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a b s t r a c t

Helical gearboxes play a critical role in power transmission of industrial applications. They are
vulnerable to various faults due to long-term and heavy-duty operating conditions. To improve
the safety and reliability of helical gearboxes, it is necessary to monitor their health conditions
and diagnose various types of faults. The conventional measurements for gearbox fault diagnosis
mainly include lubricant analysis, vibration, airborne acoustics, thermal images, electrical signals,
etc. However, a single domain measurement may lead to unreliable fault diagnosis and the contact
installation of transducers is not always accessible, especially in harsh and dangerous environments.
In this article, a Compressive Sensing (CS)-based Dual-Channel Convolutional Neural Network (CNN)
method was proposed to accurately and intelligently diagnose common gearbox faults based on
two complementary non-contact measurements (thermal images and acoustic signals) from a mobile
phone. The raw acoustic signals were analysed by the Modulation Signal Bispectrum (MSB) to highlight
the coupled modulation components relating to gear faults and suppress the irrelevant components
and random noise, which generates a series of two-dimensional matrices as sparse MSB magnitude
images. Then, CS was used to reduce the image redundancy but retain key information owing to the
high sparsity of thermal images and acoustic MSB images, which significantly accelerates the CNN
training speed. The experimental results convincingly demonstrate that the proposed CS-based Dual-
Channel CNN method significantly improves the diagnostic accuracy (99.39% on average) of industrial
helical gearbox faults compared to the single-channel ones.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Helical gearboxes are one of the crucial parts of rotating ma-
hinery for power transmission. The long-term operation of gear-
oxes under harsh conditions like heavy loads can lead to various
ailures and shorten their service life, which can result in sig-
ificant economic loss and even catastrophic accidents. Online
eal-time condition monitoring and fault diagnosis of gearboxes
an greatly increase reliability, productivity and safety.
The conventional measurements used for gearbox fault diag-

osis mainly include lubricant analysis, vibration, airborne acous-
ics, acoustic emission, strains, electrical signals, encoder signals,
emperature, pressure and so on [1,2]. However, most sensing

∗ Corresponding author.
E-mail addresses: x.tang4@aston.ac.uk (X. Tang), y.xu@imperial.ac.uk

Y. Xu), x.sun2@hud.ac.uk (X. Sun), liu_yanfen@163.com (Y. Liu),
.jia1@aston.ac.uk (Y. Jia), f.gu@hud.ac.uk (F. Gu), a.ball@hud.ac.uk (A.D. Ball).
Please cite this article as: X. Tang, Y. Xu, X. Sun et al., Intelligent fault diagnosis of he
Transactions (2022), https://doi.org/10.1016/j.isatra.2022.07.020.

ttps://doi.org/10.1016/j.isatra.2022.07.020
019-0578/© 2022 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is a

org/licenses/by-nc-nd/4.0/).
methods are invasive or intrusive, and even require long down-
time for installation and testing. In harsh operating environ-
ments, the installation of sensors is complicated, inconvenient,
inflexible and costly. Therefore, non-contact sensors attract more
and more attention in machine condition monitoring. In general,
non-contact instruments like high-speed cameras, laser Doppler
vibrometers, eddy current sensors, and fibre-optic sensors are of
high-costs [3].

Thermal imaging, known as infrared thermography, is an ad-
vanced non-contact and non-instructive sensing technique. Ther-
mal cameras detect and capture infrared radiation emitted from
the object to create a temperature representation as a thermal
image of an object. It has been widely applied for condition
monitoring in various fields [4]. As most common gear faults
lead to abnormal friction between mating components, it can
cause the alteration of heat characteristics such as heat sources,
heat transfer paths and temperature distribution. Thus, the in-
lical gearboxes with compressive sensing based non-contact measurements. ISA

frared radiation from the gearbox captured by the thermal camera
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ontains valuable information to support high-performance fault
iagnosis of gearboxes [5,6]. However, only a few researchers
ade contributions to the fault diagnosis of gearboxes with ther-
al imaging. Li et al. [7,8] respectively fed the infrared thermal

mages or multi-scale images into the CNN model to detect faults
f gearboxes. Kumar et al. [9] selected the strongest features
rom the 2-D discrete wavelet transform (WT) decomposition of
hermal images using Mahalanobis distance criteria to classify dif-
erent gear faults with a support vector machine (SVM) classifier.
n [10], the authors examined the worm gear faults with vibration
nd sound signals by a multilayer perceptron artificial neural
etwork (ANN) model. Additionally, they observed the heating
atterns and predicted the operating speed and oil level with
hermal imaging.

Another effective non-contact measurement for gearbox fault
iagnosis is the acoustic signal. For instance, Preanesh et al. [11]
nd Parey et al. [12] extracted features from the time-domain
coustic sequences and angular domain acoustic signals using
Tto diagnose gearbox faults, respectively. Hartono et al. [13]
roposed an improved Reassigned Smoothed Pseudo Wigner–
ille Distribution and validated its effectiveness with both vibra-
ion and acoustic measurements to diagnose the spur
earbox faults. The extracted statistical features of vibration and
coustic signals along with psychoacoustic features of acoustic
ignals were applied for gear fault diagnosis using intelligent
echniques [14]. It was found that the psychoacoustic features
f acoustic signals have a better ability to classify faults com-
ared to the statistical features. Vanraj et al. [15] proposed a
tatistical feature extraction method based on empirical mode
ecomposition and Teager–Kaiser energy operator to diagnose
he severity of gear faults. The comprehensive features of energy,
nd time and envelope spectrum kurtosis were extracted from
coustic signals for planetary gearbox fault diagnosis which has
etter performance than the vibration signals in [16]. Fernandez
t al. [17] used acoustic pressure spectra and intensity maps to
iagnose the planetary gear faults of oil shortage and tooth crack.
u et al. [18] applied the MSB method to acoustic signals for
ear wear diagnosis and demonstrated the MSB magnitude peaks
elated to the first three harmonics are effective to detect the
radual deterioration of helical gears. Owing to the effectiveness
f thermal imaging and acoustic signals, these two non-contact
easurements are employed to monitor the health condition of
earboxes in this study.
With the development of deep learning techniques, they are

idely applied for gearbox fault diagnosis to automatically han-
le large amounts of data sets in industrial applications. For
xample, Jing et al. [19] compared the diagnostic efficiency of
hree common signals with CNN and demonstrated that fre-
uency data had higher diagnostic accuracy in gearbox faults.
bdul et al. [20] proposed to detect gear faults with the long
hort-term memory classifier based on the Gamma Tone Cepstral
nd the Mel-Frequency Cepstral Coefficients (MFCC). Li et al. [21]
eveloped an MFCC based parallel multi-fusion CNN model for
earing and gearbox fault detection in noisy environments be-
ause it effectively reduces the noise and retains low-frequency
eatures from vibration signals. Liang et al. [22] investigated a
ethod that generated time–frequency image features and fake
amples using WT and generative adversarial net to train a CNN
odel to achieve stable detection of weak bearing faults and com-
ound gear faults. Huang et al. [23] decomposed vibration signals
rom gearboxes using the WT technique, then used 1-D CNN
o extract multiscale features to achieve high-performance fault
iagnosis. Chang et al. [24] applied the CNN on the geographical
mages of gear surfaces to intelligently diagnose gear wear faults
nd severity levels. Cao et al. [25] employed variational mode
ecomposition on image denoising for oil debris images for plan-
tary gearbox fault detection, but they also proposed to combine
2

it with deep neural networks in future work. In [26], a novel
attentive kernel residual network was proposed to automati-
cally extract multiscale features and improve their performance
from the noisy vibration signals for gearbox fault diagnosis. Yan
et al. [27] fused spectrum amplitudes to obtain a health index for
synchronised early fault diagnosis and degradation assessment of
gears and bearings.

Considering the instability and unreliability of a single source,
sensor fusion of multiple measurements has attracted great atten-
tion from researchers in gearbox condition monitoring recently.
Generally, sensor fusion is performed with the measurements
from several sensors of the same type (i.e. multi-sensor data)
or several different types of sensors (i.e. multi-source data). The
fused signals or features are further combined with deep learning
methods for intelligent fault diagnosis [28]. For example, Xia
et al. [29] arranged raw data from multiple vibration sensors as
a 2-D matrix to preserve both temporal and spatial information,
then feed it into CNN to achieve accurate fault diagnosis of
bearings and gearboxes. Wang et al. [30] proposed to convert
multi-sensor vibration signal segments to 2-D feature maps and
improved the CNN model by adding the stacking bottleneck lay-
ers to implement classification accuracy of 99.89% of gearbox
faults. Azamfar et al. [31] transformed the multi-sensor motor
current signals into spectra and stacked them into a 2-D matrix
as the inputs of 2D-CNN to diagnose the gearbox faults. Shao
et al. [32] proposed a stacked wavelet auto-encoder model to
achieve high-performance prediction of gearbox faults in data-,
feature-level and decision-level fusion with multi-sensor vibra-
tion signals. They also investigated to utilise the feature-fusion
covariance matrix to fuse statistical features of multi-sensor vi-
bration signals and built a multi-Riemannian kernel ridge regres-
sion model to implement excellent gear fault diagnosis with two
cases [33]. In [34], a residual gated dynamic sparse network was
investigated based on multi-sensor vibration signals to not only
improve feature extraction but also resist the effects of high noise
interference. Zhao et al. [35] proposed a novel model-driven deep
unrolling method to tackle the ‘‘black box’’ issue of the neural
networks and noise attacks of vibration signals. Its effectiveness
was evaluated by successfully diagnosing the aero-engine bevel
gear faults and helical gear faults with multiple accelerometers.
Some researchers focus on the fusion of different types of signals,
especially vibrational and other types of signals. Li et al. used the
fusion of vibration signals with acoustic emission [36] and motor
current signals [37], respectively, combined with improved deep
random forest and autoencoder to realise good performance in
gearbox fault diagnosis. Ma et al. [38] developed a deep coupling
autoencoder model to extract the joint information from vibra-
tional and acoustic signals to effectively classify gears faults and
bearing faults, respectively. In [39], the authors investigated a
deep coupled dense convolutional model to improve the ability
to fuse both self and mutual information of vibration and en-
coder signals for effective planetary gearbox fault diagnosis. Mao
et al. [40] converted vibration signals into spectra and combined
them with the thermal images at the data-level fusion. The fused
signals were fed into a CNN for intelligent helical gearbox fault
diagnosis. Karabacak et al. [41] proposed to merge the extracted
statistical time and frequency features of vibration and acoustic
signals, together with the extracted statistical features of thermal
images at the feature-level fusion, and then detect worm gearbox
faults with the ANN and SVM respectively to achieve the accuracy
of 99.2% with ANN and 98.7% with SVM. CNN becomes one of
the most widely used structures in deep learning because it has
a strong ability to automatically learn effective fault features
using convolutions from the input signals to avoid manual feature
extraction and minimise the requirement for professional knowl-

edge. In addition, CNN has a high accuracy for image recognition
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roblems, which can fully explore the effective fault signatures
rom images. Additionally, the weight sharing of CNN reduces
he optimisation time and memory resources. To fully exploit the
dvantages of CNN, acoustic signals are pre-processed by the MSB
o form a series of MSB images. The thermal images and MSB
mages generated from acoustic signals are utilised as the dual-
hannel inputs of CNN module and properly fused at the feature
evel to effectively diagnose gearbox faults in this study.

In general, 2-D images occupy a large transmission band-
idth and storage space and critically slow down the computing
nd training speed, which will affect the efficiency of intelligent
nline condition monitoring. It is necessary to compress the im-
ges but retain key fault information before feeding them into
he training network. Therefore, compressive sensing is intro-
uced to compress the substantial training images to increase the
omputational efficiency of the CNN. The CS method is a novel
ample technique that can break through the Nyquist–Shannon
ampling theorem and achieve pre-acquisition compression with
ost-effective hardware directly, which is the unique merit of CS-
ased fault diagnosis approaches. As an advanced compression
lgorithm, CS implements random sampling instead of the uni-
orm one and can reconstruct the original signal with few samples
f the original signal is sparse or compressible. It has been widely
pplied in signal processing to reduce the number of samples
or machine condition monitoring by some researchers [42,43].
lthough CS can achieve pre-acquisition compression before data
ransmission at the data acquisition end, it is still a crucial chal-
enge to practically implement machine condition monitoring
urrently [44]. Lu et al. [45] proposed a novel approach to achieve
hysics-based CS with fewer sensors and limited collected data,
hich was applied in manufacturing process monitoring with

ewer costs and high efficiency.
With the rapid development of the smart industry,

on-contact measurements can dominate the machine fault di-
gnosis in the industry because the non-contact sensors can
e carried by robots or drones to inspect large quantities of
achines, for instance, wind farms. In this article, a CS-based
ual-Channel CNN method is proposed to intelligently diagnose
aults of gearboxes through low-cost non-contact measurements,
.e. thermal images and acoustic signals. The main contributions
f this article include:

(1) Using two complementary non-contact measurements
from a mobile phone to monitor gearbox health condi-
tions effectively and cost-effectively, which not only over-
comes the instability and inaccuracy of a single domain
signal but also avoids sensor installation issues in harsh
environments.

(2) Reducing the redundancy of thermal and MSB images to
accelerate the training speed through CS, which can break
through the Nyquist–Shannon sampling theorem and
achieve pre-acquisition compression with hardware in the
future.

(3) The proposed CS-based Dual-Channel CNN method fuses
two complementary measurements to achieve the accurate
and efficient diagnosis of various common gearbox faults
under wide operating conditions.

he rest of this article is organised as follows. Section 2 introduces
he proposed CS-based Dual-Channel CNN method. Section 3
escribes the experimental studies. The fault diagnosis results are
iscussed and compared in Section 4. Finally, the conclusions are
emarked.
3

2. Compressive sensing-based Dual-Channel CNN

2.1. Basic theories for signal pre-processing

2.1.1. Modulation signal bispectrum
A conventional second order spectrum analysis method,

named bispectrum, is defined as [46]

BCB(f1, f2) = E
⟨
X(f1)X(f2)X∗(f1 + f2)

⟩
(1)

in which (f ) =
∫

+∞

−∞
x (t) e−i2π ftdt is the Fourier transform of

time-domain signal x (t); f1 and f2 are two frequency com-
ponents in X (f ); X∗ (f ) is the complex conjugate of X (f ); and
E ⟨·⟩ denotes the ensemble averaging. The conventional bispec-
trum is a complex third order measurement of the coupled com-
ponents. The method of MSB developed by Gu et al. [47–49]
originated from the conventional bispectrum by introducing both
lower and upper sidebands in the modulation signals. MSB is
an efficient method to extract modulation characteristics from
dynamic signals of the rotating machinery. Its performance on
motor current signals for gear wear detection has been validated
in [50]. Airborne acoustic signals of gearboxes are easily con-
taminated by strong random noise and the MSB method can
specifically extract nonlinear modulation features from acoustic
signals by reducing the nonrelevant components and random
noise simultaneously [18]. Therefore, it is employed to process
the acoustic signals from gearboxes, which generates a series of
2-D matrices of sparse modulation characteristics in this study.
The extracted modulation characteristics are enhanced but still
challenging for straightforward fault diagnosis, which requires
sufficient professional background knowledge to understand the
useful information. The MSB is defined by the formula

BMS(fx, fc) = E
⟨
X (fc + fx) X (fc − fx) X∗ (fc) X∗ (fc)

⟩
(2)

where, fx is the modulation frequency, fc is the carrier frequency,
fc + fx and fc − fx are the upper and lower sideband frequen-
cies respectively, E ⟨·⟩ represents the ensemble averaging of MSB
slices. Each MSB slice X (fc + fx) X (fc − fx) X∗ (fc) X∗ (fc) can be
calculated using a short segment of the raw vibroacoustic signals
to highlight the modulation components in the acoustic signals.
Alternatively, Eq. (2) can be re-written by the magnitude and
phase, yielding

BMS(fx, fc) = E
⟨
|X (fc + fx)| |X (fc − fx)|

⏐⏐X∗ (fc)
⏐⏐ ⏐⏐X∗ (fc)

⏐⏐ ejφMS
⟩

(3)

where the total phase of each MSB slice is

φMS = φ (fc + fx)+ φ (fc − fx)− φ (fc)− φ (fc) (4)

with
φ (fc + fx) = φ (fc)+ φ (fx)

φ (fc − fx) =

{
φ (fc)− φ (fx) , AM signals
φ (fc)− φ (fx)+ π , PM signals

(5)

Therefore, the total phase φMS of modulation frequencies in the
MSB is constant for each slice. Consequently, the ensemble aver-
aging enhances the modulation characteristics and suppresses the
noncoupled components and background noise for fault detection
and diagnosis.

The dynamic responses of the gearboxes with defects show
strong modulation phenomena, including meshing frequency
modulation and resonant modulation. In conventional fault de-
tection and diagnosis analysis, the fault signatures are obtained
via demodulation analysis. The fault features are difficult to ex-
tract in the time domain for achieving effective fault diagnostics.
Consequently, the fault signatures in the frequency domain are
preferable for the health monitoring of gearboxes. The MSB is
a reputational approach in demodulation analysis based fault
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Fig. 1. Matrix representation of the signal compression with CS.

detection and diagnosis of rotating machines. However, due to
the intricate modulation mechanisms, exploration of effective
fault signatures in a wide frequency range is always a chal-
lenging task. The machine learning technique allows searching
for the optimal fault signatures from a series of informative
MSB bispectrum results in a wide bifrequency range. The MSB
results are multiple two-dimensional matrices that can be easily
represented by images for intelligent fault diagnosis. In addi-
tion, the understanding of the extracted modulation bispectrum
requires sufficient professional knowledge of signal processing,
gear dynamics and acoustic signals, which is unable to form a
readable representation for general users. The machine learning
based approach can intelligently analyse the results and generate
an easy-understanding and concise diagnosis result.

2.1.2. Compressive sensing
Compressive sensing implements randomly sampling instead

of the uniform one. It can reconstruct the raw signals with far
fewer samples than required by the Nyquist–Shannon sampling
theorem through optimisation if the raw signals are sparse or
compressible [51]. Moreover, it has the potential to achieve pre-
acquisition compression before data transmission to reduce the
data storage and capacity in the field of machine condition mon-
itoring.

Suppose x (n) , n = 1, 2, . . . ,N is a raw discrete time signal
ith the length of N . It can be represented by a basis matrix of
= [ψ1, ψ2, . . . , ψN ], i.e.

=

N∑
i=1

siψi or x = Ψs (6)

here ψi, i = 1, 2, . . . ,N are the basis vectors with the size of
× 1; si, i = 1, 2, . . . ,N are the weighting coefficients and s

s the coefficient vector, which only contains k (k ≪ N) nonzero
alues, called k-sparse. Ψ is also called the transformation matrix,
ommonly adopting the discrete cosine transform, the discrete
ourier transform, discrete wavelet transform and so on. This is
he process of sparse representation of the raw signal.

The sparse signal can be compressed by a random matrix Φ
ith the size of M × N to get the compressed signal y only with
he length of M , which can be expressed as

= Φx = ΦΨs (7)

o intuitively observe the compression process of a discrete-time
ignal using CS, a matrix representation example is displayed in
ig. 1. A raw signal x is represented with a sparse signal swith the
ength of N , then compressed to be the signal y with the length of
. The compression ratio (CR) is defined as the ratio of the length
r size of the raw signal x to that of the compressed signal y as
hown in Eq. (8).

R = N/M (8)
4

n this study, since both thermal images and MSB images are
parse and compressible due to their redundancy, CS can be
pplied to significantly reduce the image storage space and speed
p numerical calculations in the process of machine learning.

.2. Proposed CS-based Dual-Channel CNN

A convolutional neural network typically consists of an in-
ut layer, a hidden layer and an output layer, which will con-
inuously extract features from local to global through various
onvolutional filters to implement object recognition or classifi-
ation [52]. It is especially suitable for image processing because
t has high fault tolerance, parallel processing capabilities and
elf-learning abilities. Generally, 2-D or 3-D image sequences can
e the input signals fed into the input layer. The hidden layers
ypically consist of one or multiple convolutional layers, pooling
ayers and fully connected layers. The convolutional layers extract
eatures, such as edges, curves and so on, from the input images
hrough different filters. After the convolution, a nonlinear acti-
ation function called rectified linear unit (ReLU) can follow to
aintain the nonlinear properties of the extracted features. Ad-
itionally, a batch normalisation layer can be added between the
onvolutional layer and the ReLU layer to normalise a mini-batch
f data across all observations for each channel independently.
his action can speed up training and produce a reliable model.
ooling is a dimension reduction process to effectively reduce
he computational complexity and only preserves important in-
ormation in the extracted features in the pooling layer. Max
ooling and average pooling layers are two types of commonly
sed pooling layers. Dropouts are the regularisation technique to
andomly switch some percentage of neurons of the network to
revent overfitting issues. Afterwards, the fully connected layer
eassembles the obtained features through a weight matrix, and
hen a SoftMax function normalises the reassembled results to
orresponding probabilities with the sum of one. Finally, the
utput layer generates classification labels with probability based
n extracted features.
Although the CNN extracts the features by training the net-

ork instead of manual extraction, the original image size is
till too large which slows down the calculation speed and con-
umes many computing resources. Fortunately, both the thermal
rayscale images and the generated acoustic MSB images are
parse and compressible because the background areas are redun-
ant. Therefore, the images can be compressed using CS before
eeding them into the input layer of the CNN. With two com-
lementary non-contact measurements, a CS-based dual-channel
NN method is proposed to classify different gearbox faults as
hown in Fig. 2.
The proposed CS-based dual-channel CNN method can be de-

ailed as follows.

1) Image preparing
In channel 1 (denoted as CH1), the captured thermal images

re the RGB images with the dimensions of 1080×1440×3. They
re converted into grayscale images with the size of 1080 × 1440
o reduce the channel number. Then, the histogram equalisation
s calculated to enhance the contrast and strengthen the edge
nformation of the images. In channel 2 (denoted as CH2), the
coustic signals separated from the recorded thermal videos are
ivided into segments. The number of the sequence segments
or each acoustic signal sequence is the same as the thermal
rames, i.e. 800. Since the acoustic signals of gearboxes are easy
o be affected by the ambient interference noise, it is hard to
iagnose the gearbox faults with the acoustic sequence directly.
he MSB method has been verified to be effective in gearbox fault
iagnosis by obtaining nonlinear modulation fault features from
he acoustic signals. Therefore, the acoustic MSB magnitudes of



X. Tang, Y. Xu, X. Sun et al. ISA Transactions xxx (xxxx) xxx

e
m
t
t
g

(

t
c
t
t
a
t
c
n
s

s
c
a
m
T
c
×

c
o

s
c
f
1
1
i
c

Fig. 2. Flow chart of the proposed CS-based dual-channel CNN method.
ach signal segment are calculated and then the MSB magnitude
atrices were saved as RGB images. Therefore, the number of

he generated MSB frames and their dimensions are the same as
he thermal frames. The colourful MSB images are converted to
rayscale images to reduce the size to 1080 × 1440 as well.

2) Image compressing
Because of the large size of the original grayscale images,

he network training has a significantly high requirement on the
omputing resources and inevitably consumes more computing
ime. CS as an advanced compression method has the potential
o break through the Nyquist–Shannon sampling theorem and
chieve pre-acquisition compression before data transmission if
he signal is sparse or compressible. Therefore, CS is applied to
ompress the grayscale images to speed up the calculation of
etwork training in this study for the sake of the future CS-based
ensing technique.
Each grayscale image from both channels is divided into k

mall blocks of n × n pixels. Every block can be reshaped to a
olumn with the length of n2. Then, the column is compressed to
very short column only with the length of m2 using a random
atrix with the size of m2

× n2 (m < n) as shown in Eq. (7).
herefore, the compression ratio CR = n2/m2. The compressed
olumn is reshaped to a compressed block with the size of m
m. It is followed by the block reassembly to reconstruct a

ompressed image using these k compressed blocks based on the
riginal image size and its division rules.
In order to determine the optimal block size and the CR,

everal different sets of parameters were selected empirically to
ompare the compression performance as shown in Fig. 3. The
irst row, i.e. Fig. 3(a), displays the compressed images at CR =
8 × 18 and the block size of 18× 18, 36× 36, 72× 72, 90× 90,
80 × 180 from left to right, respectively. tCS marked below the
mage is the compression time of the corresponding image. It
an be seen the compression time decreases as the block size
5

increases because the number of the blocks decreases. But it
increases when the block size is too big which is caused by the
operation of large matrices. The full-scale compression (block
size and CR are both 18 × 18) and too big block size (block
size is 180 × 180) are ineligible because the image is critically
distorted after compression and the compression speed is also
slow. Although the compression costs less time when the block
size is 72 × 72 or 90 × 90, the edge sharpness of the compressed
images is much lower than the 36 × 36 block due to the relatively
large block size. Therefore, 36 × 36 is an optimal block size in
this study. The second row, i.e. Fig. 3(b), shows the compressed
images at the block size of 36 × 36 and CR = 2 × 2, 3 × 3, 6 ×

6, 9 × 9, 18 × 18 from left to right, respectively. It is apparent
that the compression time decreases with the increase of the
CR. Although the texture of the image is finer when the CR is
small, its brightness and contrast are a little worse than the image
compressed at CR = 18 × 18. Therefore, 18 × 18 was selected as
the compression ratio in this study.

Consequently, all images from these two channels are com-
pressed as follows. The original grayscale image with the size
of 1080 × 1440 can be divided into 1200 blocks in size of
36 × 36 pixels. Each block is reshaped to a column with the
length of 1296, then compressed by 324 times to get a new
column only with the length of 4 which will be further reshaped
to a compressed 2 × 2 block. All 1200 compressed blocks are
applied to reassemble a compressed grayscale image with the
size of 60 × 80 according to the pixel aspect ratio of the original
grayscale image.

(3) CNN pipeline
All the reassembled thermal and acoustic MSB images are

labelled according to six different cases. Additionally, the position
or direction of the thermal camera may change for different
scenarios, which leads to motion, scaling and other forms of
distortion of images. Some augmenters including random rotation
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Fig. 3. Comparison of the compressed images using CS at different block sizes and CR: (a) compressed image row at CR = 18 × 18 and different block sizes (left to right:
8×18, 36×36, 72×72, 90×90, 180×180), and (b) compressed image row at a block size of 36 × 36 and different CR (left to right: CR = 2×2, 3×3, 6×6, 9×9, 18×18).
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f [−30 30], random translation of [−5 5] and random reflection
n both directions are added to the thermal images in CH1 before
raining to tackle the overfitting issues and accommodate the
ocation variation of thermal cameras. Then, the thermal images
nd the acoustic MSB images are fed into the input layers from
wo channels, respectively. Each channel has two sets of a convo-
ution layer with a filter size of 3 × 3 and a stride of 1 × 1, a batch
ormalisation layer, a ReLU layer, and a max pooling layer with a
ool size of 2 × 2 and a stride of 2 × 2. The numbers of filters for
he first and second convolution layers are 8 and 16, respectively.
fter that, all extracted features are fused into one channel in an
ddition layer. A final convolution layer with a filter size of 3 × 3
nd a stride of 1 × 1 is applied for further feature extraction from
he fusion signal. The number of filters is 32. Similarly, a batch
ormalisation layer and a ReLU layer follow. A dropout layer with
rate of 0.5 is used to reduce overfitting. Finally, all the features
re sent to the fully connected layer for the final classification
f different types of gearbox faults. The parameters used in each
ayer are summarised in Fig. 2.

. Experimental studies

.1. Experimental setup

To validate the effectiveness and efficiency of the proposed
S-based dual-channel CNN in machine condition monitoring,
series of experiments were conducted on a two-stage helical
earbox test rig at the Centre for Efficiency and Performance
ngineering. Fig. 4(a) shows the schematic diagram of the test
ig, mainly consisting of a 15 kW induction motor, a DC load
enerator, two helical gearboxes installed back-to-back (the left
ne, regarded as GB1, is the speed reducer and the right one,
egarded as GB2, is the speed increaser) and a sensorless variable
peed drive control system.
A commercial Integrated Electronics Piezo-Electric (IEPE) mi-

rophone YG-201 with high performance was fixed about 20 cm
bove GB1. It collected the acoustic signals and sent them to a
omputer via the data acquisition system YE6232B. Moreover,
n infrared thermal imaging camera, named FLIR ONE Pro, was
et in front of the test object GB1 at a distance of about 25 cm
rom the gearbox housing surface. It was connected to an Android
obile phone to record the thermal videos during testing. As

he mobile has an integrated microelectromechanical systems
MEMS) microphone, the acoustic signals were recorded in the
ideos as well. Fig. 4(b) illustrates the photograph of the test rig.
he specifications of the test facilities are listed in Table 1.

.2. Fault status setting

1) Oil shortage
 a

6

In a harsh working environment, oil loss caused by leakage and
vaporation is inevitable in gearboxes, especially those applied in
eavy-duty machinery. Therefore, the oil shortage of the gearbox
as simulated in this study. The standard oil volume of the tested
earbox recommended by the manufacturer is 2600 mL. Its level
nside the gearbox is approximately shown in Fig. 5(a). This is a
ealthy working condition of the gearbox, as well as the baseline
f the tests which is denoted as BL2600 in Fig. 5(b). Then, 600 mL
il was taken out from the tested gearbox, i.e. GB1, which is the
irst oil shortage faulty case and regarded as OS2000. Further-
ore, another 500 mL oil was released, leaving only 1500 mL
il in the gearbox, which is denoted as OS1500. The oil level and
ear immersed states for these three cases are illustrated from
arious views in the schematic diagram plotted in Fig. 5(b) and
c). It is obvious that the input and output gear sets lack sufficient
ubrication because the oil levels are too low under the shortage
onditions.

2) Tooth breakage
The drive gear is connected to the power source, and the

riven gear meshes with the drive gear. In general, gear tooth
reakage is caused by overload, fatigue or chemical attack. In this
tudy, 50% and 100% of the tooth surface were artificially removed
rom the two driven gears in the width direction, as two faulty
ases of tooth breakage and regarded as TB050 and TB100. They
re depicted in Fig. 5(e) and (f), and compared with the healthy
ears in Fig. 5(d). Please note that the helical gears used in this
tudy have a total ratio of 4.559. Even if one tooth is completely
roken, the gears can have at least three teeth undertake the
oad and operate smoothly i.e. without very noticeable changes
n dynamics such as vibration and angular speeds like that of a
pur gear.

3) Oil degradation
Lubricants in gearboxes degrade mainly due to oxidation, par-

icles and some improper use like adding a lower viscosity fluid. It
ffects the production and lubrication of the oil film which leads
o server gear wear. The lubricant with low viscosity, MILLGEAR
00 EP, was used to simulate the oil degradation. Its key charac-
eristics are listed and compared with the recommended standard
ILLGEAR 320 EP in Table 2. This is the last faulty case named
is100.

.3. Test procedure

According to the previous description, six different cases were
erformed with a two-stage helical gearbox test rig, including
he healthy case (BL2600), two oil shortage cases (OS2000 and
S1500), two tooth breakage cases (TB050 and TB100) and a
ow-viscosity case (Vis100). 2600 mL MILLGEAR 320 EP lubricant

nd healthy gears were used for the health tests as the baseline.
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Fig. 4. Two-stage helical gearbox test rig: (a) schematic diagram, and (b) photograph.
Table 1
Key specifications of the test facilities.
Facilities Parameters Values

AC motor Power 15 kW
Rated speed 1460 rpm

Gearbox
(M07223.6BRC-1)

First stage teeth number 58/47
Second stage teeth number 13/59
Ratio 3.678/1
Oil type EP320
Oil volume 2600 mL

Microphone
(YG-201)

Frequency response 16 Hz to 100 kHz
Sensitivity 47.7 mV/Pa

DAQ
(YE6232B)

A/D bits 24 bits
Signal frequency Range DC-30 kHz
Sample rate Max. 96 kHz/CH, parallel

FLIR ONE Pro

Thermal resolution 160 × 120 pixels
Visual resolution 1440 × 1080 pixels
Thermal sensitivity 70 mK
Frame rate 8.7 Hz
Focus Fixed 15 cm–Infinity
Table 2
Specifications of MILLGEAR 320 EP and MILLGEAR 100 EP.
Model Specific gravity

@ 15 ◦C
Kinematic viscosity
@ 100 ◦C/cSt

Kinematic viscosity
@ 40 ◦C/cSt

Viscosity index

EP320 0.901 23.5 320 92
EP100 0.885 10.9 100 93
Since thermal characteristics of the gearbox will be captured, the
test rig was warmed up at 75% of the full speed and 80% of
the rated load until the oil temperature of GB1 was measured
by an inserted K-type thermocouple reached 32 ◦C (the ambient
emperature was about 21 ◦C). Then, all tests were carried out
t a constant speed, i.e. the full speed of the driving motor, and
our different loads (0%, 30%, 70% and 100% of the rated load
f the DC generator), which are controlled by the speed and
oad control system. The timeline recording of the experiment
rocess of each case is displayed in Fig. 6. After changing the
oad, it continues to warm up the test rig at 100% speed and the
orresponding load for 20 min. Both acoustic signals and thermal
ideos were captured for 4 min immediately after warming up.
7

Afterwards, 1 minute was reserved to change the load through
the control system. Under each load condition, the entire process
takes 25 minutes.

Although the frame rate on the camera specification is 8.7
frames/s, the actual stored video frame rate is much lower than
the specified value due to the limitation of the storage speed. The
length of the video recorded under different working conditions
is the same, but the total number of frames is different. As a
result, the first 800 frames of the thermal images were selected
to represent the characteristics of each set (24 sets, 6 healthy
and faulty cases × 4 loads). Simultaneously, the acoustic signals
corresponding to the length of time are intercepted for feature
extraction of each set. Table 3 lists dataset grouping for CNN
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Fig. 5. Different gearbox fault simulation: (a) insider view of the lubricant level, (b) axial view, (c) side view, (d) healthy pair, (e) 50% tooth breakage, and (d) 100%
tooth breakage.
Fig. 6. Timeline recording of the experiment process.
raining, validating and testing. In most studies, the signals from
ll working conditions are used for training and the remaining
ata is then used for testing. To avoid the overfitting problem,
nly the data sets under three load conditions are used for net-
ork training. The 0% and 100% loads are the extreme working
onditions for gear transmission systems, which commonly gen-
rate the lowest and highest temperature for thermal images, the
mallest and largest modulation features for acoustic signals. Rea-
onably the extreme conditions that represent the limit of fault
ignatures are selected as the essential conditions for training.
ither one of the medium load conditions (30% and 70% loads) can
e used for training and the other one can be used for testing. The
election of the training and testing data sets is in consideration of
he practical machine operating conditions and the indispensable
verfitting problem in this machine learning study.

. Results and discussion

.1. Acoustic signal comparison

Since the recorded thermal videos contain acoustic signals
aptured by the integrated MEMS microphone of a mobile phone,
hey are compared with the acoustic signals collected by the com-
ercial IEPE omnidirectional microphone. Fig. 7 displays their
8

spectrum with the key information of the modulation character-
istics relating to gear faults.

The low-frequency signals are easily contaminated by strong
background noise and are not reliable for machine condition
monitoring. Hence, modulation analysis is preferred in fault de-
tection and diagnosis of rotating machines. The modulation
mechanism carries the fault information from the low-frequency
range to a high-frequency range, which enlarges the fault signa-
tures accordingly. In general, the amplitude between 4000 Hz
and 8000 Hz in the spectrum is relatively high and it can be
empirically selected as the potential candidate frequency band
for demodulation analysis. Consequently, the comparison of the
two signals is focused on the frequency band 4000 Hz to 8000 Hz.
The amplitude in this frequency band is pronounced in both
microphone signals, which shows the high similarity in the spec-
trum. The employed MEMS microphone is a much cheaper and
less-capable sensor compared with the IEPE microphone. The fre-
quency responses and resolutions of MEMS and IEPE microphones
cannot be equivalent in a very wide frequency range. In addition,
the distance and location of the two microphones are different
during the tests, which also contributes to the differences be-
tween the two microphones. The gear fault induces the amplitude
variation of the shaft rotating frequency and harmonics, which

are usually selected as the fault signature. To further show the
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Table 3
Dataset grouping for CNN training and testing.
Labels Training and validation groups Testing group

Speed Load Speed Load

BL2600

100%

0%, 30% (or 70%) and 100%
(randomly select 70% for
training and 30% for validating
in each dataset)

100%
70% (or 30%)
(use all for testing to
avoid overfitting issues)

OS2000
OS1500
TB050
TB100
Vis100
Fig. 7. Comparison of the acoustic spectra of the commercial IEPE microphone and the MEMS microphone of the mobile phone.
Fig. 8. Comparison of the envelope spectra of the IEPE and the MEMS microphones.
easibility of the mobile MEMS microphone, the envelope spectra
f two acoustic signals are given in Fig. 8. It can be seen that
mplitudes at the fundamental frequency and harmonics of the
otating frequency are close to each other in terms of spectral
rofiles, both of them being able to provide correct diagnostic in-
ormation. However, the lower amplitudes of the MEMS spectrum
re because it was located 5 cm farther away, compared with the
EPE one. In addition, the 3rd harmonic has a larger decrease due
o the nonlinearity of the frequency responses.

In this study, the proposed approach used the acoustic signals
aptured by the non-contact MEMS microphone to achieve an
ccurate diagnosis of common gearbox faults, which also verifies
he effectiveness and feasibility of the MEMS sensor in machine
ondition monitoring.

.2. MSB analysis

According to the previous selection of the frequency band
rom 4000 Hz to 8000 Hz, the MSB results are calculated through
he acoustic signals recorded by the MEMS microphone of the
obile phone for further intelligent fault diagnosis. Fig. 9 displays

he MSB magnitudes of six cases under 100% loads.
9

The yellow components indicate the intricate coupling effects
between the carrier and modulation signals. It can be seen that
the carrier frequencies are similar among various fault cases
because of the dynamic transfer properties of the same gearbox.
Gear faults mainly change the modulation degree or generate
new modulated frequencies and the differences are clear between
different cases. The fault cases of OS1500, OS2000 and Vis100 are
related to the different tribo-dynamic responses due to various
lubrication conditions and the main yellow bifrequency compo-
nents are quite similar but with substantially distinct magnitudes.
When the tooth breakage faults occurred, the additional modula-
tion leads to the increase of the coupled components in the MSB
magnitude. The bifrequency components in yellow colour for the
fault cases of TB050 and TB100 are much more than the other
four cases. The differences in the magnitude and bifrequencies
form the significantly important features to distinguish various
faults in gearboxes, which increases the accuracy and robustness
of the proposed Dual-Channel CNN method in fault detection
and diagnosis of gearboxes. The uncoupled components in blue
have relatively small magnitudes and only modulated compo-

nents have large magnitudes, which shows the high sparsity of
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Fig. 9. MSB RGB images for different cases under 100% load: (a) BL2600, (b) OS1500, (c) OS2000, (d) TB050, (e) TB100 and (f) Vis100.. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. MSB grayscale images for different cases under 100% load: (a) BL2600, (b) OS1500, (c) OS2000, (d) TB050, (e) TB100 and (f) Vis100.
the MSB results across various test cases. The sparsity allows
the efficient compression to speed up the Dual-Channel CNN for
efficient condition monitoring.

The MSB RGB images are converted into 2-D grayscale images
o reduce the dimensions to 1080 × 1440, which are displayed in
Fig. 10. It is noticeable that the MSB grayscale images are sparse
and can be further compressed with CS.

Fig. 11 depicts the CS compressed MSB grayscale images with
a size of only 60 × 80. It will dramatically speed up the training
of the network. In addition, the main fault characteristics are also
preserved to a certain extent.
10
4.3. Temperature distribution analysis

Fig. 12 (a) shows the surface topography of the tested gearbox
housing. It is an uneven surface that affects its temperature
distribution as presented in Fig. 12(b). But the damage to the
surface texture is deterministic therefore it does not affect the
application of the thermal images. Note that the recorded thermal
images are flipped compared to the test rig.

The heat sources in a gearbox mainly include gear meshing,
bearing rolling, and seal friction. Most of the heat dissipated
into the lubrication oil and the remaining heat conducts through

the shaft and bearing to the gearbox housing. As most of the
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Fig. 11. CS based MSB grayscale images for different cases under 100% load: (a) BL2600, (b) OS1500, (c) OS2000, (d) TB050, (e) TB100 and (f) Vis100.
Fig. 12. Surface topography of the gearbox housing and its thermal image:
a) Surface topography and (b) thermal image.

Fig. 13. Heat generation and transmission path of gearboxes.

enerated heat goes into the lubrication oil, the lower part of
he gearbox has basically a high temperature. The other metal
omponents act as heat conduction ways for dissipating heat to
he outside surface for radiating into the air. Fig. 13 shows the
eat transfer paths in the metal parts from the gears and bearings
o the front surface targeted by the thermal imaging camera.
here mainly exist seven paths for heat conduction according
o the structure of the tested gearbox. Due to the uneven heat
eneration and conduction, the high-temperature areas vary in
ifferent health conditions.
To visually observe the temperature distribution, one thermal

mage is selected from each video recorded at 100% load of
ifferent faulty states. They are converted into grayscale images
nd further equalised to enhance contrast and edge information
s compared in Fig. 14.
Comparing OS1500, OS2000 and BL2600 in Fig. 14(b), (c) and

a), it can be noticed that the high-temperature area shifts from
he upper to the lower of the gearbox housing because of the
ow oil level. Moreover, the heat generated by gear and bearing
riction is conducted more along the shaft to the housing when
he gearbox works at lubrication starvation under heavy loads.
herefore, the temperature around the bearing of the output shaft
s extremely high at the lowest level for the case of OS1500. For
he tooth breakage cases shown in Fig. 14(d) and (e), it is diffi-
ult to observe the differences in their temperature distributions
ompared with the baseline. The tooth breakage faults reduce
he meshing stiffness and result in more friction at the other
11
teeth. However, the tooth breakage faults generate limited heat
compared with the other faults. It only slightly expands the high-
temperature area close to the faulty gear, which is marked by the
red rectangles referring to the baseline case. Fig. 14(d) depicts
the temperature distribution of the low viscosity case. The low
viscous oil cannot build a perfect oil film for ideal lubrication, and
hence more heat is widely generated due to increased friction.
Therefore, the high-temperature areas were located similarly but
obviously expanded compared to the baseline case. In summary,
the heat distribution varies between different faults. The lubricity
related faults show more pronounced differences in heat distri-
bution, whilst the localised faults result in less variation of heat
distribution. It is still hard to detect and classify the faults with
human observation.

Fig. 15 illustrates the equalised grayscale images for the case
of OS2000 at four different loads. It is noticeable that the tem-
perature distribution is similar to the case of OS1500 when the
load is light, except for the shaft connecting the GB2. As the load
increases, the high-temperature area gradually expands, and the
boundary is much clearer. Therefore, both light and heavy loads
are selected to train the neural network, together with either one
of the medium load conditions (30% and 70% loads), and the other
one is used for testing in this study to prevent the overfitting
issue.

Fig. 16 displays the compressed thermal images with a CS
compression ratio of 324 for six different faulty cases at 100%
load. It is obvious that the valuable information for fault di-
agnosis, like the edge region and brightness, is preserved after
compression.

Therefore, these CS-based thermal and MSB grayscale images
are fed into the input layers of the CNN as two channels. The
fault features will be further extracted and trained to obtain an
efficient network for fault classification.

4.4. Classification results

It has been discussed that some cases can be clearly detected
with visualisation by means of temperature distributions and
acoustic MSB features. However, sometimes they are affected
by variable loads and are difficult to observe manually. Accord-
ingly, intelligent fault diagnosis has the capability to achieve
fault detection and classification instead of human observation.
In this study, the proposed CS-based Dual-Channel CNN method
is carried out by feeding the CS-based thermal and acoustic
MSB grayscale images into the input layers from two channels.
After twice operations of convolution, batch normalisation, ReLU
activation, and max pooling, the extracted features from two
channels are fused in the addition layer. The features are then fur-
ther extracted and compressed by the final convolution and max
pooling. To compare the effectiveness of the proposed method,
the compressed thermal and acoustic MSB grayscale images are
fed as the input signals of two single-channel CNNs to perform
cubic convolution and max pooling operations with the same
parameters as the dual-channel network, respectively. The archi-
tectures of the proposed dual-channel CNN and the compared
single-channel CNN are displayed in Fig. 17.



X. Tang, Y. Xu, X. Sun et al. ISA Transactions xxx (xxxx) xxx
Fig. 14. Equalised grayscale images for different states under 100% load: (a) BL2600, (b) OS1500, (c) OS2000, (d) TB050, (e) TB100 and (f) Vis100.. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Equalised grayscale images for OS2000 under different loads: (a) 0%, (b) 30%, (c) 70% and (d) 100%.
Fig. 16. CS based images for different cases under 100% load: (a) BL2600, (b) OS1500, (c) OS2000, (d) TB050, (e) TB100 and (f) Vis100.
In addition, both the dual-channel and single-channel CNNs
use the stochastic gradient descent with momentum algorithm
(SGDM) as the optimiser because it is a popular optimisation
algorithm to speed up convergence. The initial learning rate is set
to 0.001. The maximum number of epochs is 30. A mini-batch has
128 observations at each iteration in this study.

To visualise activations and interpret the prediction of a CNN
network, some visualisation techniques are investigated, such as
the class activation mapping (CAM), Grad-CAM, locally-
interpretable model-agnostic explanation (LIME), t-distributed
stochastic neighbour embedding (t-SNE) and so on. Since the
proposed method is based on dual-channel signals, CAM [53]
can work for it to produce heat maps to highlight the features
extracted in the activations. Fig. 18 compares features visualised
in the final convolutional layer using CAM in different cases with
different training methods. Fig. 18(a), (b) and (c) show the heat
maps generated by the single-channel thermal images, single-
channel acoustic MSB images, and dual-channel fused images in
six different cases, respectively. They indicate that the trained
CNN can grab the key features from the thermal images and
12
acoustic MSB images. However, it is difficult to distinguish all
faults with a single signal source. For example, the thermal
features of TB050 and TB100 are similar and difficult to distin-
guish. Although MSB features have better discrimination, acoustic
signals are inherently dynamic and noisy which may result in low
classification accuracy. With the dual-channel signal fusion, the
discriminative image regions are more evident for the intelligent
fault classification of helical gearboxes.

Furthermore, t-SNE [54] is also conducted to visualise ex-
tracted high-dimensional features in the final convolution and the
fully connected layers through mapping to the low dimension.
Because it is a statistical method to make the high-dimensional
similar objects close in the low dimension with a high prob-
ability and high-dimensional dissimilar objects far in the low
dimension with a high probability. Fig. 19(a) to (c) display the vi-
sualisation of final convolutional activations from single thermal
channel CNN, single acoustic MSB channel CNN, and proposed
dual-channel CNN, respectively. It is noticeable that several clus-
ters are split into two or more pieces in the individual thermal
imaging result in Fig. 19(a). For the acoustic MSB results, they
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Fig. 17. Diagram of the networks: (a) Dual-Channel, (b) Single-Channel.
Fig. 18. Feature visualisation of the final convolutional layer with CAM under different cases: (a) row for single-channel thermal images, (b) row for single-channel
coustic MSB images and (c) row for dual-channel images.
re embedded clusters with less space between them as shown
n Fig. 19(b). Only the result of the proposed method apparently
hows compact clusters in Fig. 19(c). Fig. 19(d) to (f) exhibit the
ully connected (FC) activations of these three trained networks.
he clustering results are better than that of the final convo-
utional layer, especially for two single-channel CNNs. Although
he clustering results are improved a lot, the split clusters and
mbedded clusters still exist for the two single-channel CNNs. But
or the proposed dual-channel CNN, the clusters in the fully con-
ected layer are clearly divided, which means the different cases
re successfully classified with a high probability. The feature
isualisation results further prove that the proposed CS-based
ual-Channel CNN method is effective and efficient for fault
iagnosis of the helical gearbox.
The classification accuracy of two testing datasets is displayed

ith confusion matrices as presented in Figs. 20 and 21. The CS-
ased single thermal channel CNN has high performance for the
iagnosis of different types of gearbox failures, but it is hard to
istinguish the severity of the same type of failure. The CS-based
SB channel CNN is capable of diagnosing different faults and
everities. However, most diagnostic results are less than 95%,
aking it unable to independently take on the burden of gear

ault diagnosis, of which the reason is that the acoustic signals
re dynamic and noisy by nature. With the proposed CS-based
13
Dual-Channel CNNmethod, the classification accuracy is higher to
99.39% on average with smaller fluctuation among various cases,
which means that the fused features of thermal imaging and
acoustic signals are more reliable and robust for fault diagnosis
of the gearbox faults.

Finally, the average testing classification accuracy performed
by different trained networks is compared in Table 4. The pro-
posed Dual-Channel CNN method has a high classification ac-
curacy of 99.39% on average. Moreover, the image resolution is
compressed from 1080 × 1440 pixels to 60 × 80 pixels with a
compression ratio of 324 through CS compression. The training
was conducted on a computer equipped with a processor of
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 Hz and 32 GB RAM.
Training times spent for the network training with original and
CS-based grayscale images are compared in Table 4. It is clear
that if the network is trained with original grayscale images, the
training time is extremely long and even cannot be carried out
due to the limited memory of this computer. But with CS-based
grayscale images, training time is around 375 times less than
the original grayscale images, which evidently shows the high
performance of the CS in accelerating the training speed of the
neural network.
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Fig. 19. Feature visualisation with t-SNE: (a) final convolutional activations of thermal images, (b) final convolutional activations of acoustic MSB images, (c) final
onvolutional activations of the proposed dual-channel method, (d) fully connected activations of thermal images, (e) fully connected activations of acoustic MSB
mages and (f) fully connected activations of proposed dual-channel method.
Fig. 20. Confusion chart of the diagnostic accuracy under 70% load: (a) CS-based thermal channel CNN, (b) CS-based MSB channel CNN, and (c) proposed CS-based
Dual-Channel CNN.
Fig. 21. Confusion chart of the diagnostic accuracy under 30% load: (a) CS-based thermal channel CNN, (b) CS-based MSB channel CNN, and (c) proposed CS-based
Dual-Channel CNN.
5. Conclusions

In this article, a CS-based Dual-Channel CNN method was
proposed to intelligently diagnose various types of helical gear-
box faults with two complementary non-contact measurements,
thermal images and acoustic signals from a mobile phone. The
14
comparison results verify that acoustic signals recorded by the
MEMS microphone of a mobile phone can effectively detect the
faults instead of the high-performance IEPE microphone. The MSB
method can highlight the coupling components of acoustic signals
during gear meshing and suppress the irrelevant components
and random noise, which generate highly sparse acoustic MSB
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Table 4
Comparison of the accuracy and training time.

Networks Mean testing
accuracy (%)

Training time

Original images CS-based images

Single thermal channel CNN 89.72 71.20 h 11.35 min
Single acoustic MSB channel CNN 91.22 69.17 h 11.07 min
Proposed Dual-Channel CNN 99.39 Out of memory 24.09 min
images. The compression ratio of CS reaches 324 times, and the
compressed images apparently show that CS significantly accel-
erates the training speed by reducing the image redundancy but
preserving the valuable fault information. The proposed CS-based
Dual-Channel CNN method was demonstrated to effectively and
efficiently overcome the unreliable and unstable shortcomings
of using a single domain source. The performance of gearbox
fault diagnosis and the diagnostic accuracy (reaching 99.39% on
average) are both improved.

Although using dual channels improves the classification ac-
uracy, it consumes more than double the training time of the
ingle-channel network. Consequently, accelerating the training
peed of the dual-channel networks will be further investigated
n the future. In addition, CS has the potential to implement
re-acquisition compression with hardware like the single-pixel
amera [55]. Then, the thermal camera and the mobile phone can
e carried with a drone or robots to capture compressed thermal
mages to save storage space and transmission bandwidth in the
uture.
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