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Abstract: There is a growing demand for higher computational speed and energy efficiency of ma-
chine learning approaches and, in particular, neural networks. Optical implementation of neural
networks can address this challenge. Compared to other neuromorphic platforms, fibre-based tech-
nologies can unlock a wide bandwidth window and offer flexibility in dimensionality and complexity.
Moreover, fibre represents a well-studied, low-cost and low-loss material, widely used for signal
processing and transmission. At the same time, mode-locked fibre lasers offer flexibility and control,
while the mode-locking effect can be crucial for unlocking ultra-short timescales and providing
ultra-fast processing. Here, we propose a mode-locked fibre laser with a non-linear power threshold
in both power and spectrum. The advantage of the proposed system is a spectrum width two-branch
function dependent on the input signal power. The effect is caused by a transition between two
operating regimes and is governed by the input signal power. The proposed design enables receiving
a non-linear transfer function in amplitude with a power threshold as an optical analogue of biological
neurons with the additional advantage of a non-linear two-branch transfer function in spectrum
width. The latter property is similar to the frequency-varied response dependent on stimulus prop-
erties in biological neurons. Thus, our work opens new avenues in research into novel types of
artificial neurons with a frequency spectrum width variable response and, consequently, spiking
neural networks and neural-rate-based coding with potential applications in optical communications
and networks with flexible bandwidth, such as 5G and emerging 6G.

Keywords: optical signal processing; optical neurons; mode-locked fibre lasers

1. Introduction

There is enormous pressure to increase the speed of processing of an ever-growing
volume of information. Developments in machine learning and artificial intelligence create
opportunities for a variety of applications for big data technologies, including the Internet
of Things and future communications, such as 6G. Neural networks have become one of
the leading processing tools, offering a broad range of potential applications and opening
up new frontiers.

At the same time, there has been a surge in the development of optical platforms for the
realisation of neural networks. In particular, neuromorphic photonics [1–3] pave the way
for the fast and energy-efficient realisation of neural networks. Neuromorphic processing
and neural networks have a wide range of practical applications in physics, engineering,
medicine and other fields, by enabling the processing of various types of signals. There
is a growing interest in this area due to novel designs, new hardware implementations,
and wide potential application. In particular, recurrent neural networks (RNNs) offer new
areas of application ranging from image analysis and classification, speech recognition and
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language translation, to advanced research and industry-oriented tasks, such as inverse
imaging problems or high-speed communications. Recently, RNNs have been applied
in optical communications for non-linear signal distortion compensation [4–6] and non-
linearity mitigation for advanced high-order modulation formats [7–9].

While RNNs enable the solution of complex tasks, the complexity of RNNs them-
selves increases the amount of time required for training and processing. This presents
a computational challenge and requires novel computational approaches. Thus, there
is a demand for novel electronic and optical hardware platforms to address speed and
energy requirements for successful implementation of RNNs. An optical neuron is a key
component of such technologies, from the seminal Fitzhugh–Nagumo neuron [10,11] with
its electronic realisation in the 1960s and the silicon neuron designed in the 1990s [12],
to a silicon analogue of the eye’s retina [13] and the Neurogrid network simulating one
million neurons [14]. Among different underlying platforms, there are also the advanced
silica-wafer-based SpiNNaker and BrainScaleS computing platforms of the Human Brain
Project [15], while a 294-fold acceleration against a conventional computer was demon-
strated in [16] using silicon photonic weight banks. At the same time, there have been
developments in semiconductor RNNs with optical delayed feedback [17] and fibre-based
RNNs with gigabyte-per-second speed [18]. Such architectures boast a large number of
neurons and intrinsic layers.

An echo state network (ESN) [19] is a type of reservoir computing (RC) [20] approach
to the design of RNNs, which reduces training complexity as only output weights are
required to be trained. The system can be realized by randomly connected non-linear
nodes, which mimic neurons. Moreover, it has been demonstrated that only one non-
linear node is required to realise RNNs as time- [21] or frequency-multiplexing [22] can
be used to create virtual neurons. Such architectures have already been demonstrated to
have practical applications, including in high-speed signal processing, in particular, in
optical communications [23–27]. The all-optical implementation of ESN enables high-speed
signal processing and can provide the basis for a new generation of high-speed computing
hardware [17,28] and address ever-growing demands on signal-processing speed.

Optical neurons are often based on lasers, as it is a mature technology with a broad
range of applications and enables control and flexibility in the design. Recently, semicon-
ductor vertical-cavity surface-emitting laser (VCSEL) [29,30] and graphene-based [31] laser
neurons have been developed. Optical demonstration of ESN with GHz bandwidth was
based on a semiconductor laser [17] for applications in optical networks and communica-
tions for amplitude-modulated-signal processing [24]. Higher bandwidth enables higher
signal processing speed; moreover, current developments in optical communications and
5/6G employ ultra-wideband signals [32].

However, a fundamental limitation on optical RNN speed is imposed by the underly-
ing material and is related to the relaxation time of the media. Fibre as a processing medium
offers a tens-of-THz-order bandwidth window. Fibre-based ESN analogue (FESNA) [25]
was the first demonstration of THz bandwidth neuromorphic signal processing. More-
over, fibre, in particular, multi-mode fibre, unlocks multiple degrees of freedom enabling
multi-dimensional signal processing [25,33], which is crucial for the solution of complex
problems where multiple dimensions need to be processed simultaneously. Moreover,
fibre-based NN architecture can be straightforwardly adapted to fibre-based optical com-
munication networks and fibre-based optical-signal-processing methods, which present
a mature and well-developed technology. For example, fibre-based optical Fourier trans-
form incorporated into FESNA has enabled the first multi-channel neuromorphic signal
processor [22].

Current developments in signal transmission and communications, such as 5G stan-
dards, focus on ultrawideband and flexible bandwidth signals [34–36]. Emerging 6G
networks are envisioned to merge intelligent processing within the optical communication
network [37]; it is, therefore, a requirement for future neuromorphic processing technology
to support such flexible bandwidth signal architectures.
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Fibre mode-locking is a key to ultra-fast signal-processing as it enables processing over
extremely short timescales. Moreover, it paves the way for controlling spectral properties,
creating new opportunities in the development of spiking neural networks, which are of
major practical importance. Fibre mode-locked laser represents a well-studied technol-
ogy with ubiquitous dynamics [38,39] and numerous techniques have been developed to
augment and assess its capabilities [40,41].

Furthermore, as biological neurons are known to exhibit complex frequency-varied re-
sponses to different types of stimulus (for example, the spike frequency adaptation effect [42,43]),
which play an essential role in neuronal processing and adaptation, future artificial optical
neurons will need to encompass such effects in their design.

In this work, we lay the foundation for such technology by proposing the first photonic
system, which exhibits a spiking non-linear response in both power and spectral width
governed by a power threshold. Here, we demonstrate the first design of a mode-locked
fibre laser with non-linear operating regimes in both power and spectrum width. We
show that the proposed laser system exhibits a non-linear power-dependent response with
a threshold. We unveil the transition between two operating regimes where the signal
experiences a change of attenuation coefficients in the power transfer function and the
two-branch transfer function in spectrum width. These features are very important for
developing a novel type of optical neuromorphic technology with variable bandwidth
capability that can address optical communication system requirements and can unlock the
ultra-high-speed neuromorphic processing of ultrashort pulses.

The unique advantage of the proposed system is a non-linear spectral signal re-shaping
dependent on signal power with a clear transition gap between the two stages. Since the
transition is governed by a power threshold, the system can be used for spectrum coding
as a novel type of neural coding. The presented fibre mode-locked laser system is simple
and flexible and can be used in a wide range of applications, including in photonics
and medicine, such as self-tuning lasers [44,45] and smart sensors [46], as well as optical
communications [47,48] and in 5G and 6G networks [22,49].

2. Design

Here, we use a mode-locked fibre laser configuration, which performs non-linear signal
processing while the input signal is generated by a seed laser. A seed laser is used here as
the most general type of excitation (signal) generator, which represents an input excitation.
Given the broad range of applications of neural networks, this setup enables mimicking
of signals excited by various physical, engineering or biological systems. Moreover, an
unmodulated input enables mapping of the output response to receive a transfer function
characteristic of the designed processor. The experimental setup is illustrated in Figure 1.
The seed laser (left) is a fibre ring cavity laser in which a 1.25-m-long erbium-doped fibre
constitutes the gain medium, pumped by a laser diode operating at 980 nm through a
wavelength-division multiplexer. An intracavity programmable spectral shaper (Finisar
WaveShaper) is used to adjust the net-cavity dispersion and the central wavelength of
the pulses. The frequency of the generated pulses from the seed laser is 18.53 MHz and
is constant throughout the experiment. The pump power is fixed to 250 mW. The gain
medium is fully relaxed between the input pulses. The mode-locked laser operation is
obtained using an effective saturable absorber based on a non-linear polarizaton rotation
(NPR) [50] effect realized by three waveplates and a polarizer. The output of the laser after
amplification is an input to the processing laser (right) with a similar laser configuration. A
variable optical attenuator (VOA) is used to control the energy of the input pulses, without
modifying other pulse parameters, such as the pulse duration and the spectral width. The
proposed configuration enables changing of the properties of the input excitation, while
the processing laser is used to generate a neural response.
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Figure 1. The experimental setup. WDM: wavelength-division multiplexer; EDF: erbium-doped
fibre; ISO: isolator; AMP: amplifier; VOA: variable optical attenuator; PDI: polarisation-dependent
isolator; PC: polarization controller.

3. Results and Discussion

Figure 2a depicts the initial spectrum of the seed (left) and the processing (right) lasers,
respectively. As can be seen, due to anomalous dispersion, the spectrum of the right laser
shows Kelly sidebands, which arise from interference between solitons and dispersive
waves. In contrast, the pulse spectrum from the left laser has no Kelly sidebands as a
result of nearly zero dispersion. When the pulses from the seed (left) laser are input to
the processing (right) laser, the output pulses show evolving non-linear dynamics (see
Figure 2b). Initially, when the input power is low, the pulse spectrum in the right laser
does not change; however, when the input power increases to a threshold (around 125 µW),
the Kelly sidebands disappear and the spectrum resembles that of the input pulses. As
the input power increases further, the input pulse dominates and the spectrum follows
the shape of the input pulse. Thus, the response of the processing laser has a non-linear
threshold dependent on an input signal power. An additional advantage of the proposed
processor is the controlling of the spectral dynamics by the input signal power.

Figure 3a shows the output power of the laser (right) as the input power from the
left laser is varied by VOA. There is an inflection point between 120 and 125 µW. It can be
seen that the transfer function on the output power in the vicinity of the inflexion point
experiences stationary-like behaviour (the output power does not change significantly in
the vicinity of the infection point) with a corresponding drop in the transfer function slope
(see Figure 3b. With further increase in the input power, the output power continues to
grow and the slope returns to the previous value. This results in a gap in the transfer
function compared to the original trend (see the dashed red line in Figure 3a). The drop
in power is constant (as shown by the constant slope in the transfer function) after the
inflexion point and is caused by the transition into a different lasing regime, resulting in a
jump from one branch of a transfer function to another. This behaviour is unique to the
proposed system and is accompanied by a two-branch spectrum transfer function (see
Figure 4a, which is also a unique advantage of the proposed design.

Therefore, two operating regimes can be distinguished:

(i) below the threshold—the output signal follows the eigen-mode excitation characteris-
tic of the processing laser inherent properties;

(ii) above the threshold—the output signal follows the input signal excitation.

These regimes have different properties, both in the power dynamics characterized by
the changes in the amplification/attenuation parameter (variation of the slope in Figure 3b),
and in the spectral properties of the signals (see Figures 2 and 4).
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Figure 2. (a) The spectrum of the left laser (red) and the spectrum of the right laser when no signal is
input to it—self-excitation mode (black); (b) the spectra evolution of the right laser when the input
signal from the left laser is varied.

Figure 3. (a) Power transfer function: the output power of the laser (right) when the input power of
the seed (left) laser is varied by the VOA; (b) the slope variation as a function of input power.
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The threshold optical power is defined by the properties of the eigen signal generated
in the processing laser, in particular, its power. The non-linear dynamics inside the cavity
of the processing laser induce signal–signal interactions between the input signal being
transformed and the eigen signal being generated inside the cavity. Thus, the threshold
power is defined by the parameters of the processing laser, the pumping power as well
as the gain medium. Overall, the physics of the process present a new research direction
for analytical treatment, as well as improved understanding of the signal–signal dynamic
processes inside the cavity, in particular, for the design of new generating and processing
regimes in lasers.

The transfer function is identical when increasing or decreasing the input power; it is
below the conversion power value at which the mode-locking is destroyed (this value is
defined by the cavity parameters of the processing laser; here it is 120 mW).

The proposed technology has a characteristic spiking response with a power thresh-
old and exhibits non-linear behaviour dependent on the input signal power, mimicking
biological neurons.

The mode-locking effect in fibre lasers is known to enable processing over ultra-
short timescales. As the first demonstration of the laser design, we used an Er-doped
fibre as a gain medium for illustration purposes as it is one of the most accessible, low
cost and well-studied doped-fibre types, thus achieving an ms-order response time (see
Figure 4a). Depending on the relaxation time of the gain medium, it is possible to achieve
higher processing speeds targeting ultra-fast processing, which can also benefit from the
fibre-based Echo state network architecture (FESNA) [22,25,26], potentially enabling THz-
bandwidth processing.

Figure 4. (a) The spectrum width of the output signal as the input signal power generated by the
seed (left) laser is varied by the VOA; (b) the spectrum before the threshold at 5.742 µW input power
(here the red dotted line represents Gaussian fitting) with the spectral width 6.83 nm; (c) the spectrum
after the threshold at 139 µW input power and the corresponding spectral width 5.33 nm.

Moreover, the system offers an additional advantage of non-linear spectral re-shaping
dependent on the input signal power similar to biological neurons, which may generate
spikes with a frequency dependent on the input excitation. Here the spectral width of the
output pulse has a distinct two-branch non-linear response dependent on the input power
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(see Figure 4a). The two-branch dependency of the spectrum on the input power is due to
the transition between two operating regimes, as explained above, namely:

(i) below the threshold - the non-linearity is small and the output signal spectrum
width equals that of the eigen-signal, i.e., the signal when the (right) laser operates without
the input signal; (ii) above the threshold - for larger non-linearity, the input signal becomes
dominant and the output spectrum width equals the width of the input signal spectrum.

The distinct gap in the spectrum width in Figure 4a is due to the rapid switch be-
tween two regimes. The spectrum is captured via a Yokogawa optical spectrum analyzer
(AQ6370D) and calculated at a 3dB pulse width using Gaussian fitting. The spectrum can
be compared before the threshold plotted in Figure 4b at 5.742 µW input power (here, the
red dotted line represents Gaussian fitting) with the corresponding spectral width 6.83 nm
and the spectrum after the threshold plotted in Figure 4c with 139 µW input power and the
corresponding spectral width 5.33 nm. The results plotted here are for the 20 mW pump
power of the processing laser. With further increase in the pump power the general trends
in the amplitude transfer function and the value of the threshold remain the same, while
the spectrum width transfer function becomes more step-like and the drop value increases
drastically. However, increase in the pump value above 50 mW leads to a multi-pulsing
regime. In this work, we focus on single-pulsing only—the emergence of complex dynamics
in a multi-pulsing regime will be the subject of further work.

Thus, the proposed technology can lead to a new type of neural coding. In particular,
depending on the input power, the spectrum width can be modulated with clearly defined
power-dependent regimes with a threshold. Thus, information can be encoded in the
spectrum width. This is similar to rate coding. However, rate coding is based on the firing
rate, while here, the spectral width of the individual spikes is encoded. Therefore, we refer
to this type of coding as spectrum coding. This is a unique advantage of the proposed
technology, which is caused by incorporating mode-locking effects in the technology.

Moreover, this is the first optical system that has amplitude-dependent non-linear
properties in both amplitude and spectrum width governed by a power-dependent thresh-
old. The design encompasses non-linear processing with power-threshold and spectral
re-shaping, paving the way for a novel type of optical neuron with variable bandwidth
adapted to the requirements of emerging 6G networks.

4. Conclusions

We propose the first photonic technology based on a mode-locked fibre laser with non-
linear properties in both power and spectrum width controlled by a power threshold. Both
properties are induced by the mode-locking effect. We distinguish two operating regimes
dependent on input signal power with a distinct power threshold, below and above which
the output signal follows the spectral shape of a self-excited eigen-signal and an input
signal, respectively. The spectral power-dependent re-shaping with a threshold is a unique
advantage of the proposed setup and, together with the non-linear power transfer function,
paves the way for a new type of optical neuron with two-dimensional non-linearity in
power and frequency, similar to biological neurons, which exhibit a frequency-adaptable
response depending on the type of input stimulus. Thus, this work opens new directions in
the study of artificial neurons with spectrum frequency-adaptable non-linear responses in
multiple dimensions, stimulating the development of novel types of neural spectrum coding
and neural networks with variable bandwidth for applications in optical communications
and networks, 5G and emerging 6G communications.
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