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Abstract. The hydroelastic response of flexible, floating breakwaters is a subject of interest for 
coastal engineering applications. In this study, a higher order hydroelastic finite element is 
applied to the simulation of floating breakwaters of variable stiffness undergoing long wave 
impact. The main aim is the evaluation of breakwater efficiency in terms of transmitted and 
reflected wave characteristics. It is established that, for the wave-lengths examined, the 
maximum amplitude and wave-length of the transmitted pulse are strongly dependent on the 
breakwater stiffness. Finally it is shown that for case of a periodic stiffness profile the 
transmitted energy is minimised when the modulation wavelength is comparable to the 
wavelength of the incoming excitation. 

1.  Introduction  
Slender flexible floating bodies have been studied by several authors using both analytical [1] and 
numerical techniques [2]. In the literature, the response of geophysical formations such as ice floes [2-
3] and even specific types of floating breakwaters are modelled under thin plate theory assumptions 
[4-5]. Kirchhoff’s classical plate theory becomes relevant as the horizontal dimensions of the structure 
in question are significantly larger than its thickness, rendering the hydroelastic responses of the 
floating structure dominant over rigid body motions. A structure complying with the aforementioned 
assumption of negligible thickness compared to horizontal dimensions is expected to flex under wave 
excitation, leaving only fractions of the incident wave energy to be transmitted. In turn part of the 
remaining energy will either reflect or dissipate due to friction and damping [6]. A floating breakwater 
structure is expected to shelter marinas and harbours in an environment of limited fetch [4-5]. The 
principal aim of floating breakwater configurations is to mitigate the transmitted wave energy and the 
transmitted wave amplitude. The investigation of reflection and transmission characteristics of a 
coupled hydroelastic system yields valuable information for the optimal design of a floating 
breakwater structure, aiming in wave action attenuation. 

Commonly, the linear water wave theory is employed for the study of regular wave reflection and 
transmission characteristics of a structure resting on a layer of inviscid and irrotational fluid. In this 
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line of thought, notable are the works of Meylan and Squire [7] and Montiel [8] who study reflection-
transmission characteristics for the case of a thin ice floe, with the latter work accounting for the 
Archimedean draft. In the given investigations the transmission coefficient of the energy conserving 
system was correlated with the incident wavelength. Bennets et al. [9] and Smith and Meylan [10] 
explored the effects of plate thickness in the computed transmitted energy. 

As already mentioned the Kirchoff thin plate assumptions are employed for structures with small 
thickness-to-length ratio. Moreover, as floating breakwaters are positioned near-shore the study in a 
shallow depth environment is relevant.  In that note, Sturova [11] studied the transient response of a 
thin, heterogeneous plate in shallow water conditions by means of an eigenfunction expansion method. 
Additionally, Praveen et al [12] considered in their work, the hydroelastic response of a thick plate 
under the long wave assumptions. However, in nearshore environments the abrupt variability of the 
bathymetry must also be taken into account. Papathanasiou et al. [13] presented a higher order finite 
element scheme for the solution of the transient hydroelastic problem featuring a thin, heterogeneous 
plate, floating over variable, shallow bathymetry. 

In the present contribution, we focus on the determination of reflection-transmission coefficients 
for the coupled hydroelastic system involving a thin, elastic strip featuring inhomogeneities, which 
interacts with incoming long waves. The motivation of the present study lays in the analysis and 
design of novel breakwater configurations. In addition, the present investigation is able to provide a 
simple tool for determining regions of excessive wave energy transmission for harvesting purposes. A 
similar study was conducted by the authors in [14] focusing on the effects of bathymetry on the 
reflected and transmitted wave characteristics. In this contribution we focus on the effect of the elastic 
modulus of the floating structure.  A parametric study, involving several modulation types of the 
stiffness value along the breakwater is performed and optimal stiffness variations are determined. The 
optimization criteria involve the minimization of energy and maximum wave amplitude in the 
transmission region. Locally increased breakwater stiffness properties can also be achieved through 
the use of elastic connections to the seabed [15]. The response of flexible breakwaters, elastically 
connected to the seabed is studied in the same framework too. These, very local in nature, stiffness 
enhancements are found to induce significant alterations in the wave reflection properties of the 
breakwaters. 

2. Organization of paper 
The present paper is structured as follows: Section III briefly presents the governing mathematical 
equations for the problem of calculating the flexural, hydroelastic response of a floating, thin plate 
over shallow water bathymetry. Section IV explores the variational form of the presented initial 
boundary value problem and presents the implementation of the proposed finite element scheme. 
Section V presents a series of numerical results exploring the reflected and transmitted wave 
characteristics, firstly for the case of a breakwater with constant stiffness and then for the case of a 
breakwater featuring variable Young’s modulus. Finally, in Section VI key findings are summarized 
and further research is proposed. 

3. Governing equations 
In the present section, the governing equations for a coupled hydroelastic problem featuring a thin, 
floating plate over shallow waters will be briefly presented. The reader is directed to relevant works in 
the literature for a more in depth discussion [2,11,13]. A two dimensional Cartesian coordinate system 
is employed, with  the horizontal axis x  coordinate system coinciding with the mean water level, and 
the vertical axis z  pointed upwards. The plate is assumed to extend indefinitely in the direction 
vertical to the xz plane. The case of a flexible elastic strip is therefore considered. The respective 1D 
domain : ( )xΩ −∞ < < ∞  is occupied by a layer of inviscid and irrotational fluid. The floating elastic 
strip is located at the 1D domain extending from 0x =  to x L= . The thickness distribution of the 
flexible strip is ( )xτ  and its density pρ .  The density of the fluid (water) is denote by wρ .  
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The symbols 0 1 2, ,S S S will be used to denote the three subregions 0 x L< < , 0x−∞ < <  and 
0L < < +∞ , respectively (see also Figure 1). The three regions will be termed ‘region of hydroelastic 

interaction’, ‘region of transmission’ and ‘region of reflection’ respectively. In 0S the free water 
surface elevation ( , )x tη is assumed to coincide with the plate deflection. The velocity potential 
functions , 0,1, 2i iϕ =  will be used for the three abovementioned domains. The bathymetry in the 
domain of ‘hydroelastic interaction’ is given by ( ) ( )s x d x− , where ( )s x  is the variable depth of the 
seabed with respect to the undisturbed free surface and 1( ) ( )p wd x xρ ρ τ−=  is the plate draft (according 
to Archimedes principle). The semi-infinite, thin strip assumption allows for the modelling of the plate 
by means of the Euler-Bernoulli beam theory. For the hydrodynamic modeling, the linearized Shallow 
Water Equations are employed. The following non-dimensional variables are employed for the 
derivation of the resulting 1-D hydroelastic system, 

/x x L= , / Lη η= , 1/2 1/2t g L t−= and 1/2 3/2 ,i ig Lϕ ϕ− −= for 0,1,2i =  

After dropping tildes for simplicity the non-dimensional system is written as, 
( ) 0 00, ,xx xxM K x Sη η η ϕ+ + + = ∈                                            (1) 

0 0( ) 0, ,x xH x Sη ϕ+ = ∈                                                 (2) 

1 1 1( ) 0, ,x xH x Sϕ ϕ− = ∈                                                   (3) 

2 2 2( ) 0, ,x xH x Sϕ ϕ− = ∈                                               (4) 

with the coefficients  1 1( ) ( ) wM x m x Lρ− −= , 1 1 4
wK D g Lρ− − −= , [ ]( ) ( ) ( ) /H x s x d x L= −  in the ‘hydroelastic 

interaction’ region, ( ) ( ) /H x s x L=  outside the ‘hydroelastic interaction’ region and g  the acceleration 
of gravity. The flexural rigidity of the plate is 3 2 1(12(1 ))D E vτ −= − , where E  is the Young’s modulus 
and v  the Poisson’s ratio of the plate material. The non-dimensionalised quiescence conditions at 
infinity are given as 

1 0( )x xϕ = → −∞  and 2 0( )x xϕ = →∞ .                                          (5) 

 
At the interfaces between subregions, mass and energy conservation dictated the following matching 
conditions 

             1 0(0(0 ) , ) ( (0 ) , )0x xH t H tϕ ϕ− − + += ,                                             (6a) 

0 2(1 ) 1 , (1 ) 1( ) ( ),x xH t H tϕ ϕ− − + += ,                                           (6b) 

1 0( )1 , (1 , )t tϕ ϕ− +=   and 0 2( )1 , (1 , )t tϕ ϕ− +=  .                                                    (7) 

For a freely floating plate, the non-dimensional boundary conditions at the edges, corresponding to 
zero shear force and bending moment, are 

0
0xx x

Kη
=
= , 1

0xx x
Kη

=
=  and                                                            (8) 

0
0xx x x

Kη
=
= ,   1

0 .xxx x
Kη

=
=                                              (9) 

The initial- boundary value problem is completed with appropriate initial conditions of the form 
00 0( ,0) ( ,0) 0,  x x x Sη φ = ∈= ,                                           (10) 

1 1( ,0) ( ,0) 0,  tx xφ φ= ∂ =                                          (11) 

2 2( ,0) 0, ( ,0) ( )tx x G xφ φ= ∂ = − ,                                            (12) 
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The above initial conditions imply that an initial upper surface disturbance, denoted by ( )G x , is 
allowed to propagate at the offshore region 2S  at the beginning of time, while the free water surface in 
region 1S  and the upper surface in the hydroelastic coupling region 0S  are at rest. 

4. Finite element implementation 
The weak form of the above initial-boundary value problem is subsequently derived by the 
employment of appropriate weight functions. The procedure is described in detail in [13] and briefly 
outlined below for completeness in presentation. The presented Equations (1)-(4), valid in given 
subregions of : ( )xΩ −∞ < < ∞ , are multiplied with the corresponding weight functions: 

2
0( )v H S∈ , 1

0 0( )w H S− ∈ , 1
1 1( )w H S∈ , 1

2 2( )w H S∈ , where kH  is the space of functions with square 
integrable k order derivative, and finally integrated over the respective subdomains . After performing 
integration by parts, 

1 1 1 1

00 0 0 0
0xx xxMv dx Kv dx v dx v dxη η η ϕ+ + + =∫ ∫ ∫ ∫                                        (13) 

[ ]
1 1 1

0 0 0 0 0 00 0
0x x xw dx w H dx w Hη ϕ ϕ− + − =∫ ∫                                          (14) 

[ ]
0 0 0

1 1 1 1 1 1 0x x xw dx w H dx w Hϕ ϕ ϕ
−∞−∞ −∞

+ − =∫ ∫                                          (15) 

[ ]2 2 2 2 2 2 11 1
0x x xw dx w H dx w Hϕ ϕ ϕ

∞ ∞ ∞+ − =∫ ∫                                         (16) 

Adding Equations (13)-(16) and the employment of the  quiescent conditions at infinity and the 
matching conditions imposed by material continuity at the interfaces results in the formulation of the 
following variational problem, 

Find ( , )x tη , 0 ( , )x tϕ 1( , )x tϕ and 2 ( , )x tϕ such that for all 2
0( )v H S∈ , 1

0 0( )w H S− ∈ , 1
1 1( )w H S∈  and 

1
2 2( )w H S∈ it is 

1 1 0

0 1 1 2 20 0 1

0 0 0 1 1 1 2 2 2                 ( , ) ( , ) ( , ) ( , ) 0

Mv dx w dx w dx w dx

a v b w b w b w

η η ϕ ϕ

η ϕ ϕ ϕ

∞

−∞
− + +

+ + + + =
∫ ∫ ∫ ∫   

                                        (17)                                        

where the bilinear functionals appearing in (17), are defined as: 
( )

1

0
( , ) xx xxa v Kv v dxη η η+= ∫ ,

1

0 0 0 0 00
( , ) x xb w w H dxϕ ϕ= ∫ , 

0

1 1 1 1 1( , ) x xb w w H dxϕ ϕ
−∞

= ∫  and 

2 2 2 2 21
( , ) x xb w w H dxϕ ϕ

∞
= ∫ . 

In Papathanasiou et al. [13], it is shown that for the examined hydroelastic system the following 
quantity, which is actually the energy of the system, is conserved, 

( ) ( ) ( ) ( )1 02 2 2
1 20 1

0 0 0 1 1 1 2 2 2

( , )

           + ( , ) ( , ) ( , )

t M dx dx dx a

b b b

η ϕ ϕ η η

ϕ ϕ ϕ ϕ ϕ ϕ

∞

−∞
= + + +

+ +

∫ ∫ ∫  E
.                                                     (18) 

The total energy of the system is proven to be conserved in time and equal to the energy provided 
form the initial free water surface disturbance, hence it holds that ( ) (0)t =E E  for every 0 t T≤ ≤ , 
where T  is the examined time interval.  

The above variational problem will be solved by means of the higher order finite element scheme 
developed in [13]. In particular, we are interested for the solution of the initial boundary value problem 
corresponding to a long wave pulse generated in the ‘transmission region’, propagating and interacting 
with the floating plate. The computational spatial domain that will be used is set such that x extends 
from Ax−  to Bx , where these values define a spatial domain large enough so that the pulses do not 
reach the computational domain boundaries in the examined time interval. Thus the conditions for the 
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velocity potential spatial derivative (velocity) at infinity are also valid at the edges of the 
computational domain.  

In the free surface regions, i.e. the ‘transmission’ and the ‘reflection’ regions, the velocity potential 
function is approximated by fourth order Lagrange polynomial shape functions. In the region of 
hydroelastic coupling a special hydroelastic element introduced in [13] is used. The special element 
features quantic Herminte polynomials for the approximation of the plate deflection and fourth order 
Lagrange polynomials for the velocity potential function in the region. Hence, the approximate 
solution in each element is given as, 

6

1
( ) ( )h h

i i
i

H x tη η
=

= ∑  and 
5

1
( ) ( ), 1, 2h h

j i ij
i

L x t jϕ ϕ
=

= =∑                                            (19) 

Substituting the above expressions in the variational problem defined by Eq. (17) results in a 
second order system of the form 0tt tu u u∂ + ∂ + =M C K , where the vector u contains the nodal 
unknowns. The implication in this otherwise standard dynamical system is that each matrix is singular. 
The stability results in [13] however guarantee a unique solution of this discrete system. That is, an 
appropriate linear combination of the matrices appearing in this dynamic system must be invertible. 
This fact enforces the application of an implicit time integration procedure. Subsequently, a Newmark 
time integration scheme (see [13]) is employed in order to calculate the solution of the ordinary 
differential equation system. The particular values for the Newmark method 1/ 2γ =  and 1/ 4β =  
have been used in all the numerical results that follow. The number of time steps employed is in all 
cases sufficient to ensure high accuracy. 

5. Numerical results 
In this section, the efficiency of flexible breakwaters, in terms of reflection and transmission 
characteristics, will be analysed with respect to the stiffness of the flexible elastic component. More 
specifically, several types of stiffness distribution along the flexible elastic strip will be considered and 
the portion of energy transmitted to the near-shore region will be derived. In addition, the distorted 
form of the main pulse, after interaction with the breakwater, will be calculated and the reduction in 
amplitude of the transmitted pulse will be studied. Throughout the following analysis the length of 
breakwater is taken as 250 mL =  and its thickness is set to ( ) 0.5 mxτ = . The density of the elastic 
material of the breakwater is 3900 kg mpρ = while the water density is 31025 kg mwρ = . All the 
numerical results involve an incoming wave created by an initial water surface elevation at the 
offshore region. This initial upper surface elevation has the general form 

( )( )2
0 0( ) 2 expG x A x xµ= − −                                                     (20) 

where the non-dimensional pulse amplitude is 4
0 3.3 10A −= ⋅ , while the non-dimensional, positive 

parameter controlling the smoothness of the pulse is set to 250µ = . Finally, 0x  denoted the point of 
origin for the initial disturbance located in region 2S . The initial profile splits into a left and a right 
propagating wave. The right propagating wave travels to the offshore region and is just plotted as a 
reference wave profile. It is the left propagating wave that interacts with the floating breakwater. Due 
to the large wavelength of the pulses, compared with the depth of the basin considered, and the related 
assumption of shallow water hydrodynamics, the pulses remain unaltered when propagating in 
constant bathymetry regions. 

At the hydroelastic region, the bathymetry varies creating a shoal approximated by the function, 

       ( ) ( )4 2 tanh 10H x x= + .                                                       (21) 

At this point it is noted that for presentation purposes, and with no loss in the generality of the 
presented theoretical analysis, the origin of Cartesian axis is horizontally translated so as to include the 
entire computational domain in the right half-plane. In that line of thought, the employed bathymetry 
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(21) corresponds to a smooth shoaling profile given by a hyperbolic tangent with the point of 
inflection coinciding with the middle of the floating breakwater, as seen in Figure 1. In the same figure 
the initial disturbance is seen to split into two identical pulses with half the initial amplitude travelling 
is opposite directions and featuring no signs of dispersion as previously mentioned. 

5.1. Constant stiffness 
At a first step, the case of constant stiffness will be examined. For that, three different examples with 
breakwaters of constant stiffness will be presented. The first examined case concerns a very flexible 
floating strip. In particular, the Young’s modulus value 7 25 10 /E N m= ⋅  is considered. Note that the 
Young’s modulus values selected do not represent any specific material but rather the macroscopic 
elastic behaviour of the floating component. The second constant stiffness case involves a flexible 
breakwater of intermediate stiffness. The value of Young’s modulus selected for this second case is 

9 25 10 /E N m= ⋅ . Finally, a very stiff breakwater is introduced and assigned the value 
11 25 10 /E N m= ⋅ .   

In Figure 2 snapshots of the propagating pulse impacting the floating breakwater and subsequently 
transmitting in region 1S  are shown for the case featuring a ‘soft’ breakwater. The upper surface 
elevation at the same time instants are depicted in Figure 3 and 4 for the intermediate stiffness and the 
‘stiff’ breakwater cases respectively. 

 

Figure 1. Initial Surface elevation and long wave 
propagation in the offshore region 

 

Figure 2. Hydroelastic interaction and transmitted 
wave profile in the case of a ‘soft’ flexible 
breakwater with 7 25 10 /E N m= ⋅ . 
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Figure 3. Hydroelastic interaction and transmitted 
wave profile in the case of a relatively ‘stiff’ 
flexible breakwater with 9 25 10 /E N m= ⋅ . 

 

Figure 4. Hydroelastic interaction and 
transmitted wave profile in the case of a very 
‘stiff’ breakwater with 11 25 10 /E N m= ⋅ . 

Comparing Figures 2, 3, 4 it is readily deduced that as stiffness increases, the amplitude of the 
reflected pulse is seen to increase while the transmitted wave amplitude is successfully attenuated. 
Additionally, the ‘softer’ case in Figure 2 leads to a transmitted pulse with wavelength similar to the 
initial disturbance that impacts the structure, along with a small dispersive trail. In Figures 3 and 4 
however the transmitted pulse appears significantly altered. In Figures 5, 6 and 7 the energy of the 
system, defined in (18) is illustrated for all the considered constant stiffness cases. The 
nondimensional total energy of the systemE , denoted by the thick black line, is found to be constant 
in time. 

 
Figure 5. Energy of the system before, during 
and after the Hydroelastic interaction and portion 
of the reflected pulse energy in the case of a 
‘soft’ flexible breakwater with 7 25 10 /E N m= ⋅ . 

 
Figure 6. Energy of the system before, during 
and after the Hydroelastic interaction and portion 
of the reflected pulse energy in the case of a 
relatively ‘stiff’ flexible breakwater with 

9 25 10 /E N m= ⋅ . 
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Figure 7. Energy of the system before, during and after the Hydroelastic interaction  

and portion of the reflected pulse energy in the case of a  
very ‘stiff’ breakwater with 11 25 10 /E N m= ⋅ . 

The total energy of the system includes the energy of the pulse that propagates in the offshore 
region, away from the breakwater. Hence the energy that reaches the structure is half the initial energy 
of the system. The pulse propagating towards the nearshore region is partly reflected back in 2S  due to 
the presence of the elastic body and partly transformed into hydroelastic energy before finally being 
transmitted into 1S . This implies that the energy of the pulse interacting with the breakwater is 0.5E . 
This energy level is depicted in the figures by a thin, dashed line. The energy against time in every 
subregion is also depicted in the figures. The difference between the transmitted energy in region 2S , 
given by the continuous blue line and half of the energy that impacts the breakwater is an indicator of 
the pulse energy that is reflected back in the offshore region. It is clearly seen that the reflected energy 
increases with increasing elastic stiffness. The given outcome is of interest since maximization of 
reflection corresponds to the optimal attenuation of transmitted energy. 

 

 

 

Figure 8. Variation of the elastic modulus along the span of  
the flexible strip for different values of n  and a . 
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5.2. Variable stiffness 
For the analysis of flexible breakwaters with variable stiffness, the following profile for Young’s 
modulus will be adopted 

( ) ( )min max min 0( ) sin ( )aE x E E E n x xπ= + − − .                                     (22) 

The above distribution suggests that Young’s modulus is allowed to vary between a minimum and 
a maximum value. Parameters a  and n  that appear in expression (22) affect the shape of the stiffness 
profile in terms of periodic variation frequency and stiffness of the peaks, as shown in Figure 8. The 
minimum value of the Young’s modulus selected is 9 25 10 /E N m= ⋅ while the maximum value 
selected is 11 25 10 /E N m= ⋅ . It is evident that significantly increasing the exponent a  results in a 
localized elastic stiffening which is equivalent to the presence of an elastic connection of the 
breakwater with the seabed at n  locations.  

 

 

Figure 9. Energy balance and transmitted energy indicator for 2n =   
and different values of the exponent a . 

The reader is referred to the work of Karperaki et al. [15] for an in depth analysis of the 
hydroelastic response of a thin floating structure, elastically connected to the seabed. The energy 
balance principle is again explored for several variable stiffness profiles featuring different values of 
parameters a  and n . In Figure 9 the case of a constant number of peaks 2n =  in the periodic 
fluctuation of the Young’s modulus is employed. An increasing steepness parameter a is considered. It 
is seen that the reflected pulse is maximized for the intermediate case of 20a = . It is clearly seen 
however in Figures 9, 10, 11 that the optimum transmitted energy attenuation is achieved for a 
steepness parameter that depends on the number of peaks in the periodic variation for profile (22). 
This suggests an optimization problem. More specifically, in Figure 10, where 4n = ,  the 
maximization of reflected energy is achieved for 2a = . For an increased number of periodic 
fluctuations, as seen in Figure 11, the optimal case is achieved for 20a = . 
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Figure 10. Energy balance and transmitted energy indicator for 4n =   
and different values of the exponent a . 

 

 
Figure 11. Energy balance and transmitted energy indicator for 8n =   

and different values of the exponent a . 
The given result is fundamentally different from the previous observations for a constant stiffness 

profile, where increasing the Young’s modulus results in decreasing transmitted energy. For the 
examined stiffness profile, maximization of the reflected energy is achieved when the wavelength of 
the periodic Young’s modulus distribution is comparable with the incoming pulse wavelength. In such 
cases the hydroelastic pulse suffers multiple reflections that increase the total reflected energy. When 
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the periodicity of the Young’s modulus assumes a wavelength that is much larger than the one of the 
excitation pulse, the reflected wave energy reduces again. 

In order to further investigate the correlation between the parameters a   and n    a parametric study 
was conducted for a constant steepness parameter 2a =  and a varying number of fluctuations. The 
results of the study shown in Figure 12 suggest that the minimization of the transmitted energy is 
deduced for 5n = . In Figure 13, snapshots of the upper surface deflection for the above optimal 
scenario are shown. The amplitude of the transmitted wave appears significantly reduced when 
compared to the amplitude of the incoming pulse suggested by the amplitude of the hydroelastic 
response in 15t = , just moments after impact. 

 

Figure 12. Energy transmitted in the nearshore region for 2a =  and different values n .  
 

 

Figure 13. Snapshots of the upper surface elevation for  
the case of minimum transmitted energy 5, 2n a= = . 

6. Conclusions 
In the present contribution the hydroeastic response of a floating elastic breakwater in shallow water 
conditions is studied in terms of the characteristics of the reflected and transmitted waves. After a brief 
presentation of the governing equations, the equivalent variational problem is presented and a higher 
order finite element scheme is proposed for the calculation of the breakwater response. Next, the case 
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of a breakwater of constant stiffness has been considered, where a clear correlation between the 
employed Young’s modulus and the amplitude and form of the transmitted pulse is shown. The 
transmitted wave energy was shown to be attenuated for increasing stiffness. In order to examine a 
case of variable elastic modulus a profile featuring periodic fluctuations was employed. In the 
employed profile, the Young’s modulus is allowed to vary between a chosen set of minimum and 
maximum values while the number of periodic fluctuations and the steepness of the modulation peaks 
are controlled by parameters. Minimisation of the reflected energy was achieved when the wavelength 
of the periodic structure employed for the Young’s modulus profile was comparable with the incoming 
wave excitation. A parametric study to further investigate the tuning of the employed stiffness profile 
parameters was carried out. Future developments involve incorporation of nonlinearities in the 
hydroelastic breakwater model.  
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