝑁 represents the Kronecker delta. The 𝑦𝑖 locations at which
e solve the first order system above have been chosen to remove
egrees of freedom equal to the number of boundary conditions, such
hat we have a total of 9𝑁 + 3 equations to solve numerically. We
hoose to remove either one or two equations from the system based
n whether there is a fixed boundary condition on a particular quantity
r its integral. The first study involves a relation where the quantity
ummed over has at least one boundary condition attached to it. Take,
or example, the function ℎ(𝑦𝑖), as described above. We evaluate this
unction at all solution points apart from at the flat plate (𝑦 = 0) and
he far-field location (𝑦 = 𝑦∞), since we constrain its integral 𝑔(𝑦𝑖) at
hese points.

The other case is considered in, for example, the calculation of
′
𝑥𝑦(𝑦𝑖), where the boundary condition is applied to the quantity on the
eft-hand side. In this case, since no boundary conditions are placed on
𝑥𝑦, we are required to solve for it at all points 𝑦𝑛. However, since we
now the value of  ′

𝑥𝑦(𝑦 = 𝑦∞), the location 𝑖 = 𝑁 is excluded from
he calculations. This is equivalent to the statement that we know the
alue of 𝑞′ at a certain location, so we should not solve for it. We note
owever that this is not true of the first equation for 𝑔(𝑦𝑖) above, which

oes constrain 𝑓 with the known condition 𝑔(𝑦∞) → 1. We justify this
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Fig. 2. In (a) we plot the streamwise velocity 𝑢∕𝑥, against 𝑦, for a range of small values of the Weissenberg number. In (b), (c), and (d) we plot the variation of the three stress
functions for the same range of values of the Weissenberg number. In all cases the dimensionless retardation parameter is fixed such that 𝛽 = 0.8.
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y recognising that 𝑓 does have an attributed boundary condition, and
o falls into the first category of equation removals described above.

We use MATLAB to solve the system as described above, with the
evenberg–Marquardt algorithm up to a norm mean square error of
0−18. The numerical solutions presented here are calculated with a
alue of 𝑁 + 1 = 200 solution points for a variety of both Wi and 𝛽

values.
In order to determine a suitable value for the location of the far-field

boundary 𝑦∞, we solved the Newtonian flow problem (Wi = 0) for a
range of combinations of both 𝑁 and 𝑦∞. In each case we maintain the
norm mean square error tolerance of 10−18. These Newtonian results
were also compared to solutions obtained from a fourth-order Runge–
Kutta integration scheme twinned with a secant shooting method.
The difference between the results obtained via these schemes was
numerically indistinguishable. Moving forward, we set 𝑦∞ = 5 to be
the free-stream location, which captures the dynamics in the far-field in
precisely the same way as any larger value for each of our viscoelastic
models.

In the first instance, we will consider solutions to (6) subject to (8)
for an arbitrary fixed value of the dimensionless retardation parameter,
𝛽 = 0.8. We note that the special case when 𝛽 = 1, corresponding to
a system with an upper-convected Maxwell constitutive viscosity law,
will be covered, in detail, in Section 4.

Given the initial conditions noted in (8a), from (6f) it is clear that
𝑦𝑦(0) = 𝑠𝑦𝑦(0) = 𝜏𝑦𝑦(0) = 0. It then follows from (6e), that 𝑥𝑦(0) = 0,
thus 𝑠𝑥𝑦(0) = 𝑥−1𝜏𝑥𝑦(0) = ℎ(0). Lastly, from (6d), we must have that
𝑥𝑥(0) = 𝑠𝑥𝑥(0) = 𝑥−2𝜏𝑥𝑥(0) = 2𝛽Wi [ℎ(0)]2. Therefore, for any fixed
6

value of 𝛽, there will exist a value of the Weissenberg number, Wi = w
[2𝛽ℎ(0)]−1, such that ℎ(0) = 𝑠𝑥𝑥(0) = 𝑠𝑥𝑦(0). The value of these functions
at the wall are closely related to two important parameters for flat
plate viscoelastic boundary layer flows; the skin friction coefficient and
the first normal stress difference. Firstly, the skin friction coefficient is
defined as follows:

𝐶𝑓 =
[ 2𝜏∗𝑥∗𝑦∗
𝜌∗(𝑈∗)2

]

|

|

|

|𝑦∗=0
= 2Re−1∕2(𝜏𝑥𝑦)|𝑦=0

= 2𝑥Re−1∕2ℎ(0)
− 2𝑥Wi Re−1∕2

× [𝑔(0)𝑠𝑥𝑦(0) − 𝑓 (0)𝑠′𝑥𝑦(0) − ℎ(0)𝑠𝑦𝑦(0)]

+ 2(1 − 𝛽)𝑥Wi Re−1∕2[3𝑔(0)ℎ(0) − 𝑓 (0)ℎ′(0)].

Given that 𝑓 (0) = 𝑔(0) = 𝑠𝑦𝑦(0) = 0, neither Wi, nor 𝛽 appear explicitly
in the expression for the Oldroyd-B skin friction coefficient. Therefore,
𝐶𝑓 = 2𝑥Re−1∕2ℎ(0), which is identical to the standard Newtonian
expression. The other important quantity for flows such as these is the
first normal stress difference at the wall:

𝑁1 =
[2(𝜏∗𝑥∗𝑥∗ − 𝜏∗𝑦∗𝑦∗ )

𝜌∗(𝑈∗)2

]

|

|

|

|𝑦∗=0
= 2(𝜏𝑥𝑥 − Re−1𝜏𝑦𝑦)|𝑦=0 = 4𝛽𝑥2 Wi [ℎ(0)]2.

e observe that the first normal stress difference at the wall is di-
ectly proportional to the square of the skin friction coefficient, 𝑁1 =
Wi Re𝐶2

𝑓 .

.1. Small Wi ∼ 𝑂(1)

In the first instance we consider low Weissenberg number flows,
hich is in keeping with previous analyses available in literature. A
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Table 1
Base flow data for a range of values of the Weissenberg number in the case when
𝛽 = 0.8. We note that, in the limit as 𝑦 → ∞, the value of wall normal stress function,
(𝜏𝑦𝑦)∞, does not need to be computed numerically, instead, it is calculated using the
asymptotic result that (𝜏𝑦𝑦)∞ → 4𝛽Wi∕(1 + 2Wi) − 2.

Wi 𝑥−1Re1∕2𝐶𝑓 𝑥−2𝑁1 (𝜏𝑦𝑦)∞ 𝛿1
= 2ℎ(0) = 4𝛽Wi [ℎ(0)]2

0 2.4652 0 −2 0.6479
0.1 2.6514 0.5624 −1.7333 0.5893
0.2 2.8430 1.2932 −1.5429 0.5429
0.3 3.0361 2.2123 −1.4 0.5058

Fig. 3. Variation of the skin friction coefficient and the first normal stress difference
at the wall for three values of the dimensionless retardation parameter 𝛽 and a range
of values of the Weissenberg number. The solid curves represent the 𝛽 = 1 solutions,
the dashed curves the 𝛽 = 0.8 solutions, and the dotted curves the 𝛽 = 0.6 solutions.

comparison between our solutions and those of preceding studies can
be found in Section 4.

It is evident, from the results presented in Fig. 2(a), that as the
value of the Weissenberg number is increased, so does the streamwise
velocity within the boundary layer. Similarly, as evidenced in Table 1
and Fig. 3, the value the skin friction coefficient, and therefore also
the first normal stress difference at the wall, increases with increasing
Wi. This is an indication that the effects of viscoelasticity act to thin
the boundary layer profile. Indeed, the fluid particles accelerate near
the wall and obtain the value of the free-stream velocity closer to the
surface of the plate, primarily because of the increased difference in the
first normal stress difference at the wall, with increasing Weissenberg
number. This correlates directly to a decreasing of the displacement
thickness, 𝛿1, as the value of Wi increases.

From Fig. 2(b), (c), and (d) we are able to correlate our approximate
predictions for the decay of stress functions, in the limit as 𝑦 → ∞,
with our numerical solutions. We observe, as predicted by (7), the
rapid decay of the streamwise stress function 𝜏𝑥𝑥∕𝑥2, when compared
to both the shear stress function 𝜏𝑥𝑦∕𝑥, and the wall normal stress
function 𝜏𝑦𝑦. For unconfined boundary layer flows, such as the flows
analysed here, the shear rate is largest at the wall. As one moves away
from the wall the shear rate dissipates and the free-stream conditions
are attained. The introduction, therefore, of fluid elasticity generates,
at the wall, a non-zero stress contribution parallel to the direction of
the flow. This explains the form of the 𝜏𝑥𝑥∕𝑥2 profiles for increasing
values of the Weissenberg number. In a similar fashion, as we transition
from analysing a purely viscous fluid (Wi = 0), to a fluid with elastic
properties (Wi > 0), the shear stress at the wall increases as a result
7

of the introduction of elastic forces, hence the form of the profiles
observed in Fig. 2(c). We note that the boundary conditions imply that
the wall normal stress function, 𝜏𝑦𝑦, will always be zero at the wall.
From (4e) we see that 𝜏𝑦𝑦 is proportional to 𝜕𝑣∕𝜕𝑦 = −𝑓 ′ = −𝑢∕𝑥, it
must, therefore, be the case that this function attains a constant nega-
tive value at the outer edge of the boundary layer. From Fig. 2(d) we
observe that the introduction of elasticity acts to reduce the magnitude
of the wall normal stress component at the free-stream. This result
correlates, physically, with the ability of the elastic forces to resist the
action of the inertia forces directed towards the surface of the flat plate.

We note that, although not plotted here, as the value of 𝛽 decreases
rom 1, for a fixed value of the Weissenberg number, the thickness of
he boundary layer increases, and the values of both the skin friction
oefficient and first normal stress difference at the wall decrease. Phys-
cally, these results match with ones’ intuition. Decreasing the value of

effectively reduces the ability of the fluid to overcome retardation
ffects and thus, for a fixed free-stream velocity, one would expect to
bserve a thickening of the boundary layer.

.2. Moderate Wi ∼ 𝑂(1)

The spectral method we use to calculate the flow profiles is not
imited to relatively low values of Weissenberg number, as is frequently
onsidered in the literature. We find that, given the number of colloca-
ion points as prescribed, the system can be well described up to a value
f Wi ≈ 3. This value falls well within the 𝑂(1) restriction which was
mposed in the non-dimensionalisation procedure outlined in Section 2.

Fig. 4 shows the dependence of our horizontal velocity and stress
omponents, given a variety of moderate 𝑂(1) Weissenberg numbers
nd a constant value of the retardation parameter, 𝛽 = 0.5. We can see
hat, similarly to the smaller Wi cases, an increase in the Weissenberg
umber yields a return to free-stream profiles closer to the wall. As
oted previously, an increase in viscoelastic effects within the fluid
hase therefore leads to a decrease in the boundary layer thickness.

Fig. 4(a) shows a seeming convergence to fixed flow profile as
i increases. This likely indicates that there is a threshold for Wi at
hich the viscoelastic contributions to the governing equations become
ominant. We note that the dependence is clearly non-linear, and we
onfirm that intermediate Weissenberg number velocities converge in
monotonic fashion. The investigation into Wi ∼ 𝑂(𝛿−1) simulations,

iven the same scalings provided in Section 2, is left as an open
roblem.

Stress functions 𝜏𝑥𝑥, 𝜏𝑥𝑦 and 𝜏𝑦𝑦 are plotted in Fig. 4(b), (c), and
d), respectively. Qualitatively similar results are obtained to those
resented in Section 3.1. The main difference between the two sets of
esults is, however, the magnitude of effects. For example, we observe
hat the stress function 𝜏𝑥𝑥∕𝑥2 attains a much higher peak at the wall

when compared to Fig. 2(b). Furthermore, we note that the free-stream
value in all the stress components is attained closer to the wall, which
mimics the behaviour of the streamwise velocity.

For fixed Wi = 2, we evaluate the variation of the streamwise
velocity profile 𝑢∕𝑥 as the retardation parameter 𝛽 decreases. We
observe in Fig. 5(a) that as 𝛽 reduces in value, which represents
a decrease in polymer viscosity (compared to solvent viscosity), the
streamwise velocity decreases accordingly. This results in a thickening
of the boundary layer at fixed moderate values of the Weissenberg
number.

In Fig. 5(b) we plot the variation of the displacement thickness,
𝛿1, for a range of moderate Weissenberg numbers and our familiar
choices of the retardation parameter. Naturally, the same behaviour
as described above in Fig. 5(a) is confirmed here: the boundary layer
thickens as the value of 𝛽 decreases. Furthermore, we observe that 𝛿1
appears to approach a fixed constant value as Wi increases towards the
upper end of the spectrum of moderate values. We note that this result
is not immediately evident from an analysis of the governing equations.

Independent of the value of 𝛽, all curves show a monotonic decreasing
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Fig. 4. In (a) we plot the streamwise velocity 𝑢∕𝑥, against 𝑦, for a range of moderate values of the Weissenberg number. In (b), (c), and (d) we plot the variation of the three
stress functions for the same range of values of the Weissenberg number. In all cases the dimensionless retardation parameter is fixed such that 𝛽 = 0.5.
Fig. 5. In (a) we plot the streamwise velocity 𝑢∕𝑥, against 𝑦, for a range of value of the retardation parameter, given a fixed moderate Wi = 2. In (b) we plot the variation of the
displacement thickness for moderate values of the Weissenberg number, for the same range of 𝛽 values. The Newtonian reference solution 𝛿1 = 0.6479, is returned in each case

hen Wi = 0.
4

t
i

ature, which has strongest gradient at the Newtonian limit. They also
how clearly that any introduction of viscoelastic effects, or indeed a
olymer viscosity will produce a thinning of the boundary layer, when
ompared to the Newtonian constant value 𝛿1 = 0.6479. Indeed, when
= 0.7, and Wi = 3, we observe an approximate halving the thickness

f the boundary layer when compared to the Newtonian counterpart.
8

M

. Comparisons with previous studies

As noted in Section 1, numerous previous studies have considered
he stagnation point boundary layer flow problem for viscoelastic flu-
ds, with particular emphasis being focused on the upper-convected
axwell model (𝛽 = 1). To the best of our knowledge, all previous
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Fig. 6. In (a) we plot the streamwise velocity 𝑢∕𝑥, against 𝑦, for a range of values of the Weissenberg number. Our solutions are represented by the solid-line curves whilst those
of Sadeghy et al. [15] are represented by the dashed-line curves. In (b) we plot the variation of the displacement thickness with the Weissenberg number. The Newtonian result
𝛿1 = 0.6479 (black solid-line), is plotted across the full Wi range to serve as a point of reference.
studies are confined to the cases when Wi ≤ 1∕2. For this reason,
e restrict comparisons to our small Wi case study. We note that, in

ontrast to this high Reynolds number study, in the limit of creeping
low (Re ≪ 1), many previous investigation have not been limited to
his restrictive range of values of the Weissenberg number and, instead,
hoose to scale Wi with some inverse power of the boundary layer
hickness [31–33].

.1. Upper-convected Maxwell fluid model

In the case when 𝛽 = 1, the governing ODEs for this problem, (6),
educe to those representing an upper-convected Maxwell constitutive
iscosity law. In this instance we are able to compare our results with
hose of Sadeghy et al. [15] who, following the analysis of Harris [16],
rrived at the following ODE that is claimed to model the stagnation
oint flow of a fluid exhibiting an upper-convected Maxwell viscosity
′′′ + 𝑓𝑓 ′′ + 1 − (𝑓 ′)2 + 𝑘(𝑓 2𝑓 ′′′ − 2𝑓𝑓 ′𝑓 ′′) = 0,

where 𝑘 is referred to as the elasticity number. Given our notation, we
will consider this to be equivalent to our definition for the Weissenberg
number. The authors solve this ODE subject to the standard boundary
layer conditions noted previously

𝑓 (𝑦 = 0) = 𝑓 ′(𝑦 = 0) = 0, 𝑓 ′(𝑦 → ∞) → 1.

iven the relatively simple form of this third order ODE one could use
variety of different numerical methods to arrive at accurate solutions.

ndeed, Sadeghy et al. [15] (from this point onwards referred to as
HT), opted to use a Chebyshev spectral scheme, somewhat similar in
ature to our own scheme described in Section 3. SHT produce results
or Wi in the range Wi = [0, 0.3] and analyse both the streamwise veloc-
ty profile and the displacement thickness. We reproduce their results
sing a simplified version of our own spectral scheme. Qualitatively,
ur reproduction of SHT’s results appears to be exact. However, we are
nable to make a quantitative statement due to the fact that SHT did
ot report any numerical values from which we could benchmark.

In Fig. 6 we compare our results with those of SHT for both of
hese quantities. We observe that as the value of the dimensionless
iscoelastic parameter, Wi, increases from 0 (Newtonian flow) our
esults differ in every respect when compared to those of SHT. As the
eissenberg number increases from zero our results indicate that the

ree steam velocity will be attained closer to the surface of the flat plate.
his result is a direct consequence of the predicted increase of shear
tress at the wall (see Table 1). Naturally, this is reflected in a thinning
f the boundary layer and a reduction in the value of the displacement
hickness 𝛿1. On the other hand, SHT’s analysis predicts that the shear
9

tress at the wall will decrease and the boundary layer itself will
Fig. 7. Variation of the streamwise velocity 𝑢∕𝑥, against 𝑦 in the specific case when
Wi = 0.05. Our result is represented by the solid-line curve, that of Beard and Walters
[7] is represented by the dash-dotted black curve, and that of Sadeghy et al. [15] is
represented by the dashed-line curve.

become broader when compared to its Newtonian counterpart. These
results are contrary not only to those owing from our analysis of the
full governing equations but also to those of Beard and Walters [7]
who predict, in the limit when Wi ≪ 1, that both the velocity in the
boundary layer, and stress at the solid boundary, will increase because
of the effect of viscoelasticity.

In Fig. 7 we compare our solution for the streamwise velocity
component with those of SHT and also Beard and Walters [7] (from
this point onwards referred to as BW). In order to reproduce the results
of BW we solve their governing equations ((23)–(24)) subject to the
relevant boundary conditions ((25)–(26)) using a fourth-order Runge–
Kutta (RK4) integrator alongside a Newton–Raphson shooting routine.
In the case when Wi = 0.05, BW predict that 𝜏𝑥𝑦(0) = 1.2895. When we
attempt to reproduce their analysis we find that 𝜏𝑥𝑦(0) = 1.2896. The
relative closeness of these results suggest that our RK4 scheme correctly
reproduces the results of BW (one would not necessarily expect the two
values to match identically given that we are able to produce results
to a much higher numerical tolerance). Given that BW’s analysis is
only strictly valid for small values of the Weissenberg number, and
in this case we have set Wi = 0.05, it is reaffirming that their result
match almost identically with our solution obtained from the governing
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Eqs. (6) and boundary conditions (8). In contrast, SHT’s result does
not closely match that of BW’s, something one would expect given the
relative smallness of the Weissenberg number.

SHT argue that the difference between their solutions and those
of BW are because BW are essentially analysing a second-order fluid
model problem. Whereas, they claim to be solving the equations rel-
evant to a UCM boundary-layer flows. However, as we have shown,
for flows of this nature, the UCM model collapses down to the second-
order fluid model in instances when the Weissenberg number is small.
Thus, one would not expect there to be a vast disparity between the
results of the two studies for the range of values of the Weissenberg
number that were analysed Wi = [0, 0.3]. Indeed, SHT note that their
work serves to demonstrate quite clearly that the constitutive equation of a
luid may be of crucial importance in boundary layer studies of viscoelastic
luids’. However, having followed the incorrect formulation presented
y Harris [16], SHT have, in fact, arrived at erroneous conclusions that
ail to capture the correct physics of the problem.

Aside from the work of SHT, we can compare our results to those
eported by Phan-Thien [21]. The governing equations used in [21]
annot be reduced to a single governing ODE, as they have been in
he case of SHT’s analysis, and it is a relatively straightforward task to
how that Phan-Thien’s system of ODEs is directly equivalent to those
resented in Section 3. We note, however, that there is a discrepancy
etween the boundary conditions, for the three stress functions, that
han-Thien [21] employs at the far-field, and our own. Due to a slightly
iffering formulation to the problem, Phan-Thien’s analysis is also
estricted to flows whereby the Weissenberg number must satisfy the
ondition that Wi < 1∕2. The only reported values in that study, to
hich we can make any comparison, are those for the thickness of the
oundary layer. This quantity is defined in [21] to be the point at which
he streamwise velocity function attains 99% of the free-stream velocity
from this point onwards we will denote this constant value 𝛥99). We

find that, to the same order of accuracy as given in [21] (2 d.p.), the
results owing from our spectral approach match precisely with those
obtained from Phan-Thien’s central difference scheme.

In an attempt to extend the study of SHT, Mirzadeh and Sadeghy
[23] return to the stagnation point flow problem, and consider a
Giesekus governing viscosity law. This model is only slightly more com-
plex than the upper-convected Maxwell model, and it should be noted
that under the correct limiting choice of constants, the Giesekus model
reduces in complexity to UCM. However, upon comparison of both our
own UCM results (and those of Phan-Thien [21]) with those presented
by Mirzadeh and Sadeghy [23], we note a discrepancy between the
reported values for the boundary layer thickness, 𝛥99. Again, this is
the only tangible reported value that we can make any comparison to.
Having analysed the formulation presented in [23] with our own (and
Phan-Thien’s) it would appear that the reason for this discrepancy is
due to the relative accuracy of their numerical scheme. Mirzadeh and
Sadeghy [23] utilise a Keller box method twinned with a Newton lin-
earisation procedure. Very few details about this linearisation process
are forthcoming in the Mirzadeh and Sadeghy’s article and it would
seem likely that it is this numerical procedure that causes the disparity
between the results, as opposed to the aforementioned work of SHT,
where clearly the erroneous governing equations are the direct cause
of the incorrect solutions.

4.2. Oldroyd-B fluid model

In the more general case when 𝛽 ≠ 1, the Oldroyd-B fluid equations
do not reduce to an explicit upper-convected Maxwell model. We can
therefore compare our results to those of Phan-Thien [22] (referred to
from now on as P–T), who consider a similar, though not identical,
stagnation point flow over a flat plate. As previously mentioned in
Section 1, due to P–T’s formulation of the problem he is restricted
to considering only a small finite range of the Weissenberg number,
10

Wi = [0, 0.5]. Indeed, P–T chooses not to present any results, either
tabulated or graphical, for the case when Wi > 0.4. This is in contrast
to our study where no such restriction applies.

Phan-Thien [22] uses an equivalent set of governing equations as
(6), the only difference being a reformulation of the governing viscosity
equation in terms of 𝝉∗𝑁𝑁 = 𝝉∗ − 2𝑬∗, the non-Newtonian contribution
to the stress. This difference in formulation is expected to be of no
consequence. However, upon comparing results for the boundary layer
thickness 𝛥99, there is a clear difference between our results and those
of P–T. We provide our calculated values in Table 2 to an accuracy of
5 significant figures, along with the literature values (3 s.f.) as well as
the relative difference between the results for the range of Wi and 𝛽
alues quoted by P–T.

We observe that there is a marked increase in the difference between
he results as 𝛽 decreases from its UCM value, 𝛽 = 1. At this specific

value, we match the literature [21] & [22] precisely to the given
accuracy of that paper, which cannot be said in any of the cases when
𝛽 ≠ 1. At its largest, we observed a relative difference between our
esults and those of P–T of 1.75%. We note that we do not see a uniform
hange in the percentage error for increasing Wi or decreasing 𝛽, as one

might expect. This is attributed to the relative accuracy of P–T’s stated
results. Having said that, in general, we observe that for larger values of
both the Weissenberg number and the retardation parameter the error
between the two solution sets grows.

The disparity between these two sets of results cannot be due to
P–T’s differing formulation of governing equations: we have used our
in-house spectral code to model exactly P–T’s system of ODEs. We find
that the values of 𝛥99 from these calculations match precisely with our
own results tabulated in Table 2, i.e., when we mimic P–T’s analysis
we obtain our results. The finite difference scheme employed by P–T is
based on a central difference approach, and provides accuracy up to 3
s.f. However, this cannot account for the source for difference between
our results and those of P–T, since even the EG values to the same order
of accuracy do match those of P–T. We must conclude, therefore, that
there is some small error in the code used by P–T.

5. Conclusions

In this paper we have investigated viscoelastic boundary layer flows
of fluids described using one of three different models. We have derived
the full set of coupled equations in two dimensions which represent all
of these fluid models, and further rigorously determined the boundary
conditions that must be imposed at the far-field. In the process of
doing so, we have highlighted the inadequacies of a number of previous
studies in the literature, which fail to capture the correct physics of the
problem. The coupled system of governing equations was solved using
a Chebyshev collocation method, to a high degree of accuracy.

Results for the streamwise velocity profile and the individual stress
components are presented for specific choices of viscoelastic and vis-
cosity parameters. We find that, contrary to the findings of previous
investigations, in particular [15], an increase in viscoelasticity results in
a thinning of the boundary layer. Our results tend to agree qualitatively
with the work of [21,22] for lower Weissenberg numbers. However,
with reference to the determination of the boundary layer thickness,
there is a clear disparity between the specific values quoted by these
studies and our own. We provide context for the variation of the three
stress components across the boundary layer, and show that all of them
behave well in the Newtonian limit, where the solution is well known.
Furthermore, we evaluate both the skin friction coefficient and first
normal stress difference at the wall for fluids with viscosity captured
by the Oldroyd-B model. Both of these quantities show a monotonic
increase with increasing viscoelastic effects, with the same statement
being true as the ratio of the solvent to total viscosity increases.

For moderate values of the Weissenberg number, we present results
that retain the high degree of accuracy associated with our spectral
method, which would typically be very challenging for finite differ-

ence schemes to reproduce. The streamwise flow velocity, along with
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Table 2
A comparison between our results for the boundary layer thickness, 𝛥99, and those presented by Phan-Thien [22]. The relative
difference between the solutions is noted in each of the third sub-columns.
Wi 𝛽 = 1 𝛽 = 0.7 𝛽 = 0.5 𝛽 = 0.2

EG P–T % EG P–T % EG P–T % EG P–T %

0.1 1.9830 1.98 0 2.1129 2.13 0.95 2.1928 2.20 0.46 2.3127 2.33 0.87
0.2 1.6933 1.69 0 1.9281 1.95 1.04 2.0729 2.10 1.45 2.2677 2.29 0.88
0.3 1.4735 1.47 0 1.8032 1.82 1.11 1.9880 2.00 0.50 2.2378 2.25 0.45
0.4 1.2987 1.30 0 1.7133 1.74 1.75 1.9331 1.96 1.55 2.2128 2.23 0.90
w
c

c

the stress functions can be seen to approach invariant profiles with
increasing values of the Weissenberg number. This behaviour is likely
indicative of a transition change from the regime where Wi ∼ 𝑂(1) to
higher orders. We note that at a value of Wi = 3, with 𝛽 = 0.7, the
displacement thickness approximately halves when compared to the
Newtonian reference.

Given the relatively general nature of this work, there is a reason-
ably large range of natural extensions that one may wish to consider.
Firstly, the framework presented here could be extended to encapsulate
other viscoelastic models. One could consider, for example, extensions
to the Phan-Thien Tanner, Giesekus or FENE-P models.

Conversely, one may choose to analyse different types of boundary
layer flows whilst considering only the viscoelastic models discussed
here. One obvious candidate, given its relative prominence in the
literature, would be the boundary layer flow induced by the stretching
of a solid surface. In effect, a study of this nature would serve as a
correction to the analysis presented by Sadeghy et al. [14].

At the outset of this study we restricted our attention to mod-
erate Weissenberg number flows. However, there is no reason why
the methodology presented here could not be reformatted to solve
boundary layer flows associated with large values of the Weissenberg
number. Indeed, the governing equations for that problem, as noted by
Evans [33], are simply a modified subset of the governing boundary
layer equations presented here.

With regards to our original motivation to tackle this problem, we
intend to use the results of this study to form the basis for a much wider
body of work focusing on the injection of a non-Newtonian fluid into
an otherwise Newtonian boundary layer flow. We expect to be able to
report on the results of this study in the relatively near future.
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Appendix A. Boundary layer derivation for quadratic rate of strain
term

As noted in Section 2, the Oldroyd-B fluid model can be described in
dimensional terms via the constitutive stress relation (2), which under
the assumption of negligible polymer time scales, can be re-written as

𝝉∗ = 2𝜇∗𝐄∗ − 2𝜅∗
∇∗
∗

11

0 0 𝐄 .
This is a specific case study of the second-order fluid, defined by
Morozov and Spagnolie [27] as

𝝉∗ = 2𝜇∗
0𝐄

∗ + 2𝛼∗1
∇∗

𝐄∗ +4𝛼∗2 (𝐄
∗ ⋅ 𝐄∗),

ith the easiest comparison between the two coming from choice of
onstants 𝛼∗2 = 0, −𝜅∗

0 = 𝛼∗1 .
The apparent missing dynamics, which originate from the quadratic

strain rate tensor term, can be shown to play no role in the solution
of velocity or extra stress contributions for flat plate boundary layer
flows. We investigate this idea first by assuming a simplified version of
the stress tensor:

𝝉∗ = 2𝜇∗
0𝐄

∗ + 4𝛼∗2 (𝐄
∗ ⋅ 𝐄∗),

so chosen to capture the minimum amount of required physics. The first
term is the Newtonian contribution, which we know must be dominant
in the limit of zero viscoelasticity [1], and the second is our non-
Newtonian term of interest. This stress profile can be inserted directly
into the momentum equations, reducing the number of governing
equations from (6) to (3). Under the same non-dimensionalisation and
scaling process as outlined in Section 2, with the definition of a new
viscoelastic parameter 𝑘 = 𝛼∗2𝑈

∗∕𝜇∗
0𝐿

∗, we derive the following set of
oupled differential equations:

𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0,

𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = −𝜕𝑥𝑝 + 𝛿2𝜕𝑥𝑥𝑢 + 𝜕𝑦𝑦𝑢 − 2𝑘
(

𝜕𝑦𝑢𝜕𝑥𝑦𝑢 + 𝛿2𝜕𝑥𝑣𝜕𝑥𝑦𝑢

+ 4𝛿2𝜕𝑥𝑢𝜕𝑥𝑥𝑢 + 𝛿2𝜕𝑦𝑢𝜕𝑥𝑥𝑣 + 𝛿4𝜕𝑥𝑣𝜕𝑥𝑥𝑣
)

,

𝑢𝜕𝑥𝑣 + 𝑣𝜕𝑦𝑣 = −𝛿−2𝜕𝑦𝑝 + 𝛿2𝜕𝑥𝑥𝑣 + 𝜕𝑦𝑦𝑣 − 2𝑘
(

𝛿−2𝜕𝑦𝑢𝜕𝑦𝑦𝑢 − 4𝜕𝑥𝑢𝜕𝑦𝑦𝑣

+ 𝜕𝑥𝑣𝜕𝑦𝑦𝑢 − 𝜕𝑦𝑢𝜕𝑥𝑥𝑢 − 𝛿2𝜕𝑥𝑣𝜕𝑥𝑥𝑢
)

.

Here we note that the momentum equations above have been simplified
via use of the continuity equation.

In the limit as Re → ∞, the above reduces to

𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0,

𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = −𝜕𝑥𝑝 + 𝜕𝑦𝑦𝑢 − 2𝑘𝜕𝑦𝑢𝜕𝑥𝑦𝑢,

0 = −𝜕𝑦𝑝 − 2𝑘𝜕𝑦𝑢𝜕𝑦𝑦𝑢.

In a similar fashion to our previous analysis, we solve the 𝑦 momentum
equation for pressure, leading to the succinct formula 𝑝(𝑥, 𝑦) = 𝑃 (𝑥) −
𝑘[𝜕𝑦𝑢(𝑥, 𝑦)]

2, where 𝑃 is a yet unknown function of 𝑥. One can see that
upon inserting this definition into the 𝑥 momentum equation, all terms
dependent on the viscoelastic parameter 𝑘 will naturally cancel out:

𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 = −𝜕𝑥𝑃 + 𝜕𝑦𝑦𝑢.

Since we know 𝑘 to be a factor of every term in our boundary layer
equations which comes from the 𝐄∗ ⋅ 𝐄∗ contribution, it is clear that
both velocities 𝒖∗, and stresses 𝝉∗, act independently of it. Instead,
we find that the quadratic rate of strain tensor contributes to the
pressure function only, in the form of the Newtonian shear derivative
squared. We also note that this result is true independent of the angle
of inclination of our boundary layer flow.

Appendix B. Decay of the function 𝒙𝒙 in the far-field

Using the results for the far-field decay of the functions 𝑥𝑦 and 𝑦𝑦,

presented in Section 2, one can then determine the form of the decay of
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O

𝑌

w
p
c
t

𝛤

a
√

the function 𝑥𝑥, to zero, as 𝑦 → ∞. From analysis of (6d). The relevant
DE to solve is then

 ′
𝑥𝑥 = −2𝑏𝛽ℎ2 + 2𝑎1𝛽ℎ2(𝑎2𝑌 ℎ + 𝑌 2),

where 𝑏 = 1 + 𝑎1(2𝑎2 − 3). This differential equation has the decaying
solution

𝑥𝑥 → 𝛽𝑐2
{

𝑏 e𝛿
2
1𝛤 (0, 𝑌 2)−𝑎1

[

𝑎2𝑐 e𝛿
2
1

√

2𝜋e𝛿
2
1

3
erfc

(
√

3
2
𝑌
)

−e−(𝑌
2−𝛿21 )

]}

,

here 𝛤 is the upper incomplete gamma function, erfc is the com-
lementary error function, and the constant of integration has been
hosen such that the free-stream boundary condition is satisfied. Now,
o leading order

(0, 𝑌 2) ∼ 𝑌 −2e−𝑌 2
,

nd

2𝜋
3

erfc
(
√

3
2
𝑌
)

∼ 2(3𝑌 )−1e−3𝑌 2∕2.

Thus the result stated in Section 3 follows

𝑥𝑥 → 𝑎1𝛽ℎ
2[1 − 2𝑎2ℎ(3𝑌 )−1 + (𝑎−11 + 2𝑎2 − 3)𝑌 −2].

Appendix C. Data repository

An accessible version of our spectral code can be found on GitHub
via https://github.com/L-Escott/OB_Spectral_Code.
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