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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Fluid Jet Polishing (FJP) is an Ultra-Precision Machining (UPM) technology for super-fine finishing of small and complex components. FJP has 
distinctive advantages compared to other polishing methods, including high polishing accuracy, no heat generation, no tool wear, applicability 
for various types of materials, and suitability for various freeform surfaces. Nevertheless, previous research work on FJP focuses mainly on 
theoretical modelling and simulation of the polishing mechanisms with experimental validations, a large amount of process uncertainties 
happened during the polishing process have been overlooked. These uncertainties could cause variations of the surface quality of workpieces in 
terms of material removal rate and surface roughness. Recent advancements of Digital Twin (DT) technology have shown great potential in 
addressing this issue. However, high-fidelity DT for FJP has not been investigated to date. In this paper, we propose a novel high-fidelity DT 
approach for the optimisation of FJP process. First, related research on FJP and DT is reviewed to identify the limitations of the existing 
approaches. Second, we propose a conceptual framework of the high-fidelity DT for FJP process. Third, the key enabling technologies and major 
challenges for the development of the high-fidelity DT are identified and discussed. Finally, a conceptual application scenario of the in-process 
control optimisation for FJP of freeform surfaces is presented. This work attempts to integrate smart manufacturing technologies into FJP process 
and will contribute to the theoretical development of high-fidelity DT for various UPM technologies. 
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1. Introduction 

Fluid Jet Polishing (FJP) is an Ultra-Precision Machining 
(UPM) technology for super-fine finishing of small and 
complex components that was first introduced in 1998 [1]. In 
the FJP process, a mixed slurry of water and abrasive particles 
is pressurised and delivered through a nozzle of small outlet 
diameter as a slurry jet that impinges the surface of the 
workpiece to generate a small polishing area [2]. As a non-
contact processing technology, FJP has distinctive advantages 
compared to other polishing methods, including high polishing 
accuracy, no temperature rise of the workpiece, no tool wear, 
applicability for various types of materials, and suitability for 

various kinds of freeform surfaces.  
Despite these advantages, FJP still has some limitations due 

to its relatively short development history. One of the major 
limitations of FJP is the inaccurate and inefficient process 
optimisation. Previous research work on FJP process 
optimisation mostly applies the traditional approach that 
combines theoretical modelling and simulation of the polishing 
mechanisms with experimental validations [3–5]. A large 
amount of process uncertainties happened during the polishing 
process (such as unexpected variations in slurry concentration 
and fluid pressure) have been overlooked. These uncertainties 
could cause variations of the surface quality of workpieces in 
terms of material removal rate and surface roughness. In 
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1. Introduction 

Fluid Jet Polishing (FJP) is an Ultra-Precision Machining 
(UPM) technology for super-fine finishing of small and 
complex components that was first introduced in 1998 [1]. In 
the FJP process, a mixed slurry of water and abrasive particles 
is pressurised and delivered through a nozzle of small outlet 
diameter as a slurry jet that impinges the surface of the 
workpiece to generate a small polishing area [2]. As a non-
contact processing technology, FJP has distinctive advantages 
compared to other polishing methods, including high polishing 
accuracy, no temperature rise of the workpiece, no tool wear, 
applicability for various types of materials, and suitability for 

various kinds of freeform surfaces.  
Despite these advantages, FJP still has some limitations due 

to its relatively short development history. One of the major 
limitations of FJP is the inaccurate and inefficient process 
optimisation. Previous research work on FJP process 
optimisation mostly applies the traditional approach that 
combines theoretical modelling and simulation of the polishing 
mechanisms with experimental validations [3–5]. A large 
amount of process uncertainties happened during the polishing 
process (such as unexpected variations in slurry concentration 
and fluid pressure) have been overlooked. These uncertainties 
could cause variations of the surface quality of workpieces in 
terms of material removal rate and surface roughness. In 
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addition, most FJP systems are controlled in an open-loop 
manner without considering feedback from the polishing 
process, and hence cannot adapt to those process uncertainties. 

Fortunately, recent advancements in smart manufacturing, 
especially the Digital Twin (DT) technology, have shown a 
great potential in addressing these issues. DT represents “an 
integrated multi-physics, multi-scale, probabilistic simulation 
of a complex product that uses the best available physical 
models, sensor updates, etc., to mirror the life of its 
corresponding twin” [6]. In the domain of manufacturing, DT 
has been widely investigated and applied in different areas such 
as product development and lifecycle management [7], CNC 
machine tools and machining processes [8], manufacturing 
systems [9], and prognostics and health management [10]. DT 
has demonstrated a great potential for realising accurate and 
efficient optimisation, real-time monitoring, and closed-loop 
control of various manufacturing processes. Nevertheless, in 
the field of UPM, there has been very little work on the 
application of DT technology to date. For FJP process, the DT 
technology could be potentially utilised to improve the 
accuracy and efficiency of process simulation, optimisation, 
and control by integrating various real-time sensor feedback 
into the simulation models and data analysis processes. 
Nevertheless, the complex multi-physics and multi-scale 
polishing mechanisms of FJP also raise great challenges for 
developing its DT applications. 

In this context, this paper proposes a novel high-fidelity DT 
approach for the optimisation of FJP process, aiming to provide 
a theoretical foundation for integrating smart manufacturing 
technologies into FJP system. The rest of this paper is 
organised as follows. Section 2 reviews related research work 
on FJP and DT and identifies the research gaps. Section 3 
introduces a novel conceptual framework of the high-fidelity 
DT for FJP process. The key enabling technologies and major 
challenges are identified and discussed in Section 4. Section 5 
presents a conceptual application scenarios of the high-fidelity 
DT. Finally, Section 6 concludes the paper. 

2. Literature review 

2.1. Process optimisation and control of FJP 

Research on the optimisation of FJP process using the 
traditional approach that combines theoretical modelling and 
simulation with experimental validations has been extensively 
studied in the past two decades. In general, the workflow of the 
traditional approach for FJP process optimisation can be briefly 
summarised as shown in Fig. 1. 

Fig. 1. Traditional approach for FJP process optimisation 

Computational Fluid Dynamics (CFD) is the most widely 
used modelling and simulation method for FJP process [11,12]. 
To investigate the material removal mechanism of FJP, 
Beaucamp et al. [12] proposed a CFD model based on 
multiphase turbulent flow computational methods that could 
dynamically simulate the interface between fluid and air. The 
model was used to optimize surface texture performance of FJP 
process. Cao and Cheung [13] developed an integrated CFD-
based erosion model to predict the material removal 
characteristics in FJP. Their experimental results showed a 
good agreement between the simulated and actual polishing 
quality, although random deviations still existed. Based on 
CFD, Wang et al. [14] further developed a universal three-
dimensional numerical model to simulate FJP process in both 
vertical and oblique impinging modes. Corresponding 
experiments demonstrated high robustness of the model under 
various conditions. 

Currently, closed-loop control of FJP process has not been 
widely studied. Beaucamp et al. [12] developed a closed-loop 
FJP process optimisation method with a focus on the slurry 
delivery system. A pressure sensor and a bypass were installed 
in the slurry delivery system to monitor and control the inlet 
pressure, such that the fluid pressure can be stabilised during 
the polishing process. However, feedback from the polishing 
process was not considered in this system. 

Previous research on the optimisation and control of FJP 
process indicates that the traditional approach lacks accuracy 
and efficiency since it overlooked the uncertainties happened 
during the polishing process which could result in variations of 
polishing quality. A high-fidelity DT approach that takes 
advantages of smart manufacturing technologies needs to be 
developed for the optimisation and control of FJP process. 

2.2. Digital Twin modelling methods 

In the domain of smart manufacturing, research on DT has 
proliferated in the past few years [15–17]. Recently, multi-
dimensional DT that integrates both model-based simulation 
and data-driven methods has attracted much attention. To 
achieve prognostics and health management of complex 
equipment, Tao et al. [10] proposed a five-dimension DT 
modelling method integrating physical entity, virtual model, 
data, services, and connections of the equipment. A case study 
of fault cause prediction for a wind turbine was presented to 
validate the modelling method. Wang et al. [18] introduced a 
DT reference model for fault diagnosis of rotating machinery. 
The DT model integrates the design parameters, dynamics 
simulation model, finite element analysis model, and vibration 
signals during operation to mirror the actual status of the 
physical system and perform quantitative fault diagnosis. 
Experimental results showed that DT-based approach 
outperforms traditional fault diagnosis methods. 

One of the distinct advantages of DT is its ability to enable 
the optimisation, real-time monitoring, as well as closed-loop 
control of various manufacturing processes [19,20]. Inspired by 
biomimicry principles, Liu et al. [21] proposed a DT modelling 
method that can adaptively construct a multi-physics DT for 
machining process. The DT comprises several sub-models such 
as geometry model, behaviour model, and process model that 
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interact with each other to accurately represent the physical 
machining process. To achieve optimised machining process, 
Botkina et al. [22] developed a standard-based DT modelling 
method for cutting tools that allows the cutting tool DT to be 
continuously updated during machining, and hence enabling 
precise process simulation, control, and analysis. 

Although various DT applications for the optimisation and 
control of machining process have been developed, application 
of DT for UPM systems have not been presented to date. How 
to develop a high-fidelity DT that can accurately represent and 
predict the FJP process remains a great challenge. 

3. High-fidelity Digital Twin for FJP process 

FJP is an UPM technology that involves complex multi-
physics and multi-scale interactions between water, abrasive 
particles, and the surface of the workpiece. To accurately 
simulate the FJP process and predict the polishing quality, a 
high-fidelity DT that deeply integrates both model-based 
simulations and data-driven methods needs to be developed. 
Furthermore, to systematically and comprehensively represent 
the FJP process, all the part design data, process parameters, in-
process feedback from sensors, experimental knowledge, and 
data analytics methods should also be included in the high-
fidelity DT. Based on these requirements and previous work on 
DT modelling methods for machining processes, we propose a 
conceptual framework of high-fidelity DT for FJP process as 
depicted in Fig. 2. The main functions of each model are 
explained in this section. 

Fig. 2. Conceptual framework of the high-fidelity DT for FJP process 

The conceptual framework represents a multidimensional 
DT for FJP process that contains four main models, i.e., 1) data 
model, 2) knowledge model, 3) data analytics model, and 4) 
service model. Identifying the specific items contained in each 
model is a prerequisite as well as a critical task for modelling 
the high-fidelity DT. 

The data model represents all the data and parameters in FJP 
process that influence the polishing quality and efficiency and 
can be used for simulations and experiments. It contains mainly 

three types of data, including design data (raw material 
properties, part shape, required accuracy, etc.), process 
parameters (fluid pressure, tool path, nozzle size, stand-off 
distance, impinging angle, slurry property, etc.), and in-process 
feedback data (polishing force signals, vibration signals, etc.). 
Note that in-process sensor feedback is essential since they 
reflect the uncertainties happened during the FJP process which 
need to be analysed with advanced data analytics methods. 

Due to the high complexity of the FJP process, a pure data-
driven approach as used in many other DT applications could 
not achieve accurate process simulation and quality prediction. 
To thoroughly analyse the complex relationships among 
various process parameters, in-process sensor feedback, and 
final polishing quality, a vast amount of domain knowledge 
must also be included in the DT. The proposed knowledge 
model contains mainly three types of knowledge, i.e., 1) 
physics-based simulations, 2) mathematic models, and 3) 
experimental knowledge. Physics-based simulations represent 
all the multi-physics and multi-scale simulation models 
involved in the FJP process simulation, including CFD models, 
erosion models, surface generation model, etc. These models 
are usually developed with specialised software such as 
ANSYS Fluent. Mathematical models include various 
mathematical functions related to the FJP process such as 
workpiece surface curvature distribution, jet impinging angle 
distribution, fluid pressure distribution, etc. Experimental 
knowledge refers to the knowledge accumulated through 
experiments such as the design of experiments and the Tool 
Influence Function (TIF), Material Removal Rate (MRR), 
workpiece surface characteristics, etc. which are usually 
measured after the FJP process. The knowledge model is 
continuously accumulated and updated with more and more 
experiments conducted to record various polishing conditions 
and the up-to-date machine status in the high-fidelity DT. 

The data analytics model represents different types of 
advanced data analytics methods such as signal processing 
algorithms, feature extraction algorithms, and machine 
learning models. These methods are specifically developed for 
analysing the complex relationships among various process 
parameters, in-process sensor feedback, and final polishing 
quality. The data analytics model is the key to integrate the 
domain knowledge with the in-process sensor feedback which 
distinguishes the high-fidelity DT approach from the traditional 
modelling and simulation-based approach. 

The service model represents various types of applications 
that can be provided by the high-fidelity DT such as 
optimisation of the process parameters, simulation models, tool 
path, process control, and defect detection and prediction tasks. 
The service model defines all the required data and parameters, 
knowledge models, and data analytics methods for each 
application and should allow end users to flexibly customise 
the applications through user-friendly software interfaces. 

Overall, the high-fidelity DT deeply integrates these four 
models in a hybrid data-knowledge-driven approach and 
interacts with the physical FJP system to realise higher 
polishing accuracy and efficiency. Note that the proposed 
conceptual framework represents a generic and high-level 
approach. Specific application scenarios may only require 
some specific models and functions in the high-fidelity DT. 
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simulation model, finite element analysis model, and vibration 
signals during operation to mirror the actual status of the 
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To thoroughly analyse the complex relationships among 
various process parameters, in-process sensor feedback, and 
final polishing quality, a vast amount of domain knowledge 
must also be included in the DT. The proposed knowledge 
model contains mainly three types of knowledge, i.e., 1) 
physics-based simulations, 2) mathematic models, and 3) 
experimental knowledge. Physics-based simulations represent 
all the multi-physics and multi-scale simulation models 
involved in the FJP process simulation, including CFD models, 
erosion models, surface generation model, etc. These models 
are usually developed with specialised software such as 
ANSYS Fluent. Mathematical models include various 
mathematical functions related to the FJP process such as 
workpiece surface curvature distribution, jet impinging angle 
distribution, fluid pressure distribution, etc. Experimental 
knowledge refers to the knowledge accumulated through 
experiments such as the design of experiments and the Tool 
Influence Function (TIF), Material Removal Rate (MRR), 
workpiece surface characteristics, etc. which are usually 
measured after the FJP process. The knowledge model is 
continuously accumulated and updated with more and more 
experiments conducted to record various polishing conditions 
and the up-to-date machine status in the high-fidelity DT. 

The data analytics model represents different types of 
advanced data analytics methods such as signal processing 
algorithms, feature extraction algorithms, and machine 
learning models. These methods are specifically developed for 
analysing the complex relationships among various process 
parameters, in-process sensor feedback, and final polishing 
quality. The data analytics model is the key to integrate the 
domain knowledge with the in-process sensor feedback which 
distinguishes the high-fidelity DT approach from the traditional 
modelling and simulation-based approach. 

The service model represents various types of applications 
that can be provided by the high-fidelity DT such as 
optimisation of the process parameters, simulation models, tool 
path, process control, and defect detection and prediction tasks. 
The service model defines all the required data and parameters, 
knowledge models, and data analytics methods for each 
application and should allow end users to flexibly customise 
the applications through user-friendly software interfaces. 

Overall, the high-fidelity DT deeply integrates these four 
models in a hybrid data-knowledge-driven approach and 
interacts with the physical FJP system to realise higher 
polishing accuracy and efficiency. Note that the proposed 
conceptual framework represents a generic and high-level 
approach. Specific application scenarios may only require 
some specific models and functions in the high-fidelity DT. 
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4. key enabling technologies and major challenges 

Development of the high-fidelity DT is naturally a complex 
multi-disciplinary task that involves a lot of concepts, methods, 
standards, and techniques from different research areas. This 
section discusses the key enabling technologies and related 
major challenges that need to be addressed in future research. 
Note that the discussions in this section mainly focus on the 
smart manufacturing technologies rather than the traditional 
modelling and simulation methods of FJP process which have 
been extensively studied. 

Development of the data model is not a challenging task, but 
it requires a comprehensive understanding of all the data 
involved in the FJP process. The data need to be logically 
categorised into a hierarchical structure corresponding to 
different aspects of the FJP process. To realise interoperable 
and efficient data storage, communication, and sharing, 
standardised data modelling methods such as MTConnect and 
OPC UA [23] can be applied. Furthermore, since the in-process 
sensor signals also need to be included in the data model, time-
serious databases such as InfluxDB [24] can be used to enable 
efficient and cloud-based data management. 

Knowledge modelling of the FJP process is a critical and 
challenging task. Firstly, a comprehensive and systematic 
analysis of the existing knowledge on the modelling and 
simulation methods and the experimental results of FJP process 
need to be conducted to establish a logical structure for the 
knowledge model. Identifying the complex relationships 
among the complicated simulation models and experimental 
results represents a great challenge. Secondly, new knowledge 
about the influence of in-process sensor feedback on the 
polishing quality and efficiency of FJP process also needs to be 
included in the knowledge model. Different types of sensors 
such as dynamometers, accelerometers, acoustic emission 
sensors, etc. need to be implemented and tested to investigate 
the level of influence caused by different factors (polishing 
forces, vibrations, acoustic emissions, etc.). This requires 
extensive FJP experiments as well as various types of advanced 
data analytics methods which need a vast amount of costs and 
manpower. Furthermore, efficient knowledge accumulation, 
update, reasoning, reuse, and sharing are critical requirements 
that ensure the high fidelity of the DT. To achieve these goals, 
recent advancements in knowledge engineering such as 
ontology and knowledge graph [25] need to be deeply studied 
and practically applied. Developing an ontology or knowledge 
graph for FJP process also represents a great challenge since 
little work has been done in this area. 

The data analytics model plays a vital role in the high-
fidelity DT. Although various advanced data analytics methods 
have been developed to analyse machining processes such as 
milling and turning [26], the ultra-precision requirement of FJP 
process raises some critical challenges that have not been 
considered in previous studies. First, since the slurry jet 
impacted on the workpiece is a mixed slurry of water and 
abrasive particles, the resulting sensor signals such as cutting 
forces and vibrations may contain a considerable amount of 
noise. Specialised signal processing algorithms for data 
cleansing and denoising need to be developed to extract more 
useful information from the raw sensor signals. Another 

feasible solution is to develop deep learning models (e.g. deep 
belief networks) that can perform automatic noise reduction 
functions [27]. Second, machine learning and deep learning 
methods usually require a large amount of balanced data for 
model training. Apart from the time- and cost-consuming 
experiments, it is also a challenge to collect sufficient defect 
data during the FJP process. To address the data imbalance 
issue, not only should the experiments be carefully designed to 
include enough defective conditions, but the advanced data 
augmentation techniques such as additional Gaussian noise and 
amplitude shifting [28] should also be applied. 

The service model allows the required data, knowledge, and 
data analytics methods to be combined as integrated solutions. 
Modularised service templates for typical optimisation and 
prediction tasks should be designed to enable customisable 
options for users who have different requirements (higher 
accuracy, less polishing time, less cost, etc.). Cloud-based data 
communication architecture should also be applied to allow 
distributed decision-making tasks and efficient service 
updating, reuse, and sharing. 

5. A conceptual application scenario  

Based on the proposed conceptual framework and the 
discussed key enabling technologies, this section presents a 
conceptual application scenario for the high-fidelity DT, i.e., 
in-process control optimisation for FJP of freeform surfaces. 
The overall system architecture of the conceptual application 
scenario is demonstrated in Fig. 3. 

Fig. 3. High-fidelity DT-enabled in-process control optimisation for FJP 

In this application, a dynamometer is implemented at the 
bottom of the workpiece to collect in-process sensor signals 
that reflect the polishing forces. This is the key difference 
between the proposed high-fidelity DT approach and 
traditional simulation-based approach. Overall, the application 
can be divided into two phases: 1) offline optimisation of 
simulation models, and 2) in-process control optimisation. 

5.1. Offline optimisation of simulation models 

Firstly, CFD-based FJP process simulations are conducted 
using the Ansys Fluent software to calculate the theoretical 
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polishing forces resulted from the FJP process under different 
combinations of fluid pressure, surface curvature, and 
impinging angle. Geometrical modelling should be performed 
first to model the geometrical structure of the FJP process. The 
Eulerian-Lagrangian approach can be applied to simulate the 
slurry jet as a multi-phase flow comprising the continuous 
phase (liquid water) and the discrete phase (abrasive particles). 
Hydrodynamic modelling with consideration of the spatial 
distribution of abrasive particles also needs to be conducted to 
simulate the impact of the slurry jet on the target surface. 
Combining the hydrodynamic model with the calculated 
kinetic energy of the abrasive particles, the polishing force 
generated by the slurry jet can then be simulated. In addition, 
the Oka’s erosion model can be applied to simulate the material 
removal mechanism, and hence the theoretical MRR and TIF 
can be calculated. Finally, results from the CFD-based 
simulations can be generalised and expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆  =  𝑓𝑓(𝐹𝐹𝑆𝑆, 𝑝𝑝, 𝛼𝛼, 𝑘𝑘)         (1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆  is the simulated MRR distribution, 𝐹𝐹𝑆𝑆  is the 
simulated polishing force distribution, 𝑝𝑝 is the fluid pressure 
distribution, 𝛼𝛼  is the impinging angle distribution, 𝑘𝑘  is the 
surface curvature distribution, and 𝑓𝑓  is the function 
representing the relationship among those parameters. 

Secondly, experiments on FJP of freeform surfaces with the 
same parameter settings used in the simulation models need to 
be conducted using the FJP system. Real-time polishing force 
signals during the FJP process must be collected. Different 
signal processing and feature extraction algorithms (fast 
Fourier transform, wavelet packet transform, etc.) can be 
applied to analyse the force signals and calculate the actual 
polishing force distribution 𝐹𝐹𝐴𝐴. The actual MRR distribution of 
the machined workpiece, 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 , will also be calculated by 
measuring the surface form error using a Coordinate Measuring 
Machine. Then advanced data analytics models such as deep 
belief networks can be trained and developed to analyse the 
relationship among 𝐹𝐹𝑆𝑆, 𝐹𝐹𝐴𝐴, 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆, and 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴, to improve the 
accuracy of the simulation models and eventually establish a 
high-accuracy prediction model that can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇  =  𝑔𝑔(𝐹𝐹𝑇𝑇, 𝑝𝑝, 𝛼𝛼, 𝑘𝑘)         (2) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 is the theoretical MRR distribution, 𝐹𝐹𝑇𝑇  is the 
theoretical polishing force distribution, and 𝑔𝑔 is the function 
representing the relationship among those parameters.  

In this way, a high-fidelity simulation model considering the 
actual in-process uncertainties reflected by polishing forces can 
be developed for the FJP process. The simulation model will 
be eventually integrated into the knowledge model of the DT. 

5.2. In-process control optimisation 

Upon the development of the high-fidelity simulation model, 
in-process fluid pressure control optimisation for FJP of 
freeform surfaces can be further achieved. As mentioned 
previously, a large amount of unexpected process uncertainties 
happened during the FJP process could not be modelled in the 
simulation models due to certain assumptions and constraints 
needed for the simulation process. However, the variations in 
polishing quality caused by those uncertainties can be reflected 

by the deviation of the detected in-process polishing forces 
compared with the theoretical polishing forces. Since the 
polishing force is affected by the fluid pressure which can be 
controlled automatically, it is possible to compensate for the 
deviation of polishing force during the FJP process by 
optimising the control of fluid pressure in real-time.  

Additional experiments must be conducted to investigate the 
relationship between fluid pressure and polishing force. Based 
on the experimental data, deep learning methods can be used to 
develop a real-time fluid pressure control optimisation 
algorithm. A generalised expression of the optimisation 
algorithm can be expressed as: 

𝛥𝛥𝑃𝑃 =  𝜌𝜌(𝛥𝛥𝐹𝐹, 𝛼𝛼, 𝑘𝑘)      (3) 

where 𝛥𝛥𝑃𝑃 is the change of fluid pressure, 𝛥𝛥𝐹𝐹 =  𝐹𝐹𝐴𝐴 −  𝐹𝐹𝑇𝑇  is the 
difference between measured actual polishing force and 
theoretical polishing force, and 𝜌𝜌 is the function representing 
the relationship among those parameters. A simplified 
workflow of the real-time fluid pressure control optimisation 
for FJP of freeform surfaces is depicted in Fig. 4. 

Fig. 4. Simplified workflow of the in-process control optimisation for FJP 

The inlet fluid pressure of the FJP system is controlled by 
the fluid pressure control unit. Originally, the pressure is set as 
a constant value 𝑃𝑃. During the FJP process, the real-time actual 
polishing force 𝐹𝐹𝐴𝐴  is collected and measured by the 
dynamometer. Based on the developed polishing force 
simulation model, 𝛥𝛥𝐹𝐹 =  𝐹𝐹𝐴𝐴 −  𝐹𝐹𝑇𝑇  is calculated and fed to the 
optimisation algorithm. The optimisation algorithm calculates 
the change of pressure 𝛥𝛥𝑃𝑃  needed for the polishing force 
compensation and sends the control commands back to the 
fluid pressure control unit. Then the inlet fluid pressure is 
adjusted as 𝑃𝑃 + 𝛥𝛥𝑃𝑃  to keep the actual polishing force 
consistent with the theoretical polishing force.  

In this way, a real-time feedback control loop can be 
established to improve the accuracy and efficiency of the FJP 
process. From a systematic perspective, this application is 
achieved through the deep integration of various data, 
knowledge, and advanced data analytics methods provided by 
the high-fidelity DT and is eventually represented as one of the 
various types of services in the service model. 

6. Conclusions and future work 

As a promising UPM technology that enables super-fine 
finishing of small and complex components, FJP has attracted 
significant attention in both academia and industry. However, 
the traditional approach for the optimisation and control of FJP 
process suffer from low accuracy and efficiency due to the 
neglect of unexpected process uncertainties. 
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4. key enabling technologies and major challenges 

Development of the high-fidelity DT is naturally a complex 
multi-disciplinary task that involves a lot of concepts, methods, 
standards, and techniques from different research areas. This 
section discusses the key enabling technologies and related 
major challenges that need to be addressed in future research. 
Note that the discussions in this section mainly focus on the 
smart manufacturing technologies rather than the traditional 
modelling and simulation methods of FJP process which have 
been extensively studied. 

Development of the data model is not a challenging task, but 
it requires a comprehensive understanding of all the data 
involved in the FJP process. The data need to be logically 
categorised into a hierarchical structure corresponding to 
different aspects of the FJP process. To realise interoperable 
and efficient data storage, communication, and sharing, 
standardised data modelling methods such as MTConnect and 
OPC UA [23] can be applied. Furthermore, since the in-process 
sensor signals also need to be included in the data model, time-
serious databases such as InfluxDB [24] can be used to enable 
efficient and cloud-based data management. 

Knowledge modelling of the FJP process is a critical and 
challenging task. Firstly, a comprehensive and systematic 
analysis of the existing knowledge on the modelling and 
simulation methods and the experimental results of FJP process 
need to be conducted to establish a logical structure for the 
knowledge model. Identifying the complex relationships 
among the complicated simulation models and experimental 
results represents a great challenge. Secondly, new knowledge 
about the influence of in-process sensor feedback on the 
polishing quality and efficiency of FJP process also needs to be 
included in the knowledge model. Different types of sensors 
such as dynamometers, accelerometers, acoustic emission 
sensors, etc. need to be implemented and tested to investigate 
the level of influence caused by different factors (polishing 
forces, vibrations, acoustic emissions, etc.). This requires 
extensive FJP experiments as well as various types of advanced 
data analytics methods which need a vast amount of costs and 
manpower. Furthermore, efficient knowledge accumulation, 
update, reasoning, reuse, and sharing are critical requirements 
that ensure the high fidelity of the DT. To achieve these goals, 
recent advancements in knowledge engineering such as 
ontology and knowledge graph [25] need to be deeply studied 
and practically applied. Developing an ontology or knowledge 
graph for FJP process also represents a great challenge since 
little work has been done in this area. 

The data analytics model plays a vital role in the high-
fidelity DT. Although various advanced data analytics methods 
have been developed to analyse machining processes such as 
milling and turning [26], the ultra-precision requirement of FJP 
process raises some critical challenges that have not been 
considered in previous studies. First, since the slurry jet 
impacted on the workpiece is a mixed slurry of water and 
abrasive particles, the resulting sensor signals such as cutting 
forces and vibrations may contain a considerable amount of 
noise. Specialised signal processing algorithms for data 
cleansing and denoising need to be developed to extract more 
useful information from the raw sensor signals. Another 

feasible solution is to develop deep learning models (e.g. deep 
belief networks) that can perform automatic noise reduction 
functions [27]. Second, machine learning and deep learning 
methods usually require a large amount of balanced data for 
model training. Apart from the time- and cost-consuming 
experiments, it is also a challenge to collect sufficient defect 
data during the FJP process. To address the data imbalance 
issue, not only should the experiments be carefully designed to 
include enough defective conditions, but the advanced data 
augmentation techniques such as additional Gaussian noise and 
amplitude shifting [28] should also be applied. 

The service model allows the required data, knowledge, and 
data analytics methods to be combined as integrated solutions. 
Modularised service templates for typical optimisation and 
prediction tasks should be designed to enable customisable 
options for users who have different requirements (higher 
accuracy, less polishing time, less cost, etc.). Cloud-based data 
communication architecture should also be applied to allow 
distributed decision-making tasks and efficient service 
updating, reuse, and sharing. 

5. A conceptual application scenario  

Based on the proposed conceptual framework and the 
discussed key enabling technologies, this section presents a 
conceptual application scenario for the high-fidelity DT, i.e., 
in-process control optimisation for FJP of freeform surfaces. 
The overall system architecture of the conceptual application 
scenario is demonstrated in Fig. 3. 

Fig. 3. High-fidelity DT-enabled in-process control optimisation for FJP 

In this application, a dynamometer is implemented at the 
bottom of the workpiece to collect in-process sensor signals 
that reflect the polishing forces. This is the key difference 
between the proposed high-fidelity DT approach and 
traditional simulation-based approach. Overall, the application 
can be divided into two phases: 1) offline optimisation of 
simulation models, and 2) in-process control optimisation. 

5.1. Offline optimisation of simulation models 

Firstly, CFD-based FJP process simulations are conducted 
using the Ansys Fluent software to calculate the theoretical 
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polishing forces resulted from the FJP process under different 
combinations of fluid pressure, surface curvature, and 
impinging angle. Geometrical modelling should be performed 
first to model the geometrical structure of the FJP process. The 
Eulerian-Lagrangian approach can be applied to simulate the 
slurry jet as a multi-phase flow comprising the continuous 
phase (liquid water) and the discrete phase (abrasive particles). 
Hydrodynamic modelling with consideration of the spatial 
distribution of abrasive particles also needs to be conducted to 
simulate the impact of the slurry jet on the target surface. 
Combining the hydrodynamic model with the calculated 
kinetic energy of the abrasive particles, the polishing force 
generated by the slurry jet can then be simulated. In addition, 
the Oka’s erosion model can be applied to simulate the material 
removal mechanism, and hence the theoretical MRR and TIF 
can be calculated. Finally, results from the CFD-based 
simulations can be generalised and expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆  =  𝑓𝑓(𝐹𝐹𝑆𝑆, 𝑝𝑝, 𝛼𝛼, 𝑘𝑘)         (1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆  is the simulated MRR distribution, 𝐹𝐹𝑆𝑆  is the 
simulated polishing force distribution, 𝑝𝑝 is the fluid pressure 
distribution, 𝛼𝛼  is the impinging angle distribution, 𝑘𝑘  is the 
surface curvature distribution, and 𝑓𝑓  is the function 
representing the relationship among those parameters. 

Secondly, experiments on FJP of freeform surfaces with the 
same parameter settings used in the simulation models need to 
be conducted using the FJP system. Real-time polishing force 
signals during the FJP process must be collected. Different 
signal processing and feature extraction algorithms (fast 
Fourier transform, wavelet packet transform, etc.) can be 
applied to analyse the force signals and calculate the actual 
polishing force distribution 𝐹𝐹𝐴𝐴. The actual MRR distribution of 
the machined workpiece, 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 , will also be calculated by 
measuring the surface form error using a Coordinate Measuring 
Machine. Then advanced data analytics models such as deep 
belief networks can be trained and developed to analyse the 
relationship among 𝐹𝐹𝑆𝑆, 𝐹𝐹𝐴𝐴, 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆, and 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴, to improve the 
accuracy of the simulation models and eventually establish a 
high-accuracy prediction model that can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇  =  𝑔𝑔(𝐹𝐹𝑇𝑇, 𝑝𝑝, 𝛼𝛼, 𝑘𝑘)         (2) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 is the theoretical MRR distribution, 𝐹𝐹𝑇𝑇  is the 
theoretical polishing force distribution, and 𝑔𝑔 is the function 
representing the relationship among those parameters.  

In this way, a high-fidelity simulation model considering the 
actual in-process uncertainties reflected by polishing forces can 
be developed for the FJP process. The simulation model will 
be eventually integrated into the knowledge model of the DT. 

5.2. In-process control optimisation 

Upon the development of the high-fidelity simulation model, 
in-process fluid pressure control optimisation for FJP of 
freeform surfaces can be further achieved. As mentioned 
previously, a large amount of unexpected process uncertainties 
happened during the FJP process could not be modelled in the 
simulation models due to certain assumptions and constraints 
needed for the simulation process. However, the variations in 
polishing quality caused by those uncertainties can be reflected 

by the deviation of the detected in-process polishing forces 
compared with the theoretical polishing forces. Since the 
polishing force is affected by the fluid pressure which can be 
controlled automatically, it is possible to compensate for the 
deviation of polishing force during the FJP process by 
optimising the control of fluid pressure in real-time.  

Additional experiments must be conducted to investigate the 
relationship between fluid pressure and polishing force. Based 
on the experimental data, deep learning methods can be used to 
develop a real-time fluid pressure control optimisation 
algorithm. A generalised expression of the optimisation 
algorithm can be expressed as: 

𝛥𝛥𝑃𝑃 =  𝜌𝜌(𝛥𝛥𝐹𝐹, 𝛼𝛼, 𝑘𝑘)      (3) 

where 𝛥𝛥𝑃𝑃 is the change of fluid pressure, 𝛥𝛥𝐹𝐹 =  𝐹𝐹𝐴𝐴 −  𝐹𝐹𝑇𝑇  is the 
difference between measured actual polishing force and 
theoretical polishing force, and 𝜌𝜌 is the function representing 
the relationship among those parameters. A simplified 
workflow of the real-time fluid pressure control optimisation 
for FJP of freeform surfaces is depicted in Fig. 4. 

Fig. 4. Simplified workflow of the in-process control optimisation for FJP 

The inlet fluid pressure of the FJP system is controlled by 
the fluid pressure control unit. Originally, the pressure is set as 
a constant value 𝑃𝑃. During the FJP process, the real-time actual 
polishing force 𝐹𝐹𝐴𝐴  is collected and measured by the 
dynamometer. Based on the developed polishing force 
simulation model, 𝛥𝛥𝐹𝐹 = 𝐹𝐹𝐴𝐴 − 𝐹𝐹𝑇𝑇  is calculated and fed to the 
optimisation algorithm. The optimisation algorithm calculates 
the change of pressure 𝛥𝛥𝑃𝑃  needed for the polishing force 
compensation and sends the control commands back to the 
fluid pressure control unit. Then the inlet fluid pressure is 
adjusted as 𝑃𝑃 + 𝛥𝛥𝑃𝑃  to keep the actual polishing force 
consistent with the theoretical polishing force.  

In this way, a real-time feedback control loop can be 
established to improve the accuracy and efficiency of the FJP 
process. From a systematic perspective, this application is 
achieved through the deep integration of various data, 
knowledge, and advanced data analytics methods provided by 
the high-fidelity DT and is eventually represented as one of the 
various types of services in the service model. 

6. Conclusions and future work 

As a promising UPM technology that enables super-fine 
finishing of small and complex components, FJP has attracted 
significant attention in both academia and industry. However, 
the traditional approach for the optimisation and control of FJP 
process suffer from low accuracy and efficiency due to the 
neglect of unexpected process uncertainties. 
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To address this critical issue, this paper proposes a novel 
high-fidelity DT approach for the optimisation of FJP process. 
A conceptual framework of the high-fidelity DT is developed 
based on various emerging smart manufacturing technologies. 
The key enabling technologies and related challenges are 
identified and discussed in detail from the perspective of smart 
manufacturing. Furthermore, a conceptual application scenario 
of the high-fidelity DT which allows in-process control 
optimisation for FJP of freeform surfaces is presented. The 
specific data, simulation models, and data analytics methods 
for both offline optimisation of simulation models and in-
process control optimisation are explained. Overall, the high-
fidelity DT approach demonstrates a great potential in 
improving the polishing accuracy and efficient of FJP process. 

Our future work will focus on the practical development of 
the proposed high-fidelity DT. The high-fidelity simulation 
model that integrates in-process polishing forces with CFD-
based models will be investigated. Different types of deep 
learning methods will be developed to tackle the challenges 
caused by the noisy and imbalanced raw sensor signals. 
Extensive experiments will also be conducted to establish the 
experimental knowledge model and to validate feasibility of 
the proposed high-fidelity DT approach. 

As a preliminary conceptual study, this work provides a 
visionary approach to deeply integrating various emerging 
smart manufacturing technologies into the FJP process. It is 
expected that this work could contribute to the theoretical 
development of the high-fidelity DT for FJP process. 
Moreover, the authors believe that, with the rapid advancement 
of Industry 4.0, it is an inevitable trend for more and more UPM 
technologies to adopt the emerging concepts, methods, 
techniques, and applications of smart manufacturing. The 
merge between UPM and smart manufacturing technologies 
will bring enormous advantages, great opportunities, as well as 
significant challenges. 
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