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Abstract 

 

A novel frequency domain numerical method for Very Large Floating Structure (VLFS) hydroelasticity is 

developed. The problem is formulated in the 2D ocean waveguide, featuring a realistic seabed bathymetry and 

the presence of inhomogeneous, elastic plates of varying thickness and negligible draft. An in vacuo modal 

expansion for the plate deflection is employed to decouple the hydrodynamics from structural mechanics. The 

inhomogeneous plate is considered to undergo cylindrical bending, while depending on the slenderness and the 

excited wavelength the structure can be modelled using either Classical Thin Plate theory or Mindlin’s model, 

accounting for first order shear deformation effects. A weighted residual approach is employed to treat the 

component hydrodynamic problems, coupled with an enhanced vertical representation for the wave potential, 

able to accurately account for abrupt bathymetric changes, following Athanassoulis and Belibassakis (1999). 

The reduced weak problem is solved by means of the Finite Element Method (FEM). Finally, a series of 

comparisons are carried out against published results for a range of configurations. 
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1 Introduction 

Ocean wave interaction with flexible structures finds numerous applications in marine science and 

technology as well as in ocean and polar engineering. The adjacent fields focus on the study of wave-structure-

seabed interaction, targeting engineering structures and geophysical formations, such ice shelves or ice floes, 

respectively (Squire, 2008). Very Large Floating Structures and floating ice formations share two distinct 

hydrodynamic features; their large dimensions compared to the incident wavelengths and their bending rigidity 

which renders flexural modes dominant. Wave-induced structural response and its underlying effect on the 

hydrodynamic field is important for the in-depth understanding of physical processes like ice shelf calving 

events (Ilyas et al., 2018; Papathanasiou et al., 2019; Papathanasiou and Belibassakis, 2018; Porter, 2019) and 

the robust design of engineering structures operating nearshore  (Karperaki et al., 2016; Nguyen et al., 2019).  

For the treatment of the linearised hydroelastic problem, potential theory is employed for the hydrodynamic 

modelling. The small wave amplitude assumption, leading to the exclusion of nonlinear and viscous effects is 

justified by the slenderness of the structure. Considering the above kinematic considerations, the Classical Thin 

Plate (Kirchhoff-Love) theory is commonly employed for the dynamic response of the floating body (Faltinsen, 

2015; Wang et al., 2006; Watanabe et al., 2004).   

https://doi.org/10.1016/j.jfluidstructs.2021.103236
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The linearized problem is effectively treated in the frequency domain with the majority of published works 

employing a modal expansion technique, aiming at the decoupling of the structural response and the 

hydrodynamics or proposing a direct solution of the coupled equations (Watanabe et al., 2004). In modal 

expansion techniques, the structural oscillation is expressed as a series expansion involving a class of basis 

functions. By means of the underlying linearity assumption, the problem is decomposed into component 

diffraction and a series of radiation problems corresponding to structural oscillations  (Newman, 1994; Taylor 

and Waite, 1978). For the modal expansion, the ‘dry’ in vacuo modes of the freely floating structure constitute a 

natural and common choice (Kashiwagi, 1998; Wu et al., 1995). The hydrodynamics and the structural response 

are fully decoupled allowing for the adoption of different analytical or numerical tools, facilitating the 

emergence of many computational schemes in the frequency domain (see Squire (2008) and Wang et al. (2006) 

for a literature review). Subsequently, the motion equation of the plate is satisfied and the dynamic coupling of 

the wave-field and structure is completed. 

While in the majority of published works on hydroelasticity, the structure is modelled as a thin plate, 

attempts have been made to account for the rotary inertia and shear deformation effects of a plate structure 

under wave forcing by means of Mindlin, shear deformable plate theory, e.g. Fox and Squire, (1991), Zhao et 

al. (2008), Praveen et al. (2019).  Recently, Praveen and Karmakar (2019) considered the hydroelastic 

behaviour of a floating Mindlin plate over variable bathymetry. In the latter work, seabed variations are 

restricted in the hydroeastic region of the 2D fluid strip. Considering general bathymetries, Kyoung et al. (2005) 

employed a modal expansion h in terms of the in vacuo bending modes in conjunction with FEM in the fluid 

region for the solution of the hydroelastic problem, featuring a homogeneous, rectangular Kirchhoff plate. In the 

above, the bottom boundary condition is explicitly satisfied. In Liu et al. (2020), the variable bathymetry is 

approximated by a series of  flat steps while local, multi-mode vertical eigenfunction expansions are employed 

for the representation of the wave potential. Belibassakis and Athanassoulis (2005) proposed a continuous 

coupled-mode technique for the hydroelastic analysis of a uniform thin, semi-infinite plate of shallow draft, 

floating over variable bathymetry regions.  The bottom boundary condition in the non-separable domain is 

consistently satisfied by means of the additional sloping bottom mode. A highly desirable feature of the above 

work is that it leads to dimensionality reduction with no underlying assumptions with respect to the bottom 

slope or curvature. The method was later extended for the treatment of the full 3D bathymetric effects and finite 

rectangular plates in Gerostathis et al. (2016). In a related note, single-mode and multi-mode vertical expansions 

were also employed by Porter and Porter (2004) and Bennetts et al. (2007) respectively in the 2D scattering 

problem by a thin plate of variable thickness. In the aforementioned works accounting for non-negligible draft, 

a variational principle is appropriately augmented by an auxiliary functional featuring a Lagrange multiplier 

function in order to weakly satisfy continuity conditions across the fluid-structure interface. In the present 

contribution, a weighted residuals approach is adopted instead of a variational principle. A Lagrange multiplier 

formulation of the weak problem is subsequently employed for the satisfaction of the essential condition for the 

velocity potential, implying continuity, across the fictitious interfaces between free-surface and plate-covered 

subregions.  

More specifically, in the present work a novel frequency domain method for the treatment of the hydroelastic 

problem, able to account for shear deformation effects, structural inhomogeneity and variable bathymetry is 

presented. In order to decouple the hydrodynamic analysis and the structural dynamics analysis, modal 

expansion for the plate deflection in terms of its in vacuo free bending modes, is employed. The latter leads to 

the decomposition of the problem to its diffraction and radiation components. Within the scope of this work, the 

structural response is modelled by the Kirchhoff-Love thin plate theory and Mindlin’s theory for thicker plates.  

After the formulation of the hydroelastic problem in Section 2, the work focuses on the treatment of the 

diffraction and radiation subproblems, as well as the composition of the final solution. The incident to the 

structure wavefield, propagating in the inhomogeneous waveguide is calculated by means of the consistent 
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coupled-mode system proposed in Athanassoulis and Belibassakis (1999). Subsequently, in Section 3.1, a 

weighted residuals approach is employed for the unified treatment of the model radiation-type problem, which 

is recast into a formulation involving Lagrange multiplier functions, employed for the weak satisfaction of the 

transmission conditions across the fictitious interfaces between free-surface and plate-covered regions. Next, in 

Section 3.2, the enhanced local-mode representation for the wave potential, originally proposed by 

Athanassoulis and Belibassakis (1999) is employed for the dimensionality reduction of the model radiation-type 

problem. The enhanced vertical representation features an additional mode, referred as the sloping bottom 

mode, accounting for higher order bathymetric slopes. Next, in Section 3.3, the FE method is employed for the 

discretization of the reduced weak problem involving only the horizontal co-ordinate. In Section 4, Galerkin’s 

method is employed for the satisfaction of the pressure condition on the plate-covered region and the 

composition of the final solution. Finally, numerical investigations and a range of validation cases are shown in 

Section 5. The paper concludes with some remarks on the effectiveness of the proposed method and future 

extensions. 

2 Statement of the hydroelastic problem 

The hydroelastic interactions between linear water waves and a floating, slender elastic body over a variable 

bathymetry region is examined in the present section. The considered marine environment consists of a two-

dimensional layer 2D . The flow is assumed irrotational, while Cartesian coordinates  ,x z  with z  pointing 

upwards and 0z   coinciding with the mean sea level are employed. The layer is bounded below by an 

impermeable seabed, located at  z h x   , ( )h x  being the smooth depth function. It is also assumed that the 

free water surface is partially constrained by the presence of a floating elastic structure, modeled as an 

inhomogeneous plate of shallow draft. Without loss of generality, the introduced inhomogeneity by the variable 

seabed and the floating body is assumed to be contained in a finite subdomain of the layer,  ,x z D   with 

smooth boundary   . The upper and bottom surface boundaries in   are denoted by 
f and 

b respectively. In the external domain   

    , the seabed is assumed to remain constant, albeit at 

different levels denoted as h
 and h

 respectively.  In essence, the exterior 
  is comprised of the positive and 

negative half-strips. The coincident interface between   and   is denoted as 

2
( )

1

i

c c

i

   . (see Fig. 1).  

 

 



4 

 

Fig.1. Domain configuration 

For the purposes of the present analysis,   is assumed to consist of three non-overlapping subdomains 

 ( ) 1,2,3i i  , with smooth boundaries ( )i   such that, 

3
( )

1

i

i

    and 

3
( )

1

.i

i

   The upper and lower 

boundary of each subdomain consist of their respective restrictions on 
f  and 

b denoted as ( )i

f and ( )i

b  . 

Furthermore, the decomposition leads to the creation of the geometrically conforming, internal interfaces 
( ) ( )i j

ijS     , as depicted in Fig. 1. The exterior normal vector to a fictitious interface, directed to the 

exterior of each subdomain is denoted as ijn , while it holds that ij jin n  . The fictitious interfaces 
ijS  and 

jiS  match, and it is readily reduced that ,  for 1,2ij ji iS S S i   . Vertical interfaces iS   correspond to the 

intervals   0,ih a z    located at , 1,2,ix a i   respectively. 

Under the small wave-amplitude and structural motion assumptions, the time-harmonic fluid motion is 

described by means of a velocity potential function    0Re , exp
a g

x z j t 


 
    

 
 for a single radian frequency 

  dependence, where j  is the imaginary unit, g is the acceleration of gravity and 
0a   is the wave amplitude. 

The floating body deflection     Re expW w x j t  and free-surface elevation     Re expx j t  are 

assumed to coincide. Linearity implies that steady state fluid motion is the superposition of a scattered wave 

potential S , representing the solution for the case of a body that remains fixed in waves, and a radiation 

wavefield R  generated by the induced flexural response due to the  incident wave excitation P  (Bishop and 

Price, 1976; Linton and McIver, 2001; Newman, 1994).  Wavefield P  corresponds to the propagating solution 

over the variable bathymetry in absence of the floating body. Furthermore, the scattered potential S  is the sum 

of the incident to the body wavefield P , and the diffracted D expressing the disturbance of P  due to the 

fixed body boundary, hence S P D    .  

In order to decouple the floating body response from the fluid flow the following series expansion for the 

plate deflection, in terms of modal functions  w x  and complex amplitudes c , is considered, 

      .
fN

w x c w x                                                                                (1) 

In the present work, the structure’s ‘dry’ modes are employed in the above expansion. The basis w  is a 

priori known as the solution of an in vacuo eigenvalue problem for the inhomogeneous structure. A finite 

number of terms 
fN  is kept in the truncated infinite series expansion, Eq. (1). The in vacuo eigenvalue problem 

of the inhomogeneous structure is solved by means of the finite element method, as discussed in the sequel.  

The radiation potential R  is also represented by a series, employing the potential functions   that 

correspond to unit amplitude fluid motion generated by the th  mode w . Thus, the total radiation potential is 

written as, 

   
1

, , ,
fN

R x z c x z 


                                                                          (2) 
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 while the total normalized potential  ,x z , 

       0

1

, , , , .
fN

Px z x z x z c x z   


                                              (3) 

The treatment of the component radiation problems, denoted as  ,x z for 1, 2,... , and the diffraction 

potential defined in the bounded subdomain  , denoted as    0 , ,Dx z x z  , is the focus of the present 

work. The potential P  associated with the incident wavefield, propagating in the inhomogeneous strip, will be 

considered known and obtained by means of the consistent coupled-mode system proposed by Athanassoulis 

and Belibassakis (2009).  In a unified notation, the radiation-type potentials in the semi-infinite strips   are 

written by means of the following representations derived by separation of variables,         

             0 0 0 0 1 0

1

, exp( ) exp , , ,n n

n

x z C jk x Z z C Z z k x x Z z x z


       





                            (4a)       

            0 0 0 0 2 0

1

, exp( ) exp , , , 0,1,2,....n n

n

x z C jk x Z z C Z z k x x Z z x z


       





      (4b) 

The series expansions Eqs. (4a,b) model outgoing solutions to infinity, where the upscript notation ,    

denotes the restriction to the left and right half-strips respectively. The first terms (for 0n  ) in Eqs. (4a,b) 

correspond to propagating  modes, while the remaining terms to evanescent modes. The sets of vertical 

functions  , 0,1,2...nZ n  and wavenumbers  0 , , 1,2...njk k n   are the eigenpairs of the vertical Sturm-

Liouville problems defined in the constant depth strips 

  and 

 . The solutions of the regular eigenvalue 

problems, are, 

 
 
0

0

0

cosh

cos

k z h
Z

k h

 



 

 
   ,    

 
 

cos
, 1,2,...

cos

n

n

n

k z h
Z n

k h

 



 

 
     ,                          (5) 

while  0 , njk k 
  are the roots of the locally defined dispersion relation  tann nh k h k h        for 0,1,2,...n  . 

Based on the above, radiation-type problems are formulated in the fluid layer satisfying the following governing 

equation,  

 2 0, for , , for 0,1,2,....x z    .                                                                  (6) 

The combined linearized free-surface condition is satisfied at the free-water surface regions, 

( )0,  on , for 1,2 i

z f i      ,                                                                             (7) 

 where 
2 1g    denotes the frequency parameter. In the plate-covered region the following upper surface 

kinematic condition is imposed, 

(3)0, on for 1,2,...z fj w       ,                                                                  (8a) 

while for the diffracted potential it  holds,  
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(3)0, on z S f       or   (3)

0 , on z z P f      .                                                    (8b) 

In a unified formulation the kinematic conditions on (3)

f  Eqs. (8), for the model diffraction/ th radiation 

problem reduce to, 

(3), on for 0,1,2,...fV
n


   


,                                                                              (9) 

where   PV x
n





 and  V x i w  for the diffraction  0 , and  radiation subproblems respectively 

 1,2,... . The kinematic constraint on the impermeable seabed leads to the following condition, 

  0, on z x x bh       .                                                                                    (10) 

Finally, matching conditions must hold at the interfaces between the inhomogenous region and the half-

strips, 

  ( )0, on , 1,2i

z i c i     T ,                                                                           (11)       

where iT  are appropriate Dirichlet-to-Neumann (DtN) operators ensuring the complete matching between the 

interior and exterior wavefield solutions on the  vertical interfaces ( )i

c  for 1, 2i  . The functional form of  iT  is 

easily computed by means of the series representations, Eqs. (4a,b), valid in the two semi-infinite strips. 

Equations (11) provide the necessary closure conditions, formulating the radiation-type problem in the truncated 

region of interest (Belibassakis, 2008). Alternatively, the solvability of the above boundary value problem is 

ensured by extending the truncation boundaries ( )i

c  within the homogenous strip (at least a distance of the order 

of one wavelength) and imposing the Sommerfeld radiation conditions, 

 ( )

0lim 0 i

x
x

jk 
 

   ,  ( )on , 1, 2i

c i                                                        (12) 

where ( )

0

ik  are the  corresponding wavenumbers associated with the propagating mode at local depth 

h at 1x x  and 2x x  accordingly,  obtained by means of the dispersion relation 2

0 tanh( ).k g kh     

Equations (6)–(12) describe the radiation type subproblems defined by the kinematic restrictions imposed on 

a section of the fluid surface covered by the floating body. Coupling between the total fluid and structural 

motion is completed by means of the pressure equation on the coupling surface. The following equations of 

vertical motion involving the unknown deflection  w x and rotation  x  and total velocity potential on the 

joint surface, 

                  
0

, ,w w w z
w gw x j   


  L                                                                        (13a) 

  (3), 0 , on  ,fw   L                                                                                         (13b) 

where 
w L ,L  are differential operators governing the vertical motion of the body modeled as a plate under 

cylindrical bending. Equations (13) express equilibrium in terms of the unknowns deflection  w x  and 

rotation  x , under external generalized forces and rotations respectively. Equation (13a) is the pressure 
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equation, with the rhs term being the fluid pressure exerted on the section of the surface occupied by the elastic 

body.  

For the harmonic flexural motions of a body modelled under the Kirchhoff-Love assumptions it is, 

           2,w w xx xx ew w D x w x x w x         L L ,                                    (14a) 

     , 0xw w x x     L .                                                                               (14b) 

In Eq. (5a),    3 212 1D x E    denotes the flexural rigidity per unit length in the transverse direction of 

the plate, e  is the elastic material density,  x  is the plate thickness, E  is the Young’s modulus and   the 

Poisson’s ratio. It is important to note at this point that the present method is able to account for general 

inhomogeneity, and thus the spatial variability of material properties, in a straightforward manner. However, the 

present contribution is limited to the study of variable thickness effects.  Kinematic assumptions equate the 

rotation and slope of the Kirchhoff plate, resulting in a single equation for vertical motion Eq. (12a) under 

cylindrical bending, rendering Eqs. (13b) and (14b) redundant. 

For the modelling of a Mindlin plate accounting for first order shear deformation effects and rotary inertia it 

holds,  

       2,w x x ew G w x w x            L   and                                         (15a) 

     2, r x x xw I G w D             L  .                                                 (15b) 

In Eqs. (15)  3 12r eI    is the rotary inertia per unit length along the transverse dimension of the plate,  

is the shear correction factor and 2(1 )G E v   is the shear modulus. The satisfaction of the dynamic 

conditions Eqs. (13), supplemented by either Eqs. (13) or (15) by Galerkin’s method, will retrieve the complex 

amplitude functions that will allow the composition of the plate response and the total hydrodynamic solution. 

3 Solution of the Diffraction and Radiation Problems 

For the domain decomposition formulation of the model diffraction/ 
th

radiation problem, the solution 

restriction in each subdomain  
( )i  is denoted as  ( )

( ) ,  1,2,3i

i i 


   , for simplicity. The restriction for the 

wave potential 
( )i  refers henceforth to the th radiation-type problem, omitting any subscript for simplicity in 

presentation. The relevant depth function restriction in each subregion is similarly denoted as 
( )ih . The 

following tensor product of complex valued spaces is defined, 

    (1) (2) (3) ( ) 1 ( ), , ; , 1,2,3i iH i        H
 

In the analysis the space  1 ( )iH   denoting the space of square-integrable functions and square-integrable 

gradient in ( ) , 1,2,3i i  , trace space  
1
2 ( )iH   of 

1H  functions as well as the dual space 
1
2H


 are considered 

(Brezzi and Fortin, 1991). The decomposed problem, Eqs. (6-10) for  H , is reformulated as,  

2 ( ) 0i   , in 
   1,2,3
i

i   ,                                                   (16a) 

with 

( )
( ) ( )0, on  for 1,2 ,

i
i i

f i
z





   


and 

(3)
(3)0, on fV

z


  


,                     (16b,c) 
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( ) ( ) ( )0, on i i i

x x bh
z


 
     

 
 for 1,2,3i  ,                              (16d) 

subject to the fictitious interface conditions imposing continuity of momentum and pressure as, 

( ) (3) ( ) (3)0,  and =0 on ,  1,2i i

iS i         i3 3in n  .                           (16e) 

Closure conditions for the decomposed BVP defined in   are provided by imposing the radiation condition, 

Eq. (12), as discussed above. Hence, at the external, truncated boundary  c  it holds, 

( ) ( ) ( ) ( )

0  =0 on Γ ,  for 1,2.i i i i

cjk i    in                                         (16f) 

3.1 Weighted residuals approach 

Revisiting the above radiation-type problem, a weighted residuals approach (Finlayson, 2013) is followed in 

this section. The following function space is defined, 

  (1) (2) (3) ( ) (3), , , 0 on , 1,2 .i

iS i        H H  

Following the standard approach, field Eqs. (16a) are multiplied by trial functions 
( )iv H  and integrated 

over their respective subdomains,  

( )

3
2 ( ) ( ) ( )

1

 0
i

i i i

i

v d




    ,                                                     (17) 

with the overbar denoting complex conjugation. By means of the Green-Gauss theorem the following 

expression is derived, 

( ) ( )( )

( )

3 3 3
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 2 2
( ) ( ) ( ) (3) ( ) ( )

1 1 1

   

                        0.

i ii
b f

i
i i c

i i i i i i i

i i i

i i i i i

S S
i i i

v d v ds v ds

v ds v ds v ds

  

  

  
  


  

         

         

    

    

b f

i3 3i i

n n

n n n

      (18) 

Substituting the boundary conditions Eqs. (16b-d) and (16f) results in the following weak formulation of the 

radiation-type problem, 

Find 
( )i H such as, 

 

( ) (3)( )

( )

3 2
( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2
(3) ( ) ( ) ( ) ( ) ( ) ( )

0

1 1

   

                         0,    .

ii
f f

i
i c

i i i i i i

i i

i i i i i i

S
i i

v d v ds V v ds

v v ds jk v ds v

 

 

  
 


 

    

       

   

  i3n H

           (19) 

In the above weak formulation, Eq. (19), essential continuity conditions on the interfaces iS , are 

incorporated in the admissible functions space H . To avoid the complexities involved in the construction of 

appropriate representations for the wave potential functions in H , a Lagrange Multiplier formulation is adopted. 

Functions 
( )i   are employed to enable the satisfaction of the continuity requirement in a weak sense across on 

the interfaces, see (Magoulès and Roux, 2006). Thus Eq. (19) is rewritten, 
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     Find 
( )i H ,  

1
2( )i

iH S


  such as, 

 

( ) (3)( )

( )

3 2
( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2
( ) ( ) ( ) (3) ( ) ( )

1 1

   

                    0,  

ii
f f

i
c

i

i i i i i i

i i

i i i i i

i
S

i i S

v d v ds v V ds

jk v ds v v dS v

 

 

  
 

 

    

     

   

   H

                               (20a) 

   
1
2( ) (3) ( ) ( ) 0,  , 1,2.

i

i i i

i

S

dS H S i   


                                                                     (20b) 

From a physical perspective, Lagrange multiplier functions represent potential fluxes on the fictitious 

interface, i.e. ( ) (3) ( ) , 1,2i i i        3i i3n n .  

3.2 Local-mode representation of the unknown potentials 

In this section, a semi-analytical approach will be employed for the approximate solution of Eqs. (20a, b). 

The unknown velocity potential in each subregion is sought in a separable form, where the vertical structure of 

the solution, is chosen a priori. The approach resembles the Kantorovich method for the dimensionality 

reduction of boundary value problems, relevant to prismatic domains (Kantorovich and Krylov, 1960). The 

above technique has been employed for the treatment of linear water wave propagation in variable bathymetry 

regions by Athanassoulis and Belibassakis (1999) and later extended for wave interaction with thin floating 

elastic plates (Belibassakis and Athanassoulis, 2005), in conjunction with complete local-mode series expansion 

of the wave potential involving the local eigenmodes of Laplace equation for the problem under consideration. 

One advantage of the above choice, is that that the vertical structure of the specific representation is close to the 

solution of the studied wave problem, as it will be discussed in more detail in the following subsection. Thus, in 

the scope of the present work the following local-mode series expansion for the unknown wavefields is 

considered in the free-surface subregions 
 

,
i

  

     ( ) ( ) ( )

0

, ; ,   i i i

n n

n

x z x Z z x 




       ( ) ( ) ( )

0

, ; ,     for  1,2i i i

n n

n

v x z v x Z z x i




   ,               (21a)                    

while in the plate-covered region 
 3

  the velocity potential is written as, 

             (3) (3) (3) (3)

0

0 0

, ; , , , ;n n n n

n n

x z x Y z x x z v x z v x Y z x  
 

 

    .                     (21b) 

It is remarked that the vertical structures employed in the representation of the potential in the free-surface 

and plate covered subregions (Eqs. 21) are different, and parametrically depended on the horizontal x-

coordinate. As mentioned above, the coupling between the subdomains is achieved, as previously discussed by 

means of the introduced Lagrange multiplier functions
( )i  that resemble the normal trace of the unknown 

velocity potential on the interfaces at ix a , hence  it holds that  ( ) ,i

ia z . Exploiting the completeness 

properties of the functions  ;n iZ z x a   in the vertical intervals   0, 1,2,ih a z i     in this work the 

vertical structure of  ( )i z ,  at ix a , i=1,2,  and their variations  ( )i z  are  chosen as, 
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     ( ) ( ) ( )

0

, ; ,   1, 2 ,  i i i

i n i n i

n

z Z z i    




       ( ) ( ) ( )

0

, ; ,   1, 2i i i

i n i n i

n

z Z z i    




  .         (22)                                                  

The vertical functions  ( ) ;i

nZ z x , employed in Eqs. (21a) and (22) are chosen as to explicitly satisfy the 

boundary conditions on ( )i

f and ( )i

b  in 
( ) , 1,2i i  . In a similar manner,  ;nY z x  and  0 ,x x z  in  Eq (21b) are 

chosen as to explicitly satisfy the boundary conditions on (3)

f and (3)

b .  The choice of the above vertical 

structures are by no means unique, as long as completeness requirements are satisfied to validate the 

employment of expansions Eqs (21). However, the performance of the present method heavily relies on the 

appropriate choice of the above functions. 

3.2.1 Vertical expansion for free-surface regions 

The functions  ;nZ z x , chosen as the vertical structure of the potential in the free-surface regions are 

obtained as the solutions of the locally-defined vertical Sturm-Liouville problems at horizontal position x  and 

for every    1 1 2 2, ,x x a a x   . Thus, functions  ;nZ z x  are given as, 

 

 
0

0

0

cosh ( ) ( )

cos ( ) ( )

k x z h x
Z

k x h x

    ,    
 

 

cos ( ) ( )
, 1,2,...

cos ( ) ( )

n

n

n

k x z h x
Z n

k x h x

                     (23a) 

while  0 , njk k   are the roots of the locally defined dispersion relation at each horizontal position. 

           1 1 2 2tan , and .n nh x k x h x k x h x x x a a x x                            (23b) 

Revisiting series expansion given in Eq. (21a) in light of Eq. (23a), the first term 0 0Z  is associated with 

the propagating mode while remaining terms n nZ , for 1,2,...n  , are the evanescent modes in linear water 

waves. The discrepancy between the above choices of  ;nZ z x , that satisfy   ; 0z nZ h x x    at the bottom 

boundary and the kinematic condition on the sloping parts of the seabed, is remedied by the introduction of an 

additional term for the treatment of the sloping bottom effects, referred as the sloping bottom mode 

1 1Z  (Athanassoulis and Belibassakis (1999). The aforementioned, added mode to the classical representation 

accounts for the incompatibility of the vertical modes of  Eq. (23a) with  the imposed condition involving the 

normal derivative of the velocity potential on b  Eq. (10), and leads to the consistent  satisfaction of the 

kinematic boundary condition on the sloping seabed.  The extra horizontal mode, denoted as 1 , with subscript 

1n    acts as a set of additional degrees of freedom that account for the non-homogeneity of the vertical 

derivative on the seabed. It is evident that the choice for 1Z must lead to solutions that satisfy the upper surface 

condition Eq. (7) and render 1  a free variable at the bottom boundary.  A convenient, but certainly not 

unique, choice for the structure of 1Z  is, 

3 2

1 ( )
( ) ( )

z z
Z h x

h x h x


    
     

     

                                                            (24) 



11 

 

The added mode 1 1Z  vanishes at constant depth where 0xh    retrieving the classical standard 

representation for the wave potential in the homogeneous strip (Hazard and Lunéville, 2008; Massel, 1993; 

Porter and Staziker, 1995). Hence, by means of the chosen augmented structure, the expansion of the wave 

potential in ( ) ,  1,2i i  involving 2mN   terms is written, 

     ( ) ( ) ( ) ( )

1

, ; ,   
mN

i i i T i

n n

n

x z x Z z x 


  Z φ       ( ) ( ) ( ) ( )

1

, ;x ,  for  1,2,
mN

i i i T i

n n

n

v x z v x Z z i


   Z v         (25) 

where mN   is the number of evanescent modes in the truncated expansion, which includes the propagating 

mode  0n   , and the additional sloping bottom mode,  1n   . In the above and henceforth, superscript 

T denotes transposition. 

The Lagrange multiplier functions and their variations are written as, 

     ( ) ( ) ( )

1

, ;   
mN

i i T i

i n i n i

n

z Z z    


  Z Λ ,      ( ) ( ) ( ) ( )

1

, ; ,   1, 2
mN

i i i T i

i n i n i

n

z Z z i    


   Z Ξ    (26) 

3.2.2 Vertical expansions in the hydroelastic region 

The vertical functions  ;nY z x , employed in  Eq. (21b) are obtained as the solutions of the locally-defined 

vertical Sturm-Liouville problems in 
(3)  and for every  1 2,x a a  : 

 
 

2

2 (3)

2

;
( ) ( ; ) 0,  , ,

n

n n

Y z x
x Y z x x z

z



  


 (27a) 

 0;
0,  0,

nY x
z

z


 


 

 ;
0,  ( ).

nY h x
z h x

z

 
  


 (27b,c) 

The eigenvalue problems are again parametrically defined along the horizontal position x , with the solutions 

are given by  

 cos ,n nY x z        with     
 

n

n

h x


    for 0,1,2,...n   .                               (28) 

It is immediately noticed that boundary condition Eq. (27b) is incompatible with kinematic boundary condition 

Eq. (9). The latter is remedied by the inclusion in Eq. (21b) of an upper surface mode    0 , ( ) ;x z g x f z x  . A 

judicious choice for the vertical structure of 0  is  
2( )

;
2

z h
f z x

h


 .  Furthermore, setting 

 ( )g x V x  allows for the consistent satisfaction of Eq. (9). The sloping bottom mode is also included in the 

vertical representation of 
(3) . Finally, keeping the same number of modes mN  in the expansion of 

(3) and its 

variation results in   

      (3) (3) (3)

0

1

, ; =  ( ) ( ; ).
mN

T

n n

n

x z x Y z x g x f z x  


   Y φ                            (29) 



12 

 

3.3 Reduced weak form  

Substituting Eqs. (26) in Eq. (20a), leaving out the terms involving the Lagrange multipliers to be examined 

separately, the integral terms corresponding to the free surface regions reduce to, 

     

   

2
1 ( ) ( ) ( ) ( )

1

1

( ) ( ) ( ) ( )

2

1

                             .

i i

i i

i i

i i

a a
T Ti i i i i

x x x

i x x

a a
T T

i i i i

x

x x

dx dx

dx dx






     




  



  

 

v φ v φ

v φ v φ

                          (30) 

The above matrix coefficients are defined as, 

0

T

h

dz


  ZZ  ,  
0

1

T

x

h

dz


  Z Z , 

0

2

T

x

h

dz


  ZZ and     
0

0
.

T T T

x x z z z
h

dz 




          Z Z Z Z ZZ   

Similarly, for the plate-covered region substituting representations Eq. (29) in Eq. (20a) the corresponding 

integrals now read,  

     

      

2 2 2

1 1 1

2 2

1 1

(3) (3) (3) (3) (3) (3)

1 2

(3) (3) (3) (3)

1 2                                 

a a a
T T T

x x x x

a a a

a a
T T T

x

a a

dx dx dx

dx dx

     

   

  

 

v φ v φ v φ

v φ v v

                    (31) 

The above matrix coefficients are defined as, 

0

T

h

dz


  YY  ,  
0

1

T

x

h

dz


  Y Y ,

0

2

T

x

h

dz


  YY   and     
0

T T

x x z z

h

dz


      Y Y Y Y   

while the forcing terms as, 

   
0 0

1 x x

h h

V f dz V f dz
 

    Y Y ,

          
0 0 0

2 0x x x x z z

h h h

V f dz V f dz V f dz V
  

           Y Y Y Y   

The remaining terms in Eqs. (20) involving the auxiliary functions ( )i  and their variations ( )i   become, 

   
2

(3) ( ) ( )

1
i

T T
i i

i x a 

  
    

 v v Λ   , with   

0

T

h

dz


  YZ                                        (32a) 

and  ( ) (3) ( ) 0
i

T
i T i

i
x a

    Ξ φ φ  , with  

0

( )  i i

h

V a f dz


  Z  and 1, 2i   .               (32b)  

The final weak form of the reduced 1-D system of partial differential equations is derived by adding Eqs. 

(30), (31) and (32a). The system is augmented by (32b). Thus, 
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         

       
2 2 2 2

1 1 1 1

2
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1

(3) (3) (3) (3) (3) (3) (3) (3)

1 2

1  

       +  

   

i i i i

i i i i

a a a a
T T T Ti i i i i i i i i

x x x x

i x x x x

a a a a
T T T T

x x x x

a a a a

dx dx dx dx

dx dx dx dx





  
        

  

      

    

   

v φ v φ v φ v φ

v φ v φ v φ v φ

         
2

1

2
(3) ( ) ( ) (3) (3)

1 2

1

                          +    .
i

a
T T T T

i i

x
x ai a

dx


     
   v v Λ v v

   (33a) 

and,   

 ( ) (3) ( ) 0
i

T
i T i

i
x a

    Ξ φ φ , for 1, 2i   .                                 (33b) 

The system is supplemented by the following boundary conditions at the truncation boundaries ,ix x   for 

1,2i  , 

 ( ) ( ) ( ) 0, 1,2,
i

i i i

x x
i


    φ k φ                                                  (33c) 

where the diagonal matrix ( ) ( ) ( ) ( ) ( )

0 1 2 1diag( 1, , , ,..., )
m

i i i i i

Njk k k k   k contains the solutions of dispersion relation 

Eq. (23b) at ix x  for 1,2i  respectively. Equations (33c) are derived from the substitution of Eq. (25) in 

condition Eq. (16f) and their integration over local depth. Notably, the depth is assumed constant, and thus 

0xh   at ix x ,  which renders    ( ) ( )

1 1 0i i

i x ix x      . 

The employment of auxiliary functions for the satisfaction of the continuity requirements between 

subregions increases the number of equations resulting in the augmented system of one-dimensional ordinary 

differential equations described by Eqs. (33). The imposed continuity for the velocity potential functions 
( ) , 1,2,3,i i   in each subregion translates into appropriate jump conditions ( ) (3) ( ) 0n n n

ai

i i     for the 

corresponding modal amplitudes at the fictitious interfaces ix a . The discontinuity condition for the modal 

amplitude functions is weakly by means of Lagrange multipliers. 

Notably, the matrix coefficients in Eqs. (33a) are continuous functions of x  involving the local expressions 

for the eigenbases Z and Y . The latter fact is contingent to the employed depth function being sufficiently 

smooth (
1C  ).   

3.4 FEM implementation  

For the solution of the weak problem Eqs. (33) the classical Bubnov-Galerkin FEM approach is followed, 

see Zienkiewicz and Taylor, (2005). To derive the discrete form of the problem in the employed ansantz, the 

nodal unknowns at the 
thr  node of the thk element contains the mN  unknown x-dependent modal amplitudes at 

the given subregion 1,2,3i  ,  denoted  ( ) ( ) ( ) ( )

1 0, ...,
m

T
i i i i

r r r N r  U  is considered. Consequently, the restriction of 

the approximation of the unknowns in the thk  element is written as, 

   ( ) ( )

1

N
i i

k r r

r

U x L x


 U ,                                                       (34) 
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with N  being the number of nodes within the employed element, and iL  being the Langrangian shape functions 

achieving ( 1)N   degree interpolation of the nodal unknowns within the thk  element.  The compound vector of 

the thk element unknowns is written as  ( ) ( ) ( ) ( )

1 2, ...,
T

i i i i

NU U U
k

U and the element restriction is rewritten as,  

( ) ( )i i

kU 
k

NU  ,                                                                        (35) 

by means of the array N , 

    1 2 2 2 1 2 22 2
| | ......... | |

m m m mm m
N N N N N NN N N

L L L L      
   N I I I I . 

Substituting Eq. (35) in Eq. (33) and letting weight functions to coincide with Lagrangian shape functions, 

i.e. ( ) ( ), ,  1, 2,3i i i v Ξ N  , the following expressions for the element matrices and forcing vector in their 

corresponding discretised subregions are produced, 

       ( )

1 2

T Ti T T

e x x x x
e e e e

dx dx dx dx          N N N N N N N N           (36a) 

       (3)

1 2

T TT T

e x x x x
e e e e

dx dx dx dx          N N N N N N N N           (36b) 

  1 2

T T

x
e

dx    N N                                                        (36c) 

At the interfacial nodes, located at ix a , the discrete multipliers are contained in the vector 

as  ( ) ( ) ( ) ( )

1 2 2, ..., , 1,2
m

T
i i i i

N i    Λ . Next, we distinguish between the dofs in each of the sub-regions as 

( ) ,  1, 2,3i i U , contained in the vector of global unknowns (1) (3) (2)
T

   u U U U , while the additional dofs 

associated with discrete Lagrange multipliers are contained in vector (1) (2)
T

   λ Λ Λ . The employment of 

Lagrange multipliers increases the total  2mN N   system unknowns by  2 2 .mN    

After assembly, by means of the element matrices in Eqs. (36), the system corresponding to Eqs. (32), (33) 

take the form of a discrete saddle point problem with respect tou and λ (see Benzi et al., 2005), 

             
T Au B λ F    and   Bu g  .                                                           (37) 

The above system of discrete algebraic equations assumes the following form, 

(1) (1)

(3) (3)

(2) (2)

|
|
|
|
|

T

     
     
      
                 

U

B U F
U

gB 0 λ

     

Matrix A  is symmetric, as a consequence of the employed Bubnov-Galerkin approach, while the system 

retains its symmetry due to the geometric conformity of the interfaces. The solution of the above system 

recovers the unknown complex amplitude functions  ( )i

n x  in each subregion and the wave fields are 

eventually calculated by means of Eqs. (26) and (30), with the imposed continuity conditions being satisfied 

weakly by means of the employed Lagrange multiplier formulation. 
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A system of the form Eq. (37) needs to be solved for each radiation-type problem. It is important to note 

however that the matrix coefficients introduced in Eqs. (33), which are parametrically defined along x, can be 

calculated once in advance for a given bathymetric profile and spatial. Moreover, matrices, A , B  of Eq. (37 

)can also be calculated once for a given spatial mesh and FEM approximation. This attribute of the method 

significantly reduces the number of operations. On the other hand, the forcing vector  0 0
T

F  and 

constraints vector 1 2

T

   g  contain the upper surface Neumann data  V x  on the plate–covered region 

and need to be constructed for each sub-problem. It is noted that the FEM implementation allows for the 

construction of a p-adaptive scheme that would increase the polynomial degree for sub-problems corresponding 

to highly oscillatory structural modes. However the latter would require the reconstruction of matrices A , B  

between p-refinements. 

4 Solution for the hydroelastic response and the total wavefield 

In the previous section, the weak formulation and FEM approximation of each radiation-type problem is 

presented. The solution of system (35), produces the modal amplitude functions   ( ) ( ) , 1,0,1,2,.....i i

n x n  φ  

for the diffraction and the 
th

 radiation wavefield, excited by the corresponding ‘dry’ mode of the free plate. 

By iteration, 
fN  radiation problems corresponding to 

fN  flexural modes need to be solved. Notably, the 

numerical computations for the decoupled problems can be carried out in parallel. 

Subsequently, as described in Section 2, in order to obtain the total wavefield solution and the deflection of 

the floating plate, the unknown complex amplitudes c , involved in the radiation  wavefield and structural 

deflection expansions, need to be calculated. This is achieved through the satisfaction of the pressure 

equilibrium condition on (3)

f , Eqs. (13). A Galerkin scheme is proposed for the treatment of pressure 

equilibrium Eqs. (13), involving the dynamic response of thin or thick plate  structures described by Eqs. (14) 

and (15) respectively. 

4.1 Kirchhoff-Love plate 

On (3)

f , it holds 

      2

0xx xx w e w R D z
D x w g x w i      


         ,                                               (38) 

and the corresponding eigenvalue problem for the free plate ends reads, 

   2 0xx xx eD x w x w        ,                                                                                   (39) 

where 2

l and lw  are the eigenvalues and eigenmodes of the structrure. Substituting Eq. (39) in Eq. (38) and 

considering Eqs.(13) and (14), the dynamic condition results in 

   2 2

0 0

fN

e Dz z
c x g w i i      

 
    
   .                                            (40) 

By means of the eigenbasis,   , 1,2,...w x l  , calculated by FEM, the decoupling of Eq. (38) is achieved 

resulting in the following  
f fN N  system with the unknown amplitudes contained in the vector C , 
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  K 2 2 K K    Α diag B C F                                                                                   (41) 

while the matrix coefficients are given by, 

 
2 2 2 2

1 1 1 1

K K K

0 0
 ,    ,  

a a a a

m e m m w m w m m m Dz z

a a a a

x w w dx g w w dx i w dx i w dx      
 

      Α B F . 

The solution of system (41) will retrieve c , employed for the calculation of  w x  and  ,R x z and finally 

total wavefield solution  ,x z , through  Eqs. (1), (2) and (3). Consequently, the bending moment and shear 

force distributions along the structure can be subsequently calculated respectively as, 

     xxM x D x w x    ,        x xxS x D x w x     .                            (42) 

4.2 Mindlin plate 

For the case of an inhomogeneous Mindlin plate under cylindrical bending the vertical plate motion is 

governed by a coupled system of equations in terms of the unknown the plate deflection and rotation. Ti treat 

the above complexity a field elimination by means of the numerically computed eigenbases, 

  , 1, 2,..., fw x N  and   , 1,2,..., fx N   is performed. 

Notably, the unknown fields in Eqs. (13) and (15) expressing motion equilibrium, are represented as already 

mentioned by means of Eq. (1) and (2)    
fN

w x c w x  ,     
fN

R x c x   , while rotation is written as 

   
fN

x d x  .  

To derive the coupling between complex amplitudes c  and d , Eqs (13b,15b) is rewritten upon 

substitutions as, 

   2 0
fN

x x xc I d G c w d Dd                                               (43) 

Next, Galerkin’s method employing  x  as test functions, performing integration by parts and finally 

resorting to matrix notation yields the following expression, 

M

md C c ,                                                                             (44) 

with , 

       
2 2 2 2

1 1 1 1

1

2

a a a a

M

m m m x m x m x

a a a a

I x dx G x dx D x dx G x w dx           



   
         
   
   

   C  

Equation (13a), upon substitution of Eq. (15b) is similarly rewritten as, 

   2

0 0
1 1

f fN N

e x x D z z
g c w G c w i i c         

 
 

                     (45) 
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Next, Eq. (45) is tested with  w x and after integration by parts and substituting Eq. (44) the following 

system is obtained, 

  M

m A c F  ,                                                                             (46) 

with matrix  M M M M M

m m m m m  A a b C d  and 
2

1

0

a

m D z

a

i w dx


 F , 

while,      
2 2 2

1 1 1

2

a a a

M

m m e m w x m x m

a a a

w x w dx w g x w dx w G x w dx     
 

      
 
 

  a  and 

 
2

1

,

a

M

m x m

a

w G x dx   b
2

1

0

a

M

m m z

a

i w dx 


 d . 

The solution of system Eq. (46) will retrieve c , employed for the calculation of  w x ,   ,R x z  and the 

composition of the total wave-field solution  ,x z . The bending moment and shear force distributions can be 

subsequently calculated by means Eq. of respectively as, 

     xM x D x x     ,            xS x G w x x     .                       (47) 

The reflection and transmission coefficients ( , )R TA A  in terms of the total wave-field are calculated by means 

of the upper surface solution at domain edges , 1,2,ix x i    as, 

  (1) (1)

1 0 1 0 1,0 exp( ) exp( )RA x jk x jk x    ,                                                (48a) 

  (2)

2 0 2,0 exp( )TA x jk x .                                                                       (48b) 

4.3 Structural Eigenvalue problems 

The proposed methodology implements a ‘dry’ mode expansion for the vertical deflection of the elastic 

body. The calculation of the in vacuo plate modes and natural frequencies requires the solution of a structural 

eigenvalue problem formulated for the Classical Thin plate theory (Kirchhoff-Love)  or the 1st order shear 

deformation theory of  Mindlin plates under cylindrical bending. The solution to the structural eigenvalue is 

treated separately from the hydrodynamics, as already discussed in a previous section. In the present work, the 

finite element method was employed in order to implement inhomogeneity effects in a straightforward manner. 

For the Kirchhoff plate, the conventional variational formulation and 
1C  elements featuring Hermite 

interpolation are employed (see Papathanasiou et al., 2015). For the approximation of the inhomogeneous 

Mindlin plate eigenvalue problem, a 
0C variational approach is adopted, featuring Lagrange shape functions, in 

order to avoid the use of non-conforming elements. The aforementioned approach is prone to locking effects, 

unless a high interpolation order is attained (Hughes, 2000). Notably, despite the fact that p-refinement 

significantly increases the employed degrees of freedom, the 1-D eigenvalue problem remains computationally 

inexpensive and thus the employed brute force approach is justified. Moreover, the eigenvalue problem needs 

only to be solved once for each structural configuration. For the sake of completeness, details of the FEM 

implementation for the solution of the inhomogeneous structural eigenvalue problems are provided in 

Appendices A and B. 
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5 Numerical results and discussion 

In the present section, the performance and accuracy of the present method is examined in a series of 2D 

cases. First, the hydroelastic response of a thin, homogeneous plate and the corresponding wavefield 

transformations in an example configuration featuring an abruptly varying seabed, are considered in order to 

illustrate the key features of the method in isolation of other inhomogeneities, i.e. variable thickness. 

Next, comparisons with published results for a range of parameters are carried out. Considered cases involve 

both Kirchhoff and Mindlin plate models over constant (deep, intermediate and shallow water cases) and 

variable seabed, as well as thickness variability. Throughout this section and for all presented examples, the 

water density is s, 31025 kgw m   , unless stated otherwise, and the acceleration of gravity as 29.81 g m s  . 

5.1 The case of a uniform, thin plate over arbitrarily varying seabed 

The case of a shoaling bathymetric profile is initially considered in order to illustrate the full features of the 

proposed method. In the following example, the fluid region is defined as 

      : , 230m, 230m ,0x z h x      with the bathymetric profile given as the superposition 

     1 2h x g x g x  , with 

    1 ( ) 2 ( ) 2tanh 2 205 0.0014 0.5g x h h h h x          ,                                           (49) 

     4 2

2 0.7sin exp 10bg x k x x  ,   while  2 /b bk   and 25.625 mb                                (50) 

The profile  h x  corresponds to a corrugated, shoaling region; see Fig.2. In the above equations, 13h m   

and 7h m   correspond to the constant depth levels at the farfield. The homogeneous floating structure is 

extending in / 2 / 2L x L   with 120L m  being the length of the plate. An incident wavefield propagating 

towards the positive x axis with frequency 1.4 /rad s   is considered to excite the floating structure. 

Since, 2.6248k h    and 1.5348k h   , the set example falls outside the limits of either deep or shallow water 

wave theory. The thickness of the employed structure is assumed constant 1m  , suggesting a thickness-to-

length ratio 0.0083L   well within the range of application of the Classical Thin Plate theory, allowing the 

plate to be modelled under the Kirchhoff-Love assumptions. The material properties of the structure are taken 

as 5 GPaE  , 0.3  and density
3922.5 kg me  , corresponding to sea ice (see for example Bennetts et al. 

(2007); Porter and Porter, (2000); Smith and Meylan (2011) and others). The presented method, keeping 

15m fN N   number of terms in the series expansions Eqs. (1) and (2) to ensure convergence, is employed for 

the calculation of the hydrodynamic characteristics of the wave-field and the response of the structure. The 

latter suggests the employment of 13 evanescent modes in the vertical hydrodynamic expansion, in addition to 

the propagating and sloping bottom modes and 13 flexural modes in the elastic expansion, in addition to rigid 

body modes. Linear Lagrange elements are used for the representation of the discrete system Eq. (37), while a 

total of 44 elements per mean incident wavelength are employed. Results convergence was assessed in the sense 

that consecutive mesh refinements rendered negligible residuals. 

In Fig. 2 the equipotential lines, corresponding to the real part of the computed solutions of the component 

hydrodynamic problems are shown, while in Fig.3, the corresponding plot for the composed total velocity 

potential is drawn. At the bottom of Fig. 3, close-ups of the wave-field solution at the edges of the plate are 

given. Equipotential lines in the above figures are seen to intersect the bottom normally, satisfying the Neumann 

condition on the seabed (Eq. 10). 
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Fig. 2. Real part of the solutions to the component propagation (top), diffraction (middle) and radiation 

problems (bottom) 

 

Fig. 3. Real part of the total solution (top), fictitious interfaces between subregions (bottom) 
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Fig. 4. Non-dimensionalised moduli of plate deflection (left), bending moment (middle), shear force (right) 

 

Fig. 5. Real and imaginary parts of free surface elevation ( )x   and plate deflection ( )w x , denoted by a 

thicker line. 

 Moreover, the matching of the velocity potential and flux on the fictitious interfaces between subregions, 

depicted by dashed lines, is excellent for radiation-type and total wave-field solutions, as illustrated in Fig. 3, 

suggesting that the weak satisfaction of transmission conditions adequately captures local scattering phenomena 

at the plate edges and the employed vertical expansion satisfies energy flux conservation across interfaces. 

Next, the normalized to the wave amplitude modulus of the plate deflection, and the normalized absolute 

moment and shear force for the given example are plotted in Fig. 4. Notably, the satisfaction of the zero 

moment and zero shear conditions at the free edges of the plate, observed at Fig. 4, is a priori guaranteed by the 

employment of the in vacuo modes, which is an advantage of the approach. The latter becomes more apparent 

in the 3 D extension of the proposed method, where the satisfaction of plate edge conditions is computationally 

intensive and not trivial in general geometries. Finally, in Fig. 5 the real and imaginary parts of the solution for 

the normalized with respect to incident amplitude free surface elevation 

       1

1 1 2 2,0 , , ,x i g x x x a a x     and plate deflection    1 2, ,w x x a a  are plotted. 
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Next, in order to explore the effects of modal truncation in the expansion Eq. (1), the computed amplitudes 

c  are considered for the above example. In Table 1, the first 11 moduli of the computed mode amplitudes c   

are presented. For the computations, 15mN   vertical modes are employed for the hydrodynamic series 

expansion while a varying number of flexural modes , 15, 20,30fN  in the modal expansion is considered. It is 

evident, that in the present case, fourth mode (2nd flexural mode) is dominant while after the 8th mode the 

corresponding amplitudes are less than 1% of the maximum mode amplitude 
4c , which is indicative of the 

rapid convergence of the modal expansion.  

Table 1 Non-dimensional complex amplitudes c  

 c   

 : 1 2 3 4 5 6 7 8 9 10 11 

15fN    13.7960 41.3947 20.6474 51.7936 23.5340 5.9249 0.4174 0.6211 0.0593 0.1287 0.0165 

20fN 
 13.7961 41.3947 20.6474 51.7931 23.5341 5.9247 0.4174 0.6211 0.0593 0.1286 0.0165 

30fN   13.7961 41.395 20.6475 51.7927 23.5339 5.9245 0.4174 0.621 0.0593 0.1286 0.0165 

              

 In Fig. 6, the integrated over the spatial domain moduli of the complex amplitude functions 

 
 

2

1 2

1

1, ,

x

n nx x

x

x dx   , calculated for the component hydrodynamic problems (incident P , diffraction D  and 

th
 radiation problem) as well as the total solution amplitudes, calculated as 

1

fN

P D Rc


  φ φ φ φ   are 

comparatively plotted.  A total of 15fN   bending modes were employed in the modal expansion of the plate. 

The y-axis is in logarithmic scale while the x-axis shows the increasing number of vertical modes, n . Notably, 

the modal amplitude decay rate for the propagating wavefield P  is  4O n , while the corresponding rates of 

decay concerning the diffraction solution and the 
th

 radiation potential solution   appear to be smaller 

 3 , 1O n     .  In the case of the incident wavefield P  over an abruptly sloping seabed, the above is in 

agreement with the findings in Athanassoulis and Belibassakis (1999). 

 

In the aforementioned work, it was shown that the enhanced representation for the wave potential, 

including the additional sloping bottom mode 1Z features an accelerated rate of convergence  4O n , 

compared to the standard representation  2O n that fails to accurately account for bottom slope effects. 
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Fig. 6. Integrated moduli  
2

1

1

x

n n

x

x dx   of the modal amplitude functions for component hydrodynamic 

solutions vs mode number n  

The inclusion of the additional mode allows for the consistent satisfaction of the bottom boundary condition, 

ensuring the absolute and uniform convergence up to the boundaries. The reduced order of decay of the modal 

amplitudes for the radiation-type wavefields and in extend for the total solution is attributed to the weak 

satisfaction of the interface conditions. 

5.2 Validation of methodology 

For the validation of the proposed methodology, a series of comparisons with results presented in the 

literature are performed. For the numerical approximations presented in this section by means of the proposed 

methodology, 15mN   modes are kept in the vertical expansion, including the additional sloping bottom mode, 

while 15fN   bending modes are kept in the deflection representation 

5.2.1 Constant depth  

(a) Homogenous thin plate case 

The hydroelastic response of a homogeneous thin plate over variable bathymetry is initially compared 

against the results documented in Belibassakis and Athanassoulis (2005). In the former work, the consistent 

coupled mode system, proposed by the authors in an earlier contribution, is extended to account for the 

hydroelastic problem. The analysis is restricted to homogeneous, thin plates and bathymetric variations that are 

restricted to the plate-covered region. In the following examples, the plate is assumed to extend infinitely in the 

y-direction, undergoing cylindrical bending under harmonic wave action and the length of the plate is 

500L m . In the paper, the plate mass effect is considered negligible and ignored, thus the available data for 

their analysis are limited to the flexural rigidity of the floating body, 5 410wD g m  . 
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Fig. 7 Hydroelastic solution in constant depth and almost shallow water conditions. (a) Normalised 

deflection to the waveheight (top). (b) Modulus of the velocity potential on the plate. Solid line denotes the 

present mehtod, dashed line the solution of Stoker’s  shallow raft model and squared the solution by 

Belibassakis and Athanassoulis (2005)  

The above premise in unphysical is our case and thus, the set flexural rigidity 5 410wD g m   is assumed to 

correspond to a body with constant thickness 1.3 m  and material characteristics 5 GPaE  , 0.3  and 

density 3922.5 kg me  , following Bennetts et al. (2007). The slenderness of the structure falls well within 

the limits of the classical plate theory while the material characteristics model sea ice. In the examined scenario, 

the incoming wave frequency is 0.4 rad/s   and the constant depth is 10 mh  , which reduces the depth-to-

incident wavelength ratio to 0.066h   , approximating shallow wave conditions. Comparisons in terms of the 

normalized plate deflection to the wave height   02w x a and the modulus of the potential on the plate 

 , 0x z   are shown in Fig. 7. For the discretization of the hydroelastic region, 250 linear Lagrange elements 

were employed. The above figure illustrates the results of the present method, shown by a solid line, against the 

hydroelastic CMS solution by Belibassakis and Athanassoulis (2005) and  shallow–water thin raft model  by 

Stoker (1967) denoted by a dashed line. The results are found in excellent agreement, verifying the behavior of 

the proposed method in shallow water conditions.  

Next, a second case, corresponding to deep water conditions, originally presented in Tagaki et al. (2000) is 

examined. The case explored in was validated against the eigenfunction matching technique by Yoshimoto 

(1997) and later found in good agreement with the results in Hermans (2003). The examined plate has length 

1.4 mL   and flexural rigidity 3 4 41.74 10   mwD g L   , while it floats over constant depth 0.5 mh  . 
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Fig. 8. Normalised deflection of floating elastic plate in deep water. Solid line denotes the solution obtained 

by means of the present method, while crosses denote the solution in Takagi et al. (2000). 

The normal incident wave-field has angular frequency 14  rad s   . The plate parameters are chosen as 
35.2 10  m   , with 5 GPaE  , 0.3  and density 3922.5 kg me  to comply with case configuration as 

discussed in the previous example. In Fig.8, the modulus of the plate deflection normalized with respect to the 

incident wave height  02a   is compared against the results presented in Takagi et al. (2000) denoted with 

crosses, and once again the results are in very good agreement, indicating that the present method is appropriate 

for all water-depth conditions. 

Next, in Fig. 9 the proposed method is compared against the experimental results published in Wu et al. 

(1995), and originally presented in Utsunomiya et al. (1995). The examined homogeneous, thin plate features 

length 10 mL  , width 0.5mW  , thickness 0.038m   and draft 38.36 10  md   . The Young’s modulus 

103MPaE   and the density of the elastic material is 3220 kg me  . The constant depth is set to 

1.1 mh  . In the figure, the normalized plate displacement under three different incident wave periods is 

illustrated. For 1.429 sT   and 0.7 sT   the present method, denoted by a continuous line is compared against 

the converged results obtained by means of the vertical multi-modal approximation, accounting for variable 

draft, in Bennetts et al. (2007), denoted by a dashed line. Experimental results referenced in Wu et al. (1995) are 

noted by squares, triangles and circles for periods 2.875 s, 1.429 sT   and 0.7sT    respectively. Notably, the 

geometric characteristics of the given structure suggest that its dynamic response is indeed accurately described 

by means of tclassical thin plate theory, since 0.0038L  . Furthermore even in the higher frequency case, the 

incident wavelength is considerably larger than the plate thickness ( 0.05   ) and thus shear deformation 

effects are rendered negligible. For 1.429 sT  , the obtained solutions are almost identical while minor 

deviations of a quantitative nature are observed for the high frequency case. This could be attributed to the fact 

that the present work does not account for the constant draft.  Results are generally found in very good 

agreement with the results by  Bennetts et al. (2007), illustrating the beneficial effects of evanescent mode 

employment in capturing scattering effects due to the edges of the plate. 
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Fig. 9. Non-dimensional displacement amplitude for (a) T=2.875 s,  (b) T=1.429 s and (c) T=0.7 s. Solid line 

denotes the solution of the present method while the dashed line indictes the results in Bennetts et al. (2007). 

Experimental data are denoted by squares.  

(b) Homogenous thick plate case 

In all  cases cosnidered to this point, the Classical thin plate theory is employed and shear and rotary inerta 

effects are neglected. Recently, several autthors studied the diffraction of surface waves by the presence of 

floating this elastic plates, e.g.,  Zhao et al (2008). In the afforementioned paper, comparisons against the small 

scale test documented above (Wu et al., 1995) were performed for increasing thickness values, 

0.038 m,0.075 m   and 0.1 m  . In Fig. 10, the present method employing the Mindlin plate model compared 

favorably against the results in (Zhao et al., 2008) , depicted with thinner lines for each thickness values and 

period 1.429 sT  .  

Notably, the dynamic response of the Kirchhoff and Mindlin plate models were almost identical even in the 

thicker case 0.1 m  , where thickness-to-incident wavelength ratio is an order of magnitude smaller than 

thickness  0.032   . To illustrate the differences between the two plate models a higher frequency case, for 

0.5 sT   is considered in Fig. 11. Again, three thickness cases thickness values, 0.038 m,0.075 m   and 

0.1 m were considered for the same plate configuration. In the figure, the non-dimensional deflection and 

bending moment are calculated for both plate models, resulting to three pairs of curves corresponding to the 

three thickness values. The pairs are given an increasing number that match increasing thickness values. Solid 

lines denote the solutions obtained by the thin plate assumption, while the dashed lines indicate Mindlin plate 

solutions. The thickness-to-incident wavelength ratios, ranging in magnitudes 0.01 0.25    are comparable 

to thickness in the examined cases, which justifies thick plate assumptions while the structure remains slender. 

The plate deflection and bending moment distributions shown in Fig. 11, indeed deviate due to the effects of 

rotary inertia and shear deformation under high frequency excitation.  
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Fig. 10. Modulus of the non-dimensionalised deflection and moment for 1.429T s   and different thickness 

values. Thick lines correspond to results obtained by the present method while thinner lines indicate the results  

in Zhao et al. (2008). 

 

 

Fig. 11. Modulus of the non-dimensionalised deflection and moment for 0.5T s  and different thickness 

values. Solid lines correspond to results obtained by the Kirchhoff plate model, while dashed line indicate 

results by Mindlin for thickness values (1) 0.038 m  ,  (2) 0.075 m   and (3) 0.1 m  . 
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(c) Variable thickness case 

Next, the reflection and transmission coefficients for a floating structure featuring thickness variation along 

its length are considered. A case considered in Smith and Meylan (2011) is examined. In the aforementioned 

analysis the results concern the hydroelastic response of a thin ice floe with length 200L m  with set 

parameters 3900kg m  , 0.3v    and fluid density 31000kg mw  . Concerning the employed Young’s 

modulus the referenced work documents 6 GPaE  , which corresponds to sea ice, however the provided details 

are insufficient. Following, Iida and Umazume (2020), that replicated the above case, an unrealistic Young’s 

modulus 6 TPaE   is adopted for the structural modelling and deep water conditions are assumed. Two 

thickness profiles as in Smith and Meylan (2011)    0i id q x    are examined, employing the following 

distribution functions, 

1( ) 1q x   and    2( ) 0.5 0.5tanh 0.5 0.5tanh 1.5q x x x      , 100 100x   ,           (50) 

and a range of amplitudes 
0d . The functions 

1q  and 
2q  of Eq. (50) correspond to a homogeneous thickness 

profile and a mollified step function distribution respectively, as seen in Fig. 12. The mean thickness values in 

2  is equal to corresponding constant thickness 1  for varying 0d . The reflection coefficient versus a range of 

wave periods is plotted for four thickness amplitude values 0d  corresponding to thickness profiles 1  and 2 . It 

is observed in Fig.12, that the results by the present method are found to be almost identical with Iida and 

Umazume (2020). The figure illustrates that qualitative differences between constant and variable thickness 

profiles become minor as 0d increases, indicating that thickness variations are important for thin plates. 

 

5.2.1 Thin plate floating over variable bathymetry 

Next, the variable bathymetry effects are considered. Up to this point, constant seabed cases were considered 

for validation. In the sequel a series of comparisons with  Belibassakis and Athanassoulis (2005), are carried 

out. 

 

Fig. 12.  Reflection coefficient vs period for thickness profiles  1 , 2 and different values for 0d  . The 

functions  ng x  are shown in the upper left subplot. The solid and dashed lines correspond to the solution 
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obtained by the present method for the two thickness profiles, while the square solid line and circle dashed line 

denote the corresponding results in Iida and Masuda 2020). 

In the following cases, the responses of the floating plate  considered in Section 5.2.1(a), are considered over 

different bathymetric profiles involving (a) a smooth shoaling (b) and undulating seabed. 

 (a) Smooth Shoal 

Initially, a bathymetric profile representing a smooth shoal restricted in the hydroelastic region featuring the 

following depth function is considered, 

  1 2 1 2 1

2

1
tanh 3

2 2 2

h h h h x a
h x

x a


    
       

  .                                                  (51) 

In Eq. (51), 1h  and 2h  are the constant depth values that correspond to subregions ( ) , 1,2i i   . An incident 

wave angular frequency is 10.4 rad s  . Two separate cases, with increasingly sloping bathymetry, are 

considered. The normalized response of a plate floating over a shoaling region with a slope of 3.8%  

corresponding to 1 12h m  and 2 8h m in Eq. (51) and a shoal with a steeper slope 9.4%  corresponding to 

1 15h m  and 2 5h m are given in Fig. 13. The solution by means of the present work is indicated by a solid 

line, while the results presented in Belibassakis and Athanassoulis (2005) are shown with squares. The two 

solutions are found in excellent agreement, noting the effectiveness of the method in variable bathymetry.  

 

Fig. 13.  Modulus of the normalised deflection to the waveheight for (top) 1 12mh    and 2 8mh  , (bottom) 

1 15mh    and 2 5mh  . 

 (b) Undulating seabed 

Next, the case of an undulating seabed is examined. The bathymetric profile is described by means of the 

following depth function, 

      110 sinb bh x g x A k x a   ,                                                                       (52) 
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where  2b bk   is the wavenumber of the seabed disturbance, 125b m   is the corresponding wavelength 

and 
bA is the amplitude of undulations. The filtering function is given as, 

 
2 2

1 21 exp 1 exp
b b

x a x a
g x

 

         
            

             

 .                                      (53) 

The undulating profile is again restricted in the hydroelastic region, and disturbances are kept around a mean 

depth 10h m  . The incident wave field angular frequency is kept to 10.4 rad s  . In Fig. (14) the non-

dimensional with respect to the wave height deflection corresponding to a variable seabed profile with 

15%bA h   is plotted. The present method solution, drawn with a solid line compares favorably once again, 

with the results documented in Belibassakis and Athanassoulis (2005). 

 

Fig. 14. Modulus of the normalised deflection to the waveheight for 15%bA       

 

6 Conclusions 

The present contribution proposes a novel frequency domain method for the study of the hydroelastic 

interaction of small amplitude incident waves with inhomogeneous plates of negligible draft floating over 2D 

regions characterized by variable bathymetry. Field decomposition into diffraction and radiation components 

along with a modal expansion for the plate deflection, employing the in vacuo bending modes allows for the full 

decoupling of structural mechanics and hydrodynamic transformations. For the component hydrodynamic 

problems defined in the inhomogeneous strip, a weighted residuals approach in conjunction with a Lagrange 

multiplier formulation is followed to derive a weak problem involving the radiation-type potentials. Next, 

dimensionality reduction by means of the enhanced vertical representation for the wave potential, augmented by 

the sloping bottom mode, proposed by Athanassoulis and Belibassakis (1999) is performed. The FEM is 

employed for the treatment of the resulting 1D hydrodynamic weak problem, while the pressure condition on 

the plate-covered part of the fluid surface is imposed by means of Galerkin’s method. Finally, the proposed 

method is validated against a series of numerical cases and experimental data documented in the literature and 

exhibited excellent performance. 

A major advantage of the present contribution is that it carries no simplifying assumptions for the vertical 

structure of the wave-field or the bathymetric slope of the examined waveguide. The characteristics of the 

wave-field within the 2D region, as well as the bending moment and shear force distributions of the structure, 

can be recovered either straightforwardly or by trivial post-processing. Moreover, due to the treatment of the 

weak problem formulation, the 
2C  smoothness requirement on the depth function, documented in Belibassakis 

and Athanassoulis (2005) is relaxed, enabling the treatment of more general profiles, while the numerical 

scheme remains rabidly convergent. 
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 Regarding the structural modelling, the method is able to account for both material and geometric 

inhomogeneity, while first order shear effects and rotary inertia, relevant in high-frequency excitation scenarios, 

are also taken into account by means of the Mindlin plate model. Moreover, despite the augmented discretised 

system, the constrained formulation allows for the employment of conventional trial spaces, and the 

employment of classical FEM. A major advantage of the present method is its direct extensibility to treat the 3D 

problem, which is the subject of a future work, accounting for general bathymetry and structural shape. The 

aforementioned advantages will become even more pronounced as the method is expected to minimize the 

computational complexity of the full problem in an inhomogeneous setting. Finally, the method immediately 

allows for the structural modelling by means of higher-order plate theories with minimal reformulation. 
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Appendix A– Kirchhoff plate structural eigenvalue problem in vacuo  

In the frequency domain, assuming a modal solution     Re expW w x j t   the eigenvalue problem of 

an unconstrained thin plate, under cylindrical bending assumptions is given by, 

        2 0.xx xx eD x w x x w x                                                  (A1) 

Introducing the weight function 2v H  the weak form of problem (A1) is retrieved , 

            

    

/2 /2
/22

/2
/2 /2

/2

/2
0.

L L
L

xx xx e xx L
L L

L

x x xx
L

v D x w x dx x w x v dx v D x w x

v D x w x

  


 



      

      

 
            (A2) 

In the unconstrained case the boundary terms vanish due to the zero moment and zero shear force boundary 

conditions at the plate edges. In order to satisfy the conformity condition, unknown  w x  is interpolated using 

Hermite (
1C ) shape functions as, 

    ,  i iw x H x w




                                                              (A3) 

where N  is the number of nodes in the 1-D  elements. Assuming a discretization with Hermite elements of 

N+1 order and arranging the elemental unknowns  1 1

T

e x N x Nw w w w  u the interpolation of the 

unknowns are written as, 

 1 2 2 1 2 ,N N ew H H H H u  eL u                                          (A4) 

Substituting (A4) in (A2) and allowing the weight functions to reduce to the hermite shape functions results 

in the element matrices, 

  dx

e

T

x

kloc D x L L  and   dx

e

T

e

x

mloc x  L L  .                             (A5) 

Finally, upon assembly the discretized system it terms of the global uknowns is written as, 
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2 K u M u   .                                                                   (A6) 

Appendix B–Mindlin plate structural eigenvalue problem in vacuo  

In the frequency domain the eigenvalue problem of a free moderately thick plate (1st order shear deformation 

effects), under cylindrical bending assumptions is given by the following system with length L  spanning over 

2 2L x L    , 

  2 0e x xw G w               ,                                                         (B1a) 

                              2 0r x x xI G w D            ,                                               (B1b) 

involving the unknown deflection  w x  ,  x  and rotation. 

Multiplying by the weight functions 1v , 1

2v H  and integrating over the plate length and performing 

integration by parts yields, 

    
/2 /2

22

1 1 1 2
/2 /2

0

L L
L

e x x x L
L L

wdx G w dx G w           
 

             ,                          (B2a) 

   
/2 /2 /2

/22

1 2 2 2 /2

/2 /2 /2

 0

L L L
L

r x x x x L

L L L

I dx v G w dx v D dx D        


  

            .                    (B2b) 

For the unconstrained case, the zero force and zero moment conditions cause the boundary terms to vanish in 

Eqs. (B2). Next, the unknowns w  ,   are interpolated using Lagrange (
0C ) shape functions as, 

       ,  i i i i

i i

w x N x w x N x 
 

                                                          (B3) 

where N  is the number of nodes in the 1-D  elements.  

Assuming a discretization with Lagrange elements of N-1 order and arranging the elemental unknowns 

 1 1

T

e N Nw w u the interpolation of the unknowns are written as, 

   1 2 10 0 , 0 0 0N Nw N N N N N   e 1 e e 2 eu L u u L u .          (B4) 

The element mass matrices for the discrete form of equations of system of Eqs. (B2) read, 

mloc dx+ dx

e e

T T

e r

x x

I   1 1 2 2L L L L

                                               (B5a) 

while the stiffness matrices for Eq., 

kloc dx

dx+ dx+ dx

e e

e e e

T T

x x x

x x

T T T

x x x

x x x

G G

G G D

   

   

    

   

 

  

1 1 1 2

2 1 2 2 2 2

L L L L

L L L L L L
                                   (B5b) 

By means of Eqs. (B5a,b) and after assembly the discretized system it terms of the global unknowns is written 

as 



32 

 

                                                 2 K u M u .                                                          (B6)                                                            

The following table summarizes comparisons of the above brute force approach for the treatment of the 

structural eigenvalue problem, employing 5th order Lagrange interpolations against results published in Shi et 

al. (2015). 

Table B1 Non-dimensional frequency for the free-free plate with κ=5/6 and ν=0.3 

 / 0.02L   / 0.05L   

 Present method Shi et al. (2015).  Deviation (%) Present method Shi et al. (2015).  Deviation (%) 

1 4.7264 4.7266 3.44365E-05 4.7266 4.7266 0.000228567 

2 7.8359 7.8369 0.000131751 7.8369 7.8369 0.000686446 

3 10.9481 10.951 0.000266486 10.951 10.951 0.001380529 

4 14.0366 14.043 0.000451865 14.043 14.043 0.002267211 

5 17.0968 17.109 0.000712542 17.109 17.109 0.003218165 

6 23.1119 20.144 0.147333982 20.144 20.144 0.004194369 

 / 0.1L   / 0.2L   

1 4.6452 4.6489 0.000797372 4.4399 4.4509 0.00248027 

2 7.4797 7.4996 0.002648226 6.7619 6.8082 0.006805071 

3 10.0829 10.131 0.004752404 8.6930 8.7839 0.010346259 

4 12.4312 12.518 0.006934663 10.2852 10.426 0.013500627 

5 14.5526 14.684 0.008946874 11.6263 11.817 0.016134918 

6 16.4781 16.657 0.010740499 12.5723 12.850 0.021611999 
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