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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

With the rapid development of information technology, data-driven fault diagnosis has gained more and more attention because it provides a new 
way for enterprises to save costs. Considering that there are few abnormalities in equipment operation in actual industrial applications, it is still 
a challenge to implement data-driven fault diagnosis that requires a large amount of fault data. To tackle the challenge, this paper proposes a 
model-independent data augmentation method, which is a weighted combination of the two time series data augmentation methods, i.e. Gaussian 
noise and signal stretching. The experimental dataset is collected from an intelligent motor test platform. The fault diagnosis model based on 
support vector machine and feedforward neural network are applied to study the ability of the proposed data augmentation method in terms of 
model independence. Experimental results show that the proposed data augmentation methods can significantly improve the accuracy of fault 
diagnosis. 
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1. Introduction 

The rapid development of the industrial Internet of Things, 
cyber-physical systems and big data continues to reshape 
modern manufacturing [1]. With the proliferation of data and 
computational intelligence, manufacturing processes are 
becoming more and more digital [2]. The new manufacturing 
model has increasingly higher requirements for equipment 
reliability and operational safety. Researches on data-driven 
fault diagnosis methods has been extensively developed [3,4]. 
This kind of data-driven method can use machine learning 
models, such as k-neighbor nearest [5,6], support vector 
machine (SVM) [7,8], feedforward neural network (FNN) 
[9,10], convolutional neural network (CNN) [11,12] and so on, 
to find out the complex relationship between the fault and its 

corresponding system response to determine the category of the 
fault by learning a large amount of fault data.  

However, the frequency of faults in the actual intelligent 
manufacturing process is often very low, and the fault data 
obtained is far less than the normal data. If there is not sufficient 
fault data, the data-driven method may not be robust enough to 
achieve accurate diagnosis. To address this issue, many works 
of data augmentation have been done recently, of which the 
most representative methods can be roughly divided into three 
categories, digital twin-based methods, model-level methods, 
and data-level methods. 

 
In general, digital twin-based methods try to produce a huge 

amount of training data by constructing the numerical model 
associated with a physical asset. Model-level methods attempt 
to design a new algorithm or an improved loss function, which 
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fault by learning a large amount of fault data.  

However, the frequency of faults in the actual intelligent 
manufacturing process is often very low, and the fault data 
obtained is far less than the normal data. If there is not sufficient 
fault data, the data-driven method may not be robust enough to 
achieve accurate diagnosis. To address this issue, many works 
of data augmentation have been done recently, of which the 
most representative methods can be roughly divided into three 
categories, digital twin-based methods, model-level methods, 
and data-level methods. 

 
In general, digital twin-based methods try to produce a huge 

amount of training data by constructing the numerical model 
associated with a physical asset. Model-level methods attempt 
to design a new algorithm or an improved loss function, which 
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tasks, and systematically analyzed different data enhancement 
methods for time-series data. The above most of time-series 
data enhancement techniques are used in biological information, 
health care, transportation, engineering construction and other 
fields have been researched. However, it was not widely 
discussed in the field of fault diagnosis.  

 
In addition, to improve classification accuracy, some 

researches integrated signal processing technologies in data-
level methods with models. For example, Wu et al. [28] applied 
successively adding Gaussian noise, random scale, random 
stretching, and random cropping methods to augment the 
original data in the time-series data enhancement module of an 
agnostic framework. To improve the accuracy of fault diagnosis, 
this research mainly emphasizes how data enhancement module 
collaborates with other three modules to eliminate class 
imbalances. Therefore, their data augmentation method is still 
related to models. In another study, five kinds of data 
augmentation methods such as Gaussian noise, masking noise, 
signal translation, amplitude offset and signal stretching are 
respectively used to expand CWRU and IMS dataset. They 
evaluated the proposed deep learning model with the five 
enhanced data [29]. Although their data augmentation method 
improved the performance of the proposed deep learning model, 
they found that their data augmentation method has a clear 
relationship with the residual block used in the deep network, 
which indicates if the time-series data augmentation technology 
is used alone, its effect is also closely related to the complexity 
of the model. 

 
To address above-mentioned limitations, this article 

weighted the combination of Gaussian noise and signal 
stretching in the random conversion method to generate new 
samples with novel pattern features so that more representative 
fault features are extracted from the enhanced time series data 
using either traditional machine learning models or complex 
deep learning models. The main contribution of this paper is the 
proposed data augmentation method is model-independent.   

3. Methodology 

Fig. 1 shows the flowchart of fault diagnosis with the 
proposed data augmentation method. In this flowchart, the 
vibration sensor is mounted on a motor to collect vibration data 
through an intelligent motor test platform. The original data is  

Fig. 1. The method for fault diagnosis with data augmentation 

first divided into training set and test set. The original training 
data set is used for data augmentation, and the weighted 
combination of the original data set and the two augmentation 
training data is used to train the machine learning model. The 
trained model is evaluated with the original test data. 

3.1. Model-independent data augmentation 

For convenience, taking the vibration signal generated by 
the motor as an example, the structure of the original time-
series data is defined as the following three rows and n columns 
matrix , where , and are the vibration data in the 

axial, horizontal and vertical directions of the motor driving 
end respectively, i denotes the index of the data and n is the 
length of the data. 

 

                                (1)  

 
A new sample matrix  is obtained by adding Gaussian 

noise   to each sample of the original time 
series-data . 

 

            (2) 

 
According to reference [30], when the standard deviation  

of Gaussian noise model is 0.15, it can ensure that the label of 
original time-series data remains unchanged after adding noise. 
Therefore, this paper sets the standard deviation  to 0.15. The 
new data  and the original data  are concatenated 
vertically to obtain Gaussian enhanced data  . 

 

                                                                   (3) 

 
Signal stretching has the function of amplifying vibration 

data in the time domain and changing the speed or duration of 
time series signals. It can compensate for signal differences that 
may be generated due to the placement of sensors in different 
positions of the device. Signal stretching can maintain the 
overall shape of the time-series data, and at the same time can 
achieve a slight change in the sampling frequency. The length 
l of the stretched original time-series data is determined by the 
stretch factor . The stretch factor  is the ratio of the 
length of the original time-series data sample, defined as 

 , and the stretched original time-series data   
is as follows. 
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biases the recognition process to the fault samples during the 
training stage. Data-level methods can be further divided into 
two categories. One aims to resampling fault samples or 
generating synthetic fault samples to augment the number of 
fault samples. The other is to use signal processing technologies 
to augment the whole dataset. Although these three methods 
have achieved certain performance for fault classification in 
case of lack of fault data, they are still some limitations to real-
world applications. For example, it is very difficult to construct 
an accurate digital twin system based on physics-based models. 
The disadvantage of model-level methods is time-consuming to 
design a new algorithm and dependent different industrial 
domain of fault diagnosis. The deficiency of over-sampling 
fault data may insert a lot of noise samples, resulting in over 
generalization of the classification model. Most of existing 
methods of augmenting the time-series data by signal 
processing technologies are related to other research fields, of 
which is less discussed in fault diagnosis. 

 
To overcome above-mentioned challenge, a model-

independent time-series data augmentation method for fault 
diagnosis is proposed in this work to address the problem of 
insufficient fault data. Its core idea is to 1) use weighted the 
combination of Gaussian noise and signal stretching in a 
random conversion method to generate new samples with novel 
pattern features so that more representative fault features are 
extracted from the enhanced time series data; 2) Train a fault 
diagnosis model with the generated augmentation dataset. 

 
The rest of this paper is organized as follows. Section 2 

briefly reviews the related work of data augmentation. Section 
3 introduces the proposed method in this paper. Section 4 
provides the results of the case study. Finally, the conclusion 
this work is summarized along with further researches in the 
future. 

2. Related work 

2.1. Digital twin-based methods for data augmentation  

 With significant advancement in information technologies, 
digital twin has gained increasing attention as it offers an 
enabling tool to continuously produce data reflected physical 
asset. Hence, digital twin is regarded as a means of data 
augmentation in fault diagnosis. For example, aiming at the 
problem of lack of fault data, Xia et al. [13] presented a fault 
diagnosis framework based on digital twins and deep transfer 
learning. Using limited measurement data, accurate fault 
diagnosis of the machine under the change of working 
conditions is realized. Mohamed et al. [14] developed a digital 
twin model of ball bearing to overcome the problem of 
insufficient experimental datasets in the machine learning 
algorithm-based diagnostic of rotating machines. Considering 
traditional machine learning algorithms requires a balanced 
dataset, Guo et al. [15] used digital twin technology to simulate 
many balanced datasets to train an improved Random Forest 
model to address the problem of less fault data. Although these 
approaches have been developed to overcome the practical 

issue of limited measured data, it is very difficult to construct a 
high-fidelity digital twin model of the physical assets. 

2.2. Model-level methods for data augmentation 

There are two kinds of model-level methods including 
unsupervised and semi-supervised machine learning models. 
Zhang et al. [16] employed an unsupervised learning model 
based on a flow model to solve the problem of sparse fault 
samples. To use condition-assisted sample generation for data 
augmentation, Luo et al. [17] proposed a condition-based deep 
convolution generative adversarial network model. Li et al. [18] 
introduced a fault diagnosis method based on semi-supervised 
learning and used three steps to achieve data augmentation. To 
expand the training dataset, Peng et al. [19] employed a method 
of weighted training samples to reduce the impact of class 
imbalance in the training stage of Bidirectional GRU (Gated 
Recurrent Unit) model. He et al. [20] proposed a new spatio-
temporal multiscale neural network, which uses focal loss 
function to solve the imbalance problem of SCADA data. A 
cost-sensitive classifier learning method is designed to solve 
the problem of unbalanced distribution of fault instances. The 
superiority of this method was validated with the rotating 
machinery dataset collected from the refinery [21]. The above 
solutions are feasible in case verification, and most of them 
applies algorithms to solve the class imbalance. However, the 
high computational costs caused makes model-level methods 
not conducive to practical industrial application. 

2.3. Data-level methods for data augmentation 

Resampling technologies for data augmentation in data-level 
methods refer to random fault sample over-sampling. Synthetic 
minority over-sampling technique (SMOTE) [22] is one of the 
most famous technologies. It is an improved scheme based on 
random over-sampling. The purpose is to increase the 
sensitivity of the classifier to fault samples. However, its 
limitations are mainly reflected in the blindness of sampling. 

 
On the contrary, signal processing technologies in data-level 

methods is to add a small amount of noise to the time-series 
data to enlarge the whole dataset. Liu et al. [23] used fully CNN 
and ResNet to compare time-series data augmentation methods 
such as jitter, arrangement, scaling, and time warping. In 
addition, the data augmentation technology of time-series data 
and its application in each time-series classification of neural 
networks were investigated [24]. Arthur et al. [25] used the time 
slicing method to achieve data augmentation and merged the 
original data and the enhanced data to form a CNN training 
dataset. Their experimental results show that using the time 
slicing method to enhance the data can improve the overall 
classification performance of CNN. To deal with the unevenly 
data distribution in the activities performed by the equipment, 
a warping window time-series data augmentation technology 
was introduced [26]. Wen et al. [27] reviewed the importance 
of data enhancement for time-series data from the excellent 
performance of deep learning in many time-series analyses 
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through an intelligent motor test platform. The original data is  
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first divided into training set and test set. The original training 
data set is used for data augmentation, and the weighted 
combination of the original data set and the two augmentation 
training data is used to train the machine learning model. The 
trained model is evaluated with the original test data. 

3.1. Model-independent data augmentation 

For convenience, taking the vibration signal generated by 
the motor as an example, the structure of the original time-
series data is defined as the following three rows and n columns 
matrix , where , and are the vibration data in the 

axial, horizontal and vertical directions of the motor driving 
end respectively, i denotes the index of the data and n is the 
length of the data. 
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random over-sampling. The purpose is to increase the 
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limitations are mainly reflected in the blindness of sampling. 
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classification performance of CNN. To deal with the unevenly 
data distribution in the activities performed by the equipment, 
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was introduced [26]. Wen et al. [27] reviewed the importance 
of data enhancement for time-series data from the excellent 
performance of deep learning in many time-series analyses 
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enhancement, 1-fold the original data). Table 1 summarizes the 
number of samples in the original dataset and enhanced dataset 
in the case. It can be seen from Table 1 that when the data 
enhancement method proposed in this paper is adopted, the 
sample data of each category in the enhanced dataset has 
reached a balanced state. For example, the number of outer race 
faults in the data collection stage is 586 samples, 294 are used 
for training, 294 are used for testing, and a total of 1470 training 
samples are obtained after 4-fold enhancement. Next, use 5-
fold training data to train the FNN and SVM. 
Table 1. Number of samples of raw and augmented data. 

 
 We first observe the changes of the accuracy of the fault 

diagnosis model after the FNN and SVM are trained with the 
combined training data by changing different weight 
parameters . Fig. 2 shows the changes of the diagnosis 
accuracy of the two fault diagnosis models with different 
weights. The fault diagnosis accuracy of SVM and FNN 
respectively reached 93.45% and 98.73% on the enhanced data 
when  is equal to 0.007. 

 
Next, to verify the effect of data augmentation proposed in 

this paper, we compare the accuracy, precision, recall and F1-
score of the model on the raw training data and combined 
training data corresponding to the optimal , as shown in Fig.3 
and Fig. 4 From the two figures, we can see that compared with 
only using the raw training data, the combined training data can 
significantly improve the performance of the fault diagnosis 
model. For example, the accuracy, precision, recall and F1-
score of SVM range from 67.54% to 93.45%, 78.56% to 
91.92%, 65.43% to 92.32% and 71.39% to 92.10% respectively. 
From the performance coordinates, we can also observe that the 
improvement of SVM is higher than that of FNN. This shows 
that the data augmentation method proposed in this paper has 
nothing to do with the complexity of the model. 

Fig. 2. Accuracy of model on augmentation training data with different 

Fig. 3. Performance measures of SVM 

Fig. 4. Performance measures of FNN 
Fig. 5 and Fig. 6 are the confusion matrix of the SVM model 

on the test set. The confusion matrix explores the classification 
of the trained models in different categories on the test set 
before and after data augmentation. As can be seen from Fig. 5, 
the classification result error rate of the model trained on the 
original training data is high on the test set. In addition, SVM 
can easily misclassify the inner race fault as a health condition. 
On the other hand, the errors in the test set of the model trained 
on the combined training data are significantly reduced, and the 
three different health conditions of the bearing can be identified 
with 94.5%, 93.6% and 92.8% respectively. 

Fig. 5. SVM with no augmentation  

Fig. 6. SVM with augmentation 
 
Finally, we compared the proposed methods with the 

Gaussian noise, masking noise, signal translation, amplitude 
offset and signal stretching used in literature [29] based on 
FNN. The experimental results are shown in Table 2.  From 
Table 2, it can be observed that the proposed method is superior 
to other methods. Among the individual noise augmentation 
method, signal stretching and Gaussian noise are best. This 
indicates the weighted combination of Gaussian noise and 
signal stretching is a promising method in real-world industrial 
application.   

 
 

Health condition 
of bearing 

Raw 
data 

Raw 
testing 
data  

Raw 
training 
data  

Augmented 
training 
data 

Combined 
training 
data(5-
fold) 

normal 3027 1514 
 

1514   

Outer race fault 586 294 
 

294 1176 1470 

Inner race fault 438 219 219 876 1095 
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where ， and  are the results of the three samples 

interpolation of the original time-series data . Then, the 
stretched data  is shrunk to reduce its size to the size of the 
original actual sample length n. The newly generated stretch 
data  can be obtained by selecting n column data from a 
new starting point t in  and . 

                                       (5) 

 
The new sample  and the original data  are 

concatenated in the vertical direction to obtain the enhanced 
data after stretching. 

 

                                                                   (6) 

 
According to the literature [30], when the stretch factor  is 

set to 0.1, the original time-series data can be stretched while 
maintaining the label, so this paper sets the stretch factor  to 
0.1. Finally, the parameters  are used to weight the 
data enhanced  and  by Gaussian noise and signal 
stretching as follows and concatenated with the original data 

 in the vertical direction to obtain the final enhanced data . 
 

                                                         (7) 

 
According to formula (7), the data volume of the enhanced 

dataset  is 5 times of the original data volume. The parameter 
adjusts both the original time-series data in and original 

time-series data in  . In addition, the ratio of the added 
noise level and the stretching amplitude is further controlled by 
parameter . Therefore, the enhanced randomness of the time-
series signal expressed by the weight parameter can effectively 
reflect the non-stationarity of the fault motor vibration signal 
under different working conditions. 

3.2. Data Preparation 

The data preparation step of the proposed method includes 
data segmentation and feature extraction from collected data. A 
single data point of the motor vibration signal cannot provide 
information on whether the motor is faulty because it only 
represents the instantaneous state of the bearing, like the 
snapshot image. In contrast, motor vibration consists of 

continuous vibration distributed over a slice of time, like an 
image or video sequence. Therefore, the data stream containing 
a single data point needs to be divided into data windows, that 
is, continuous time-series points. 

 
 This paper considers a 0.1 second fixed length data window 

with 50% overlap between adjacent windows. After the time-
series data is divided into windows, a set of time-domain 
statistical features are extracted from each window. These 
features represent the signal pattern in the corresponding 
window and are finally used as the input of classification 
algorithm. In this paper, nine features are extracted from each 
window, which are maximum, minimum, mean value, standard 
deviation, root mean square value, skewness, kurtosis, crest 
factor, and form factor. These features are used as input to train 
the classification model. 

3.3. Training and evaluation of classification 

Since the supervised learning model can provide better fault 
classification performance, FNN and SVM are considered for 
fault diagnosis with augmented data. The FNN has 1 hidden 
layer with a total of 1000 neurons. The dropout is set to 0.5, 
and the softmax classifier is used. SVM uses radial basis kernel 
function and uses grid search to find the optimal parameters C 
and gmma. Their values are 50 and 0.05, respectively. After 
each model is trained, it is evaluated with test data. The test 
data is obtained from the original dataset before data 
augmentation. The performance of the model is evaluated by 
accuracy, precision, recall and F1-score. A confusion matrix 
is also used to analyze the effect of the model on each fault 
category. 

4. Case study and results 

In this case, three vibration sensors are mounted on a three-
phase asynchronous normal motor with a power of 7.5KW, a 
rated voltage of 380V, a speed of 2900r/min, 0 load, and a 
connection method of Δ. The vibration signal of the motor is 
collected in three channels, that is, the axial, horizontal, and the 
vertical of the drive end of the motor. The actual sampling 
frequency is 10HKz. The acquisition time is about 104 seconds. 
Each channel collects 1,048,576 collection points. Taking 1024 
collection points as a sample fragment. So, 1024 normal 
samples can be obtained for each channel, and a total of 3072 
normal samples can be obtained. Then, replace the normal 
motor with the same type but with faulty bearings (inner race 
fault and outer race fault) for data collection. In order to 
simulate the case of a small number of faulty samples, the 
collection time is about 35 seconds, and the three channels are 
used to obtain the data. The number of fault samples is 1024. 
The normal sample data and the fault sample data are mixed to 
obtain the original dataset, which is a matrix with 4096 rows 
and 1024 columns.  

 
The original data is divided into training set and test set at a 

ratio of 1:1. The original training data is augmented using the 
proposed method, and 5-fold enhanced training data is 
generated (2-fold Gaussian enhancement, 2-fold stretching 
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enhancement, 1-fold the original data). Table 1 summarizes the 
number of samples in the original dataset and enhanced dataset 
in the case. It can be seen from Table 1 that when the data 
enhancement method proposed in this paper is adopted, the 
sample data of each category in the enhanced dataset has 
reached a balanced state. For example, the number of outer race 
faults in the data collection stage is 586 samples, 294 are used 
for training, 294 are used for testing, and a total of 1470 training 
samples are obtained after 4-fold enhancement. Next, use 5-
fold training data to train the FNN and SVM. 
Table 1. Number of samples of raw and augmented data. 

 
 We first observe the changes of the accuracy of the fault 

diagnosis model after the FNN and SVM are trained with the 
combined training data by changing different weight 
parameters . Fig. 2 shows the changes of the diagnosis 
accuracy of the two fault diagnosis models with different 
weights. The fault diagnosis accuracy of SVM and FNN 
respectively reached 93.45% and 98.73% on the enhanced data 
when  is equal to 0.007. 

 
Next, to verify the effect of data augmentation proposed in 

this paper, we compare the accuracy, precision, recall and F1-
score of the model on the raw training data and combined 
training data corresponding to the optimal , as shown in Fig.3 
and Fig. 4 From the two figures, we can see that compared with 
only using the raw training data, the combined training data can 
significantly improve the performance of the fault diagnosis 
model. For example, the accuracy, precision, recall and F1-
score of SVM range from 67.54% to 93.45%, 78.56% to 
91.92%, 65.43% to 92.32% and 71.39% to 92.10% respectively. 
From the performance coordinates, we can also observe that the 
improvement of SVM is higher than that of FNN. This shows 
that the data augmentation method proposed in this paper has 
nothing to do with the complexity of the model. 

Fig. 2. Accuracy of model on augmentation training data with different 

Fig. 3. Performance measures of SVM 

Fig. 4. Performance measures of FNN 
Fig. 5 and Fig. 6 are the confusion matrix of the SVM model 

on the test set. The confusion matrix explores the classification 
of the trained models in different categories on the test set 
before and after data augmentation. As can be seen from Fig. 5, 
the classification result error rate of the model trained on the 
original training data is high on the test set. In addition, SVM 
can easily misclassify the inner race fault as a health condition. 
On the other hand, the errors in the test set of the model trained 
on the combined training data are significantly reduced, and the 
three different health conditions of the bearing can be identified 
with 94.5%, 93.6% and 92.8% respectively. 

Fig. 5. SVM with no augmentation  

Fig. 6. SVM with augmentation 
 
Finally, we compared the proposed methods with the 

Gaussian noise, masking noise, signal translation, amplitude 
offset and signal stretching used in literature [29] based on 
FNN. The experimental results are shown in Table 2.  From 
Table 2, it can be observed that the proposed method is superior 
to other methods. Among the individual noise augmentation 
method, signal stretching and Gaussian noise are best. This 
indicates the weighted combination of Gaussian noise and 
signal stretching is a promising method in real-world industrial 
application.   
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where ， and  are the results of the three samples 

interpolation of the original time-series data . Then, the 
stretched data  is shrunk to reduce its size to the size of the 
original actual sample length n. The newly generated stretch 
data  can be obtained by selecting n column data from a 
new starting point t in  and . 

                                       (5) 

 
The new sample  and the original data  are 

concatenated in the vertical direction to obtain the enhanced 
data after stretching. 
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According to the literature [30], when the stretch factor  is 

set to 0.1, the original time-series data can be stretched while 
maintaining the label, so this paper sets the stretch factor  to 
0.1. Finally, the parameters  are used to weight the 
data enhanced  and  by Gaussian noise and signal 
stretching as follows and concatenated with the original data 

 in the vertical direction to obtain the final enhanced data . 
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According to formula (7), the data volume of the enhanced 

dataset  is 5 times of the original data volume. The parameter 
adjusts both the original time-series data in and original 

time-series data in  . In addition, the ratio of the added 
noise level and the stretching amplitude is further controlled by 
parameter . Therefore, the enhanced randomness of the time-
series signal expressed by the weight parameter can effectively 
reflect the non-stationarity of the fault motor vibration signal 
under different working conditions. 

3.2. Data Preparation 

The data preparation step of the proposed method includes 
data segmentation and feature extraction from collected data. A 
single data point of the motor vibration signal cannot provide 
information on whether the motor is faulty because it only 
represents the instantaneous state of the bearing, like the 
snapshot image. In contrast, motor vibration consists of 

continuous vibration distributed over a slice of time, like an 
image or video sequence. Therefore, the data stream containing 
a single data point needs to be divided into data windows, that 
is, continuous time-series points. 

 
 This paper considers a 0.1 second fixed length data window 

with 50% overlap between adjacent windows. After the time-
series data is divided into windows, a set of time-domain 
statistical features are extracted from each window. These 
features represent the signal pattern in the corresponding 
window and are finally used as the input of classification 
algorithm. In this paper, nine features are extracted from each 
window, which are maximum, minimum, mean value, standard 
deviation, root mean square value, skewness, kurtosis, crest 
factor, and form factor. These features are used as input to train 
the classification model. 

3.3. Training and evaluation of classification 

Since the supervised learning model can provide better fault 
classification performance, FNN and SVM are considered for 
fault diagnosis with augmented data. The FNN has 1 hidden 
layer with a total of 1000 neurons. The dropout is set to 0.5, 
and the softmax classifier is used. SVM uses radial basis kernel 
function and uses grid search to find the optimal parameters C 
and gmma. Their values are 50 and 0.05, respectively. After 
each model is trained, it is evaluated with test data. The test 
data is obtained from the original dataset before data 
augmentation. The performance of the model is evaluated by 
accuracy, precision, recall and F1-score. A confusion matrix 
is also used to analyze the effect of the model on each fault 
category. 

4. Case study and results 

In this case, three vibration sensors are mounted on a three-
phase asynchronous normal motor with a power of 7.5KW, a 
rated voltage of 380V, a speed of 2900r/min, 0 load, and a 
connection method of Δ. The vibration signal of the motor is 
collected in three channels, that is, the axial, horizontal, and the 
vertical of the drive end of the motor. The actual sampling 
frequency is 10HKz. The acquisition time is about 104 seconds. 
Each channel collects 1,048,576 collection points. Taking 1024 
collection points as a sample fragment. So, 1024 normal 
samples can be obtained for each channel, and a total of 3072 
normal samples can be obtained. Then, replace the normal 
motor with the same type but with faulty bearings (inner race 
fault and outer race fault) for data collection. In order to 
simulate the case of a small number of faulty samples, the 
collection time is about 35 seconds, and the three channels are 
used to obtain the data. The number of fault samples is 1024. 
The normal sample data and the fault sample data are mixed to 
obtain the original dataset, which is a matrix with 4096 rows 
and 1024 columns.  

 
The original data is divided into training set and test set at a 

ratio of 1:1. The original training data is augmented using the 
proposed method, and 5-fold enhanced training data is 
generated (2-fold Gaussian enhancement, 2-fold stretching 
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Table 2. Performance comparison of different augmentation methods 

5. Conclusion and future work 

A model-independent time-series data augmentation 
method is proposed to expand the fault samples in the training 
set to address the problem of fault data in actual industrial 
scenarios. The specific implementation technology adopts the 
weight combination of Gaussian noise and signal stretching. 
The proposed method is verified on a bearing dataset collected 
from our developed intelligent motor test platform. The 
experimental results show that the performance of fault 
diagnosis model is significantly improved after using the 
proposed augmentation method. This shows that the proposed 
data augmentation method has a certain potential to solve the 
problem of lack of fault samples in industrial application 
scenarios. Our future research will further explore the effect of 
fault diagnosis model based on deep learning on proposed data 
augmentation method and the application of other time series 
data augmentation technologies in the field of fault diagnosis. 
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