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Abstract

We consider the Cauchy problem for the Laplace equation. Substance of them
it’s reconstruction of harmonic function from knowledge of the value of the function
and it’s normal derivative given on an external boundary of the solution domain.
The solution domain it’s a double connected domain in R3. This problem we will
solve the alternating method is an iterative method, and in each iteration we solve
two mixed problem. The solution of the mixed problem is represented as a sum of
two single-layer potentials defined on each of the two boundary curves and in which
both densities are unknown. Integral equation will be solved by Galerkin project
method.

1 Introduction

The alternating iterative method was introduced in 1989 by Kozlov and Maz'ya [29]
to solve some inverse ill-posed problems notably the Cauchy problem for self-adjoint
strongly elliptic operators. Since then, there has been many works on the numerical
implementation of their method for such Cauchy problems both with boundary element
methods and boundary integral techniques; for references to some of these publications see
the introduction in [3] (for references to other methods for Cauchy problems both direct
and iterative see the introduction to [13], where, moreover references to applications of
the Cauchy problem in cardiology, corrosion detection, electrostatics, geophysics, leak
identification, non-destructive testing and plasma physics are given). However, numerical
results for the alternating method have largely been obtained for 2-dimensional planar
regions. Recently, see [12, 13], integral equation techniques, based on [39], have been
developed for some direct and inverse problems in 3-dimensions. We shall build on these

*Faculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv, 79000

TFaculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv, 79000
Lviv, Ukraine

TN, Campus Norrképing, Linkoping University, Sweden



results and undertake the laborious task of implementing the alternating method for 3-
dimensional domains.

Let us formulate the problem to be studied. Let D; C R? be a simply connected
smooth bounded domain with boundary surface I'y and let Dy be a simply connected
bounded domain with smooth boundary surface I's, such that D; C D,. We define
D = D,\D; and let v = (v, 5, v3) be the outward unit normal to the boundary of D,
0D = T';y UT,; an example of the configuration is given in Fig. 1 (only a part of T'y is
shown to see the interior surface I'y).

Figure 1: A solution domain D with boundary part I'; contained within the outer bound-
ary surface I's

We consider the Cauchy problem of finding a function u € C?(D) () C*(D) such that

Au=0 1in D (1.1)
with the boundary conditions
ou
u=f and 5, =9 oo Is. (1.2)

This problem is ill-posed and we assume that data is given such that there exists
a solution. The alternating iterative method is a regularizing procedure for the stable
determination of this solution. In each iteration step, mixed boundary value problems
are solved. In this method, mixed boundary value problems are solved at each iteration
step. To solve these mixed problems, we employ Weinert’s method [39]. This method
has been applied in some recent works, see [12, 11, 26, 27, 28]. Following [2], where
the alternating method was implemented in 2-dimensions, we represent the solution to
cach mixed problem as a suitable boundary-layer operator leading, via matching of the
given boundary data, to a system of boundary integral equations. The discretisation in
the method in [39] involves rewriting these boundary integral equations over the unit
sphere under the assumption that the surface of the inclusion can be mapped one-to-one
to the unit sphere. The densities to be solved for in the system of integral equations are
represented in terms of linear combinations of spherical harmonics, and this generates a
linear system to solve for the coefficients in this representation.



An advantage with the proposed implementation is that only data on the boundary
need to be discretised and not the full 3-dimensional region. An alternative with the
similar advantage is to use the boundary element method, however, then the boundary
surfaces need to be discretised, a non-trivial task in itself.

A limitation of our approach is the assumption that the given boundary surfaces can
each be mapped onto the unit sphere. However, there is a sufficiently large class of
domains relevant for applications that can be mapped in this way to the unit sphere.
Moreover, for more general boundary surfaces, one can approximate these with surfaces
of the requested kind, or even only construct the map numerically.

For the outline of this work, in Chapter 2 we review some results on the alternating
method. In Chapter 3, we give the boundary integral solution of the mixed problems, and
in Chapter 4 it is discussed how to discretised the obtained boundary integral equations.
Some numerical results are given in Chapter 5.

2 Alternating method

We consider two mixed boundary value problems

Au=0 1in D, (2.3)
ou
$=h0nrl, u=fonF2 (24)
and
Au=0 in D, (2.5)
ou
u=wonly, 5 =9 onT, (2.6)

The alternating iterative procedure for constructing the solution to (1.1), (1.2) runs
as follows:

e The first approximation to the solution u of (1.1), (1.2) is obtained by solving (2.3),
(2.4) with h = hg, where hg is an arbitrary initial guess.

e Having constructed wugy, we find wugyy; by solving problem (2.5), (2.6) with w =
Uk, -

QU1

e Then we find the element g, by solving problem (2.3), (2.4) with h = 5 .
Vo,



3 An integral equation method for the mixed prob-
lems

3.1 Reduction to boundary integral equations

Solutions of mixed problems will be represented as a sum of two single-layer potentials:

x) = /qbl(y) x,y)ds(y /(Z)Q (x,y)ds(y), x € D, (3.7)

1
A |z —y|
¢; € C(I';), i = 1,2 being unknown densities. We introduce boundary integral operators

with ®(z,y) = being fundamental solution of the Laplace equation in R? and

() (x) = / u(y)@ (e, y)ds(y), = € T,

and

(z,y)ds(y), = €T

fori,j =1,2.
Taking into account properties of the single-layer potential we can reduce the mixed
boundary value problem (2.3), (2.4) to the following system of integral equations

(Silﬁbl) () 4+ (S2202) () = f(2), rely .
—561(2) + (Kuugn) (1) + (Kiago) (1) = h(x), w €Ty )
and for the mixed boundary value problem (2.5), (2.6)
{ L60(a) + (Kat) (@) + (Knga) (@) = gla), €Ty 59)
(511¢1) (@) + (S1202) () = w(z), rely

3.2 Rewriting the integral equations over the unit sphere

Assume that boundary surfaces I'; and I'y can be bijectively mapped onto the unit sphere
S? = {7 € R3: ||Z|| = 1}, i.e. there exist one-to-one mappings ¢ = (qu¢; Gas, q3¢) © S* —
I'y, £ = 1,2 having a smooth Jacobian J,,, £ = 1,2. We can rewrite the system of integral
equations from the previous section over the unit sphere.



The system (3.9) can be transformed as follows

202(@) + (Rarn) @)+ (Raan) (3) =32), 2 €87
§11¢1) (@) + (§12w2) (@) = §(@), Fes?

(3.11)

We introduced here the following functions ¢¢(Z) = ¢e(qc(2)), £ = 1,2, f(Z) = [f(g:(Z)),
9(@) = 92(2)), h(Z) = h(q:1(T)), w(T) = w(q(Z)) for T € S®. Parametrized integral

operators have the form
(Son) @ = [w@LiGDasty), Fe s
SQ

and
(Ron) @ = [ n@Mid@ds(o). 5 e 82
S‘Z
1,7 = 1,2 with kernels

(@), @), i # ]
Ly(@,9) = )y, (@) | Ru(@.3

—, =]
[z Y|
and
( (6(@) — ¢;(9), v(a:(Z))) oy
S . A lg(@) — ;@)
(3 9 .
== =17
|7 -7
where ) R
Ri(%,7) = 417T |Qi§x) — (9] o
TS r=yY
A Jy, (Y)

4 Numerical solution of integral equations

We shall describe how to discretise the equations (3.10), (3.11).

(3.12)

(3.13)



4.1 Quadrature rules

The following quadrature is used for integrals with continuous integrands

! !
2n +1n +1

/ F@ds@) ~ S S Fiyag fo(0,, ), (4.14)
SZ

p,:U §=1

where 7 = p(0,¢) = (sinfcosp,sinfsinp,cosd), 0 € [0,7], ¢ € [0,27] - unit sphere
p
n +1
20 2) ights of the Gauss-Legendre quadratures and ji,, = ——
CEDENEHEE weights of the Gauss-Legendre quadratures and fiy = ———.
For the case of weak singularity, we have the quadrature rule

IE O a5y~ S° 5 figbo f0l0s ), (4.15)
SZ

|n B yl p/:0 §=1

parametrisation, ¢, = , 0y = arccos(zy), zy - zeros of the Legendre polynomials

Pn/+17 as/ =

n7'TC—L:,1 ZB(ZS/), P, - Legendre polynomial order of [ and n = (0,0,1)7 -
1=0

where by =

noth pole of the unit sphere S2.

Both quadratures are obtained by approximation of the regular part of the integral
via spherical harmonics and then employing exact integration. These quadrature rules
have super-algebraic convergence order.

For further discretisation of the system linear integral equations (3.10), (3.11), we shall
move the weak singularity in the corresponding integrals to the north pole n = (0,0, 1).
To do this, we consider the orthogonal transformation T%

T:z =10, VI € S, (4.16)
where T3 = Dp(0)Dr(0)Dp(—p) :

cos(¢) —sin(¢) 0 cos(¢) 0 —sin(y)
Dp() | sin(y) cos(yp) 0 and Dy (1)) 0 1 0
0 0 1 sin(¢)) 0 cos(v))

Take into account the last transformation, (4.14), (4.15) then we can rewrite the system
of linear integral equations (3.10) as follows

(Satr) @) + (Saz) @) = J(@), Tes?

_ N N , (4.17)
—%wl(f) + (Kt (@) + (Kuwg) @) =h@), TS



where integral operators are as follows

(Set))(Z /y) (TS '0) Lee (7, TS ') ds (7)), 7T €S?,

and

(Roet) (2 / TR M3, T R)ds(@), 7 € 2

for £ =1,2. Here we used that |$ -yl = |T3 n—n | =|n—1.

For discretization of systems (4.17) and (4.18) we will use projection Galerkin method.
The approximations of the densities vy, £ = 1,2 can be represented as a linear combination
of the spherical harmonics

n k
by Y =12, (4.19)

k=0 m=—k

where real-value spherical harmonics are follows

YR _ ImYk7|m|, 0<m<k
kym ReY}wmh —kSmSO '

Here Yy, - spherical function:

Yim(0,0) = ¢ P'ml(cosé) me = —k,...k,k=0,1,..,

|m|2m 2k+1( |m|) P
4 (k+|m|)V
We shall consider scalar product based on the quadrature formula

- Legendre functions.

2n+1 n+1

Z Z,upas V(Tsp)w(Usp), v, w € C(S?). (4.20)

p=0 s=1

Here the coefficients a, and f,, are same as in (4.14) but they depended from the parameter
n € IN. Next our step will be employing the scalar product to systems of integral equations
(4.17), (4.18) with spherical harmonics V;¥, . Including representation of integral operators
(??), and also the density approximation (4.19) we will get the next linear systems

n k L " 12 2n+1n+1 R
kz:() Z L (¢k 7”Akk mm/ + wk mAkk mm > Z:() Z:l :upaszf(xsp) k m(xsp)
m=— p=0 s : (421>
Z Xk: (wl A%, + 42, A%, ) = ngl %1 a h (Top)YVE (Typ)
Pt ke ek mm’ ko ek’ mm/ = = 1:“17 s sp)+ k,m\"sp



Ek=0,...n,m=—k, ...k, n=0,1,.. with coefficients

L 2ntlnt+l2n +1n +1 aL7 Top, YE (G 1), i#7
A;Jk,mm, — E Z E Z ;up#pas (f/fsp) ]( 14 ys ) l;m(g:,;)/) #]
p=0 s=1 p'=0 s '=1 b LZZ(xSp)ysp )Y (y )7 t=7
and
A9, = AR R A +1,u g a/]‘[w(@m@\b )YkRm(/y\//p//)7 L#£ ]
Rk mm p=0 s=1 p'—0 §'=1 b b Mzz(xsp»ysp )YkRm (AS P )7 i :]
1 i+ly R (o ;
+ 5(_1) " Yk7m(l’sp)7 ‘= j x YRm (:/fsp)?
0, otherwise

1,7 =1,2 and ys - Tgsigjslp/. Thus we can find the numerical solution of each of mixed
problems

=ZZ Z Z A Vi G )0, @iy )0 Gy). (4:23)

4.2 Implementation

For the effective implementation of the algorithm we must reduce the amount of compu-
tation coefficients Azjk/ and A%, . We shall consider real-valued spherical harmonics
mm/ kk mm/
cos(|ml|yp), m <0
ViR (0,¢) = CZ”‘P]Lml(COS 0)< 1, m=0 .
sin(|m|p), m >0
We use the representation of the rotated spherical harmonics

/\gp 2 : 77714;
k ,m ysp Yk m ys v

Im|<k
1 1 —ilm
% (Fakpmie™™#? — (=)™ Fopcpmpe™™1#2), m > 0
X F]jskﬁﬂmla m =0 ’
5 (Faipmi€ ™% + (= 1) Fyp_ e ™92), m < 0

where Fimm = '™ ™% Z d(k) <2) d(k) (2) e and

ky (T m (k—i_m)(k ) l—m,—l—m a,3 . .
d§n} <§) =2 \/ et D)k — 1! P,C(er )(O), P? _ normalized Jacobi polyno-

mial, given by

Prsaﬂ)(O)ZQ_nz(_l)t(Zi—? ) <?+b )7 a>0,b>0.



When [ —m, —l —m are negative we can calculated d(k) (2> by using symmetry relation

A () = (=)™ 1d® () = d®) | (¢) = d¥) (=)

Elements AZg’mm’ can be represented as follows:

. nt1 2n+1 cos(|m’[p), m <0
Al = Z ascyy P| ((‘0895) Yoo 1, m =0
p=0

sin(jm'[¢,), m' >0

l

il ndl [ ay Ly (Tap Yy ) LF]
X Z i Z T T
b Ln(zspy ysp )7 E - .]

S R o
m<k
X cos(|mlp,), m <0
P (cos0,) < 1, m=0 , {#]
( sin(|mlp,), m >0
1 ] —ilm
Z (Fskmlmleﬂmm _ (_1)|mlpskm_|mle 2 ,|<pp)’ m> 0
x Fskﬁzlmla m=0, é:]
% (Fskmlmleilmlwp + (_1)Iml]:'Skm_lmle—i|m|<.0p)7 m < 0
i
L t#j

and the calculation is carried out through the consistent calculation of matrices
cos(|mley,), m <0

Hpp=1<¢ 1, m=0, Grns = c?P,lml(cos 0s),
sin(|m|<,pp) m >0

2n/ +1 i .
Z ,u € “r LZ£($sp7 ’Z/bp )7 { = J
P Hi Loy (Tap, Yy ), L # ]

n +1 ~ (=i
G 33/7 - j
kspm E : kms' spms b <
s

t#
s'=1
L[ Sl e
Ckﬁﬂsp |771|€§k
ijspma 14 7£]
,
1 ilm m i|m
55 (Patpmi ™17 = (=) Fog e ™", m > 0
Fskm|m|7 m = 7 g_j
X
1 )
Z (Fsk~| |e|m|\Pp_|_(_1)|m|F’l€~ m| € z\m|gop) m <0
- (4]



2n+41

/i
Bkjmm's - ,leHm/p
p=0 1
X ansp + 5(_1)(i+1)kasHmp7 kern =2 and £ =j
0, otherwise

n+1
A _ 4]
Akk/mm' o Z asGk/m/'qumm’s'
s=1

The calculation of the coefficients Agc/mm, can be handle in similar way.

5 Numerical examples

In this section we will illustrate the robustness of the proposed method for the reconstruc-
tion of the harmonic function, for both exact and noisy data. In case of the noisy data,
random point wise errors have been added to the values of f with the percentage given
in terms of the L?-norm.

5.1 Example 1

The double-connected solution domain D is given in Fig. ?? and two boundary surfaces
are follows:
'y = {z(0,) = 3(sinf cos p,sin O sin p, cosf), 0 <
{z(0,¢) = (sinfcosp,2sinfsinp,2cosd), 0 < 0
Cauchy data on the I'y is next:

fi(z) = coszie™ v €Ty, g1(x) = ((—sinwy, cosxy,0)e™, v(z))
In the Table 1 we can see errors for this example.

< 27} - sphere, I'y =
2

<
<m0 7} - ellipsoid. The

5.2 Example 2

The double-connected solution domain D is given in Fig. ?? and two boundary surfaces
are follows:

10



Iy = {xz(0,9) = (0, p)(sinf cos p,sinfsinp, cosd), 0 < 0 < 7,0 < ¢ <271}, 7r(0,p) =
/0.8 4+ 0.2(cos(2p) — 1)(cos(40) — 1) - cushion,
Ty = {x(0,¢) = 0.5(sinf cos ¢, sinfsin p,cos), 0 < 0 < 7,0 < p < 27} - sphere. The
Cauchy data on the I'; is next:

fil)=a? —x2+asxely, g(x)=((2x1, -2, 1),v(z)) In the Table 2 we can see
errors for this example.

Table 2: aaa
exact data data with noisy(0.001)
Nk e —ulles |5 = %2l | | lle—uwll. |5 — 521,
4 16 1.98£ — 001 | 8.44FE —001 |6 | 1.98£ —001 | 8.45FE — 001
6 |20 |4.09F —-002|3.07KF—-001 |19 |4.16F —002 | 3.09F — 001
8 |37 | 981E —-003 | 946L —002 | 36 | 1.05£ —002 | 9.74F — 002
10 | 55 | 5.95FE — 003 | 6.37E — 002 | 66 | 6.20FE — 003 | 6.83E — 002
121169 | 251 — 003 | 3.172 — 002 | 87 | 4.4412 — 003 | 4.97F — 002
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