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In the continental law system, it is appropriate for judges to find relevant laws and consider
rules defined in them when dealing with legal cases. Therefore, recommending relevant
laws quickly and accurately based on case content is crucial in improving the efficiency
of case processing. There have been researched works of recommender systems in various
fields, but few of them lucubrates systems that recommend statutes for cases. To the best
of our knowledge, there is no research on recommending statutes by modeling the rela-
tionship between case content and law content with interpretable hand-crafted features.
In this paper, we define five novel types of features for calculating relevance between a
case and a statute for resorting all statutes retrieved through collaborative filtering for
the input case. Both pair-wise and list-wise ranking models are trained based on all these
features for re-ranking the statutes list. Besides, we also test the combinations of different
learning algorithms and popular pre-trained language models. Experimental results show
that adopting the proposed novel features in pair-wise ranking achieves the best perfor-
mance. It improves the recommendation recall of the Top 1 statute by almost 5% compared
with the collaborative filtering approach.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the rapid development of all aspects of Chinese society, the need for legal guidance is increasing in many fields, one
of which is the divorce between husband and wife. Nowadays, there turn to be more and more divorce cases in China [1].
This means that lawyers and judges need to process more and more cases every day and more and more ordinary people
are getting involved in divorce cases. Since divorce has a large short and long impact on both adults and children[2], it is
essential for both the judges and the litigant to handle divorce cases properly. On the one hand, lawyers and judges need
the support of an automatic and intelligent tool greatly to improve work efficiency. On the other hand, common people need
a tool to help them handle their cases and give them pieces of advice on how to defend their rights. Hence, a statute recom-
mender system that could suggest proper potential statutes is needed in seeking an optimal result for divorce cases. It would
help the judge search-relevant statutes and the parties know their situation better. However, problems in the judicial
domain always involve professional and complicated domain knowledge. There are few automatic and intelligent solutions
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for these problems yet. Most solutions rely heavily on the participation of people. Therefore, how to automate and intelligent
processes in these problems is an issue of practical significance in this field.

Approaches for recommending statutes automatically have been shifted from manually generated rules based ones [3,4]
to machine learning based ones [5–7]. As we all know, eliminating the effects of data imbalances in classification tasks is a
very tricky issue. For machine approaches, the most reasonable ones are to construct a model that maps information of cases
to all statutes, which is usually a multi-label classification model [5,6]. But the problem is still under-solved in three aspects.
First, due to a large number of statutes, it is a big challenge to train a classifier with machine learning algorithms to provide
accurate classification results by taking all statutes as data labels. Second, the classifier cannot handle unregistered statutes,
such as most recently modified or published ones. Last, it always trends to recommend frequently used statutes than infre-
quently used ones.

Collaborative filtering (CF) is a common technique utilized in recommender systems and it could overcome the pre-
mentioned problems well to some extent. Few published works of statute recommendation adopt a collaborative filtering
approach to the best of our knowledge. The key problem in CF is how to retrieve legal cases that would refer to the same
statutes as the input case. However, just like the classification approaches, only case content is considered in the recom-
mending process. Besides, more unsuitable statutes would also be retrieved through CF. Effective operation is needed for
resorting to retrieved statutes by putting suitable statutes ahead of those unsuitable ones. I order to solve the problem, a
deep-learning-based approach is proposed in [8] for judging the suitableness of a statute to a case. However, it is very dif-
ficult to construct a proper training dataset for building a high-performance classifier. Besides, under the CF scenario, the
problem of unbalanced suitable and unsuitable statutes is still serious.

In this paper, we propose a novel ranking approach for resorting to statutes retrieved through collaborative filtering for
recommendation and make three contributions concretely:

(1) We design and construct a complete and applicable divorce-related statutes recommender system, as is shown in
Fig. 1. First, similar cases of the input one are derived. Then top-k1 statutes frequently cited in similar cases are retrieved
as candidates for recommendation. This greatly reduces the size of the candidate set. Next, the relation between each can-
didate and the input case is calculated. Eventually, all relation vectors are fed to the pre-trained ranker for re-sorting statutes
and top-k2 are returned as ultimately recommended ones. Besides, the system is applicable for data scaling up.

(2) We propose a weighted keywords-based method for searching for similar cases. Weights of keywords are calculated
by integrating their TF-IDF values, types of POS tags, and their importance in determining suitable statutes for cases. Similar
cases are ranked according to the weights of keywords that they contain.

(3)We propose a group of novel interpretable hand-crafted features to build the relationship between a case and a statute
(named Relational Features), i.e., calculating relation vectors for ranking statute candidates. Unlike other statute recom-
mendation methods, the content of statutes is utilized by the relational features in our approach.

Experimental results show that our collaborative filtering approach increases the performance of retrieving similar cases
in the statute recommendation scenario compared with the baselines. This provides a good foundation for further ranking
statutes. Ultimately, our Case-Statute relational feature-based ranking approach optimizes the results by reducing the
impact of frequently referred statutes, i.e., the most frequently used statutes would not be recommended as the top 1 statute.
To prove the effectiveness of the relational features, we compare the ranking approach with baseline methods like suitable
binary classification, multi-label classification, and ranking based on text features generated by BERT [9] (the version of BERT
adopted in this paper is BERT-base, Chinese 1) and LBERT [10] (a pre-trained BERT on a large scale number of Chinese legal judg-
ment documents 2). Besides, feature ablation experiments show that different part of the relational features has different effec-
tiveness in ranking statutes. It provides guidance on how to write a description of cases to make it easier to retrieve suitable
statutes. Since there have been much-advanced learning to rank approaches proposed, our proposed Case-Statute relational fea-
tures can be easily ported to and utlized by them.

The remainder of this paper is laid out as follows. Section 2 talks about related work. Section 3 introduces the prepared
corpus for developing the approach. Section 4 describes details of the proposed statute recommending approach, including
the collaborative filtering part and the Case-Statute relational features. Section 5 illustrates evaluation metrics to present and
discuss the experimental results. Section 6 concludes our paper.

2. Related work

2.1. AI and Law

The history of Artificial Intelligence (AI) and Law started about four decades ago. Law is a rich testbed and important
application field for logic-based AI research [11]. For most of its existence, this discipline has been primarily concerned with
attempts to formalize legal reasoning and create expert systems [12]. In recent years, research on AI applications in the legal
domain has slightly shifted from developing rule-based, argument-based, and case-based models for representing legal
1 The github webpage is: https://github.com/google-research/bert, and the version we use can be downloaded from: https://storage.googleapis.com/bert_
models/2018_11_03/chinese_L-12_H-768_A-12.zip

2 The github webpage is: https://github.com/thunlp/OpenCLaP, and the version we use can be downloaded from: https://thunlp.oss-cn-qingdao.aliyuncs.
com/bert/ms.zip
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Fig. 1. Framework of the proposed statute recommending approach.
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knowledge and reasoning to adopting machine learning and text analytics to accomplish tasks in legal domain effectively
and efficiently, e.g., legal judgment prediction [13,14], legal case retrieval [15,16], and court view generation [17,18], etc.
Most recently, the methods based on pre-training language models have gradually become mainstream in the Legal AI field.
For example, LBERT is [10] a pre-trained BERT[9] model based on a large scale number of Chinese legal judgment documents.
Legal-RoBERTa [19] 3 is the legal version of the general RoBERTa [20] pre-trained on Chinese legal long documents. Since Legal-
RoBERTa is designed for large inputs, i.e., max-length equals 4096, it is not suitable for texts in our dataset whose average length
is just 348. So, in this paper, we take LBERT as the baseline method of the SOTA pre-trained language model.

2.2. Recommender Systems and Statute Recommendation

In recommender systems, multiple efforts have been made for better results. Introducing and modeling new information
useful for solving the problem is a common idea. For example, while recommending the preferred type for shops, [21] takes
the location and commercial features of a shop into consideration for ranking the (shop, type) pairs. [22] tries to recommend
product bundles by modeling relationships between product items and extracting consumers’ preferences from this model
with a ranking approach. [23] leverages the past click records and the purchase records of users to perform purchase pre-
diction and recommendation. However, although most works focus on finding and utilizing heterogeneous data like the
above examples, few of them try to model relationships between users/queries and recommend items, i.e., the direct con-
nection between either a shop and a type or a user and a product is modeled by a feature vector for ranking. It is the same
condition as statute recommendation approaches. Multiple ways and techniques have been applied in statute recommenda-
tions in recent years. [24] tries to use text mining techniques to find relevant cases and [5] uses text mining to find pertinent
statutes. [25] attempts to improve statute recommendation with Latent Semantic Analysis. [6] tries to recommend statutes
with relationships between statutes by Convolutional Neural Network. But none of the studies uses relationships between
descriptions of statutes and cases for recommending statutes for cases. In our paper, we utilize texts of both input case and
statute candidates to recommend modeling the connection between them and providing it to the ranking model.

2.3. Collaborative Filtering

Collaborative Filtering (CF) is a widely-used algorithm in the recommended system and has achieved good performance
in many problems. For example, [26] predicts a user’s rating for a product according to his/her social network connections
and products he/she has bought with CF idea. [27] tries to model user-user and app-app similarities through a kernel func-
tion in MF (Matrix Factorization) in-app recommendation, where the connections between an input user and recommended
apps are also constructed through CF theory. [28] enhances memory-based CF for personalised recommendation, computing
similarity by representing users through their distances to preselected users. [29] proposes a sub-one quasi-norm-based
similarity measure for CF in a recommender system of an online store, which makes good use of rating values and deempha-
sizes the dissimilarity between users. However, non of the existing automated statute recommendation approaches dis-
cusses how to retrieve statute candidates in detail. In this paper, we adopt the CF technique to search statute candidates
for user input according to UserInput ! ExistingCases ! CitedStatutes relations.

2.4. Learn to rank

Learn to rank is a widely used solution in information retrieval and recommendation. [30] focuses on content similarity-
based methods and integrates different similarity measures under the learning to the rank framework in news citation rec-
ommendation. [31] introduces three types of content information and utilizes a convolutional neural network as the foun-
dation of a unified POI recommendation framework. However, [32] finds that learning-to-rank algorithms are based on
convex proxies that lead to poor approximations and try to use re-ranking algorithms based on mathematical programming.
[33] employs a neural network to re-rank and improve the results of the existing recommender system. [34] proposes to use
LSTM in re-ranking documents for a query. Recently, neural network language models, such as BERT, are also adopted in re-
3 https://github.com/thunlp/LegalPLMs
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ranking documents for queries. In these approaches (e.g., [35,36]), a (query, document) pair is encoded by the language
model into input embedding vectors for subsequent models. Besides, the adopted language models were also fine-tuned
through their tasks. The process of our statute recommendation approach is more like the one proposed in [37] for retrieving
basketball games. First, cluster similar historical games and then rank those similar to the query based on features extracted
from basketball games and users’ preference feedback. In our approach, statute candidates that are potentially suitable for
the query are retrieved through CF first and then they are ranked by relation features extracted using the Case-Statute rela-
tional features.
3. Corpus

In the field of AI and Law, existing works often experimented on the high quality, of large size, and widely used Chinese
legal dataset CAIL2018 [38] or extracted task-specific texts from the published judgment documents to construct their own
dataset [39,13]. However, these datasets have been through a series of pre-processing, making it difficult to map each case to
the original legal judgment document to find all required fields for calculating the relational features proposed in this paper.
So for conducting our work, we collected a data set consisting of divorce cases that happened in 2015 and 2016 from Chinese
Judgement Online (http://wenshu.court.gov.cn) by ourselves. We download the first 30000 case records presented in the sys-
tem and only those of first-round civil instances are kept in the dataset, which is 19860 cases. Each case consists of descrip-
tions from both plaintiffs and defendants, courts findings of the case, analysis of the case, the result of judgment and statutes
that the case actually cited (i.e., Fig. 2). When judges or someone involved in a case try to search for statutes, they usually
input descriptions about their cases and then the search engine will show the relevant statutes of input cases. In other words,
statute recommendation is a problem that constructs a system to find relevant statutes and sort them in some ways based on
the input descriptions of cases. So, in the statute recommendation scenario, only statements of the plaintiff and defendant
can be used as inputs, as shown in Fig. 2. But other parts of historical cases can also provide advice on modeling case-statute
relations and we utilize them in the training process.

Divorce cases in our data set actually cite 456 distinct statutes in total and each case cites four statutes on average.
Besides, the maximum and the minimum numbers of cited statutes in a single case are 16 and 1. The maximum and min-
imum length of descriptions from both plaintiffs and defendants in case records are 4889 and 24 words, respectively, and the
average length is 347.6 words. Table 1 concludes statistics of our dataset.

In order to apply a ranking model, there should be a list of potential citable statutes for each case. Hence, first, we build a
strategy for searching citable statutes for cases based on collaborative filtering theory. That is, recommending statutes cited
by similar cases of the input case. For each case, we derive top 30 (sorted according to their citation frequency) statutes from
its top 50 similar cases among the other 19859 cases. The plaintiffs’ and defendants’ descriptions of each case and the cor-
responding 30 statutes are the inputs of the statute ranking model. There is a list of potential citable statutes for each of the
Statute 1:  XXXXXX , XXXXXXXXX
Plaintiffs Description:        XXXXXXX

Defendants Description:    XXXXXXX

Court Findings: XXXXXXXXXXXXXXX

Case Analysis:   XXXXXXXXXXXXXXX

Judgement:        XXXXXXXXXXXXXXX

Cited Statutes:   XXXXXXXXXXXXXXX

 

Statute 2:  XXXXXX , XXXXXXXXX

Statute30: XXXXXX , XXXXXXXXX

Historical Case Document Candidate Statutes

Conditions Decisions

Features for Measuring Relation

Training&Testing Training&Testing

Training

Ranking

Fig. 2. Case Document, Statutes Content and the relational features.

Table 1
Statistics on the corpus.

# of Case Maxlen of Case Minlen of Case Avg.len of Case # of Statutes Max Citation Min Citation Avg. Citation

19860 4889 24 347.6 456 16 1 4.01
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19,860 cases in our data set. Since we try similar case searching methods, there is a corresponding list of candidate statutes
for each case for each method.
4. Statute Recommending Approach

Our statute recommending approach consists of two steps: (1) searching similar cases for recommending potential citable
statutes for the input divorce case according to collaborative filtering technique and rank the statutes by their frequencies of
being cited by similar cases, and (2) re-ranking these statutes by measuring case-statute relations based on the newly pro-
posed relational features and adopting learning-to-rank methods.

In the first step, we search for cases that are similar to the input one, e.g., A, and put in the set CA with a similarity algo-
rithm and then, based on cases in CA we can generate a list of statutes that are cited by cases in CA, mark with SA, as potential
recommendations for A. The similarity algorithm and retrieval mode in this step can be defined with plenty of flexibility.

In the second step, we first train a ranking model for sorting statutes in SA to put those truly cited by the case A at the top
places in the list. Upon the candidate statutes of a new input case are retrieved by the searching engine, the ranking model
can be applied to sorting them. A group of novel case-statute relational features utilizing the content of both cases and sta-
tutes is proposed for calculating text features for ranking.

In the next two subsections, we introduce strategy of searching similar cases and the relational features, respectively.
4.1. Derive Statute Candidates by Retrieving Similar Cases

We try different text representation approach for divorce cases in the first step, i.e., transforming the case description into
a document vector consisting of float values. For example, we try text topic model Latent Dirichlet Allocation (LDA) [40], neu-
ral network based Doc2vec [41], and Term Frequency-Inverse Document Frequency (TF-IDF). However, considering the prac-
ticality, we also try different case description indexing methods based on these document vectors to improve the searching
efficiency and strategy scalability as the number of historical cases increases. Through experiments, we find that combining
traditional inverse index with TF-IDF vectors, as well as cases’ keywords retrieved through feature selection methods would
achieve the best similar cases results under the statute recommendation scenario, i.e., the curve of average statute recall val-
ues of all cases in the data set converges fastest at the highest value.
4.1.1. Construct
Segmentation, TF-IDF, and Keywords. First, for each case, we generate a segmentation for its description text with the tool

provided by Jieba 4. In order to reduce the impact of common words on results, we generate a list of unimportant common
words, i.e., stopwords, and ignore their existence in the case description while conducting further calculations. Upon the word
list of each case is prepared, the TF-IDF vectors of them are calculated. At the same time, the Part-of-Speech (POS) Tag of each
word is also derived.

Since we want to retrieve similar cases for improving statute recommendation performance, cases with more referred
statutes should be more similar to each other. Therefore, it is necessary to measure the similarity between cases through
the factors hidden in the case description that determine its cited statutes. Keywords in cases that determine the referred
statutes are one of those readable and interpretable factors. Feature selection is an efficient and effective method for finding
those keywords. We try three different algorithms to determine keywords of cases, namely, Information Gain (IG) [42],
Weighted Log-Likelihood Ratio (WLLR) [43], and Weighted Frequency and Odds (WFO).

A divorce case classification system using statutes as text labels is established for applying these feature-selecting algo-
rithms. In our dataset, there are 19860 data instances and 456 data labels. Each data instance has one or multiple labels.
Eventually, for each algorithm, a list of keywords that are important to the classification system is retrieved, as well as
the weights of all keywords. For example, for each keyword in the list derived by IG, its weight is the sum of its IG values
of all statutes.

Eventually, each case is represented by a set of non-stop words and each word has three properties, namely, POS tag, TF-
IDF value and keyword’s weights (if it is not a keyword, the weight is 0). Let C be a divorce case, then
C ¼ fWjW ¼ ðword; POS; TFIDF;WkeyÞg. Then we generate the inverse index for searching for similar cases.

Inverse Index.While generating an inverse index for historical divorce cases, we retrieve all words in cases for building the
indexing list. For each indexing word, both ids of cases containing it and its corresponding three properties in the cases are
recorded. Each indexing word could be expressed by Word ¼ fðCID1; POS1; TF � IDF1;Wkey1Þ; . . . ; ðCIDn; POSn; TFIDFn;WkeynÞg,
where C represents a divorce case and n represents the number of cases that containing the word Word.

While searching similar cases for a new one, the words of the new one would be used for retrieving historical cases
according to the constructed inverse index. There would be a list of cases derived for each word and the same case may
be shown in different lists. So, we should merge all cases according to their IDs. The recorded properties of words in each
case should also be merged for ranking all retrieved cases, i.e., calculating the weights of cases.
4 https://pypi.org/project/jieba/
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Weights of Cases. Let Cnew be the input case and C (id of which is IDC) be one of the similar cases of Cnew, then the weight of
C is calculated by formula 1:
5 http
WeightðCÞ ¼ a
Xm
i¼1

f ðPOSiÞ þ
Xm
i¼1

TFIDFi þ b
Xm
i¼1

Wkeyi ð1Þ

f ðPOSÞ ¼ ws; if POS 2 S;

wo; if POS R S:

�
ð2Þ
where m is the number of searching keys that shared by Cnew and C, i.e., Cnew \ C ¼ fWord1;Word2, . . . ;Wordmg, and
POSi; TFIDFi;Wkeyi are corresponding properties of Wordi (i 2 f1;2; . . . ;mg) in case C. While measuring the weight of cases,
we considering all the three properties of indexing words in the case and allocating different weights for them. Further more,
we set different weights for different POS tag. If the word has a Special tag in the set S, the weight is ws, otherwise is wo. In
our approach, we set verb; adverb and adjective as special tags, and ws equals 0.6 while wo equals 0.4. a and b are chosen
according to average value of different properties, as well as their importances. We set them 0.1 and 0.5 respectively in
our experiments.

Upon weights of all retrieved cases are calculated, they could be sorted and a top K list of similar cases would be derived.
However, ranking cases is not the ultimate goal. The weights of cases are used for weighting the statutes they cited. Let S be
one statute cited by cases fC1;C2; . . . ;Clg in the top K list, then weight of S is:
StatuteWeightðSÞ ¼
Xl

i¼1

WeightðCiÞ ð3Þ
According to weights of all statutes cited by cases in the top K list, all statutes can also be ranked and a top K0statutes can
be retrieved for a first-round recommendation, i.e., statute candidates. Each statute candidate S has three properties, namely,
StatuteWeight;NumberofCitingCases, and textContent. The text content of a statute is a list of words that are also derived by
Segmentation and RemovingStop�words. These candidates would be re-sorted by the designed ranker.

4.1.2. Comparison
Baselines. To evaluate the proposed similar case searching strategy, we compare it with several baselines used for similar

document searching. They are:

(1) Tfidf: In this method, we weight cases with TFIDF values of words only while ranking cases. That means only the TFIDF
part in formula 1 is used.

(2) WightTfidf: Both POS tag type and TFIDF values of words are used in weighting retrieved cases, i.e., the first two parts
of formula 1 are used.

(3) LDA-related: We generate topic vectors for cases with LDA and retrieve similar cases in two different ways. The first
one is ranking cases by calculating the Euclidean Distance between the topic vectors of the input case and the histor-
ical ones. We name it LdaVec. The second one is similar to the second one but uses all topics as a search key. The dif-
ference is that each key is a topic name with a probability scope of the topic. For example, Topic1 is a topic, then
Topic1½0;0:02Þ and Topic1½0:02;0:04Þ are two different searching keys related to this topic. While handling a new case,
we first calculate its topic vector and derive search key projections of all topics according to their topic values. Next,
collecting cases by each searching key. Eventually, ranking cases by the number of common searching keys they share
with the input case. For those with the same number of shared keys, rank them with the sum of probability gaps
between them with the input case on each topic. The smaller the sum of the gap, the higher the ranking. We name
this method LdaAll.

(4) Doc2Vec: Generate document vectors for cases using the Doc2Vec tool 5 and measuring similar between cases by
Euclidean Distance.

Proposed Methods. Besides, for methods represented by formula 1, we try three different methods for selecting keywords
and there are corresponding three distinct approaches for searching similar cases, namely, Tfidf_IG, Tfidf_WLLR and
Tfidf_WFO.

4.1.3. Results
Metrics To evaluate the effect of statute recommendation, we use Recall, Precision and MAP as evaluation metrics. For

each case in our dataset, its truly cited statutes are recorded. Hence, no matter where to recommend statutes for a case,
as if a list of recommended statutes is generated, we could check each statute as cited by the input case. Let tpi be the number
of cited statutes in the first ith recommended statutes for an input case and g be the number of all cited statutes of the case,
then the recall, precision and average precision (AP) at position i for this case is calculated with formula 4 and 5.
s://radimrehurek.com/gensim/models/doc2vec.html

1028



C. Li, J. Ge, K. Cheng et al. Information Sciences 607 (2022) 1023–1040
Recall@i ¼ tpi

g
; Precision@i ¼ tpi

i
;AP@i ¼ 1

i

Xi

j¼1

Precision@j� Cited@j;where ð4Þ
Cited@i ¼ 0; if statute@i is not cited by the case;
1; if statute@i is cited by the case:

�
ð5Þ
Recall, precision and AP at position i for the entire data set are the corresponding average values of all cases. While com-
paring the strategies for searching similar cases, we only adopt the average recall. For evaluating the ranking approaches, we
use the average recall, precision and AP (i.e., MAP) of all five folds as the final evaluating value (i.e., adopted in Section 5).

How to Retrieve Cases. Fig. 3 shows the comparisons among TFIDF-related approaches, regarding the recall values of truly
cited statutes by retrieving different top K0statutes. We set the K in top K cases to 50 to make the comparison and the largest
K0equals 50 too.

It proves that considering the POS tag of words in weighting cases would achieve better results than using TFIDF values as
weights only. This is reasonable. In a divorce case, the most important part is the husband and wife’s daily life, where a lot of
verbs and nouns are used to describe. However, different cases would be more likely to have similar nouns, such as appel-
lation of a related person, location, time and daily supplies. But husbands and wives of different cases would have different
actions and even varying degrees of the same behavior. The behavior and the degrees are one of the key factors determining
the statutes to be applied. So, cases with the same verbs or adverbs are more likely to cite the same statutes. It is the same
reason for putting adjectives in our S set. However, Fig. 3 also tells that there are no explicit differences among the three
candidate feature selection methods. So, in the rest of our approach, we choose the more widely used Information Gain the-
ory for choosing statute candidates to be ranked.

In the following parts of this paper, statutes retrieved by Tfidf_IG approach are used for re-ranking them for the recom-
mendation. In Fig. 3, the Tfidf_IG approach is also compared with other baseline approaches. The conclusion is that the LDA-
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related and Doc2vec methods have similar performance in retrieving similar cases for statute recommendation, while our
Tfidf_IG outperforms them by about 0.05 in the average recall.

What are Proper K and K0. In a real application, the values of K and K0would affect the efficiency of the recommending sys-
tem. They should be set with proper values. We hope they are as small as possible but achieve the best recall values at the
same time. So, we try different K values and collect the recall values at different K0s for the Tfidg_IG cases ranking strategy.
The result is as shown in Fig. 4. It tells that there would be no notable differences between collecting statutes from 50 and 45
cases. Besides, deriving the Top 30 statutes would almost achieve the same suitable statute recall as the Top 50 ones. So, in
our approach, we set K to 50 and K0to 30. However, please note that our main purpose is to verify that such a scheme is effec-
tive and we set a fixed set of values for all parameters in the experiment. These values do not ensure achieving the best per-
formance. In different application scenarios, you can set different values for all parameters to seek the best performance.

4.2. Modeling Case-Statute Relation

Upon deriving all statute candidates, re-ranking is applied. There has not yet been any research on resorting statutes to
the best of our knowledge. In this paper, we propose a learning-to-rank-based approach to conduct a secondary sort on sta-
tutes retrieved by CF methods. The novelty of our approach is twofold: adopting the text of statutes and defining a group of
hand-crafted case-statute relational features. Among the most existing statute recommendation methods, the text of sta-
tutes is not used. For the others, they either use Bag-of-Words as text features or treat statutes text independently from
cases.

The proposed case-statute relational features consist of basic features and novel features. Basic features are selected Uni-
gram Pairs generated from case-statute pairs. Novel features contain information on some factors often considered by judges
and lawyers when they handle divorce cases.

For each candidate statute of the input legal case, the values of each feature would be calculated according to the follow-
ing definitions of each feature. Once the relation features of all statutes were prepared, they would be applied to the re-
ranking model for ranking candidate statutes. Here is the definition of hand-carfted relational features.

4.2.1. Basic Feature: Unigram Pairs
Initial Unigram Pair: While TF-IDF is widely used in text representation, it can only represent two texts independently. In

our system, we need to process the text of the case and its statutes together and generate the representation of the relations
of the case and each statute. Therefore, we use Unigram Pair to represent cases and statutes. A Unigram Pair consists of a
word from cases and a word from statutes. For each pair of case and statute, if the first word of Unigram Pair appears in case
text and the second word appears in statute text, we set the value of the Unigram Pair to 1 or else we set it to 0.

Pre-conducted experiments show that Unigram Pair is better than TF-IDF in both classification and ranking approaches.
The reason is that Unigram Pair features to model the relationship between a case and a statute directly. But when using TF-
IDF features, case text and statute text are still considered independent items. Therefore, we think it is important to add
other features representing the relation between cases and statutes to our case-statute relational features.

Selected Unigram Pairs: However, the size of the initial unigram pairs is too large to train the ranking model. There are
more than 1.5 million unigram pairs in the prepared dataset. The learning algorithm would also get confused if we gave
it many features. It would be better to select those pairs that are more likely to help soften statutes. If a pair could be used
in distinguishing suitable statutes from unsuitable ones, it must be able to perform well in ranking statutes. So, we generate
unigram pairs from cases with their cited statutes and cases with those not cited ones separately. Unigram pairs generated
from cases with cited statutes are represented by UPCiteTrue and the others are represented by UPCiteFalse. For each unigram pair
up, its frequency of occurrence in both UPCiteTrue and UPCiteFalse in the case-statute pairs are counted, marked with freqTrueðupÞ
and freqFalseðupÞ respectively. We select unigram pairs according to the ratio of freqFalseðÞ and freqTrueðÞ values as is shown
in Fig. 5.

The rule for selecting up is that the more imbalanced the distribution of the word pair between cited case-statute pairs
and not cited pairs, the more likely it is to help distinguish the suitableness of statutes. For freqFalseðupÞ– 0 and
freqTrueðupÞ – 0, we select the pairs whose freqTrue is bigger than f 1 and the ratio is less than Threshold1 or more than
+0

 up  UPCiteFalse  UPCiteTrue , the scope of freqFalse(up)
freqTrue(up) is:

freqFalse(up) = 0

freqTrue(up) > f1 

freqFalse(up) > f2

freqTrue(up) = 0

Threshold1 Threshold2

Fig. 5. The details for selecting Unigram Pairs for the case-statute relational features.
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Threshold2. If the freqFalseðupÞ ¼ 0, we select those whose feqTrue > f 1. If the feqTrueðupÞ ¼ 0, the pairs whose freqFase > f 2
are selected. All pairs are only selected from training data and for each training process in the cross-validation, we conduct
the experiments for selecting unigram pairs separately. The bigger the f 1; f 2 and Threshold2 are and the smaller the Threshold1

is, the fewer pairs would be left as features. In the experiments, we set several groups of values for these thresholds, i.e.,
(f 1; f 2; Threshold1 and Threshold2), such as (5,10,10,50), (10,20,5,100), (10,150,1,150) and (15,200,1,150) etc, to test the per-
formance of the relational features. Eventually, we set f 1 to 15, f 2 to 200, Threshold1 to 1 and Threshold2 to 100, and the aver-
age number of selected unigram pairs of all experiments are 3967. With these settings, the training efficiencies are proper
and the performance is better. However, since we did not conduct a complete experiment for searching the best combina-
tions of these parameters, the performance of the relational features reported in the Experiment section must not be the best.
But it is enough to prove that our method is effective.
4.2.2. Words Overlap
match: The same words of case text and statute text can show correlations between cases and statutes in some way. Com-

pared to statutes with few same words with the case, statutes with more words that appeared in a case are more likely to be
cited in this case. We manually read documents of cases and find that some important words often appear in both case and
statute texts. Obviously, these words help associate statutes to cases. It is hard to collect all these specific words and con-
struct a global one-hot vector. Therefore, we use the number of words shared by the case and the statute of the concrete
case-statute pair as the target feature (stop words are removed first).

Keywords and Key Unigram Pairs: We extract and filter keywords and key Unigram Pairs from documents by their fre-
quency. We select words that appear in both cases and statutes first. Then reserve top k words appearing in both a case
and its cited statutes as keywords. Key Unigram Pairs are selected in the same way. These keywords and key Unigram Pairs
represent the citing principle between cases and statutes. We set k to 100 after several attempts.

Connection: Judge analysis tells us how judges summarize the descriptions of cases and how they make decisions or judg-
ments. Therefore, we should pay more attention to words in judge analysis text. But we cannot use words to judge analysis
directly since they are not the original case description. We make use of the judge analysis text of the training set and collect
Unigram Pairs that both words appear in the judge analysis text from all Unigram Pairs. The value of these Unigram Pairs will
be multiplied by 3 for emphasis.
4.2.3. Roles and Special Groups Consistency
Role: The Role features represent relations of roles that appeared in cases and statutes. Statutes usually explain what kind

of people is relevant to them, e.g., couple, parents, brothers, sisters, etc. If a statute is applicable to a case, the roles mentioned
in the case description are consistent with the roles in the statute text. On this basis, we design features that match if roles
appeared in cases and statutes.

We find that statutes always express relevant people in unified ways. For example, if a statute is about parents and chil-
dren, it will use written language instead of oral language. But in the case of texts, it will use various colloquial words in
different cases because plaintiffs and defendants may come from different regions. In order to match roles in cases and sta-
tutes, we summarize all roles that may appear in cases and statutes. We cannot match roles simply by words because of the
ambiguity of the text. Therefore, in addition to commonly used words of these roles, we need to estimate relations between
roles and the plaintiff/defendant. If two roles have the same relation to the plaintiff/defendant, we consider they are
matched. We extract features of matching roles in cases and statutes with information about roles or relations to the plain-
tiff/defendant. Since our dataset consists of divorce cases, we summarize all roles into five categories: plaintiff/defendant,
parents of plaintiff/defendant, children of plaintiff/defendant, brothers/sisters of plaintiff/defendant and the third party in
the marriage.

Special Group:We also found that sometimes statutes and cases describe a role with certain descriptions. E.g., children are
often described by their ages and health conditions. For people with diseases or disabilities, special descriptions always
appear in statutes or case texts in certain ways. In order to include this information in our system, we summarize some spe-
cial groups and text rules of them and extract these features as well.

Eventually, if a role appears, we set the value of this role to 1 and otherwise 0. Then two vectors consists of 0 and 1 rep-
resenting roles and special groups appearing in the case and statute are derived respectively. Afterward, we execute a join
operation on two vectors to get a final representation of this feature.
4.2.4. Judgement Consistency
Approval vs. disapproval: Statutes cited by cases with the judgment of divorce may differ from those cited by cases with

the judgment of disapproval. If a judge supported their divorce in a case, he or she would select statutes associated with
follow-up issues of divorce like custody of children and division of property. But if he or she did not support their divorce,
these statutes will not be used in the case. Therefore, we can divide all statutes into two categories: applicable and not appli-
cable in a divorce. In general, there are words like ”after divorce” or ”in divorce” in statutes, if they are designed for follow-up
issues of divorce. We also have statistics on how many divorced cases and other cases each statute is used in. The ratio of
divorced cases and other cases will be a feature of a statute.
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Meanwhile, we need to extract features from cases that can indicate if the couple would divorce. After analyzing training
data, we discover that defendant’s attitude has a major impact on the result of the divorce case. If the defendant agrees to the
divorce or does not reply to a charge, a judge is more likely to support their divorce. The probability of no divorce increases if
the defendant disagrees with their divorce. We also should take the plaintiff’s statement into account. If the plaintiff
describes the situation in detail, makes clear claims about their divorce and expresses negative feelings about their marriage,
the judge may tend to agree with their divorce. What’s worse, if there are conflicts between facts described by the plaintiff
and defendant, the judge has to consider whose description is true. Additionally, we assume that possibility of divorce
increases if the couple had filed for divorce before this case, which is usually mentioned in case descriptions.

Concrete Features: All factorswementionedabovehavedifferent impacts on applicable statutes of cases and can’t determine
if they will divorce. We represent each factor by a number to construct a feature vector. The feature vector indicates relations
betweencases and statutes in termsof judge results.Does the featurevector contain the following information: (1) If the statute
contains words like ”in divorce” or ”after divorce”? (2) Ratio of divorced cases that cited the statute to all cases that cited the
statute; (3) Ratio of undivorced cases that cited the statute to all cases that cited the statute; (4) Defendant’s attitude towards
thedivorce, agree to 1, disagree to�1, unknownto0; (5) Lengthof the contentof theplaintiff’s statements; (6)Numberof plain-
tiff’s claims; (7) If they had filed for divorce before, (8) Length of the content of the defendant’s statements.

4.2.5. Relationship Consistency
Marriage Breach: In general, a judge usually grants a divorce by marriage breach, which is a significant factor in divorce

cases. Some relevant statutes contain judgment criteria of marriage breach and these criteria are also mentioned in other
statutes about divorce.

Vector for statute: Different statutes pay attention to different aspects of marriage breach, so we summarize some features
about their marriage from statutes to describe their relationships. These features contain the following information: (1) if
one couple has diseases that can be a reason for prohibiting marriages, (2) if one couple has a mental illness, (3) fraud in
marriage, (4) arranged marriage, (5) if one couple commit crimes, (6) no affection in marriage, (7) if the couple didn’t live
together in marriage, (8) separation in marriage, (9) derailment in marriage, (10) bigamy, (11) difficulty in living together
(e.g., one couple of gamble or domestic violence), (12) disappearance of one couple. We can judge if statutes contain infor-
mation about these features by keywords and represent these features of statutes with a vector of 0/1, i.e., Vsr .

Vectors for case: We represent cases with two vectors in a similar way since case descriptions consist of descriptions from
plaintiffs and defendants, i.e., Vpr and Vdr . In most cases, plaintiffs describe their relationships in more detail, so we can get
more information from the plaintiff’s statements. While features of fraud, gambling and bigamy can be extracted simply by
keywords, other features are extracted with human summarized rules because they have multiple expression forms.

Integration: As mentioned in the previous section, if there is a conflict between the contents described by the plaintiff and
defendant, the judge has to consider whose description is true. For example, if the plaintiff accuses the defendant of the
derailment, but the defendant shows a denial of it, we should show questions about this factor in the value of the feature.
Therefore, we use Vsr & Vpr * Vdr as final value of features of relationship consistency.

4.2.6. Features Based on LDA
Latent Dirichlet Allocation: Most cases focus on several fixed issues. Since we use divorce cases as our original data, most

cases focus on topics like love breaks, children and property. Although we can annotate cases with common topic tags arti-
ficially, we do not want to omit some potential undiscovered topics. Therefore, we introduce Latent Dirichlet Allocation [44]
features to simulate how humans find topics in documents.

In order to construct LDA features, we train LDA models with different types of texts and produce a topic distribution of
each text. When training all LDA models, we adjust the number of topics based on topic coherence produced by the model
and select topic number with the highest average topic coherence.

Simple shared model: In the first step, we train an LDA model with all documents of cases and statutes and then we can
map cases and statutes to the same vector space. We can calculate the topic similarity of statute text and case text based on
their LDA vectors.

Independent models: Due to differences between case text and statute text, we train LDA models for cases and statutes,
respectively. If the topic distribution of case is Lcase and topic distribution of statute is Lstatute, we use Lcase � Lstatute as the fea-
ture vector of this case-statute pair. We need not map statutes and cases to the same vector space in this way and thus can
train more accurate LDA models for both cases and statutes.

Shared model based on analysis paragraph: Finally, we can train an LDA model with the text of judge analysis in cases from
the training set to represent relations of cases and statutes. Text of judge analysis tells us how judges analyze facts in case
descriptions and make a decision on the judgment. The topic distribution of judge analysis may have associations with rela-
tions between cases and their applicable statutes. For test data, we will combine the text of statutes and case descriptions as
input to the LDA model to get the topic distribution.

4.3. Ranker

Most ranking approaches can be categorized into point-wise ranking, pair-wise ranking and list-wise ranking. Pair-wise
ranking formulates ranking task as a classification problem and focuses on relative preference between two items. List-wise
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ranking tries to directly optimize the value of evaluation measures (i.e., loss), averaged over all queries in the training data. In
this paper, we adopt both pair-wise and list-wise ranking methods to train the ranker. For pair-wise ranking algorithms, we
tried SVM Rank[45], RankBoost[46], and RankNet[47]. However, SVM Rank in SVM Light performs best by adopting the rela-
tional features in this task. For the list-wise ranking method, we tried the state-of-the-art method DLCM (Deep Listwise Con-
text Model) [34], taking the relational features as inputs. Details of comparisons among rankers are shown in the next
section.

Please note that the ranking algorithm is not one of the contributions of this paper, but the relational features and the best
way to utilize the relational features are.

While preparing the training data for rankers, the score for truly cited statutes is set to 5 and the others are set to 1. The
inputs are encoded with different methods before transferring them to DLCM. For pair-wise rankers, each query is a list of
case-statute pairs and each case-statute pair is a vector representing the relation between the case and the statute. Each data
sample is a query for list-wise rankers and its corresponding list of candidate statutes. For ranking, all experimental results
are obtained via fivefold cross-validation experiments. In each experiment, we use 3/5 cases in the data set for model train-
ing, another 1/5 for parameter tuning, and the final 1/5 for testing.

5. Experiments and Evaluation

5.1. Setup

For checking the effectiveness of the proposed relational features in re-ranking statutes, we conduct experiments for
comparing our approach with other statute recommendation approaches, including binary classification, multi-label classi-
fication, collaborative filtering (i.e., search engine), and the state-of-the-art neural network-based list-wise ranking approach
DLCM, as well as different ways to utilize relational features. The compared methods are listed as follows:

(1) None-learn-to-rank: they are Searching Engine (i.e., collaborative filtering, ranking statutes according to formula 3),
and C-MultiLabel (i.e., viewing the suitable statutes as labels of cases and treating it as a multi-label classification
problem of cases). Concretely, we tried both LibSVM [48] and BERT for training the classifiers. For LibSVM, we use
the TF-IDF of cases for multi-label classification. While using BERT, we first encode texts of cases with a pre-
trained BERT model, then use the [CLS] tokens’ embedding as text representative, and eventually transfer them to a
softmax output layer with multiple neurons. We find that utilizing BERT derives better results and we only report
the results of using BERT in the experimental results, i.e., C-MultiLabel-BERT in Table 2. We firstly set the BERT model
untrainable to train the multi-labels classifier, i.e., weights are fixed. For comprehensively comparing, we also conduct
experiments by setting the BERT model trainable, i.e., fine-tuning BERT weights during training the classifier. The fine-
tuning approach is marked by C-MultiLabel-BERT-Tuning in Table 2.

(2) Point-wise ranking: it is treating the case-statute suitableness as a 0/1 classification problem, i.e., viewing each case-
statute pair as a to be classified data instance. The classification output can be viewed as a ranking score for each sta-
tute. For LibSVM, we use the relational features for binary classification. While using BERT, we firstly encode texts of
Table 2
Recall and precision of different learn to rank approaches.

Approaches Recalls (%) Precisions (%)

@1 @3 @5 @10 @1 @3 @5 @10

Search Engine 21.86 51.84 66.56 78.89 59.25 48.58 37.80 22.80
C-MultiLabel-BERT 18.38 42.32 62.73 77.05 47.53 40.54 34.82 22.15
C-MultiLabel-BERT-Tuning 17.72 42.46 62.88 77.26 47.31 40.55 34.83 22.17
C-MultiLabel-LBERT 17.26 42.43 62.67 77.13 47.25 40.55 34.82 22.16
C-MultiLabel-LBERT-Tuning 17.95 42.61 62.84 77.22 47.48 40.56 34.83 22.17
C-Binary-BERT 22.12 51.04 64.43 73.82 60.04 48.35 37.03 21.14
C-Binary-BERT-Tuning 22.86 52.41 66.25 74.63 60.63 49.14 38.35 21.53
C-Binary-LBERT 23.26 51.47 65.83 74.60 61.87 48.37 37.62 21.53
C-Binary-LBERT-Tuning 23.53 53.00 66.41 74.96 62.01 51.04 38.11 21.67
DLCM-BERT 26.05 54.25 67.81 79.74 73.42 53.17 38.45 23.52
DLCM-BERT-Tuning 26.11 54.28 67.80 79.45 73.44 53.18 38.45 23.51
DLCM-LBERT 26.10 54.22 67.80 79.46 73.44 53.16 38.31 23.50
DLCM-LBERT-Tuning 26.12 54.64 67.85 79.76 73.45 53.17 38.49 23.54
DLCM-Basic 23.70 50.45 65.55 79.17 62.16 47.02 37.57 22.96
DLCM-Basic + Novel 23.71 52.01 66.89 78.84 62.20 48.38 38.12 22.83
R-SVM-BERT 23.79 52.56 66.58 79.04 64.74 49.30 37.89 22.94
R-SVM-LBERT 23.81 53.12 66.23 79.16 65.52 51.74 37.75 22.98
R-SVM-Basic 25.46 54.22 67.18 79.42 70.38 52.90 38.22 23.03
R-SVM-Basic + Novel 26.52 55.43 68.14 79.94 74.83 55.03 38.59 23.67
Gold Standard 38.13 82.38 86.70 87.14 99.98 76.98 50.56 25.66
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cases and statutes with pre-trained BERT model, then concate the case’s [CLS] embedding and the statute’s [CLS]
embedding, and eventually transfer the entire embedding vector to an output layer with only one neuron. Just like
marking models of multi-labels classifiers, we use C-Binary-BERT and C-Binary-BERT-Tuning to mark approaches
of setting the BERT model untrainable and trainable, respectively, as in Table 2. Please note that our C-Binary-
BERT-Tuning model has the same principle and structure as the state-of-the-art point-wise learn-to-rank models
using BERT or Transformer, such as the ones in [35,49,36].

(3) List-wise ranking: we only check the performance of the the-state-of-the-art neural network-based list-wise ranking
approach DLCM in ranking statute candidates with different textual embeddings, including BERT, (DLCM-BERT and
DLCM-BERT-Tuning for fixed and improved BERT respectively), and the proposed case-statute relational features,
i.e., DLCM-Basic and DLCM-Basic + Novel. While using BERT to encode cases and statutes, embeddings of [CLS] tokens
are retrieved and concatenated as input of DLCM.

(4) Pair-wise ranking: we use SVM Rank to represent pair-wise ranking algorithms. For comparing, we use three different
types of features as the input of SVM Rank, namely, BERT (i.e., R-SVM-BERT, utilizing BERT the same way as in C-
Binary-BERT), basic features (i.e., R-SVM-Basic) and both basic and novel relational features (i.e., R-SVM-
Basic + Novel).

In addition to the base version of BERT model, we also adopt the version pre-trained on a large amount of Chinese legal
judgment documents, i.e., LBERT [10] for comparison and the experimental results are corresponding to C-MultiLabel-
LBERTX(-Tuning), C-Binary-LBERT(-Tuning), DLCM-LBERT(-Tuning) and R-SVM-LBERT in Table 2. The ways to utilize
LBERT are the same as using BERT (The differences lie in the model checkpoints and tokenizers.).

We conduct feature ablation experiments to compare the effectiveness of different novel features. The same fivefold
cross-validation strategy is adopted in training classifiers used in training rankers. For SVM Rank, we tuned the parameter
c from 30 to 30000. For each fold of the training DLCM model, the input list is 30 according to the number of candidate sta-
tutes and dimensions of input documents set to a concrete size of different features. We only tuned the hidden unit number
from 10 to 100 and the batch size from 8 to 32. For the proposed case-statute relational features, average dimensions of each
type of feature are shown in Table 3.
5.2. Results and Discussion

The metrics for evaluation are those illustrated in Section 4.1.3. We want to find answers to the following three Research
Questions (i.e., RQs) according to the experimental results.

RQ1 How much can the case-statute relational features improve recommending results comparing with other
approaches?.

Results. Table 2 shows recalls and precisions of different statute recommendation approaches of different Top K recom-
mended statutes. It shows that utilizing the proposed case-statute relational features for SVM Rank (i.e., R-SVM-
Basic + Novel) would achieve the best statute recommendation performance for divorce cases. The recall and precision at
the top 1 statute achieve 26.52% and 74.83%, respectively. They are 4.66 and 15.58 percent higher than those of the first rec-
ommending stage, i.e., retrieving statutes by collaborative filtering and ranking by their weights (Search Enging). Besides, it
also outperforms the combination of DLCM and BERT/LBERT (no matter whether fine-tuned or not), which are the state-of-
the-art methods of list-wise ranking and neural network-based language models. It proves that the proposed secondary sort
strategy works for re-ranking candidate statutes of divorce cases. The performances of C-Binary-X and C-MultiLabel-X in
Table 2 show that modeling the statute ranking issue as a classification problem is not a proper strategy for recommending
statutes for divorce cases, even if the state-of-the-art language models BERT/LBERT are used to encode texts, no matter fine-
tuned or not. We also draw the MAP curves of three competitive approaches (i.e., DLCM-LBERT, R-SVM-Basic, and R-SVM-
Basic + Novel), as well as the Searching Engine, in Fig. 6. All approaches achieve the highest MAP at K = 3. However, the
average number of truly cited statutes by each case is 4; the theoretical highest MAP should be achieved at K = 4. This also
indicates that there is still space for improvement.

Discussion. It is reasonable that the performance of multi-label classification is the worst. It does not take the content of
statutes into consideration and there are 456 labels for 19860 data instances. Besides, the distributions of all labels are
unbalanced. Almost 10 k cases cite the most frequently cited statute and the least frequently one is cited by only one case,
while the average cited frequency of all statutes is 154. So, it is really difficult for a multi-label classification model to solve
this problem. Although the binary classification achieves a better result than multi-label classification, it does not utilize the
Table 3
Number of dimensions of each type of relational features.

Feature Unigram
Pairs

Words
Overlap

Role and Special Group
Consistency

Judgement
Consistency

Relationship
Consistency

LDA

# of
Dimensions

3967 250 10 7 11 163
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Fig. 6. MAP@Top K of four different re-ranking approaches.
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differences between two statutes cited by the same case, which means it is more like a point-wise sorting method. It is no
wonder that the binary classification outperforms the search engine only at the top 1 statute. There is another reason for the
bad performance of binary classification and it is an unbalanced 0/1 distribution of data instances. On average, for each case,
there are four positive case-statute pairs and twenty-six negative pairs.

We also tried two methods to balance 0/1 distribution for the binary classification model. The statute weights are to
reserve the same number of negative pairs as the positive pairs for each case and those negative pairs with high statute
weights (i.e., formula 3). The second method is to calculate a weight for each non-cited statute candidate for each case, sim-
ilar to calculating TF-IDF, which is named SF-ICF (i.e., Statute Frequency-Inverse Case Frequency). Thus, statutes with high
SF-ICF would be reserved as negative data instances. Statute Frequency is the frequency of the candidate cited by similar
cases and Case Frequency is the frequency of the statute being a candidate of cases. Table 4 shows the recalls and precisions
of the binary classification on 0/1 balanced data sets. Although there are slight improvements by balancing the data set, it
still cannot achieve as good performance as list-wise ranking approaches.

We tested the performance for list-wise learning to rank algorithm DLCM by feeding it with different features, i.e., text
embedding derived by neural network language model BERT/LBERT and the proposed case-statute relational features. It
turns out that BERT/LBERT is more suitable for a neural network-based list-wise ranking approach, while hand-crafted rela-
tional features are more suitable for pair-wise SVM Rank. The results are reasonable. The various dimensions of features
acquired by BERT/LBERT are interrelated and they should be viewed as a whole. Exactly, DLCM also treats each input vector
as a whole and treats each dimension fairly. However, there are several different types of relational features. There are no
strong connections among different features. It is not a proper way to connect between different dimensions of different data
instances. But SVM Rank would focus on learning from the differences of the same dimension among different data
instances. So, the proposed relational features help SVM Rank achieves better results. Besides, the size of relational fea-
tures(i.e., 4408 dimensions on average) is too large for DLCM to handle.

One interesting observation is that, although adapting and improving BERT/LBERT would not make a big difference for
any model that uses BERT/LBERT, the concrete impacts made by fine-tuning were slightly different on different models.
For example, fine-tuned BERT/LBERT would increase results for both C-Binary-(L) BERT and DLCM-(L) BERT while decreas-
ing the result of C-MulitLabel-(L) BERT. One possible interpretation may be that much more parameters in BERT/LBERT
would make the pitiful multi-label classification model lose the direction of optimization compared with the much easier
binary classification task. As to DLCM, the reason may be that the performance of the model is much more reliant on DLCM
but not BERT/LBERT. This may also be the reason that the improvements made by fine-tuning BERT/LBERT for C-Binary-(L)
BERT is also slightly higher than that for DLCM-(L) BERT.

Since we use two different pre-trained language models, i.e., BERT and LBERT, it is necessary to discuss the effects of the
two on different models. In theory, using LBERT, a model pre-trained with more legal documents, should achieve better
Table 4
Recall and precision of binary classification models.

Balanced Strategy Recalls (%) Precisions (%)

@1 @3 @5 @10 @1 @3 @5 @10

C-Binary-BERT Unbalanced 22.12 51.04 64.43 73.82 60.04 48.35 37.03 21.14
Simple 22.84 50.73 64.80 77.22 61.31 47.99 37.09 22.19
SF-ICF 23.55 51.56 65.51 78.13 62.00 48.40 37.45 22.57
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results than basic BERT in this task. However, the experimental results show that this assumption is not always true in any
condition. For example, for approaches of C-Binary-X, using LBERT can get better results than using BERT obviously. But for
C-MultiLabel-X and DLCM-X, the effectiveness of LBERT and BERT are comparable. The reason is the same as discussed in the
previous paragraph, i.e., (1) the pre-trained language models are not suitable for C-MultiLabel-X, and (2) models of C-
Binary-X depend more on the pre-trained language models than models of DLCM-X (The better the language model is,
the higher performance will the C-Binary-X classifiers achieve.).

The last row of Table 2 are the highest recalls and precisions at different places (i.e., Golden Standard) that the ranker
could achieve theoretically by re-ranking statute candidates retrieved by the Search Engine. They are calculated by putting
all truly cited candidates at the top of the list. It is obvious that there is still a big performance gap between the R-SVM-
Basic + Novel and the Golden Standard. It implies that the statute recommendation is still a problem to be solved with much
room for improvement.

RQ2 To what extent do the novel relational features contribute to the re-ranking approach?
Results. In Table 2, we compare the performances of using basic features independently and utilizing themwith novel fea-

tures for both DLCM and SVM Rank. After adding novel features, there is nearly no improvement of DLCM at the top 1 place.
But there is a slight improvement at the top 3 places, i.e., 1.56% and 1.36% for recall and precision, respectively. For SVM
Rank, the improvement happens at the top 1 place and both recall and precision achieve the highest values among all dif-
ferent approaches.

Discussion. As discussed in RQ1, the relational features are more suitable for SVM Rank than DLCM, so the novel features
utilized by SVMwould achieve greater improvements than those utilized by DLCM. However, the novel features do not bring
a very big improvement to SVM Rank compared with basic features. The main reason is that there is a big difference between
the number of their feature dimensions, i.e., 3967, on average for basic VS. 441 for a novel. Besides, while the novel features
are used single input of SVM Rank, the results are not as good as those of using basic ones alone. In other words, the amount
of information on novel features is not as great as that on basic features, but there are also certain different effective
information.

Although the contribution of distinct information contained by novel features to improve Recall and Precision is not very
obvious, it is outstanding in improving the recommendation effectiveness of low-frequently cited statutes. Fig. 7 shows the
sums of citing frequencies of top 10 statutes recommended by Search Engine, R-SVM-Basic, and R-SVM-Basic + Novel on
average to each testing fold. The searching engine trends recommend frequently cited statutes for all cases, but it has a poor
performance. After applying the ranker considering basic features, the citing frequencies of the top three most frequently
recommended statutes have suddenly dropped. This leads to those cases that did not cite or only cite one commonly used
the statute to get the correct citation in the top three recommendations. Then the average recalls and precisions improve
significantly. After adopting novel features, the citation frequency impact is reduced again. It proves that the proposed novel
features successfully constructed the semantic association between cases and statutes and made the ranking model improve
the prediction effect.

However, the decreasing recall improvements of the top five statutes (i.e., 0.96%) made by adding novel features (com-
pared with the improvements of top 3 ones, i.e., 1.21%) indicates that there must be some truly cited frequently used statutes
put outside the top five by mistake. So, a better way to integrate the citation frequency of statutes and semantic connections
between cases and statutes needs to be investigated to improve the re-ranking performance.

RQ3 What kinds of human interpretable information in cases and statutes play a more critical role in ranking statutes
than others?.
Fig. 7. Comparison of reference frequencies of top 10 recommended statutes among different approaches.
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Table 5
Feature ablation results by using MAP@1 measuring performance.

Words Overlap LDA Role and Special Group Consistency Judgement Consistency Relationship Consistency

0.6810 0.6886 0.6893 0.6893 0.6908
0.6791 0.6878 0.6880 0.6904 –
0.6782 0.6867 0.6891 – –
0.6774 0.6865 – – –

Fig. 8. Information gains of novel features in the binary classification of case-statute pairs.
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Results. There are five types of interpretable features for ranking statute candidates in the case-statute relational features.
The feature ablation experiments are conducted to investigate the effectiveness of different features. Table 5 shows the fea-
ture ablation results where MAP@1 is used for measuring the model (trained by R-SVM-Basic with selected novel features)
performance. It tells that the words overlap and LDA are the most effective features in measuring case-statute relations for
re-ranking statutes. Besides, we calculate the information gain of each dimension of the novel features in classifying the
case-statute pairs into 0/1 classes, where 0 represents that the statute is not suitable for the case and one represents it is
suitable. Fig. 8 shows the overall comparison of all dimensions and details of the top 50 and top 50–100 dimensions sepa-
rately. Overall, it is obvious that words overlap and LDA are also the most important features in determining the suitableness
of statutes.

Discussion. The re-ranking goal is to put truly suitable statutes at the top of the recommendation list. The goal of suitable-
ness classification is to distinguish between suitable statutes and unsuitable ones. The two goals are essentially the same. So,
the main conclusion derived from Table 5 and Fig. 8 is the same: overall, words overlap and LDA are the most effective
features.

However, the IG values help us dig deeper into details about which dimensions are more critical and there are new dis-
coveries. For example, there are several dimensions of Role and Judgement consistency features that are more effective than
the others. This implies that the conclusion drawn from Table 5 is mainly caused by a large number of dimensions of words
overlap and LDA features. In order to further compare the importance of different features, we tracked the concrete defini-
tions of every single dimension whose IG value is in the top 50 list and they are shown in Table 6.

According to these definitions, we can sort out the guidelines for writing case descriptions and judgment documents that
help recommend suitable statutes. For example, we find that dimensions of words that overlap with high IG values are
mainly nouns and verbs frequently used in statute contents. This indicates that when describing the basic information of
a case, adopt noun or verb terms used to define the statutes as much as possible, helping to locate the applicable statutes.
Furthermore, it shows the importance of finding legal expertise to help write case descriptions and the necessity of improv-
ing the legal knowledge of ordinary people. Besides, for LDAs, features calculated through the Shared model based on analysis
paragraph have higher IG values. This implies that when the judge writes the judgment document, he or she should explain
the relationship between the case description and the applicable statute in the case analysis section and construct a reason-
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Table 6
Definitions of feature dimensions with high IG values and their indicated instructions.

Feature Type Rank of
Dimension

Definition of the
Dimension

Indicated Instructions

Words Overlap Top 50 Frequently used nouns
and verbs in statutes

(1) Invite legal professionals to help write case description. (2) Improve the general
public’s legal knowledge.

LDA Top 50 Shared model based on
analysis paragraph

Explain the relationship between the case description and the applicable statutes in
detial in the case analysis section while writing Judgement Documents.

Judgement
Consistency

No. 2 Defendant’s Attitude The defendant should express his/her attitude clearly, sin-ce it may affect the judge’s
judgment and thus the suitab-leness of statutes.

No. 3 The first time filed for
divorce

Whether to file a divorce lawsuit multiple times is critical. Never hide the previous
divorce lawsuit nor make up ones in order to win the sympathy of the judge.

No. 46 ”during/after the
divorce” in the statute

Describe clearly the performance of the two parties during the divorce and the claims
after the divorce.

Role and Special
Group

Consistency

No. 31 Children of plaintiff/
defendant

Describe clearly the situation of children the plan of raising children after divorce.
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ing process in detail to provide valuable information for recommending the applicable statutes to new cases in the future.
Table 6 also shows more details about the indicated instructions on writing judgment documents of each dimension.

5.3. Scalability

The scalability of the proposed divorce cases’ statutes recommending approach is reflected in handling the increasing
scale of historical cases, applicable statutes, similar cases, and statute candidates.

With the increasing of historical cases, the search base for retrieving similar cases and the training data set would expand.
As to the searching strategy, i.e., based on TFIDF_IG, the TF_IDF vectors of all cases should be reconstructed and the keywords
derived through calculating the IG of each word in determining the applicable statutes should be re-generated. However, the
search base could not be updated until the number of newly collected cases reached a certain threshold. As to the re-ranking
strategy, more cases could be used to train the ranker. The case-statute relational features could be easily re-calculated.

As the applicable statutes are increasing, the only thing that needs to be updated is to collect the specific content of these
statutes to re-calculate the features for training the ranker. The search base and search strategy for similar cases would not
be influenced by the number of applicable statutes.

In this paper, we retrieve the Top 50 similar cases and the Top 30 statute candidates. However, as the number of cases for
building the online approach, the two values may change. But the process of building the approach would not be affected.
6. Conclusion and Future Work

In this paper, we propose an approach for recommending statutes for divorce cases. The approach consists of two steps:
retrieving similar cases to collect statute candidates and re-ranking statute candidates for recommendation. The candidate
statutes preparation is essentially a collaborative filtering strategy. Different concrete algorithms for measuring the similar-
ity of divorce cases can be adopted in the strategy. Besides, the re-sorting goal can be implemented through training rankers
using different Learn to Rank algorithms. The innovation of the proposed approach mainly lies in defining and generating the
hand-crafted case-statute relational features for rankers. The advantage of the relational features is that they are inter-
pretable by human beings. According to the effectiveness of different features in recommending statutes, different written
instructions for judicial cases could be concluded. In the future, cases written following these instructions would receive
more accurate, suitable statute recommendations. Another contribution of this paper is the proposed similar cases retrieving
method, which combines the TF_IDF vector of the document, POS tag of words, and the Information Gain algorithm.

Experimental results show that the proposed similar case retrieving methods outperform the others. Combining the rela-
tional features with SVM Rank would achieve the best statute recommendation results compared with baseline re-ranging
approaches. By digging into the analysis of the importance of each dimension of the relational features, we find that the best
way to improve statute recommendation performance is to describe the case with legal terms used in statutes, including
nouns and verbs. Besides, suppose the judge could make it clear the connection between the facts and suitable statutes while
writing judgment documents for historical cases. In that case, they will provide very valuable information for recommending
statutes to newly issued cases and promote the recommending performance.

However, there is still a big gap between our recommendation result and the gold standard. The main reason is that the
proposed relational features and existing methods do not set up a real reasoning model for constructing the connection
between the case and the statutes. For setting up the reasoning process, deep semantic information of both cases and sta-
tutes should be understood. So, defining an abstract reasoning model manually and mining a knowledge base for reasoning
are the future works of this paper.
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