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Abstract

Metal and its alloys have been predominantly used in fracture fixation for centuries, but new materials such as compo-
sites and polymers have begun to see clinical use for fracture fixation during the past couple of decades. Along with the
emerging of new materials, tribological issues, especially debris, have become a growing concern for fracture fixation
plates. This article for the first time systematically reviews the most recent biomechanical research, with a focus on
experimental testing, of those plates within ScienceDirect and PubMed databases. Based on the search criteria, a total of
5449 papers were retrieved, which were then further filtered to exclude nonrelevant, duplicate or non-accessible full
article papers. In the end, a total of 83 papers were reviewed. In experimental testing plates, screws and simulated bones
or cadaver bones are employed to build a fixation construct in order to test the strength and stability of different plate
and screw configurations. The test set-up conditions and conclusions are well documented and summarised here, includ-
ing fracture gap size, types of bones deployed, as well as the applied load, test speed and test ending criteria. However,
research on long term plate usage was very limited. It is also discovered that there is very limited experimental research
around the tribological behaviour particularly on the debris’ generation, collection and characterisation. In addition,
there is no identified standard studying debris of fracture fixation plate. Therefore, the authors suggested the generation
of a suite of tribological testing standards on fracture fixation plate and screws in the aim to answer key questions
around the debris from fracture fixation plate of new materials or new design and ultimately to provide an insight on
how to reduce the risks of debris-related osteolysis, inflammation and aseptic loosening.
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well as avoiding any complications and side effects dur-
ing or after surgery.

However, tribological wear around the fracture fixa-
tion construct (plates and screws) can occur and lead to
adverse effects to the body.”> The consensus is that the

Introduction

A bone fracture is a crack or break in the bone which
could be caused by traumatic incidents such as falls,
accidents, sports and/or by pathological reasons where
bones are weakened due to underlying health condi-
tions, such as osteoporosis or bone cancer/tumours.'
Fracture fixation secures the broken bone segments in
the desired position for healing to take place. Various

'Aston Institute of Materials Research (AIMR), Aston University,
Birmingham, UK

fixation constructs can be adopted depending on the
seriousness and the location of the fracture. One of the
most commonly used fixation methods is the use of
internal plates and screws that may be made of differ-
ent biocompatible materials. The ultimate goal of a
trauma fixation solution is to bring pre-injured func-
tions back to patients in as short a time as possible, as
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(“tribology” OR “mechanical” OR “wear” OR
“fretting” OR “debris” OR “friction”) AND
(“trauma plate” OR “fracture plate” OR
“fixation plate” OR “bone plate”) in full text
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Figure |. Flowchart showing the search and filtration criteria;
a total of 83 papers were included in this review, among which
there is an overlap of 35 papers between biomaterials
development and biomechanical testing, an overlap of one paper
between biomechanical testing and tribology studies.

high coefficient of friction between the implant compo-
nents themselves and between them and the body tis-
sues, along with the formation of debris adjacent to the
implants, can lead to complications, including but not
limited to inflammation, osteolysis, implant loosening,
hypersensitivity and toxicity/carcinoginity.>* It is worth
noting that besides tribology-induced debris, cata-
strophic plate failure may also generate debris, which
contributes to the biological response. In addition, tri-
bological characterisation is an aspect that is gaining
increasing attention from various stakeholders such as
patients, clinicians, medical device companies and regu-
latory bodies. It is a major factor in controlling and
determining the long-term clinical performance of the
fracture fixation plate within the implanted body.

Moreover, advancements in healthcare and medical
technology have increased the longevity of human
beings and imposed ever-high demands on the mechani-
cal and tribological characteristics of fracture fixation
plates.

Nevertheless, research into this area of tribology in
fracture fixation constructs is limited, especially in com-
parison with joint replacement applications. This is
because the majority of the plates and screws are made
from metal materials, which have long been adopted
ever since the first introduction of internal fixation
plates and screws.>® There was no tribological testing
of the metal required at the time due to limited under-
standing of its impact and the impression that plates
and screws would only stay in vivo for a relatively short
period time, therefore tribology was not thought to be a
concern. The emerging body of research in tribology
within joint replacements over the last two decades have
highlighted the potential harm metal debris have on the
body.>*” This sets a precedent for other implants such
as fracture fixation constructs to re-evaluate the impor-
tance of tribology factors in current standard testing
protocols. The aim of this literature review is to explore
the current status on the testing methods of fracture
fixation plates and identify some of the gaps and
challenges.

Methodology

Available publications on biomechanical testing of
fracture fixation plates, particularly on tribological test-
ing, were considered within this review paper. Figure 1
shows the search and filtering criteria for the selected
publications to review. Firstly, papers were searched
within PubMed and ScienceDirect databases, using the
search criteria: (‘tribology’ OR ‘mechanical’ OR ‘wear’
OR ‘fretting’ OR ‘debris’ OR ‘friction’) AND (‘trauma
plate’ OR ‘fracture plate’ OR ‘fixation plate’ OR ‘bone
plate’).

About 264 papers within PubMed and 5185 papers
within ScienceDirect were selected. The title, abstract
and key words of these papers were then further
checked, after which 222 PubMed papers and 50
ScienceDirect papers were left. Duplicate, non-English
papers, as well as papers without full text and non-
relevant papers such as osteoarthritis diagnosis were
then further excluded, leaving 83 papers for review.

Those 83 papers to review were divided into three
groups, among which 42 papers were regarding new
biomaterials in fracture fixation plates, 74 papers were
related to biomechanical testing where 37 papers were
more related to experimental testing and three papers
were about further tribological characterisation includ-
ing debris characterisation and its biological impact.
The overlaps between biomaterials development with
biomechanical testing and tribology testing were 35
and 1, respectively. To this end, a review of the current
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ASTM and ISO standard on product testing of fracture
fixation plate were also conducted.

It is worth noting that this may not have covered
every published paper within the topic, nevertheless, it
is broad enough to represent the current state-of-play
in understanding and development of the tribological
characterisation of fracture fixation plates. In addition
to tribological tests, some construct tests that generate
debris will also be considered due to the risk of cata-
strophic failures, particularly within relatively young
patients.

Development of biomaterials used in
fracture fixation plates

Fracture fixation plates and screws are deployed as an
internal fixation method that is intended not only to
reduce the fracture, but also provide sufficient immobi-
lisation to allow for the bone to heal.®® Starting from
this point of view, the early understanding was that the
fracture fixation plates shall be sufficiently stiff to pro-
vide a stable construct to hold the fractured bones in
place. There are two main mechanisms of bone healing;
primary healing and secondary healing, of which sec-
ondary healing accounts for the majority of bone heal-
ing and requires relative flexibility to achieve.
Therefore, from the perspective of bone healing, the
plate must not be too stiff, otherwise it will result in
stress shielding where the load is borne mainly by the
plate rather than the underlying bone tissue.>? As a
result, a lack of controlled micromotion and compres-
sive loading at the fracture site inhibits callus formation
which negatively impacts the quality of the healed bone
or leads to non-union.

Historically the first internal fixation plate was a
metal plate invented by Lane in 1895.° Since then,
there has been a series of improvements in the metal
that has been used, as well as the plate design. Metal.
still remains the dominant material in fracture fixation
plates and based on the current market usually consist
of stainless steel and commercially pure titanium as
well as its alloy.

Stainless steel, exhibiting a Young’s modulus of
around 200 GPa.'® can provide sufficient strength to
the fixation construct of plate and screws. Meanwhile,
stainless steel also demonstrates corrosion resistance,
especially SS 316L (ASTM F138) which is the most
widely used stainless steel in orthopaedic implants
including fracture fixation plates. The ‘L’ in SS 316L
represents extra low carbon content (0.03wt. %).
Lower carbon will generate lower amounts of chro-
mium carbide at the grain boundaries of the polycrys-
talline structure, which leads to better corrosion
resistance. In addition, the low cost of stainless steel
makes it affordable and promotes its adoption.
However, SS 316L contains 13%—15% nickel which is
potentially toxic and may also cause allergic reactions
in patients with metal sensitivity.!! New nickel free

stainless steel has been developed mainly to address this
issue, though it is not yet widely clinically adopted."!

It is important to note that the stainless steel still
does not have optimum corrosion resistance. To
improve the anti-corrosion performance, titanium and
its alloys (Young’s modulus of 110 GPa) started being
used for internal fracture fixation after they became
commercially available in the 1950s.'°

Commercially pure titanium (CP Ti) refers to unal-
loyed titanium with minor amounts of impurity ele-
ments, such as C, O and Fe. There are four grades of
CP Ti used for medical applications (ISO 5832-2),
amongst which CP2 and CP4 are the most widely used
for internal fixation plates.'* Titanium alloys, such as
Ti6Al4V and Ti6Al7Nb are also used mainly due to
their increased mechanical strength over CP Ti. In
addition, research also shows that the corrosion resis-
tance of Ti is also improved as a result of the introduc-
tion of the harmless elements, Al, V, Nb into pure
titanium.'®'> What is more, despite being more expen-
sive, clinical research demonstrated better bone quality
after healing when using titanium plates because of the
lower stiffness with modulus in comparison with stain-
less steel plates. The resulting lower stiffness was
thought to reduce the stress shielding effect by lowering
the stiffness discrepancy between cortical bone and
metal plate.

Novel design concepts using additive manufacturing
to 3D print porous plates from biomaterials such as
316 L, Ti and Ta is another area of development with
the promise of improving properties and customisation
to match the patient and therefore better union.'*'*
Nonetheless the shortcomings of metal plates are
becoming more and more noticeable due to the increas-
ing performance requirements. Stress shielding is one of
the most well reported drawbacks of metal plates.'”
This is because according to Wolff’s law and Frost’s
theory,'® when the plate is stiffer with higher Young’s
modulus, it can prohibit secondary healing through cal-
lus formation and bone remodelling. The metallic frac-
ture fixation plate is also associated with the release of
metallic ions into the patient; on a small scale due to
the uniform passive dissolution resulting from the slow
diffusion of metal ions through the passive film, and on
a larger scale, due to the breakdown of the passivity as
a consequence of chemical (pitting and crevice corro-
sion) or mechanical (fretting corrosion) events.'’
Besides metallic ions, debris is generated due to corro-
sion while the plate is functioning within the patient. It
can also be generated by the relative motion at inter-
faces within the fixation construct and between the fixa-
tion construct and the adjacent bone or tissue. The ions
and debris released into the patients can evoke host tis-
sue responses and be detrimental to the patient.'® It is
thus one of the most important factors that affects the
performance of the fracture fixation plate. Another
shortcoming is the lack of radiolucency of the metallic
plates which can be an obstacle when it comes to asses-
sing the healing of the bone, and also poses an
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Figure 2. Schematic diagram showing the load transfer in
fracture fixation construct.

additional challenge with oncological patients or
patients who require radiotherapy.'®-*°

Due to the above pitfalls of stainless steel and tita-
nium plates, efforts have been devoted into new bioma-
terial development around biodegradable materials and
materials with less stiffness to reduce the stress shield-
ing effect, such as polymers and composites.

Polymers such as polymethyl-methacrylate (PMMA),
poly glycolic acid (PGA), L-poly-lactic-acid (PLLA),
D-poly-lactic-acid (PDLA), poly ether—ether-ketone
(PEEK), have widely been studied for bone fracture
fixation applications. The Young’s modulus of PMMA,
PGA, PLLA and PEEK is within the range of 3-4 GPa,
which is similar to that of cancellous bone.'®*"*
Theoretically,'® these materials may reduce stress shield-
ing during the bone healing process, nevertheless, they
only have limited applications in dental implants and
internal fixators such as spine cages and bone cement.'?
The main obstacle for a wider application of polymer
plates in fracture fixation is their poor mechanical
properties.

As a result, composite materials, such as nanofiller
reinforced high density polyethylene (HDPE) and car-
bon fibre composites,”> >* are explored to improve the
strength of the polymer, where ceramics, metal and
fibres are added. Among these, the most clinically devel-
oped composite is carbon fibre reinforced PEEK (CFR-
PEEK), which is a composite made of continuous or dis-
continuous carbon fibres embedded in a PEEK
matrix.2?*3% Research and clinical studies demonstrate;
greater callus formation®'; 360° fracture visibility radio-
graphically®>**>% no metallic ion release and hence no
adverse inflammation or other adverse biological
responses related with metallic ions from the plate.

However, despite the potential advantages, there is
also one main question raised, that is, the changes in
mechanical behaviour of the fracture fixation construct

Table I. Bone substrates adopted among studies on the
construct testing (n=37).

Gap size, Number of studies Proportion
mm (%)
0 4 10

| 7 18
2 I 3

3 4 10
4 5 13
5 4 10
6 I 3
10 10 25
13 | 3
20 | 3
25 I 3
60 | 3
Total 40 (Three papers 100

investigated two gaps)

in the development of these relatively new materials.
These changes are likely linked into the micromotion
between components and the subsequent nature of deb-
ris generation, which may lead to the adverse effect and
failure of the implants. Furthermore, the stiffness dis-
parity between non-metal plates and metal screws
would need to be studied, not only from a mechanical
perspective but also in reviewing micromotion at the
fracture through the biotribology lens, which may also
have a local or possibly systemic effect.

Experimental testing of fracture fixation
plates

Figure 2 shows a schematic diagram of a typical frac-
ture fixation construct where locking plate and screws
are deployed. The screw head locks into the plate pro-
viding both axial and angular stability. The contact
surfaces within this construct contains surfaces between
bone and screw, screw and plate and bone and plate.
The load is transferred from bone, to screw, to plate, to
screw and eventually back to bone. Relative motion
between those contacting subjects can be caused by
human movement in one form or another. One of the
main outcomes from this micromotion is debris
generation.

Among the 83 reviewed papers, 74 papers describe
biomechanical testing of fracture fixation plates. Of
these, 37 focus on experimental testing, and this is sum-
marised in Table 5.

For biomechanical testing a common method that
researchers have adopted to simulate a fracture is to
generate a gap in either synthetic bones, simulated
bones (computational models) or normal bones such as
equine or human cadaver bones. From the 37 papers,
the proportion of researchers using synthetic, simulated
and natural bones were 38%, 31% and 31%, respec-
tively, as demonstrated in Table 1. Natural cadaver
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bones would be the best physiological option to achieve
more realistic and trustworthy data. It is highly
required for regulatory purposes but comes with high
associated cost. It could also be a challenge to achieve
repeatable results due to the variation from the donor.
Improving the test quantity could address this issue but
requires access to a large quantity of cadaveric bones
as well as even higher cost. Synthetic bones with homo-
geneous properties and simulated bones are therefore
widely accepted as a cost saving method.

The fracture gap size varied from 0 to 25mm,
except one of the early studies by Hulse et al.**, where
the authors chose a gap size of 60 mm. Although a
gap size of 60 mm may be used for construct stability
validation as a worst-case scenario, it is not realistic
in clinical settings. As shown in Table 2, 10 mm is the
most commonly adopted gap size (accounting for
25%) followed by 1 (10%) and 5Smm (10%), while
88% of the gap sizes are within or up to 10 mm. Gap
size plays a significant role in the stability of fracture
fixation systems: higher gap sizes lead to less stable
fixation constructs.’® Moreover, the gap size is one of
the key influencers on interfragmentary movement
(IFM), which is directly linked to callus formation
and the bone healing process.’”-%*

Loading regimes include compression,
bending (three or four point)*®#7-323437:59762 and tor-
sion testing, 364849346062 while most of them are con-
ducted as a combination of compression, bending and
torsion to mimic the real load condition of the bones.
The end of test criteria are;

35-37,46-59

(1) Until failure, where the load is applied at a fixed
speed of load control or movement control, for
example, 26 N/min,” 300N/s,> 3 mm/min, 5°/
min®’ or cyclic loading conditions.>® This is widely
adopted as an overall evaluation of the construct,
including stress, interfragmentary movement, stiff-
ness, yield load, ultimate load, failure mode and
fatigue strength.

(2) Until a fixed load is reached, or for a set number
of cycles in the case of cyclic load. This is generally
adopted in the finite element analysis approach as
boundaries in order to calculate the Von Mises
stress distribution. In the cases where it is adopted

in laboratory tests, it can assess the construct stiff-
ness as an indicator of construct stability. The
maximum cyclic load is dependent upon the ana-
tomic location, and generally varies from 100 to
1500N. Sod et al.* used an exceptionally high
load where they conducted the four-point bending
test at a cyclic load between 0 and 7.5kN because
the testing plate is used for equine metacarpal
bones.

One more area to take into consideration when set-
ting up the construct test is the plate and screw con-
figuration, such as locking screw or standard screw,
cortical or biocritical screws,>’ angle of screws, %63
number and space between screws,’’*%%* as well as
design of the plate fixation construct, such as minimal
contact plate,> double plate system,’* bridge combi-
nation fixation system.,® hybrid plate system,®®®’
helical plate,®® screw free plate system,* additional
support using bone grafting,”® cement,> screw and/
or cables.”"’

Despite the extensive effort on biomechanical con-
struct evaluation of the fracture fixation plate of differ-
ent design and materials, unfortunately, these studies do
not analyse the debris produced. A search on interna-
tional testing standards using ISO and ASTM database
search engines found there are no standards on testing
the plate and screw construct in a way that mimics the
application conditions of a fracture fixation system.
There are also no standards that describe debris genera-
tion tests for plates and screws. This would partly
explain the variation in test protocols found in the 37
studies on plate and screw constructs as outlined above.
More specifically, for biomechanical testing, there are
seven current active international testing standards of
fracture fixation plates as shown in Table 3.3 Of
these seven standards listed, six of them focus on dimen-
sional specification, bending and compression testing.
There is only one standard on biotribology, which only
focusses on fretting corrosion between plate and screws.
A solution to this gap is to develop a standard testing
protocol for fracture fixation construct testing. With the
volume of studies in this field, there needs to be a colla-
borative effort to bring a standardised method for the
industry to use.

Table 2. Adopted gap sizes amongst studies on construct testing (n = 37).

Standards number Standards title

ASTM F382-17%°
ASTM F384-17%
ASTM F897-19*'
ASTM F2502-17%
ISO 5836:1988*

Standard specification and test method for metallic bone plates

Standard specification and test methods for metallic angled orthopaedic fracture devices

Standard test method for measuring fretting corrosion of osteosynthesis plates and screws

Standard specification and test methods for absorbable plates and screws for internal fixation implants
Implants for osteosynthesis. Bone plates. Specification for holes corresponding to screws with

asymmetrical thread and spherical undersurfaces

ISO 9269:1988*

ISO 9585:1990*

Implants for osteosynthesis. Bone plates. Specification for holes and slots for use with screws of 4.5, 4.2,
4.0, 3.9, 3.5 and 2.9 mm nominal sizes
Implants for osteosynthesis. Bone plates. Method for determination of bending strength and stiffness
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Table 3. Active international standards for testing of fracture fixation plates, as of May 2020.3°~*

Standards number

Standards title

ASTM G99-177"
ASTM G133-0572
ASTM G77-1773

ASTM G137-977*
ASTM G176-037°

ASTM F732-177¢

ASTM F1714-9677
ASTM F2025-0678
ASTM F2423-117°
ASTM F2624-12%°

ASTM F2694-16°'

ASTM F3047M-15%2
ISO 142428386
ISO 1424387-%°
ISO 18192°'-3
1SO 22622:2019
ASTM F1877-16*
ASTM F561-19%®
ASTM F2979-14%¢

Standard test method for wear testing with a pin-on-disc apparatus

Standard test method for linearly reciprocating ball-on-flat sliding wear

Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear
test

Standard test method for ranking resistance of plastic materials to sliding wear using a block-on-
ring configuration

Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear
test — cumulative wear method

Standard test method for wear testing of polymer materials used in total joint prostheses
Standard guide for gravimetric wear assessment of prosthetic hip designs in simulator devices
Standard practice for gravimetric measurement of polymeric components for wear assessment
Standard guide for functional, kinematic and wear assessment of total disc prostheses

Standard test method for static, dynamic and wear assessment of extra-discal single level spinal
constructs

Standard practice for functional and wear evaluation on motion preserving lumbar total facet
prostheses

Standard guide for high demand hip simulator wear testing of hard-on-hard articulations
Implants for surgery. Wear of total hip-joint prostheses

Implants for surgery. Wear of total knee prostheses

Implants for surgery. Wear of total intervertebral spinal disc prostheses

Implants for surgery. Wear of total ankle-joint protheses

Standard practice for characterisation of particles

Standard practice for retrieval and analysis of medical devices and associated tissues and fluids
Standard guide for characterisation of wear from the articulating surfaces in retrieved metal-on-

metal and other hard-on-hard hip prostheses

ISO 17853:2011%7

Wear of implant materials. Polymer and metal wear particles. Isolation and characterisation

Tribology and debris related testing of
fracture fixation plates

Despite the search criteria within focus of tribological
testing of fracture fixation plate, it is to note of the 83
papers in this review only three papers within the search
criteria are directly linked with tribological issues of
fracture fixation plates. This agrees with the biomecha-
nical testing of fracture fixation publications and inter-
national testing standards that only limited research
have been conducted in this area to date.

The first study was in 1978, in which Mutschler
et al.”® explored the possibility of using lubricants to
reduce the friction between the plate and screws when
tightening the screws so that the damage of the screw
and plate can be minimised during the implantation
process. It was found that whilst reducing the friction,
the screw force could increase up to 40%.%% In addi-
tion, the lubricating spray demonstrated no toxicity.
However, no further following study was found on
using lubricating spray on implants, nor other tribolo-
gical test following Mutschler et al.’s study. The next
study about debris on fracture fixation plates was in
2002 when Mu et al.” investigated the release of tita-
nium debris using a rabbit model. In the study, com-
mercially pure titanium plates and self-tapping screws
were implanted into the legs of rabbits in four groups;
osteotomy group, where screws and plates was
implanted to fix the broken bone and retrieved after
48 weeks; muscles group, where screws and plates were
implanted into the muscles without forming a screw

and plate construct and retrieved after 48 weeks; sham
group, where screws and plate were implanted to fix a
broken bone but retrieved immediately after implanta-
tion; control group, where no implantation was carried
out but tissue was collected for following analysis.
Titanium in the tissue were quantitatively studied
through atomic absorption spectrophotometer (AES),
with the results shown in Figure 3. Debris was mainly
generated from three aspects: during surgical implanta-
tion, wear and fretting between the bone, plate and
screws when in use and tissue and implant reaction.
The percentage of debris generated during these three
aspects were approximately 42%, 47.5% and 10.5%,
respectively. Nonetheless, during their study, debris
generated from implant removal and implant failure
was not considered. The most recent and pioneering
experimental study on wear of fracture fixation plates
was carried out by Steinberg et al.'” in 2013, where
they quantitatively calculated the amount of debris
from the fracture fixation construct in vitro. They
designed a testing assembly which contained a fracture
fixation construct of the testing plate and screws sub-
merged in buffered saline solution (PBS), shown in
Figure 4'%° data-manual-cit = ‘Y’ type = ‘C’>.'% The
assembly was tested at a load of 300N for a million
cycles. The debris was collected in the container of the
assembly and filtered to calculate the amount the debris
generated.

Two of the three tribology papers discussed in this
review took the collection of debris into consideration.
Steinberg et al.'® in 2013 calculated the amount of



Zhang et al.

12

H
o
—

[
T

Titanium release, ppm
()]

T

Osteotomies muscles Shams Controls

Figure 3. Amount of titanium debris in tissues for each group,
reproduced from the study of Mu et al.”® Sham refers to a
controlled surgery where the plate and screws were extracted
immediately after implantation to exclude any surgical procedure
caused influences.

Derlin bone W

Container

Plate

Gap

Compression screw

Locking screws |

Testing jig

Figure 4. Wear testing jig for fracture fixation by Steinberg
etal,,'® copyright cleared for reuse.

debris using a filtration method. The test was carried
out in an enclosed environment, where the debris are
collected in the PBS test solution. The authors then fil-
tered the solution through 1 and 0.2 um filtering paper
and measured the weight of the solution before and
after each step of filtration. The amount of debris is
then worked out through weight deduction. The fil-
tered debris is also sent for observation under optical
microscopy to validate the conclusion in terms of which
tested plates generated more debris. However, the col-
lected debris from this study could be generated from
either the screws, plate, or Delrin rod. The other study
was from Mu et al.”” where tissue retrieved from the
implanted rabbits were placed in a muffle furnace at
600°C for 6 h. The burned ash was then dissolved using
concentrated hydrofluoric acid and nitric acid. The
debris was then quantitatively analysed using an atomic

absorption spectrophotometer. Debris was also histolo-
gically studied using optical microscopy and transmis-
sion electron microscopy to identify the debris size.
However, this quantitative debris analysis method is
only applicable to metal plates and screws.

Despite the dearth of debris studies in plates and
screws, debris has drawn the attention of surgeons and
researchers in the medical field since 1970s. One of the
earliest issues that was noticed surrounding debris is
implant loosening when Harris et al.'°" observed exten-
sive localised bone resorption surrounding the total hip
replacement in 1976. Since then there has been a high
interest, and a series of international testing standards
has also been established on orthopaedic implants total-
ling 18, as shown in Table 4. Those testing standards
can be classified into three categories,

e Wear testing methods, which include generic
laboratory wear testing methods, for example pin-
on-discs, ball-on-flat, block-on-ring on different
types of motion such as linear, reciprocating, circu-
lar etc. It also includes application specific testing
methods such as in spine, hip, knee.

e Characterisation methods. Wear is measured either
gravimetrically based on weight changes, or volu-
metrically based on profilometric assessment of the
wear track.

e Debris retrieval and characterisation. This covers
particles retrieved from medical devices and its
associated tissue and fluid, but also the require-
ments for particles characterisation. As it defines, a
minimum of 100 particles are required to substan-
tially quantify the morphology of debris.

Conclusions and future perspectives

Based on the above review, clearly there are emerging
designs and materials beginning to be recognised and
starting to be used in fracture fixation. However, the
current international testing standards are limited on
biomechanical evaluation of the plate, for example,
bending test. There was an extensive amount of work
conducted in the biomechanical evaluation of fracture
fixation plates, however, no standard has been estab-
lished. It is also clear that there are extensive efforts on
tribology testing, including debris, in other orthopaedic
applications particularly around joint replacement,
however, the studies on the tribological characterisa-
tion of fracture fixation plates are limited. This high-
lights both a requirement and an opportunity where
these areas of research and testing can be combined to
develop a suite of testing methods for fracture fixation
devices. The combined testing methods could encom-
pass friction, wear, lubrication and the collection and
characterisation of debris, which is becoming increas-
ingly apparent to be important in ensuring the safe
development of new materials and design within the
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Table 5. Summary of mechanical laboratory tests (n=37).

Types of bones Number of studies Proportion (%)

Synthetic bones I5 38
Simulated bones 12 31
Natural bones 12 31
Total 39 (Two studies have 100

used both synthetic
bones and simulated
substrate)

Only construct testing of the fracture fixation plate is included in this
summary.

field. Emerging needs and requirements for this work
to be done that include:

e New biomaterials for fracture fixation plate being
developed to improve biomechanical performance.
A better understanding is needed of their biotribo-
logical behaviour in order to assess the technical
readiness level (TRL) of devices made from novel
materials.

e Changes in surgical practices in the use of fracture
fixation plates has meant that surgeons will often
opt for keeping plates in the body rather than
remove them once the bone has healed. The long-
term effects of keeping these devices in the body
may need to be investigated, particularly from the
view of debris generation and its effects.

® Medical regulation changes, such as Medical
Device Directive (MDD) to Medical Device
Regulations (MDR) and the changes to regulatory
requirements to demonstrate improved safety and
efficacy of new and evolving medical devices.

Future studies could therefore systematically investigate
and build an understanding of the biotribology and
wear within fracture fixation constructs, as well as the
collection and characterisation of the generated debris.
Long term, the biological responses of those debris
should also be followed. In effort to do so, the authors
suggest the development of a suite of tribological testing
standards of fracture fixation plates that incorporates;

e Standards on generic pin-on-disc testing (TRL4 and
TRLS5) as well as other joints can be used to develop
standard testing protocols that are fit for purpose
for plates and screws.

® A fracture fixation simulator (TRL6) from the cur-
rent research around construct testing that defines
and justifies the testing parameter selection which
enables quicker route for product to bedside.
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