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ARTICLE INFO ABSTRACT

Keywords: We discuss the problem of accountability when multiple parties cooperate towards an end result, such as multiple
Auditing companies in a supply chain or departments of a government service under different authorities. In cases where a
Distributed workflows fully trusted central point does not exist, it is difficult to obtain a trusted audit trail of a workflow when each
gloo Il?(‘:ﬁg;ihty individual participant is unaccountable to all others. We propose AudiWFlow, an auditing architecture that makes

participants accountable for their contributions in a distributed workflow. Our scheme provides confidentiality in
most cases, collusion detection, and availability of evidence after the workflow terminates. AudiWFlow is based
on verifiable secret sharing and real-time peer-to-peer verification of records; it further supports multiple levels of
assurance to meet a desired trade-off between the availability of evidence and the overhead resulting from the
auditing approach. We propose and evaluate two implementation approaches for AudiWFlow. The first one is
fully distributed except for a central auxiliary point that, nevertheless, needs only a low level of trust. The second
one is based on smart contracts running on a public blockchain, which is able to remove the need for any central

Smart contracts

point but requires integration with a blockchain.

1. Introduction

Distributed workflows with multiple organisations involved, coop-
erating towards a certain outcome (such as a supply chain), are now a
common way of work leveraging the potential of the Internet. This is
common in many domains, including governments, digital health, edu-
cation, engineering, supply chains, goods distribution, etc. Collaboration
is enabled by interoperable applications through which each organisa-
tion contributes to a workflow. A key enabler is trust: organisations need
to trust each other that each will deliver their part as contracted. When a
problem occurs, the workflow needs to be audited to determine what
failed.

We start with a simple example. A shopper orders a book online. After
payment using an independent payment processor, the book is collected
from the warehouse and sent for post dispatch. An independent courier
picks up the book and transports it to the destination hub. The book is
then delivered by a person to the door of the shopper. The shopper signs a
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form, and the workflow is completed. One can see that all the partici-
pating parties are, for the most part, unknown to each other. If a problem
occurs, the shopper needs to be refunded, and an audit of the particular
workflow started. Such an audit is typically time-consuming and lengthy
and, most of the time, the costs do not justify the effort. A full refund, “no
questions asked”, is then issued to the shopper. A key obstacle is that, if
an audit does happen, a dishonest party is able to easily hide or create
evidence to waive its liability. The likelihood is that one runs into an
inconclusive “finger-pointing” problem that only a human judge can
resolve using the law and principles such as the “balance of probabili-
ties”. The problem AudiWFlow tackles is how to generate evidence, as
the workflow happens, that is able to guarantee that all the evidence is
stored with integrity, is unforgeable, is available, and cannot be
repudiated.

With massive digitisation, nearly every domain has similar
needs—supply chains [1], inter-department business processes [2],
e-government services [3,4], etc. Note that the problem becomes trivial if
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a central party is able to coordinate and gather evidence; however,
trusting a central party is a difficult problem in itself, especially in a
distributed workflow, where parties may not even know each other
beyond their adjacency. Furthermore, simple log recording is not
enough, as any valid evidence cannot be open to manipulation [5]. A
further problem is collusion both with a central entity managing the
workflow or between two adjacent parties in the workflow topology to
tamper with digital evidence. Even if the orchestration of the workflow is
managed in the cloud, a privileged insider can tamper with the logging
process. Finally, the confidentiality requirements should be noted [6]. In
a purely distributed workflow, organisations may want to only deliver
the expected outcome and not disclose any other information.

1.1. Scenario

To illustrate the challenge, we present and informally analyse a
simple working scenario of health insurance, see Fig. 1.

Alice (A) wants health insurance from insurer Bob (B). Alice has to
provide her medical history to Bob and allow Bob to contact her doctor,
Dr. Cathy (C). Insurer Bob also needs Alice's family medical history, but
this has to go through Dr. Cathy, who, following a confidentiality-
friendly approach, will provide an overall report after she contacts the
family doctors, Dr. Dippy (D) and Dr. Eva (E).

To save on insurance costs, Alice asks her doctor, Dr. Cathy, to pro-
vide an untruthful medical record. Bob thus obtains Alice's medical his-
tory from Dr. Cathy (which includes reports from Dr. Dippy and Dr. Eva).
Happy with the outcomes, insurer Bob offered a deal with which Alice
was happy.

After two years, Alice claimed compensation after a medical incident.
Referring to Alice's insurance claims, Bob investigated all documents
about Alice and found that Alice's medical records provided by Dr. Cathy
contradict records in the hospital. Insurer Bob rejects Alice's claim. Alice
counterargued that the insurance company was responsible for collecting
her medical history and is thus entitled to compensation. Insurer Bob
then tries to obtain the contacts of Dr. Dippy and Dr. Eva, which Dr. Cathy
refuses to give on behalf of confidentiality.

As we see, there are a number of parties (A, B, C, D, E), which are
independent and, a prior, individually unaccountable to any other party.

Fig. 1. The example scenario of health insurance.

Blockchain: Research and Applications 3 (2022) 100073

All have to collaborate towards the end result, which is health insurance
for Alice. A further component is that some parties are not known to
other parties: B does not know who are D and E and, in fact, only knows
that there are other parties beyond C. Overall, we have a workflow to-
pology (as in Fig. 1), where vertices are the collaborating parties and the
directed edges are the sequence of actions and deliverables. The audit
trail consists of all the interactions represented by the edges of the graph.

In the absence of perfectly shared information, there is no way for any
party to verify the accuracy of the information provided. For example,
insurer Bob is in a position where he cannot prove Alice is at fault. This is
because Alice can claim that insurer Bob colluded with doctors from the
hospital and modified her original documents to close a sale. Insurer Bob
also cannot find any traces of a collusion attack between Dr. Cathy and
Alice. Finally, Dr. Cathy denies ever signing the records that insurer Bob
holds and raises the suspicion that her signature was forged.

This scenario illustrates the challenges of obtaining strong evidence in
the case of a distributed multi-party workflow. The key requirements are
as follows. First, all participants must be accountable for their actions,
either by denying a past action or manipulating an audit record. Second,
no participant should be able to destroy evidence, as this can be a way to
waive liability. Third, one should be able to detect if dishonest parties
collude even if it is not impossible to prevent false records between
themselves. Fourth, and finally, there are important use-cases where
confidentiality is required. This comes in two forms: (1) confidentiality of
information exchanged and (2) identity of the participants themselves
beyond a certain point in the workflow graph. We discuss these re-
quirements in more detail when formalising our problem in Section 4.

1.2. Organisation of this paper

Section 2 reviews the literature on existing schemes of audit trails
built. Section 3 formally defines the problem, presents a threat model,
and introduces notation and terminology. Section 4 presents two archi-
tectural approaches to solve the problem. The first is based on a peer-to-
peer distributed architecture but relies on an accessory central node. The
second removes the central node by replacing it with a public blockchain;
we used Ethereum, a public blockchain and one that now has proven the
ability to deliver complex requirements while maintaining the security
and integrity expected from blockchains. In Section 5, we describe how
we implemented both approaches and discuss the experimental results.
In Section 6, we conclude our paper and discuss future work.

2. Related work

Despite its crucial importance, workflow auditing is a topic that has
not been abundantly discussed in the literature. We split this section into
two subsections: conventional systems auditing and using the properties
of blockchain to secure evidence and records.

2.1. Secure auditing and logging system

The literature about conventional auditing systems commonly re-
views the cloud and database storage of logs in order to store proof of
evidence. This raises the problem of protecting audit records at storage,
for which encryption is a commonly used technique, as followed in the
literature [7-9]. However, encryption requires the management of keys,
which raises problems of confidentiality or destruction of evidence. In
simple terms, whoever owns the keys can modify or breach the confi-
dentiality of evidence. To mitigate these problems, some approaches
using secret sharing have been proposed [7,10]; other approaches rely on
integrating secret sharing with multi-party workflows, such as adopting a
software-defined network controller [5]. The problem of trusted auditing
is also pervasive and is a requirement across many different fields, such
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as in e-government services [8].

Zawoad et al. built a secure logging service model, named “SecLaaS”,
to achieve the confidentiality and integrity of logs in cloud storage [6].
Although this approach minimises the risk of unauthorised modifications
of the logs, the cloud service provider is entrusted with the generation of
the audit trail without any means to verify the accuracy of the audit re-
cords. Flores [11] presented a salting-based authentication module to
target credential protection in user registration and authentication. A
database intrusion detection module is also mentioned to report and
record insider login attempts to the database within the network.
Although it concerns malicious behaviors at the back-end and application
levels, the irreversibility of records for login attempts in the database is
not discussed.

Rajalakshmi et al. [8] proposed a mechanism addressing the re-
quirements of secure logging and auditing between untrusted parties that
uses homomorphic encryption. It aims to prevent the exposure of private
information and save logs in the tamper-proof cloud so that the logs can
be used as audit forensics. Ma and Tsudik [9] used hash chains to verify
the logging entity. They aimed to detect attempts to modify logs gener-
ated before a compromise of the logging entity and relied on trusted
storage for their approach. However, the approaches of Refs. [8,9] do not
consider collusion-related attacks between involved participants.

2.2. Distributed ledgers in auditing

Distributed ledger technology (DLT) in auditing is a promising di-
rection at present. Blockchain is a popular technology in the DLT. A
number of approaches in the literature based on blockchain technology
have been applied to data auditing and provenance for different industry
fields currently, such as adoption in business collaborative processes [2]
and in health data sharing [12,13]. Different proposals achieve different
levels of security and data confidentiality in auditing, and some of them
do not target the same trust level for the logging entity. These approaches
typically rely on smart contracts to produce audit trails and verify the
records on the blockchain network.

Cucurull and Puiggali [14] proposed to adding checkpoints to storage
that generate logs that are then published to the Bitcoin blockchain;
however, tampering with logs is possible between the checkpoint intervals.
Putz et al. [15] targeted this limitation by enabling integrity verification of
each log entry through hashes published on a permissioned blockchain.
They verified each log collected from different organisations. Tian [1] used
blockchain with distributed databases to track a food supply chain process.
Each participant in the supply chain generates and maintains audit records
of its part of the process and submits proof of authenticity to the block-
chain. Lu and Xu [16] presented another application of blockchain to
verify whether a product is genuine in a supply chain. Ahmad et al. [17]
showed a blockchain-based application ‘BlockAudit’ that saves logs into
the relational database management system and converts logs into the
JSON package as a transaction reported to the Hyperledger blockchain.
These approaches reflect a common assumption that an entity is trusted to
produce digital evidence; we argue that there needs to be a (near) real-time
verification of the audit data as it is generated.

Tapas et al. [18] proposed an approach to leverage DLT to detect
misconduct between customers and providers in cloud storage. They
relied on mutual challenges between clients and cloud service providers
to verify the authenticity of evidence reporting but did not consider
workflows including multiple administrative domains, which is a
requirement we take into account in this paper. Weber et al. [2] used
smart contracts to check and control interactions in the execution of
business processes. Audit trails are generated following smart contracts
execution. However, this model requires the data not to be encrypted at
the level of smart contracts, which jeopardises the confidentiality of their
approach. Pourmajidi and Miranskyy [19] presented a prototype of a
blockchain-based log system to store and verify the collected logs from
different cloud storage providers. They saved logs and their hashes into
the hierarchical ledger and designed APIs for clients to interact with the
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storage. Not requiring encryption at rest is a threat to the confidentiality
of the records.

2.3. Contributions of this paper

In this paper, we introduce AudiWFlow, which is a confidentiality-
friendly and collusion-resistant auditing approach for distributed work-
flows. We discuss two implementations of AudiWFlow: one uses a central
coordination point (CP) to have minimal trust requirements between the
involved third party and participants, and the other relies on a public
blockchain with smart contracts to replace the third party for audit trail
record and sharing. The double lock with key pairs of the workflow and
of a participant in the workflow enables the encrypted exchange of
messages and encrypted audit records between participants. Both of our
implementation approaches offer the same assurances for the confiden-
tiality, integrity at generation and storage, and the availability of audit
records reflecting the contribution of each participant in a workflow.

Our analysis of approaches in the literature [7-9] that rely on a cen-
tralised mechanism for auditing distributed/general workflows concludes
that collusion between participants and a party trusted to record audit
trails makes tampering with or destroying digital evidence possible, as well
as breaching the confidentiality of workflow transactions. Our approach
using a central point builds a complete audit trail through timely following
of exchanged messages with encrypted audit records and requires the
nodes to push these audit records into the central server. The audit trail
and timely verification on both sides of the server and the client prevent
malicious behaviors from participants, such as collusion attacks. It also
solves the problem of data accuracy and integrity discussed in the litera-
ture [6,20]. On the other hand, prior practices [1,14,16,17] that use
blockchain for auditing workflow collaborations spreading across multiple
organisations fall short of providing assurances for the combination of the
availability, confidentiality, and correctness of reported audit records. Our
approach using a public blockchain runs smart contracts to exchange a
valid digest of an audit record for an attestation of the integrity of the
verified record, which minimises the risk in the involvement and affection
of third-party on malicious acts. The audit record is shared, alongside the
exchanged message, with the next participant. Both the sender and
recipient store the audit record to compare it with a digest of the message
in the blockchain. All transactions are encrypted with a secret key of a
workflow or node key pair, including in smart contracts. It addresses the
problem of data disclosure that may happen in the model of [2,19]. For any
arbitrary distributed workflow, our approach offers a robust and
confidentiality-friendly way to record and verify audit records at any
desired granularity while giving auditing capability to key shares of par-
ticipants in a distributed workflow.

3. Problem statement
The key requirements an auditing architecture needs to satisfy are
accountability, non-repudiation, confidentiality (records and graph),

availability, and collusion detection.
Fig. 2 shows a linear workflow that has an auditing component (CP).

Audit Server Tier

Audit Server

Interactions with Pl /l \\ ~ o
Audit Server P < / \ ~ = {Workﬂm}/
/ ~ .| Transaction
P / \ N
A Z 1 \ B /‘ 2 \ C 3 =®

“ - SRR - -
Participants Tier .
. [Receipt of Delivery

Fig. 2. The representation of the system structure.
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The specific role of CP will be discussed later. Whereas in our first
approach we use a central CP, in the blockchain approach this is replaced
with smart contracts running on a public blockchain. In the simple to-
pology of Fig. 2, participant A starts by requesting work from B; B then
requests work from C to complete the request from A. Then, it continues
to D. When D performs the expected action based on the request from C,
the workflow terminates. The evidence generated while the workflow
progresses is composed of the individual audit records. Should a dispute
arise at a point in the future, this evidence must hold all participants
accountable for their contributions.

Each workflow )V is modelled as a topology with a directed graph
G=(V, E). Fig. 3 gives a working example where participants are V={A, B,
C, ...} and the edge set is E={1, 2, 3, ...}. Each participant contributes to
the overall work done, in sequence. We assume the topology of a
particular workflow is established before it starts and is static for its
duration. We further assume, without loss of generalisation, that the
graph is acyclic when annotating each participant as a requester or
responder. In other words, the workflow uses a path over the graph such
that no node is a requester or a responder twice. If a particular workflow
uses the same participant twice at different times, the workflow graph is
different.

3.1. Notation
We use the following notation:

e aworkflow W executes over a directed graph G=(V, E) and associated
audit evidence .4 produced during the execution of the workflow.
V={A, B, C, ...} is the set of members of a workflow.

E={1, 2, 3, ...} is a set of the sequence of participants' actions in a
workflow.

CP is an auxiliary Coordination Point.

pky and sk, are the public and private keys of a workflow W,
respectively.

e pk; and sk; are the public and private keys of participant i=1, 2, ..., N
with |V|=N participants.

k;j is the j-th share of a threshold key, in the sense of secret sharing,
and j=1, 2, ..., N. It is derived from sk, and any threshold K < N
members can recover the key.

M;||M denotes the concatenation of messages M; and Ma.

M;; is a message sent from participant i to j.

sign;(M) is a message M signed by participant i.

enc;(M) is message M encrypted with pk;.

encyy (M) is message M encrypted with pkyy.

hash(M) is a digest of message M using a one-way collision-resistant
function (a “hash™).

Fig. 3. The representation of an example workflow [20].

Blockchain: Research and Applications 3 (2022) 100073
We use the following message formats in our signalling diagrams:

e authenticity
Py = enc;(sign; (M;))

Node i is sending a plaintext output Mj; to j and, to assure authenticity
in a future audit, it signs the message. For confidentiality, node i encrypts
the result with j's public key.

e receipt
Ry = sign(sign;,(Mj;))

After i sends output to j, j returns a receipt of delivery to i.

e audit record
Aj; = sign; (encyy (sign,(Mj))

This message generates an audit record that, for confidentiality, is
encrypted with the public key of the workflow. The resulting object is
then signed again with i's private key as we will need a quick verification
of the record without the need to inspect its contents. The full audit trail
of workflow W is A" = {A12,A23, ..., Ay, ...} with indexes matching the
graph path of the workflow.

e integrity proof
I; = hash(Ay)

This message simply extracts the digest of an audit record.

3.2. Threat model

Our architecture takes into account the following security re-
quirements for our threat model:

e completeness, integrity, and authenticity The audit evidence A"
generated as workflow W executes needs to capture all inputs and
outputs, in the sequence as they were generated, with participants'
identities embedded in the evidence.

e non-repudiation No participant should be able to dispute recorded

evidence.

confidentiality The evidence should be confidential to a certain

agreed level; furthermore, it should be possible to protect the graph

(participants' identities and associations) if desired.

availability No participant should be able to destroy evidence at any

time after release.

collusion detection No two or more participants should not be able

to collude and not be detected. Note that the effort is in detection.

4. Architectures

Our approach to the problem is to store audit records, as they are
produced, in all nodes participating in the workflow. This will ensure the
availability of the audit trail. In this section, we present our approaches to
the problem.

4.1. Overview

The degree of availability of the audit trail is bound to the size of the
subset of participants that are allowed to inspect the evidence, as all
evidence is, primarily, stored in encrypted form. The key technique is to
use a workflow-wide secret key skyy which is split into K < N shares. The
shares are then distributed to all participants, and it requires K out of N to
open the full audit trail. All audit records are encrypted with pk,. A
dispute can be resolved if K nodes decide independently to open the
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evidence and verify the claims. K is dependent on the case, but it should
be at K > 2, as we will not be able to detect collusion in case 2 adjacent
nodes are malicious.

As the audit records are generated, they are verified by both nodes
involved. If B responds to a request from A, both A and B will verify the
records of each other; if a discrepancy exists, the detecting node will alert
the whole workflow. If no discrepancy exists, the audit record is sent to
the CP. The CP then displays the individual record encrypted with pk,, to
all participants who keep a copy of the encrypted audit records.

Note that the CP only exists to manage the distribution of the indi-
vidual records. As a malicious actor, its effects are limited to availability,
as it could help distribute corrupted evidence. The CP is challenged by
every participant to verify that it is not acting maliciously. Details about
our approach to challenging the CP are discussed in Section 4.5. In this
sense, we propose two alternative architectures:

e using a CP. If the availability of the CP can be trusted for the only
purpose of displaying encrypted audit records during the workflow,
using a CP makes our architecture simple to adopt.

e using smart contracts with a public blockchain. If full assurances
are required, we propose to replace the CP with a public blockchain
which, by being not managed centrally but behaving as if it were,
cleanly provides a trust anchor. It brings its own security challenges,
however, which we will discuss later.

After the workflow terminates and there is a dispute, K out of the N
nodes can decide to join their threshold keys and recover the complete
audit trail. Note that all N nodes have a copy of the audit trail, albeit
encrypted with pk,y to protect confidentiality.

4.2. Key Management

Our scheme involves several keys which need to be securely gener-
ated, distributed, and locally validated. This preparatory step is common
to both of our approaches. There are two sets of keys involved.

1) Node Keys: We assume that identity credentials pk; and sk; for every
participant are managed before the workflow starts—for example,
with conventional certificates that can be verified. It should be noted
that storing public keys for a particular workflow can potentially
disclose the number and identity of participants. We assume this is an
acceptable relaxation and leave this case for future work.

2) Workflow Keys: We need to generate and distribute, for each work-
flow W, the keys pkyy and skyy. The threshold keys k; are derived from
skyy: we use a verifiable secret sharing mechanism [21-23] to create N
shares where K is enough to reconstruct the secret. Workflow key
distribution can either be done through direct messages to each
participant over a secure channel or by encrypting each share of the
key with the corresponding participant's private key and posting them
to CP.

We adopt a pragmatic approach and task the participant with the least
incentive to corrupt the audit trail to generate and distribute the key
shares. This is generally the first or last participant depending on the
workflow: the first participant in a workflow can be a gift shop salesman
required to keep track of orders for its customers; and the last participant
in another workflow can be a supermarket manager who needs to keep
track of which food, ordered by customers, is from.

Furthermore, using a publicly verifiable secret sharing (PVSS) scheme
enables any participant to verify that other participants have received
authentic shares of the same secret without revealing this secret. PVSS
was first proposed by Stadler [23] and used by Schoenmakers [24] for an
electronic voting application. D'Souza et al. [25] later adopted PVSS and
explicitly required the secret shared among participants to be a legitimate
private key equivalent to a public key in their approach to support key
recovery. In our context, this enables any entity knowing the public keys
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is showing the same correct
audit records to all participants

Fig. 4. Architectural approach using a coordination point (CP) [20].

of workflow participants as well as the equivalent public key pk,y of the
shared secret k; to verify that the key generator was honest with the key
distribution and that the secret key sk)y can be reconstructed with key
shares.

4.3. Approach using a CP

This approach uses a centralised CP as shown in Fig. 4 with the cor-
responding signalling diagram in Fig. 5. The CP is a special node that can
be hosted by any participant or a third party. It is only responsible for
distributing the audit records A; across all participants. It does not
permanently store any data.

We do not strictly need a CP in the topology of the graph because of
confidentiality. In that case, nodes can distribute individual audit records
(and keys) between themselves. The trade-off incurs added coordination
complexity, which may not be acceptable.

Node i sends message P;; to node j. Node j extracts the original output
Mj;j and is now able to continue the workflow. Node j further performs the
following verification. First, it verifies that the signature in Pj is valid.
Second, it uses its private key to extract sign;(My), which it keeps as a
receipt. As for i, it gets receipt R;; from j. In parallel, i sends to CP the audit
record Ajy.

Furthermore, node j needs to confirm that i sent the expected audit
record Aj to CP in order to prevent the corruption of the audit trail. Node
j extracts sign;(M;;) and encrypts it with pkyy. The result is compared to
what was stored in CP by i. Should there be any discrepancy between this
record and what i stored in CP, the workflow is stopped. This is the gist of
our approach for audit records verification. The precise way of notifying
all participants of a halted workflow is out of scope; solutions could pass
by using a messaging protocol based on gossip (peer-to-peer propagation
of direct messages).

An important aspect of our proposal is that all participants verify and

(A1 31 [
e I I
Aup Audit Record & Server
Puy P Verification
[« — -Rpp———— i
A |
: | A | Audit Record &
| A > Server Verification
| <= —Rpc—————"
Audit Record & | | A{'A
Server Verification,
7 (e
T —— ki ————— »

Fig. 5. Signalling diagram using a coordination point (CP) [20].
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keep the whole audit trail. Each participant will independently verify
that the audit records they periodically pull from CP are validly signed by
the node that generated them. This is done by verifying that the records
on the CP are correctly signed. This is important to prevent the
destruction or corruption of the audit trail by either a node or by CP. Note
that a potential attack is that CP will selectively distribute incorrect audit
records depending on which node is requesting. To mitigate that, nodes
verify that they all received the same copy of the encrypted records by
displaying a digest of the records and their signature over the digest on
the CP.

Overall, all participants will have the full audit trail when the
workflow terminates. No participant will be able to inspect the actual
audit trail since it is encrypted with the workflow key pk,. However,
each participant has a share of the key. Upon open dispute, a subset K of
all participants can decide to gather their key shares and open the whole
audit trail and resolve the dispute.

4.4. Approach using a public blockchain

The previous approach uses a central CP. We envision that, in most
practical cases, simplicity of use outweighs the weaknesses it introduces.
In this section, we show how a public blockchain able to run smart
contracts can fully replace any central point while reducing the surface
attack area. The trade-off is, essentially, the complexity of integration.
Fig. 6 depicts this approach.

We did not consider any private blockchain for two main reasons.
Firstly, projects have been abandoning the idea of private blockchains
and have been moved to public blockchains such as Ethereum, Cardano,
or Algorand. Second, a private blockchain cannot deliver the same se-
curity assurances as a public blockchain due to its very high scale. For
example, where it is virtually impossible to modify a block of Bitcoin or
Ethereum, and even less to modify without detection, a private block-
chain, necessarily much smaller, suffers from governance and adminis-
tration weaknesses and, should access control not be perfect,
modification without detection is much easier. We have used Ethereum
and adopted the consensus mechanism used by the technology.

The blockchain fully replaces CP. Since we use a public blockchain
with auditable and open code, any participant can independently verify
that the code meets the intended requirements. The public keys of all
nodes need to be stored in the blockchain and are always available. Audit
record hashes can be verified at any time, etc. Note that reading a hash of
the public records does not disclose the identity of the participant, albeit
the number of participants needs attention (which we will presume
acceptable). This depends on the smart contract code, which, to reiterate,
is publicly available for inspection.

The anonymity of the individuals participating in the workflow is not
jeopardised by the use of a public blockchain. The identity of the indi-
vidual approving or requesting a transaction at the level of each partic-
ipant (node) is part of the encrypted payload in the audit record. The
nodes in Fig. 2 represent the platform (a mobile app or website) that the
individuals are using. The signature of the service provider only shows on
the public ledger, and this is a reasonable level of privacy given that the
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list service providers are public in most use cases.

The blockchain can also act as a trusted messaging channel, such as
halting a workflow and notifying all nodes. Note that one still needs to
store audit records somewhere outside of the blockchain. Participants
can choose this location for the record storage. The hash of the records
(on the blockchain) will assure nodes of authenticity and integrity. The
audit records are immediately accessed by each node and locally stored.
If a particular node attempts to retrieve an audit record but fails to find
the correct record or does not receive a response from the data storage
that is chosen by nodes to store the encrypted audit record, it can
broadcast an alert on the blockchain to warn other workflow nodes about
this failure.

Our protocol uses a public blockchain, which consists of four phases:
initialisation, data exchange, record verification, and distribution. See
the message diagram in Fig. 7.

The initialisation phase involves key generation and node registra-
tion. We need to create a key pair for the wide workflow, pk), and skyy.
Similar to the previous case, we still need a trust anchor (may be the first
node in the workflow) to bootstrap the process. We once more delegate
the choice of the entity who coordinates the distribution to the specific
use case, such as to the participant with the least incentives to be mali-
cious. Whereas pky is stored in the blockchain for public access, the k;
split shares of sky, are distributed to each participant. We further assume
that each participant has a cryptographic key pair previously generated
and that all have stored and made available their public keys in the
blockchain. When a participant wants to get a public key from the
blockchain, a smart contract is called to find the respective key. In the
first phase, all involved workflow nodes are required to register in the
blockchain network before any act starts. Nodes can push and pull re-
cords to/from the blockchain.

During the data exchange phase, the actual execution of the workflow
happens, and interactions between each participant are similar to those
in the CP approach. Nodes will cycle through a record distribution and
verification phase. The essential difference is that message I;; (audit re-
cord integrity), along with metadata and a location to the actual audit
record, is pushed and stored in the blockchain. The messages are never
stored on the public blockchain; only the integrity proofs I of the audit
records are stored and verified through smart contracts. Once published,
any participant can verify the records and obtain the actual audit record
from a public location. Algorithm 1 shows the pseudocode of the smart
contract for record verification; the algorithm shows that the smart
contract only performs a string comparison operation, without any
additional cryptographic operations to the ones dictated by the consensus
mechanism of the blockchain, to verify that the integrity proof (the digest
value of an audit record) has been published on the blockchain.
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Algorithm 1. Smart Contract on Record Verification

Algorithm 1 Smart Contract on Record Verification

Input: HashAudit_Rec[]

> hash value of an audit record reported by a participant
Integrity_Rec|]

> integrity proofs reporting by the recipient

Output: Boolean indicating if a record is stored or verified
successfully

1: if HashAudit_Rec[] =0 then

2 func(saveHash) > save Hash into blockchain
3: return True

4: end if

5: Blockchain.push(Integrity_Rec[])

> upload an integrity proof to blockchain for comparison

if Blockchain.push(Integrity_Rec[]) !=0 then
func(getHash)
func(compareHash)
for each Audit_Rec[| €lntegrity_Rec]] do

10: while Audit_Rec[hashld]==Integ_Rec[hashld]
do

11: return True

12: end while

13: end for

14: else

15: return False

16: end if

R

4.5. Security analysis

In this section, we discuss our approach by revisiting our key re-
quirements: completeness, integrity and authenticity, non-repudiation,
confidentiality, availability, and collusion detection.

1) Completeness, integrity, authenticity and non-repudiation: We
consider a dishonest participant who attempts to tamper with data in
the existing audit records or disseminate an incorrect audit record.
Our approach can detect these situations since each individual audit
record (Ay) is verified immediately after generation while each node
keeps receipts R;; of locally exchanged (between pairs of nodes) audit
records. Unless two adjacent nodes collude (as discussed below) and
assuming the key distribution (as below) is secure, this assures non-
repudiation. All participants also perform the Audit Record Verifica-
tion mechanism after the exchanged data are received. In this sense,
there are a few points where data corruption or concealment is
checked.

In the CP case, the central element can potentially modify audit re-
cords. It can also provide invalid records, perhaps even selectively,
depending on which participant is requesting. This is prevented since all
records need to be signed and verified by all nodes. For the blockchain-
based case, the code of the smart contracts is publicly auditable while not
disclosing any important information about the workflow itself.

2) Availability and confidentiality: The full audit trail, if desired, can be
kept by all participants while not jeopardizing the confidentiality of
any participation in the workflow given that the records are encryp-
ted with the workflow key that no participant holds. The protected
audit trail can be opened in case of a dispute and a pre-defined
(configurable) K number of participants agree. Availability of the
audit trail is, at the limit, guaranteed since (up to) all nodes keep the
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whole audit trail. Note that we use a verifiable shared scheme to
prevent the distribution of invalid key shares.

Collusion-detection: Our scheme, and we informally argue none
other, cannot prevent collusion between two adjacent nodes.
Consider the following workflow: A — B — C — D. Nodes B and C are
free to decide to forge, modify or entirely destroy their internal audit
records since no one else can verify or attest to their integrity. There
will, however, be proof of collusion.

3

-

It should be noted that this attack can be made much less likely, for
small workflows (say, up to 10 participants), if every node is to link the
previous audit records in their own record. At least 4 nodes would have to
collude. However, the generated audit records need to be open for
verification and inspection among the 4. This scheme could be expanded
to any number of nodes and, depending on the topology, quickly expand
to the whole graph. In this case, no CP would be needed, as the trail of
records could be made to propagate across the entire topology. We leave
this approach out for simplicity.

Collusion involving the CP could be far more harmful, but as
explained before, the CP only serves to coordinate the distribution of the
audit trails and has special verification mechanisms associated.

4) Key management: Participants are assumed to protect their creden-
tials, which are assumed to use well-known means such as those in the
Public Key Cryptography eXchange. As such, we leave this particular
aspect out of the scope of our paper.

Following the Public Verifiable Secret Sharing Scheme for the key
distribution of the shares k; of skyy, participants can verify that the key
generation and distribution are correct such that each of them has a
correct share of the same secret key. This still raises the problem that sk)y
is exposed by the participating node that generates the key. This is
common in both the CP and blockchain cases. To minimise the risk of
breaching the confidentiality of audit records, we assign the key gener-
ation role to the participants that have the least incentive to cheat, which
is, in the case, a participant who does not hold the audit trail yet has an
interest in it succeeding, such as the user requesting the workflow. We,
nevertheless, acknowledge this is an open problem that is, seemingly,
only resolved by either a collaborative generation of the shares that could
be resolved or case-based design.

5) Complexity: A CP approach is attractive given its simplicity. The CP is
little more than a simple file server with some verification logic.
However, it requires a high availability of a CP. The blockchain
approach seems to elegantly resolve those problems, but at the cost of
integration of complexity, which, in itself, provides the possibility for
implementation vulnerabilities both at the code of the smart contracts
and also at a system level. For example, audit records need to be sent
securely (in some form) to be stored out of the blockchain. Consid-
ering this is specific to an actual implementation, we do not discuss it
further.

5. Evaluation

In this section, we present experimental evaluation results' of our
implementation of the two described approaches?, using a CP and using
smart contracts running on a public blockchain.

The workflow topologies were generated using BRITE, a network
topology generator. Even though BRITE was designed to generate
Internet topologies, we hold the expectation that BRITE is sufficiently
representative of real-world workflows for a small number of nodes (say,

1 Relevant Data: https://github.com/Jency/AudiWFlow.git.
2 https://github.com/antonionehme/AuditingWorkflows-Blockchain.
3 https://github.com/nsol-nmsu/brite-patch.
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up to 20). We configured BRITE to generate a connectivity graph based
on the Barabasi-Albert algorithm with two key parameters:

e the number of nodes N, where we use N={10, 15, 20}.

e the connectivity degree m, which is, on average, the number of nodes
each node connects to. For example, for m=1, the topology is linear
and for m=N the topology is a full mesh with all nodes connected to
all nodes. We used m={2, 5, 7, 10}

For every pair of parameters (N, m), we generated 5 different random
topologies in order to generate enough randomness and extract statistical
parameters such as averages. In total, we had about 100 different
topologies.

Above the working node topology, we added either a special server
(CP) or an interface to the Ethereum blockchain.

In terms of the software implementation, we should stress that this is
experimental code, which is not designed for performance but only to
demonstrate and validate our approaches. For this demonstration, we
used the OpenSSL genrsa function to generate the key pairs for the par-
ticipants and workflow; 2048-bit was selected as the size of each of the
keys. We also used a public implementation of Shamir Secret Sharing” to
generate the shares of the workflow private key. At the level of the
workflow participants, we relied on the Nimbus-JOSE library® for the
cryptographic functions, including the encryption of the audit records
and the generation and verification of the integrity proofs. We further
used common desktop hardware or low-end, but modern, servers such as
the Intel Core i7 at 2.6 GHz with 32 GB RAM. As such, we are only
interested in overall behaviour and orders of magnitude. All source code
is open and available on request. Specifically,

e for the CP approach, we used Apache Tomcat application servers,
which use Java SE 8.

o for the blockchain approach, we combined an Apache Tomcat
application server for the workflow nodes and then implemented an
interface called an Ethereum smart contract written in Solidity. We
run our approach in the local test environment of Ethereum.

To evaluate the performance of each implementation, we record the
response time for each transaction, which includes the message propa-
gation time, the generation and reporting time of the audit record, and
the time taken by the verification mechanisms, often using cryptography.

5.1. Using a CP

We evaluate our CP implementation with different sizes for the in-
dividual record. For a fair and consistent evaluation, we separated the
results according to the number of participants N; this gives comparable
computational resource allocation for each iteration of the experiment
after dedicating the resources required to bootstrap participants and the
audit server.

Fig. 8 shows the average response time. The key parameter we
evaluate is the response time (vertical axis). We used three sizes for the
individual audit record each node generates: 3 KB, 6 KB, and 10 KB.

For small topologies up to N=20, we obtained an approximate linear
relation. This is likely to be shaped like a logarithmic curve if we allowed
the size of the topology to scale to different orders of magnitude.

Fig. 9 shows the size of the final audit trail. We evaluated the size of
the audit trail (vertical axis) against three sizes of the individual audit
record (fixed for the set of runs). It follows the generic pattern and the
size of the total audit trail increases sub-linearly with the size of the in-
dividual record at N=20. This was expected since the emulated

4 Shamir Secret Sharing Scheme: https://github.com/iancoleman/shamir/blo
b/master/src/js/secrets.js.
5 Nimbus JOSE: https://connect2id.com/products/nimbus-jose-jwt.
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Fig. 8. Evaluation of response time using a CP.

workflows run increasingly in parallel with increasing m, which reduces
the size of pair-wise messages. Fig. 10 shows the impact of the connec-
tivity degree m. We evaluated the size of individual records (horizontal
axis) and the size of the final audit trail (vertical axis) when we allowed
the increase in the connectivity degree m of each node connected: 2, 3, 5,
7. If the topology is larger, the size of the final audit trail also increases, as
expected, but once again, we see a sub-linear relation.

In absolute terms, we note that the delay of our approach is on the
order of seconds. If one considers that (1) each node will have to perform
some kind of task that is likely to last more than a few seconds, and (2)
our code is likely to not be optimised, these results suggest that our
scheme can support fully automated workflows in real-time.

5.2. Using a public blockchain

To reduce the time it takes to mine a block, we set up the variable of
difficulty to a low value. We evaluated and discussed the processing time
and gas cost, and compared the performance of implementations by CP
and blockchain.

1) Processing Time: Fig. 11 shows the average response time. The key
parameter involved is the number of records (vertical axis) that are
generated and shared in each iteration. We chose that each node
generates 10 KB for the individual audit record. With topology N=20,
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Fig. 9. Evaluation of the size of the audit trail using a CP (coordination point).

Fig. 10. Evaluation of the size of the audit trail and individual record using a

we found a stable relationship between the average response time and coordination point.

the number of records at the different graph connectivities. The time
to process a set of records is essentially dominated by the mining
delay.

2) Cost: Fig. 12 shows the gas cost for different sizes of records. We took
the gas spent for each transaction and record size and calculated
averages for topologies of N=20. As expected, we see a linear de-
pendency with the record size. This is because we only store the
minimum information, which is digests of the records in the block-
chain. Since each node will generate 1 record, the gas used will be G
o N - hash(M) + galg + &senp» Where ggq is the gas spent to execute the
storage procedure (fixed and independent of the topology), and gsenp
is any initial, one-time, setup of the smart contract. As such, using the
O-notation, the costs will be C=0(hash(M) - N - Cgqs - Cgqs) is the actual
monetary cost per unit of gas. This is dependent on the actual plat-
form (such as Ethereum) and on market conditions.

Average Processing Time with Graph Connectivity
(N=20, record size=10KB)
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B e e e e
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Fig. 11. Evaluation using a public blockchain. N=20 nodes, the size of the audit
record is 10 KB.
A remark about Ethereum. We selected this platform purely on the

basis of a proof-of-concept. Even though it is the most popular currently,
we do not set any expectations or make any recommendations as to
which platform to use. In other words, any blockchain that is able to store
a value (the hash of the records) is fit for use. We assume that the cost
structure will be similar in any smart contract platform, even if current
alternatives (such as Algorand or EOS operate differently).
Furthermore, we note that the gas as measured in our implementation

may not be accurate as we used the source-code of Ethereum as of early
2021. Ethereum changed how gas is calculated and spent recently (in the
London upgrade). The structure of costs, however, did not change and
still is C=0(hash(M) - N - Cgqs). A similar structure of costs will exist when
Ethereum, and perhaps most other platforms, change to Proof-of-Stake
instead of Proof-of-Work.



X. Zhou et al.

Average Gas Consumption with Record Size
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Fig. 12. Average processing gas cost of each iteration with the size of the re-
cord. N=20 nodes.

Processing Time with Numbers of Records
(N=20, record size=10KB)

4 Coordination Point  ® Blockchain

120

=)
S

L] -
e ..
Il pomms "ss mmm " & o mo®
nill s alblenEEn sy | DpeSaiean s SRR BN
e e e B
0 20 40 60 80 100 120 140 160
Record Number

o
<

'S
=)

Response Time (s)
iS5 2

o

(a) Processing time with numbers of records

Average Process Time with Numbers of Records
(N=20, record size=10KB)

=—@—Blockchain = 4= CoordinationPoint

=

@

- —

N W
w S L

o

.-------‘----—--*------.’

37 85 112
Record Number

Average Process Time (s)

S w

145

(b) Average processing time of each iteration with numbers of
records

Fig. 13. Comparison evaluation using CP (coordination point) and blockchain
in response time with numbers of records. N=20 nodes, record size=10 KB.

3) Performance Comparison: In Fig. 13 we compare the performance, in
time to store the complete audit trail, of our two implementations. We
used N=20 and a record size of 10 KB. In Fig. 13a, the relationship
between response time and the number of records in the imple-
mentation of the CP and blockchain behaves significantly differently.
The comparison of the relationship between the average response
time and specified numbers of records in Fig. 13b shows a similar
result as Fig. 13a. When using a CP, the response time is essentially
linear as audit records are generated. For the blockchain imple-
mentation, we see jumps of about 15 s, which corresponds to the
mining period.

6. Conclusion and future work

We presented an architecture that tackles the problem of auditing
workflows satisfying accountability, non-repudiation, confidentiality of
records and graphs, availability, and collusion detection. We proposed
and evaluated two implementations based on either a CP or a blockchain.
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Whereas the CP approach is simpler and could meet the real-world re-
quirements of most cases, we showed that using a central point targets
the minimal trust requirements and using a public blockchain makes our
approach more robust at the expense of processing delay. Although
AudiWFlow is designed with confidentiality, integrity, and availability
requirements in mind, its tight security measures can be relaxed for ap-
plications that do not require, for example, strict confidentiality re-
quirements between participants. Different implementations of our
approach can be adopted in different cases; offering both implementa-
tions enables the adoption of the approach for organisations that have
legal, political, or corporate culture restrictions on the technology that
can be used. While the blockchain-based implementation of our approach
offers a stable processing time and permanently stored integrity proofs of
the audit records on the public blockchain, the implementation with the
central CP requires less processing time (limited nodes involved) subject
to the availability of a central server. Our discussion and evaluation of
each implementation enable adopters to make an informed decision on
which implementation is a better fit for their business context.

There remain a number of questions for future work. Two of them are
the following. First, we will strengthen our approach to satisfy identity
confidentiality: at present, our scheme relaxes this requirement, and the
identity of nodes needs to be known beforehand—for example, to
distribute cryptographic material such as public keys. Second, our
approach requires a starting point that needs to be trusted for some tasks,
such as generating the threshold keys. Solving this particular problem
will necessarily raise the complexity by, for example, making use of
multiparty secure computation techniques. Finally, the overall architec-
ture of an approach using blockchain needs elaboration.
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