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Abstract 

The newly discovered coronavirus (COVID-19) pneumonia 

is providing major challenges to research in terms of diagnosis 

and disease quantification. Deep-learning (DL) techniques 

allow extremely precise image segmentation; yet, they 

necessitate huge volumes of manually labeled data to be trained 

in a supervised manner. Few-Shot Learning (FSL) paradigms 

tackle this issue by learning a novel category from a small 

number of annotated instances. We present an innovative semi-

supervised few-shot segmentation (FSS) approach for efficient  

segmentation of 2019-nCov infection (FSS-2019-nCov) from 

only a few amounts of annotated lung CT scans. The key 

challenge of this study is to provide accurate segmentation of 

COVID-19 infection from a limited number of annotated 

instances. For that purpose, we propose a novel dual-path deep-

learning architecture for FSS. Every path contains encoder-

decoder (E-D) architecture to extract high-level information while 

maintaining the channel information of COVID-19 CT slices. The 

E-D architecture primarily consists of three main modules: a feature 

encoder module, a context enrichment (CE) module, and a feature 

decoder module. We utilize the pre-trained ResNet34 as an encoder 

backbone for feature extraction. The CE module is designated by a 

newly introduced proposed Smoothed Atrous Convolution (SAC) 

block and Multi-scale Pyramid Pooling (MPP) block. The 

conditioner path takes the pairs of CT images and their labels 

as input and produces a relevant knowledge representation that 

is transferred to the segmentation path to be used to segment the 

new images. To enable effective collaboration between both 

paths, we propose an adaptive recombination and recalibration  

(RR) module that permits intensive knowledge exchange 

between paths with a trivial increase in computational 

complexity. The model is extended to multi-class labeling for 

various types of lung infections. This contribution overcomes 

the limitation of the lack of large numbers of COVID-19 CT 

scans. It also provides a general framework for lung disease 

diagnosis in limited data situations .  
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I. INTRODUCTION 

 In December 2019, a global health crisis began with the spread 

of the novel Coronaviridae species called severe acute 

respiratory syndrome coronavirus 2 (SARS-COV- 2) --

specifically, the novel Coronavirus Disease (COVID-19) [1]. 

Over the last few months, the CSSE at Johns Hopkins 

University has reported 4,733,349 infections and 313,384 

deaths in 180 countries around the world1 (online access: 17 

May). The reverse-transcription polymerase chain reaction 

(RT-PCR) is regarded as the major means for inspecting 

COVID-19 infection. However, the lack of equipment and the 

restrictions of appropriate testing settings limit rapid and 

precise screening. Additionally, the RT-PCR test has also been 

shown to have high false-negative rates [2]. Radiological 

imaging methods (such as X-ray and computed tomography 

(CT)) provide a significant supplement to RT-PCR tests and 

have shown their efficiency in lung disease diagnosis and 

quantification [3]. Moreover, several studies show that chest 

CT analysis results in higher performance (greater sensitivity) 

in COVID-19 detection compared to RT-PCR [4]. In 

comparison to X-rays, CT screening has the advantages of a 

three-dimensional representation of the patient's lung. Recent 

studies [5] indicate that the distinctive infection indication of 

ground-glass opacity (GGO) and consolidation could be 

detected from CT scans. The GGO was defined as hazy growing 

lung attenuation with the conservation of bronchial and 

vascular margins. In contrast, the consolidation was identified 

as opacification with obscuration boundaries of bowls and 

airway walls [6]. Therefore, the qualitative assessment of 

contagion and longitudinal variations in CT images could 

provide beneficial and substantial information about COVID-

19. However, the manual projection of lung infections is 

laborious and time-consuming and the accuracy of infection 

annotation depends heavily on the knowledge and experience  

of the radiologist. There is, therefore, a need for automatic and 

accurate segmentation techniques that enable rapid screening of 

COVID-19.  

Recently, a wide variety of deep-learning approaches has been 

used for semantic image segmentation. Among them, fully  

convolutional neural networks (F-CNNs) have shown superior 

performance on both traditional and medical images [7-13]. 

Notwithstanding their great success in image segmentation, F-

CNNs require thousands of labeled images for training and their 

performance degrades when only a small number of annotated 

images are available [14]. Consequently, an improved  

mechanism is required for F-CNN training that enables the 

segmentation of a new semantic class based on a limited  

number of labeled images [15]. Such approaches frequently use 
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transfer learning (TL) to transfer the knowledge from pre-

trained models to offer an initialization that is later enhanced 

with the new data to adapt to the underlying problem. Yet, the 

pre-trained model improvement is still subject to the overfitting 

problem and requires a reasonable number of labeled images (at 

least in the order of hundreds) [16]. In situations where there is 

very little data (such as with COVID-19), the new class has a 

limited number of annotated images , so such enhancement 

based TL usually result in overfitting [17]. Few-shot learning  

(FSL) is an artificial intelligence technique that effectively  

enables the model to generalize to an anonymous semantic class 

with a few instances. The primary notion of few-shot learning  

is driven by an aspect of human learning in which rapid learning  

of new semantics is possible from a few remarks, exploiting the 

knowledge acquired from prior experience. Few-shot learning  

has been extensively studied for object detection and image 

classification, and lately, used for medical image segmentation. 

It is shown to be an extremely challenging task to perform 

pixel-wise predictions in such an extremely low-data regime 

since it conducts learning from rarely labeled instances  since 

medical experts are required to label images [43] manually. In 

this paper, we introduce a novel semi-supervised few-shot 

segmentation (FSS) approach designed specifically for 

segmenting volumetric COVID-19 CT scans. The key to attain 

this objective is the combination of the recently proposed 

recombination and recalibration module within the construction 

of the proposed architecture. 

1.1 Few-shot segmentation 

FSL techniques for image segmentation aim to generalize a 

model to a new observed image with limited annotation using 

the learned knowledge from various annotated images. The FSL 

network architecture for image segmentation usually comprises 

three portions: the conditioner path, segmentation path and the 

interaction blocks. Throughout the inference procedure, the 

model is supplied with a pair of images called the support set 

(𝐼𝑠, 𝐿𝑠(𝜎)) that contains a group of images 𝐼𝑠 belonging to the 

semantic class coupled with their corresponding mask called  

𝐿𝑠(𝜎). Simultaneously, a group of unlabeled query images 𝐼𝑞 is 

passed into the model to be segmented. Specifically, the support 

set is forward fed into the conditioner to produce several feature 

maps within the middle layers of the conditioner path. These 

maps are declared as the knowledge representation since they 

encompass the critical information essential to performing  

segmentation. The generated knowledge representation is 

captured via interaction blocks, primarily responsible for 

passing the pertinent information to the corresponding layers 

within the segmentation path. Meanwhile, the input query 

image 𝐼𝑞  is fed into the segmentation path that makes use of the 

transferred knowledge information to produce a segmentation 

mask 𝑀𝑞 . Consequently, the major role of interaction blocks is 

to communicate the learned knowledge from the conditioner to 

the segmented and build a powerful architecture for semantic 

image segmentation. However, most of the present methods 

[49-51] utilize weak interactions between paths, such as one 

interaction module at the end layer of the network [16-17]. 

 

1.2 Semantic segmentation  

  Swift advances in medical imaging equipment such as 

scanners necessitate efficient lesion segmentation techniques 

that are capable of segmenting the entire infection region and 

discriminate between relevant interior diseased lesions. 

Specifically, this necessitates that segmentation approaches 

must be able to learn more thorough features of various types 

of infection lesions, which are usually only minor portions of 

CT images, having an irregular appearance and comparable 

concentration as the normal areas.  

Even though a variety of DL models have offered good 

solutions for automated lesion segmentation, their lesion 

segmentation performance requires  two crucial enhancements: 

1) expanding the receptive field to learn extra features by 

stacking several convolutions and pooling operations must not 

result in a decrease in the resolution of feature maps layer-by-

layer and hence result in the loss of fractional and small features 

of the lesion; and (2) owing to the diverse sizes of COVID-19 

lesions in the CT images, the DL technique must be able to 

segment lesions at a range of scales.  

In order to address these issues, dilated convolutions (atrous 

convolution) has been recently employed for capturing multi -

scale information in segmentation networks using atrous spatial 

pyramid pooling (ASPP) [46].  This primarily has two motives. 

First, it is eminent that the atrous -convolution sample the 

incoming input data immutably to calculate the output feature 

map. Second, nearby contexts could be a beneficial type of 

supplementary statistics to differentiate diverse tissues, 

counting both the infected and uninfected regions.  Despite the 

efficiency of atrous convolution in capturing multi-scale 

semantic representation, using it into a segmentation model has 

two drawbacks degrading the segmentation performance 

[62,63]: 1)  local information loss, since its kernel just performs  

partial sampling on the nine points of pixels and neglects the 

pixel values at the in-between sites; and 2) the gridding artifacts 

problem [39] 

 

1.3 Challenges and Goals  

The current computer vision literature for few-shot 

segmentation (FSS) employs TL from the pre-trained models in 

both paths to effectively segment RGB images [18]. TL models 

enable effective exploitation of preceding knowledge with  

informative features from the beginning of training. 

Accordingly, adopting a weak interaction module between the 

conditioner and the segmentation path (i.e., at earlier or later 

layer) is adequate to train the model efficiently. However, 

extending such a learning technique to medical images  did not 

realize satisfactory performance due to the absence of the DL 

model pre-trained on medical data. This limits performance 

gains realized by TL in medical domains. Hence, we introduce 

a robust interaction module that enables knowledge 

communication at several intermediate locations between the 
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paths while simplifying the gradient flow through the two paths. 

In view of this, we propose the RR module to communicate the 

learned representation between the two paths of the FSS 

network. The module particularly receives the extracted  

conditioner feature maps as input and performs concurrent 

spatial and channel squeezing to learn the feature maps from the 

conditioner path. This is used to accomplish excitation on the 

corresponding feature map of the segmentation path. 

A mutual shortcoming of the most U-Net alike networks is 

that the strided-convolutions and successive pooling layers 

gradually decrease the representational resolution to learn the 

compressed feature representations. Although this behavior is 

valuable for object detection or classification procedures, it 

always hinders the segmentation task that necessitates 

comprehensive spatial representation. Instinctively, 

maintaining high-resolution feature maps at the intermediate  

phases can enhance the performance of the segmentation 

model. Nevertheless, it raises the dimension of feature maps, 

which is infeasible for accelerating the training operation and 

facilitate the optimization process. Hence, there is a trade-off 

between the high resolution and the training speed. In general, 

the U-Net is shaped with an ED structure. Where the encoder 

seeks to minimize the spatial size of feature maps progressively 

and acquire extra complex semantic representations. The 

decoder seeks to retrieve both the details of the segmentation 

target (i.e., lesion) and the spatial size. Thus, it is necessary to 

learn more advanced representations in the encoder and 

maintain more spatial representation in the decoder to ensure 

optimal segmentation performance. 

 

Inspired by the debates mentioned above and the Inception-

Net [54], the network gets deeper and wider, we propose a novel 

smoothed atrous convolution (SAC) module. Unlike traditional 

U-Net architectures that are limited in learning multi-scale  

representations via 3 × 3  convolutions and pooling layers 

through the encoding processes, the proposed SAC can learn 

and extract a deeper and wider range of semantic 

representations using four parallel paths of multi-scale 

smoothed atrous convolutions, while the residual links are 

employed to avoid gradient vanishing issues.  Additionally, we 

introduce a multi-scale pyramid pooling (MPP) module 

stimulated by spatial pyramid pooling [55]. The MPP module  

further learns multi-scale contextual representations of the SAC 

module entity by employing pooling layers with varied sizes, 

without requiring any additional learning parameters. 

Integrating these two modules in the middle of the E-D 

architecture can help gain greater improvement and reserve 

extra spatial representation to enhance segmentation 

performance. The generated E-D architecture is used to build 

the segmentation and conditioner path. 

 

Furthermore, to avoid the overfitting problem and gain better 

generalization, we train our model using SSL by incorporating 

unlabeled CT slices during training. Although most current 

studies on FSS concentrate on volumetric images with multiple 

annotated slices, we focus on axial scans of COVID-19. It is 

time-consuming to manually annotate the lung nodules or 

infection regions on all slices of CT images of COVID-19 

patients. Therefore, we introduce a novel technique, called FSS-

2019-nCov, which is able to accurately pair a limited number 

of COVID-19 slices of the support slices with all the slices of 

the query set. 

1.4 Contributions  

The primary contributions of our paper are: 

 A novel COVID-19 segmentation technique is based on FSS 

to enable better generalization from a small number of 

annotated CT slices in both binary and multi-class scenario. 

 We introduce a SAC block and MPP block for efficient  

exploitation of high-level contextual and spatial informatio n  

and to assist in overcoming the problem of infection size 

variation. 

 Both the SAC block and MPP block are integrated within  

the encoder-decoder architecture that is adapted to form the 

conditioner and segmentation path. 

 Adaptive feature recombination and recalibration (RR) 

modules are included to effectuate knowledge 

representation interaction between the two paths. 

 There is a resultant increase in generalization performance 

using semi-supervised training for the proposed FSS-2019-

nCov. 

 

1.5 Paper Organization 

The remainder of the paper is structured as follows . Section 2 

reviews the current related studies . Detailed explanations and 

information corresponding to our proposed frameworks and 

principles incorporated are presented in Section 3. Proposed 

experimental conditions, comparison studies, and 

comprehensive analysis are provided in Section 4. Finally, the 

conclusions and intended future directions are explained in 

Section 5. 

II. RELATED WORK 

In this section, three kinds of studies related to our work are 

discussed: chest CT segmentation, semi-supervised learning, 

and COVID-19 segmentation. 

A. Chest CT segmentation 

 The CT scan is a prevalent diagnostic tool for lung diseases 

[6]. Practically, segmenting a variety of lesions from chest CT 

images supplies clinicians with substantial information on lung 

disease diagnosis and quantification [19]. Several studies 

achieve chest nodules segmentation using a feature extractor 

accompanied by a classifier. For instance, Kumar et al. [20] 

introduced a new supervised CNN to fuse complementary  

multi-modality information from lung cancer scans. Ozdemir et 

al. [21] addressed lung cancer diagnosis using a 3D 

probabilistic DL approach for nodule segmentation and 

diagnosis while presenting model uncertainty. Gerard et al. [22] 

proposed a coarse-to-fine cascade of two CNN to reduce the 

impact of thin structure on the segmentation network. Jiang et 

al. [23] developed two residual networks to concurrently 

syndicate features across several resolutions and levels to detect 

lung tumors. Additionally, Cheplygina et al. [24] reviewed the 
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recent studies of semi-supervised techniques for medical 

imaging tasks. However, these studies are extremely successful 

in data-intensive problems but are often obstructed for very 

small data sets. Such approaches also suffer from low 

generalization capability, making them inefficient for the 

underlying task of COVID-19 segmentation. To tackle these 

issues, we propose an FSL-based approach to enable learning 

from limited data.  

B. Few-Shot Segmentation (FSS) 

Recently, many studies have explored FSS with deep learning. 

Caelles et al. [49] performed video segmentation using the first 

frame annotation based on the notion of tuning pre-trained 

architectures. Even though their model operates effectively in 

this scenario, it is subject to overfitting and necessitates 

retraining to adopt a new class, which hampers the swiftness of 

adaptation.  Shaban et al. [16] introduced a two-step approach, 

where the first step processes the new image-label pair to infer 

the classification parameter for the other step, which receives a 

query image and predicts the corresponding segmentation. 

Dong et al. [50] improved this approach to address numerous 

unidentified classes to perform multi-class segmentation 

simultaneously. Rakelly et al. [51] applied the approach in a 

very difficult scenario and they chose a tiny set of landmarks to 

induce the supervision of the support set, rather than using a 

compactly annotated binary mask. The training process in the 

before-mentioned studies relies on TL models. Despite the 

effectiveness of TL in many computer vision studies, there are 

no pre-trained architectures in medical imaging. 

 

In the medical imaging domain, FSS was first proposed in 

[52]. The authors used adversarial learning for brain image  

segmentation depending on one or two annotated labeled brain 

images, enthused by the previous achievement of SSL. Zhao et 

al. [53] exploited the captured transformation to extremely  

augment a fully labeled volume for one-shot segmentation. Roy 

et al. [43] introduced the two-stage model and applied the 

recently proposed squeeze and excite modules to empower the 

knowledge exchange between both arms and smooth the 

gradient flow. However, these studies suffer from a number of 

shortcomings. First, the approaches in these papers rely on the 

assumption that every shot is a complete 3D image that 

comprises many 2D slices. Second, they construct huge 

architectures without analyzing the effectiveness of every 

building block, which results in composite and potentially 

inconsistent models. Finally, they considered neither contextual 

information nor multi-scale features. 

 

Motivated by this, our study investigates the role of 

unsupervised data in the process of segmenting COVID-19 CT 

scans in an FSL scenario. Predominantly, we make use of the 

successful achievement of FSS studies in normal images. To 

further boost the performance of the proposed FSS-2019-nCov , 

we leverage unannotated axial CT slices as a supervisory signal. 

Incorporating unannotated slices into auxiliary tasks has been 

used to improve the generalization capabilities of deep learning  

approaches in many studies. 

 

C. Semi-supervised Learning 

While owing to the challenge in finding entirely annotated data, 

semi-supervised learning (SSL) has been attracting much 

attention to enhance the network performance using a small 

amount of annotated data and a very large amount of unlabeled 

data [24]. SSL has been widely adopted for training deep 

models, which always seek to optimize the supervised and 

unsupervised loss on labeled and unlabeled data, respectively. 

[25-26]. Fan et al. [27] proposed using weighted Intersection-

over-Union (IoU) loss for edge supervision and cross -entropy 

loss for segmentation supervision. In a nutshell, the current 

deep SSL models regulate the network by imposing fine-

grained and reliable classification boundaries, which are 

vigorous to a random disturbance. Other approaches enhance 

the supervision signals by investigating the acquired 

knowledge, such as pseudo labels and temporal ensemble 

dependency [28]. Inspired by the recent success of SSL 

architectures in the studies mentioned above, we propose to 

adopt SSL in model training to attain better generalization and 

avoid overfitting effects that may be incurred with pre-trained 

models. 

D. COVID-19 Segmentation 

Recently, artificial intelligence has been widely adopted in 

multiple applications applied to COVID-19 detection [29]. These 

applications could be categorized into three groups [30]: patient-
level, concerned with medical images analysis tasks (e.g., 

segmentation, classification, and quantification, etc.); molecular 
applications dedicated to protein structure (e.g., protein 

interactions, drug repurposing, etc.); and societal applications 
concentrated on epidemiology related tasks. In this paper, we focus 

on patient-relevant applications, specifically for those depend on 
CT scans. For example, Wang et al. [31] introduced an adapted 

inception network to classify COVID-19 patients from normal 

cases by training the network on the ROIs defined with two 
experienced radiologists according to the characteristics of 

pneumonia. Chen et al. [32] accumulated 46,096 slices of CT 
volumes from confirmed COVID-19 cases and other disease cases. 

The collected CT slices were used to train a U-Net++ [12] to 
identify COVID-19 cases. Their results demonstrate that the model 

diagnoses COVID-19 as well as radiologists. Additionally, other 

models proposed to act as AI-assisted systems for COVID-19 
diagnosis, including ResNet [33-34], and U-Net [27][31]. 

Moreover, deep learning has been utilized for infection 
segmentation in lung CT scans and the obtained quantitative 

outcomes can be exploited to assess disease severity [35], quantify 
infection [3], screen infection at a large-scale [36]. All of the 

studies mentioned above assumed utilizing a large amount of data 

to train their models in a supervised manner, but the lack of 
annotated CT scans for COVID-19 means that such approaches 

lack utility. Fan et al. [27] were first to tackle this problem using a 

semi-supervised learning scheme, yet they first segment infection 

regions to use them to guide the multi-class segmentation, 

which results in suboptimal performance. This motivates us to 

use FSS to enable better generalization from small data samples  

using newly proposed context encoder-decoder architecture, 

efficiently exchanging this knowledge with segmentation path 

using the proposed smoothed RR module. We also boost the 
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model generalization by semi-supervised training incorporating 

unlabeled CT slice.  

III. PROPOSED APPROACH 

In this section, we present a detailed explanation of the proposed 

FSS-2019-nCov in terms of network architecture, network building 
blocks, and cost function. Then, we introduce the semi-supervised 

variant of FSS-2019-nCov and clarify how to use an SSL paradigm 
to increase the number of training instances to improve the 

segmentation performance. In addition, we extend our model for 
the multi-label classification for a variety of lung infections. 

Finally, we indicate the details of the implementation. 

A. Problem Formulation for FSS 

In the infection segmentation scenario, the training data for 

FSS-2019-nCov  𝐷𝑇𝑟𝑎𝑖𝑛 = {(𝐼𝑇
𝑖 ,𝐿𝑇

𝑖 (∝))}
𝑖=1

𝑁
contains N couples 

of  CT axial scan and its respective annotation map 𝐿𝑇 (∝). In 

the multi-class scenario, every semantic label ∝∈ 𝐿𝑇𝑟𝑎𝑖𝑛have 

an annotation map 𝐿𝑇
𝑖 (∝) ∈ 𝐷𝑇𝑟𝑎𝑖𝑛  where  

𝐿𝑇𝑟𝑎𝑖𝑛 ={1,2,…,K}, where k is the number of training classes. 

(e.g., in multi-class COVID-19 segmentation, the 1, 2, and 3 

represent the GGO, consolidation, and background). The FSS-

2019-nCov learns on 𝐷𝑇𝑟𝑎𝑖𝑛  with objective function 𝐹(·)such 

that having a support set (𝐼𝑠, 𝐿𝑠(∝̂)) ∉ 𝐷𝑇𝑟𝑎𝑖𝑛  for a new 

semantic label ∝̂∈ 𝐿𝑡𝑒𝑠𝑡  (𝐿𝑡𝑒𝑠𝑡  is the number of testing class) 

and a query slice 𝐼𝑞 , the COVID-19 infection segmentation 

𝑀𝑞 (∝̂)  of the query is predicted. There is no intersection 

between semantic labels of training and testing data. The most 

remarkable aspect of FSS is that test classes 𝐿𝑡𝑒𝑠𝑡  exist in the 

training data as the background class.  This possibly could be 

exploited as a form of past knowledge during testing in cases 

where scarce instances are provided with the infection 

annotated. 

B. FSS-2019-nCov Architecture 

As previously stated, the architecture of FSS-2019-n Cov  

comprises three modules: the conditioner path, the adaptive 

interaction module, and the segmentation path. The conditioner 

path learns the visual information of the support set to infer 

infection on the query slice. The adaptive interaction module 

effectively conveys the learned representation in terms of 

feature maps to the segmentation path. The segmentation path 

makes use of the acquired representation to segment the query 

slice. Figure 1 shows the detailed architecture of the proposed 

FSS-2019-nCov, which is further described in the following  

subsections. In FSS-2019-nCov, both the conditioner and the 

segmentation have an identical layout. In this way, feature maps 

in each path have the symmetric spatial resolution, which 

facilitates and empowers the interaction between corresponding 

blocks and eases gradient flow. 

 

1) E-D Architecture of Conditioner and Segmentation Paths 

  The architecture of the conditioner path has an encoder-

decoder based architecture consisting of four encoder blocks 

based on pre-trained Res2Net [37], four decoder blocks, and a 

Context enrichment (CE) module —see Figure. 1. 

 

Feature encoding: Recently, the Res2Net [37] architecture 

has shown great success in many computer vision tasks and has 

validated its effectiveness overall residual architectures owing 

to the multi-scale feature extraction capability that enables fine-

grained level representations for every network layer. 

Motivated by this, we propose to implement the encoder path 

using Res2Net-50 as a backbone architecture. The structure of 

the encoder (or Res2Net) module is presented in Figure 2 (a). 

Figure 1. The architecture of the proposed FSS-2019-nCov. It consists of two identical paths with the encoder-decoder structure, namely the conditioner 
path (upper) and the segmentation path (top). The recombination and recalibration (RR) blocks (see Figure 4) are introduced to effectuate knowledge 

interaction between two paths. The axial CT images are passed through a feature encoder blocks (E) module that is implemented with the pre-trained 
ResNet-34 blocks. The context enrichment module is then introduced to generate an improved semantic representation using SAC and MPP modules. 

Finally, the acquired representations passed into the feature decoder blocks (D).  
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the multi-scale processing enables learning more representative 

information from the input CT images. The residual linking  

facilitates the network convergence and evade the gradient 

vanishing problem. From the input image, the E blocks acquire 

the global representation of the target entity (i.e., lesions) and 

relevant parts class property of the target [26], [32]. 

Nevertheless, these kinds of representation might gradually 

debilitate at the time they transmitted to deeper levels [24]. 

Thus, we introduce the CE module to tackle this issue, as 

presented in Figure. 1. 

 

Context Enrichment: The CE is introduced to learn semantic 

context representation and hence provide more informative 

feature maps, and it contains two blocks: the smoothed atrous 

convolution (SAC) block and the multi-scale pyramid pooling 

(MPP) block. 

Smoothed Atrous convolution:  The typical convolutional 

layer is widely adopted feature extraction in many semantic 

segmentation tasks [46]. Nevertheless, it still suffers from 

semantic information loss caused by pooling layers. In order to 

tackle this shortcoming, atrous convolution has been used in 

many segmentation tasks [38]. However, atrous convolution 

(with dilation larger than 1) still suffering from the gridding 

artifacts problem [39], which means that the calculation of 

neighboring is based on dispersed sets of input units, which 

causes local information discrepancy and degrades the network 

performance. This issue has been tackled with the recently 

proposed separable and shared convolution (SS-Conv) [39]. In 

an attempt to capture multi-level information learned through 

an encoder, we propose the SAC block presented in Figure. 3. 

in which we stack the SS-Conv layers in the form of four 

cascade tracks with a receptive field of 3, 7, 9, 19 causes a 

gradual increase in the number of SS-Conv from 1 to 1, 3, and 

5.  Inspired by the inception module [47], we attach SS-Conv  

1×1  with 𝑅𝑒𝑙𝑢 activation at the end of each track. Finally, we 

concatenate the output of four tracks with the original feature 

maps as the output of the SAC block. The SS-Conv with a large 

reception field effectively captures and produces more detailed 

information for large infection areas. In contrast, the SS-Conv  

with a small reception field is better for small infection areas. 

By integrating the atrous SS-Conv of various atrous rates, the 

SAC enables efficient feature extraction for infections of 

various sizes. 

 

Multi-scale pyramid pooling: The most challenging issue in 

infection segmentation is the wide variety of infection sizes in 

medical scans. For instance, the size of GGO in the middle or 

late stage can be much larger than that in the early stage of 

COVID-19 infection [5-6]. To tackle this problem, we propose 

multi-scale pooling layers that depend on several operative 

fields of view to distinguish infection of various sizes, as shown 

Figure 3. The architecture of the proposed SAC module consisting of four 

parallel paths. Each path from left to right contains 1,2,3, and 4 separable and 

shared convolutions, respectively. 

Figure 4. The architecture of the proposed MPP module containing five 
parallel paths for changing input resolution. Convolution layers are employed 
to capture different resolution information. The global average pooling (GAP) 

layer is employed to implement the residual connection.  

Figure 2. Illustration of the encoder and decoder modules used in the 
proposed FSS-2019-nCov: a) the encoder module implemented using 

Res2Net module [37]; and b) the architecture of the decoder module 
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in Figure 4. Unlike [55], MPP takes the incoming feature maps 

and passes them to the four paths to alert their resolution using 

the pooling layer (i.e. average or max), hence the resolution at 

each path gets decreased to 1/2, 1/4, or 1/8  of the corresponding 

input. Then, a  3 ×  3 convolution is employed to extract and 

learn multi-scale contextual representations. Additionally, we 

redesign the residual connection [55] to be implemented with  

global average pooling (GAP). Unlike [55], the MPP module 

can capture extra contextual information from the received 

input due to the nature of the average pooling operation that 

processes input maps at the regional level instead of point level. 

For example, given an input map 64 × 64, decreasing the input 

map resolution to 1/8 creates the new map of 16 (i.e., 4 × 4) 

points, so that 3 ×  3 convolutions could capture information  

of nine of them, which means increasing the information  

consumption ratio. Thus, applying such a pooling layer enables 

the utmost input map values to contribute to the output map of 

the MPP module. Additionally, reducing the input map  

resolution often decreases the computation burden and logically 

increases the time efficiency compared with [55]. Further, the 

proposed non-dilated convolution usage in the MPP module 

also helps avoid the gridding artifacts problem [39]. After the 

convolution layer, the low-dimension feature map is up-

sampled using bilinear interpolation to obtain the feature map  

with the same size as the input feature map. Furthermore , 

similar to SAC, the up-sampled feature maps are concatenated 

with the input feature map. Finally, the concatenated map is 

passed into then 1 × 1 convolution to generate the final output 

of the MPP module. Optimal parameter grid search showed that 

the size of stride should be to 2, 4, 6, and 8, which corresponds 

to kernel dimensions of 2, 4, 6, and 8, respectively. 

 

Feature Decoding: For restoring powerful resolution feature 

representations rapidly and professionally, four simple D 

blocks are employed to form the decoder path. The main  

purpose of the decoder is to reinstate the spatial representation 

with sophisticated features engendered from the CE module and 

progressively fuses the global contextual information. The 

architecture of decoder blocks presented in Figure 2 (b) 

contains 3 × 3 de-convolution, followed by a sampling layer 

for reducing the number of network parameters. The output of 

a D block is attained after 1 ×  1 convolution. The generated 

map of the last D block is directly up-sampled to the same 

dimension of the original image. Therefore, the D blocks have 

the following number of filters 64, 128, 256, and 512 

sequentially. 

 

2) Conditioner Path 

The main job of ask of the conditioner path is to take as an input 

the support set with a slice 𝐼𝑠 and mask 𝐿𝑠, which is later passed 

to the proposed encoder-decoder architecture to learn the visual 

representation that is used to generate informative task-specific 

feature maps and enable detecting the area to be segmented in 

the query slice 𝐼𝑞 in the segmentation path. In this paper, the 

feature maps of the middle layers of the conditioner path are 

referred to as the knowledge representation. The conditioner 

path has a two-channel input formed by stacking 𝐼𝑠 and 𝐿𝑠 (∝).  

 

3) Adaptive Interaction Module  

The interaction module plays an essential role in the proposed 

for FSS-2019-nCov. It consists of multiple interaction blocks 

that take the generated knowledge representation of the 

conditioner path as input and transfer it to the segmentation path 

to conduct the query slice segmentation. The most essential 

characteristics of these blocks are 1) a slight increase in the 

computational complexity of the model; 2) improved gradient 

flow and hence facilitated model training, and 3) adaptive 

exploitation of channel-wise relationships. For this purpose, we 

introduce a modified version of the recently proposed feature 

recalibration block (SegSE) and combine it with the feature 

recombination block [40] to obtain the recalibration and 

recombination (RR) module presented in Figure. 5 (c). SegSE 

blocks are computational blocks to achieve adaptive 

recalibration of feature maps that act as a channel-wise attention 

mechanism that improves the discriminative power of 

generated feature maps, with a marginal increase in model 

complexity. 
 

Recalibration Module: Since there is a spatial 

correspondence between the segmentation pixels/voxels and 

the units of feature maps, applying channel squeeze and excite 

(SE) operation [41] potentially suppresses the entire feature 

maps that could encompass significant regions. To address this, 

we propose to use a spatially adaptive variant of SE (SegSE) 

that enables concurrent spatial and channel SE, which is more 

appropriate for COVID-19 semantic segmentation. The 

architecture of the SegSE block is presented in Figure. 5(a). The 

spatial structure and the correspondence of the feature maps  are 

preserved by replacing the global average pooling in the SE 

block with  𝑆𝑆 𝐶𝑜𝑛𝑣 (3 × 3)  layer to capture large-scale 

contextual information through dilated kernel operating over 

adjacent voxels to obtain 𝑍𝑆𝑒𝑔𝑆𝐸 , but without increasing those 

kernels’ parameters. Assuming that the convolution layer 

performs the transformation function 𝐹  that maps the input 𝑋 

to the output 𝑈  where 𝑋𝜖 ℝ𝐻′×𝑊′×𝐶′
,  𝑈𝜖ℝ𝐻 ×𝑊 ×𝐶 ; 𝐻′, 𝑊′ 

Figure 5. The architecture of the RR module: a) illustration of the 
recalibration block implemented using separable and sharable convolution; 
b) illustration of the recombination block; and c) integration of both 

recalibration and recombination in a single module.   
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represents the height and width of the input feature map; 𝐻, 𝑊 

represents the height and width of the output feature map and 

𝐶,𝐶 ′  denote the count of feature maps such that 𝑋 =
{𝑥1,⋯ 𝑥𝐶′ } and 𝑈 = {𝑢1, ⋯ 𝑢𝐶}. Then, we obtain a feature map  

𝒁𝑺𝒆𝒈𝑺𝑬  using equation (1-2). 

𝑍𝑆𝑒𝑔𝑆𝐸 = γ(𝐹𝑐𝑜𝑛𝑣 (𝑋; 𝑘𝑠𝑒𝑔𝑆𝐸 , 𝑑, 𝑛𝑠𝑒𝑔𝑆𝐸 )) (1) 

𝑛𝑠𝑒𝑔𝑆𝐸 =
𝐶′

𝑟
 

(2) 

where γ denotes the batch-normalization tailed with the ReLU  

activation function, 𝑘 is the kernel size, d represents the dilation 

rate that is determined based on the scale of the layer, 𝑛 is the 

number of kernels, and 𝑟 denotes the reduction factor. Hence, 

increasing the number of 𝑐𝑜𝑛𝑣  layers increases the field of 

view, which means that the units of the feature maps represent 

a wider area of the input space. After that, to obtain the 

recalibration output feature maps, a convolutional layer with  

kernels 1 × 1 operates on 𝑍𝑆𝑒𝑔𝑆𝐸 , and its output is fed into the 

sigmoid function as formulated in equation (3). 

𝑆 = 𝜎(𝐹𝑐𝑜𝑛𝑣 (𝑍𝑆𝑒𝑔𝑆𝐸 ; 𝑘, 𝑑, 𝑛))  (3) 

where 𝑘 =  1, 𝑑 =  1 , and 𝑛 =  𝐶′ . Thus, we integrate the 

squeeze and excitation operation since the dilated 𝑐𝑜𝑛𝑣  layer 

decreases the number of feature maps, presenting a bottleneck. 

Finally, element-wise multiplication ʘ is applied to input 𝑆 to 

obtain the recalibrated feature maps. So, the recalibration of the 

given feature map 𝑐  is calculated with equation (4). 

𝑢𝑐 = 𝑥𝑐  ʘ 𝑠𝑐 
(4) 

So, the overall operation of the SegSE block could be expressed 

as 𝐹𝑠𝑒𝑔𝑆𝐸 : 𝑋 → 𝑈𝑠𝑒𝑔 𝑆𝐸   

 

Recombination Module: The main purpose of recombination 

is to empower the representativeness of the features by linearly 

combining them (see Figure.5 (b)). Accordingly, we utilize a 

convolutional layer with a kernel size of 1 × 1. The features 

map 𝐹𝑒𝑥𝑝  is expanded with factor 𝑚  and then recompressed 

again to the original number size 𝐹𝑐𝑜𝑚𝑝 . Thus, recombination  

operation could be expressed as 𝐹𝑟𝑒𝑐𝑜𝑚𝑏 : 𝑋 → 𝑈𝑟𝑒𝑐𝑜𝑚𝑏   where 

𝑈𝑟𝑒𝑐𝑜𝑚𝑏 ∈ ℝ𝐻′×𝑊′×𝐶′
 is mathematically formulated in  

equation (5). 

𝐹𝑟𝑒𝑐𝑜𝑚𝑏
= 𝐹𝑐𝑜𝑚𝑝(𝐹𝑒𝑥𝑝 (𝑋, 𝑚𝐶′), 𝐶′)

= 𝐹𝑐𝑜𝑚𝑝(𝐹𝑒𝑥𝑝 (𝑋 , 1,1, 𝑚𝐶′), 1,1, 𝐶′) 

(5) 

 

4) Segmentation path 

The main target of the segmentation path is to segment the input 

query slice 𝐼𝑞 utilizing the knowledge representation acquired 

from the conditioner path, which contains a high-level 

informative feature about the formerly unseen query slice. The 

SegSE blocks within the interaction modules compress the 

feature maps of intermediate layers of conditioner. They then 

perform cross-channel feature recalibration on the feature maps 

of the segmentation path. The architecture of the segmentation 

path is symmetric to the conditioner with just two main  

variations: 1) unlike the segmentation path, there are no 

interaction blocks presented after encoding and decoding 

modules of the conditioner path.; and 2) in the segmentation 

path, we final classification block with 𝐶𝑜𝑛𝑣 (1 × 1) layer that 

produces the output segmentation maps that followingly fed 

into 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  function to infer the infection segmentation in 

query slice. 

C. Semi-supervised training  

Currently, there are only a small amount of annotated CT 

images for COVID-19 patients. The manual segmentation of 

lung area and COVID-19 lesions is laborious and time -

consuming, and most studies focus on studying the virus itself 

and finding the best inhibitor. To tackle this data limitation  

problem, we propose to train the FSS-nCoV-Net in a semi-

supervised manner, in which the widely available unannotated 

CT image set is exploited for augmenting the training data, 

motivated by recent studies in [60,61,27], in which a random 

sampling mechanism for gradually expanding the CT training 

data using unannotated CT images. Algorithm 1 is employed 

unambiguously to estimate and generate the pseudo labels 

corresponding to the unannotated CT images. The follow-on 

CT scans, along with the corresponding pseudo labels, are 

subsequently exploited to train the proposed FSS-2019-nCov. 

In view of this, semi-supervised training of the proposed FSS-

201-nCov has several benefits summarized as follows. First, the 

training and assortment technique is straightforward and not 

difficult to implement. Second, it is threshold-free and also does 

not necessitate measures to evaluate the forecast annotation. 

Third, it helps avoid the overfitting issue, which can provide 

more robust performance than other semi-supervised training 

approaches demonstrated by recently published studies [60, 61, 

27]. 

 
Algorithm 1 Semi-supervised training for the FSS-2019-

nCoV 

Input: 1) 𝐷Annotated represent the annotated CT slice in the 

COVID-19 dataset; 2) 𝐷Unannotated represents the 
unannotated CT images in the COVID-19 dataset.  

Output:  Trained FSS-2019nCov 

1: Split the data to create the training dataset 

𝐷Training utilizing all the annotated CT images from 

𝐷Annotated. 

2: Start training the proposed FSS-2019-nCov denoted as 

𝐹 using 𝐷Training.    

3: While 𝐷Unannotated is not empty, do: 

4:     Test the trained model 𝐹 on 𝑁 CT slice arbitrarily 

    nominated from 𝐷Unannotated. 
5:     Generate model-annotated data 𝐷F−annotated 

     containing 𝑁 CT slice with pseudo labels 

6:      Use 𝐷F−annotated to expand the training set, such as 

      𝐷Training  = 𝐷Training  ∪ 𝐷F−annotated  

7:   Eliminate the 𝑁 testing CT slice from the 

  𝐷Unannotated 

8:      Fine-tune the model 𝐹 on the 𝐷Training.    

9: End While 

10: Return Trained Model 𝐹 
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D. Model training methodology 

 We train our model using the training mechanism adopted in  

[16,43], where a batch sampler is used to randomly select a 

mini-batch that is subsequently used for model training. As 

opposed to traditional supervised training, we implement the 

following steps for picking samples from a mini-batch in every 

iteration. First, a label ∝∈ 𝐿𝑇𝑟𝑎𝑖𝑛   is randomly selected. Second, 

two CT slice and their corresponding labels are randomly  

sampled, such that they contain a semantic label ∝ . Third, 

binarization of the label map to set label ∝ at the foreground 

and to make the remaining areas the background. Fourth, the 

two pairs respectively establish the support set (𝐼𝑠,𝐿𝑠 (∝)) and 

the query set (𝐼𝑞, 𝐿𝑞(∝)) , where 𝐿𝑞
(∝)  is the GT for 

calculating the loss. To sum up, the FSS-2019-nCov takes the 

two pairs as a training batch, where the support pair (𝐼𝑠, 𝐿𝑠(∝)) 

is combined to form two-channeled input to the conditioner 

path. Meanwhile, the query slice 𝐼𝑞 is used as the segmentation 

path input. Both inputs pass through the two paths of the model 

in a feed-forward manner seeking to predict the segmentation 

𝑀𝑞 (∝)  for the query slice  𝐼𝑞  for label ∝ . Dice loss [44] 

calculated between 𝑀𝑞 (∝)  and 𝐿𝑞
(∝) using equation (6) is: 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑀𝑞(∝)𝐿𝑞(∝) 𝑥

∑ 𝑀𝑞(∝) 𝑥 + ∑ 𝐿𝑞(∝) 𝑥

 (6) 

where x represents the pixels of the prediction map. In order to 

reduce the 𝐿𝐷𝑖𝑐𝑒 , the batch sampler offers different instances 

belonging to diverse ∝ , and the loss is calculated for that 

particular  ∝ and subsequently, the weights are modified , 

continuous altering of the inputs at each iteration, makes the 

model converges. Therefore, it could be said that the prediction 

turns out to be agnostic to the selected ∝. 

We train FSS-2019 to minimize the 𝐿𝐷𝑖𝑐𝑒  loss for segmentation 

from annotated slices only. Simultaneously, to leverage the 

unannotated CT slices data, we employ an auxiliary manifold  

embedding loss 𝐿𝐸  on the dormant feature representations ℎ(∙) 

of both labeled and unlabeled samples to diminish the 

discrepancy between similar inputs in the latent space [45]. 

Thus, similarity among ℎ(∙) of unlabeled CT slices is specified 

by preceding knowledge. The final objective function could be 

formulated using Lagrangian multipliers, as  shown in equation 

(7). 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐷𝑖𝑐𝑒 + ∑ 𝑅𝑙 ∙ 𝐿𝐸𝑙
 

𝑥

 (7) 

where 𝑅𝑙  represent regularization parameter for the embedding  

loss 𝐸𝑙  at hidden layer 𝑙. Naturally, this loss function seeks to 

minimize the distance between concealed representations of 

analogous ℎ𝑙 (𝑥 𝑖) and ℎ𝑙 (𝑥𝑗) of adjacent data samples and, if 

not, attempt to push them away from each other. Furthermore, 

through extensive experiments, we tried different model 

training parameters to find out the most optimal configuration 

                                                                 
1
 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/  

2
 https://github.com/xmengli999/H-DenseUNet 

3
 https://github.com/MrGiovanni/UNetPlusPlus 

4
 https://github.com/alexgkendall/caffe-segnet  

5
 https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn  

6
 https://github.com/tensorflow/models/tree/master/research/deeplab  

7
 https://github.com/abhi4ssj/few-shot-segmentation.  

 

for our model and got the highest performance using the 

parameter shown in Table 1. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset 

Two annotated CT datasets are employed for model 

evaluation, publicly published by the Italian Society of Medical 

and Interventional Radiology [42]. The first dataset (CT-1) 

comprises 110 axial CT slices belonging to 60 patients that are 

positively confirmed to have Covid-19. The CT slices were 

greyscaled, resized, and compiled into a NIFTI-file. The size of 

each slice was set to 512 × 512  pixels. An experienced  

radiologist annotated the CT slices using three-class labels, 

namely pleural effusion, GGO, and consolidation. We 

eliminated two images because of their low resolution. We split 

the CT-1 data into a training set of 38 CT images, a validation 

set of 20 images, and a test set of 50 images.  Additionally, the 

second dataset (CT-2) comprised nine CT volumes consisting 

of 829 slices. Among them, there were 373 annotated axial CT 

slices that were positively confirmed as a COVID-19. 638 axial 

slices (i.e. 285 lesion-free slices and 353 infected slices) were 

selected for model evaluation. The annotated CT slice was 

resized from 630 × 630 resolution to 512 × 512 resolution as 

with CT-1 data. For semi-supervised training, a total of 1600 

unannotated axial CT images were collected from the COVID-

19 CT dataset [59], comprising 20 CT volumes from distinct 

COVID-19 patients. Then, the data was prepared by eliminating  

non-lung regions to form an unlabeled training set. All slices 

were preprocessed using an intensity normalization procedure 

for all input data. 

B. Comparative Studies 

Baseline architectures. In the experiment relevant infection  

region segmentation scenario, we compare our model with  

robust semantic segmentation models including UNet [9]1 and 

H-DenseUNet [11]2, U-Net++[12]3, SegNet [13]4, FCN8s [7]5, 

DeepLabV3+[14] 6 , SE-Net[43] 7 Inf-Net [27]  as a baseline 

architecture, and compare the proposed approach against the 

recently proposed Inf-Net for COVID-19 segmentation [27]. In 

the multi-class scenario, we compare the proposed FSS-2019-

nCov against the before mentioned, including DepLabV3+ [14] 

with different stride values , FCN8s [7], and Semi-Inf-Net -U-

Net [9], Semi-Inf-Net-FCN8s [27], Semi-Inf-Net, and MC[27]. 

 
 
 

 
 
 

Table 1. model training parameters 

Methods DSC  
Learning Rate 0.001 

Weight decay constant 0.0001 

Momentum 0.9 

No. of epochs  50 

Iterations per epoch 300 
Optimizer  SGD 

Balance factor 0.5 

 

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://github.com/xmengli999/H-DenseUNet
https://github.com/MrGiovanni/UNetPlusPlus
https://github.com/alexgkendall/caffe-segnet
https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/abhi4ssj/few-shot-segmentation
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C. Evaluation Metrics. 

In this study, we choose three broadly adopted metrics for 

performance evaluation namely Sensitivity  (Sen . ) = 𝑇𝑃 /
 (𝑇𝑃 +  𝐹𝑁) , 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (𝑆𝑝𝑒𝑐 . ) = 𝑇𝑁 / (𝐹𝑃 +  𝑇𝑁)  and 

Dice similarity coefficient (DSC). 

 

In order to measure the overlap between the segmentation 

outcomes represented with set 𝑆 and the ground-truth 

represented with set 𝐺, the DSC is calculated as formulated in 

equation (8). 

𝐷𝑆𝐶 =
2|𝑆 ∩ 𝐺|

|𝑆||𝐺|
 (8) 

where | . |  denote the set size, and 𝑆 ∩ 𝐺  denotes the 

intersection of both sets. The generated score always exists 

between 0 and 1; achieving high DSC reflects the greater 

segmentation performance. 

 

Also, following [27], we adopt three additional object detection 

metrics as follows.  

 

1) The structural similarity between a calculated map and the 

GT mask is measured with Structure Measure (𝑆𝛼) with 

balance factor 𝛼 between object-aware resemblance (𝑆𝑜) and 

object region-aware resemblance (𝑆𝑟 ) according to equation 

(9). 

𝑆𝛼 = (1 − 𝛼) ∗ 𝑆𝑜(𝑆𝑝 ,𝐺𝑇) + 𝛼 ∗ 𝑆𝑟 (𝑆𝑝 ,𝐺𝑇) (9) 

Here, we choose 𝛼 = 0.5, as recommended by the original 

study [56] and some other recent studies either for COVID-19 

segmentation [27], semantic segmentation [57], or object 

detection [58]. 

2) The recently proposed Enhanced-alignment Measure 

(𝐸𝜙
𝑚𝑒𝑎𝑛) to measure similarity (local and global) between two 

maps based on equation (10). 

𝐸𝜙
 =

1

𝑤 × ℎ
∑  ∑ 𝜙(𝑆𝑝

(𝑥, 𝑦), 𝐺𝑇(𝑥, 𝑦))

ℎ

𝑦

𝑤

𝑥

 
(10) 

where w and h respectively represent the width and height of 

GT, the (𝑥, 𝑦) is the pixel position in GT, and 𝜙  denote the 

boosted alignment matrix. The value of 𝐸𝜙
 calculated  

transforming the prediction 𝑆𝑝  into a binary mask with a 

threshold value in the range [0,255] as introduced in [48]. We 

provide the average of 𝐸𝜙
  calculated from overall thresholds. 

3) Mean Absolute Error (MAE): used to compute the error 

between 𝑆𝑝 and GT at the pixel level as formulated in equation 

(11). 

𝑀𝐴𝐸 =
1

𝑤 × ℎ
∑  ∑|𝑆𝑝

(𝑥, 𝑦) , 𝐺𝑇(𝑥, 𝑦)|

ℎ

𝑦

𝑤

𝑥

 (11) 

D. Results and discussion 

1) Whole lung infection segmentation 

In Table 2, we present the obtained results of the proposed FSS-

2019-nCov on the five before-mentioned metrics. It could be 

observed that our model performs COVID-19 infection 

segmentation with DSC of 0.789, the sensitivity of 0.803, 

Specificity of 0.986, 𝑺𝜶 of 0.834, 𝑬𝝓
  of 0.908, and MAE of 

0.065, which outperforms the cutting-edge studies on the first 

four metrics. Also, it could be observed that the SSL based 

architectures (i.e. Inf-Net [27], Semi-Inf-Net [27], and the FSS-

2019-nCov) have the highest performance on all metrics  

compared to the supervised models  that require a large number 

of samples to learn. This supports our choice for training FSS-

2019-nCov in a semi-supervised manner. In addition, the FSS-

2019-nCov achieved 4%, 5%, 2%, and 2% improvement  

respectively on DSC, Sens, Spec, and 𝑺𝜶    over the recently 

proposed Semi-Inf-Net, which validates the effectiveness of 

FSS for tackling problems with low volumes of data. Besides, 

that Semi-Inf-Net still shows the lowest MAE. This might be 

explained by the negative impact of eliminating the skip 

connection in our E-D architecture, which also demonstrates the 

effectiveness of GT guidance presented in [27].  

 

  In addition, we can further confirm the effectiveness of semi-

supervised FSS-2019-nCov by providing a visual comparison 

of the output of different models, as presented in Figure. 6. 

 

2) Multi-Class scenario 

In addition to whole lung segmentation, we seek to provide 

more informative segmentation of different classes of lung 

infections, namely GGO, which is represented as a hazy grey 

shade, and consolidation is represented as opacification with  

obscuration of margins. Thus, we evaluate the proposed FSS-

2019-nCov in the context of multi-class lung infection to 

validate the efficiency of the model in providing clinicians with  

fine-grained information for COVID-19 diagnosis and 

quantification. Table 3 presents the quantitative results of the 

multi-class FSS-2019-nCov on GGO class compared with state-

of-the-art approaches. For GGO lesion, the FSS-2019-n Cov 

achieved   0.679 of DSC, 0.768 of Sens,0.980 of Spec, 0.735 

of 𝑺𝜶, 0.894 of 𝑬𝝓
  , and 0.061 of MAE. It could be noted that 

the supervised models (i.e., FCN8 and DeepLab V3+) with pre-

Table 2. Model comparison for COVID-19 infection segmentation 

Methods 
Pre-trained 
architecture 

DSC↑ Sens↑ Spec↑ 𝑺𝜶 ↑ 𝑬𝝓 
 ↑ MAE↓ 

U-Net [9] VGG16 0.459 0.568 0.881 0.639 0.651 0.196 

H-DenseUNet [11] DenseNet-101 0.537 0.611 0.870 0.663 0.683 0.189 

U-Net++ [12] VGG16 0.607 0.701 0.932 0.739 0.751 0.139 

SegNet [13] VGG16 0.657 0.728 0.941 0.744 0.750 0.129 

Inf-Net [27] Res2Net 0.705 0.746 0.966 0.798 0.851 0.086 

SE-Net [43] - 0.621 0.719 0.949 0.751 0.801 0.142 

Semi-Inf-Net [27] Res2Net 0.752 0.757 0.965 0.818 0.902 0.061 

*FSS-2019-nCov Res2Net  0.798 0.803 0.986 0.834 0.908 0.065 

↑ denote ‘higher is better’, ↓ denote ‘lower is better’ 
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trained backbones show unacceptable performance owing to the 

data-hungry nature of supervised learning. Among them, a 

multi-class version of U-Net [9] shows comparatively higher 

results on several metrics. Additionally, few-shot-based SE-Net  

[43] has shown 3% improvements on the DSC measure though 

in the absence of a pre-trained backbone, which explains the 

superiority of few-shot learning limited data scenarios. 

Moreover, the semi-supervised approaches (either Semi-Inf-

Net-FCN8s or Semi-Inf-Net MC) shows better performance 

than supervised models  or few-shot based SE-Net [43]. This 

explains the effect of incorporating unlabeled samples in 

training to improve model classification performance and 

improve generalization performance. Furthermore, we also note 

that FSS-2019-nCov obtains 2.2%, 3.7%, and 1.7% 

Figure 6. Lung infection segmentation using proposed FSS-2019-nCov. The first row represents the original CT image from the test set. The 
corresponding segmentation outcome from the U-Netv [9], U-Net++[12], Inf-Net[27], Semi-Inf-Net[27], SE-Net[43] are presented in the second, third, 

fourth, fifth, sixth row respectively. The segmentation results of the proposed FSS-2019-nCov is presented in the seventh row. The corresponding ground 

truth label for every image is presented at the bottom of the last row of images. 
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improvements on DSC, Sensitivity and 𝑺𝜶  respectively over 

the best result in each measure.  On the other hand, for 

consolidation lesion, the FSS-2019-nCov achieved 0.529 of 

DSC, 0.534 of Sens, 0.983 of Spec, 0.661 of 𝑺𝜶, 0.797 of 𝑬𝝓
 , 

and 0.045 of MAE. It is observed that the model has similar 

behavior in segmenting this lesion, as noted from results in 

Table 3 where we attain 5%, 1%,1%, and 5% improvement on 

DSC, Sensitivity, Specificity, and  𝑺𝜶 , respectively. However, 

Semi-Inf-Net-FCN8s obtained a slight improvement over our 

model for the MEA measure, which could result from the 

effectiveness of parallel partial decoders  in pixelwise error 

between the segmentation result and GT even if they increase 

computation burden. The above discussion further validates  

that integrating TL, SSL, FSL in a single segmentation 

framework extensively improves the segmentation 

performance is scarce annotation scenarios.    

 

E. Generalization analysis 

The generalization capability of any segmentation model is an 

important aspect to demonstrate its effectiveness in real-world 

scenarios. In view of this, to understand and analyze the 

generalization capability of the proposed FSS-2019-nCov, we 

propose to evaluate it against previously mentioned 

comparative studies on the CT-2 data and present the 

corresponding results presented in Table 4. It can be noted that 

the proposed FSS-2019-nCov has a robust generalization  

performance overcoming all other approaches on all measures 

even though the data comprises axial slices with no lesions  (i.e., 

lesion-free slice). This might be reasoned by utilizing two 

datasets during training, i.e., CT-1 data and unannotated CT 

slice extracted from 20 CT volumes.  Further, the unannotated 

data comprises many lesion-free slices with no lesion to assure 

that FSS-2019-nCov can efficiently handle deal with lesion-free 

slices. Therefore, we can conclude that FSS-2019-nCov is a 

general lesion segmentation technique that can be applied to a 

variety of diseases. 

F. Ablation Experiment 

1) Impact of RR module  

In this part, we inspect the ideal positions of RR blocks for 

smoothing knowledge interactions between the conditioner 

path and the segmentation path and also compare the FSS-2019-

nCov performance when using recombination block only, 

recalibration block, and both blocks together (RR). Meanwhile, 

this experiment seeks to find the position and the type of 

interaction blocks—here, we fix all the network parameters and 

they later analyzed in subsequent sections. With two types of 

interaction blocks (i.e., SegSE, and recombination) and four 

possible positions for interaction block, there are twelve model 

variants termed as BLK-1, BLK-2.etc. In Table 5, we provide 

the segmentation DSC performance in terms of whole lung 

scenario and multi-class scenario for every configuration in 

these twelve model variants. It could be noted that BLK-3, 6, 9, 

12 with Recombination and Recalibration (RR) blocks (the 

ones that have  under the R (SegSE), and  R column) yield  

the highest DSC score, which demonstrates the efficiency of 

RR interaction modules in effectuating the interactions between 

two paths of FSS-2019-nCov architecture. This network 

behavior could be explained due to concurrent spatial and 

channel squeezing using 𝐶𝑜𝑛𝑣 1 × 1  to reduce the number of 

feature maps and increase their number later hence empower 

their representational power to convey the relevant information  

from the conditioner path to the segmentation path. 

Additionally, we could observe that the BLK-12 with RR 

blocks between all encoder, CE, and decoder blocks, BLK-12 

attained the maximum DSC since it achieved a 3% 

improvement for infection segmentation over the best DSC 

obtained by other variants that correspond to BLK-11. In the 

multi-class scenario, BLK-12 attained 1% and 2% 

improvements over GGO and consolidation correspondingly. 

This improvement is potentially associated with the complexity  

and size of each class. In other words, the size and contrast of 

the GGO facilitate its segmentation in comparison to 

consolidation.  Also, BLk-1: BLK-9 show poor performance in 

comparison to BLK-10: BLK-12. This shows that extra  

interactions enable better learning. It is obviously notable that 

Table 3. Model comparison for GGO segmentation 

Methods 
Pre-trained 

architecture 

GGO  segmentation Consolidation segmentation 

DSC↑ Sens↑ Spec↑ 𝑺𝜶 ↑ 𝑬𝝓 
 ↑  MAE↓ DSC↑ Sens↑ Spec↑ 𝑺𝜶 ↑ 𝑬𝝓 

 ↑ MAE↓ 

FCN8s [7] VGG16 0.482 0.552 0.917 0.591 0.788 0.098 0.289 0.281 0.728 0.573 0.581 0.058 

DeepLabV3+ 
(s=8) [14] 

ResNet101 0.402 0.501 0.871 0.553 0.682 0.121 0.157 0.173 0.744 0.511 0.556 0.065 

DeepLabV3+ 
(s=16) [14] 

ResNet101 0.457 0.728 0.845 0.559 0.673 0.149 0.245 0.322 0.721 0.526 0.619 0.079 

U-Net [9] VGG16 0.462 0.374 0.988 0.564 0.731 0.079 0.421 0.427 0.978 0.581 0.781 0.053 

SE-Net [43] - 0.508 0.415 0.889 0.541 0.751 0.075 0.449 0.467 0.958 0.554 0.797 0.051 

Semi-Inf-Net-
FCN8s [27] 

Res2Net + 
VGG16 

0.657 0.731 0.954 0.722 0.884 0.073 0.318 0.251 0.819 0.582 0.588 0.043 

Semi-Inf-Net & 
MC [27] 

VGG16 + 
Res2Net 

0.639 0.631 0.973 0.715 0.904 0.070 0.471 0.527 0.979 0.618 0.781 0.045 

*FSS-2019-nCov Res2Net 0.679 0.768 0.980 0.739 0.894 0.061 0.529 0.534 0.983 0.661 0.797 0.045 

↑ denote ‘higher is better’, ↓ denote ‘lower is better’ 

 Table 4. The results of evaluating different comparative models on the CT-
2 dataset. 

Methods DSC↑ Sens↑ Spec↑ 𝑺𝜶 ↑ 𝑬𝝓 
 ↑ MAE↓ 

U-Net [9] 0.337 0.682 0.841  0.523 0.649 0.221 

H-DenseUNet 
[11] 

0.419  0.635  0.964 0.547 0.561 0.167 

U-Net++ [12] 0.462  0.881  0.937 0.589 0.614  0.115 

SegNet [13] 0.453 0.844 0.932 0.624 0.6330 0.107 

Inf-Net [27] 0.579  0.870  0.974  0.651 0.742 0.054 

SE-Net [43] 0.555 0.837 0.924 0.673 0.713 0.054 

Semi-Inf-Net [27] 0.597  0.865  0.977  0.723 0.792 0.037 

*FSS-2019-nCov 0.632 0.892 0.975 0.764 0.824 0.031 

↑ denote ‘higher is better’, ↓ denote ‘lower is better’ 
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model variants with encoder interactions (i.e., BLK-1, 2, 3) 

show higher performance compared to model variants with  

decoder interactions (i.e., BLK-7: BLK-9). This shows that 

encoder interactions are much representative and influential 

than CE or decoder interactions. Nevertheless, as BLK-12 

yielded better performance than other model configurations. 

This could be explained by the encoder and decoder interactions 

generating complementary knowledge representation to the 

segmentation path to enable more enhanced segmentation of the 

query slices. From these discussions, it could be deduced that 

applying RR blocks at Encoder, CE, decoder leads to better 

performance than applying them to any single position. 

 

2) Impact of Skip Connection 

The connections have been regarded as a principle design 

choice in most F-CNN. It enables the concatenation of encoder 

output map and input feature maps of the decoder block with  

the same spatial resolution. This connection helps the decoder 

in capturing the contextual information and hence smooths the 

flow of gradient. In light of this, we start building our model by 

applying skip connections in both the conditioner path and 

segmentation path, and the result show copy over effect [43]. 

This means that the prediction on the query slice is almost 

symmetric to the support mask despite the difference between 

the support and query slice.  Therefore, we conducted several 

experiments to investigate the impact of using skip connection 

on model performance in terms of DSC and hence on the copy 

over effect. In this experiment, we fixed all network parameters 

used in BLK-12 and just try different skip connection 

configurations. Thus, the performance of FSS-2019-nCov with  

and without skip connections is presented in Table 6. It could 

be noted that the DSC of whole infection segmentation 

decreased by 4% and also decreased by 3% in the case of GGO 

and Consolidation when applying skip connections in the two 

paths of the network (i.e., conditioner and segmentation paths). 

Also, applying skip connection on only the segmentation path 

obviously yields unsatisfactory results. Moreover, including the 

skip connections in the conditioner path results in a 5% 

decrease in DSC in different segmentation scenarios. 

 

3) Impact of pre-training 

In this experiment, we choose U-Net with a non-pre-trained 

encoder as a baseline architecture for both segmentation and 

conditioner paths. Then we replace the baseline encoder with a 

pre-trained one to obtain enhanced performance. The 

architecture with a pre-trained residual encoder is called the 

'Backbone'.  The result with and without pre-training compared 

and it could be noted that using pre-trained Res2Net clearly  

improves performance as depicted in Table 7. 

  

4) Impact of SAC module 

The proposed SAC block utilizes a variety of SS-Conv  

organized in the form of an Inception module to extract high-

level spatial representation. Thus, to investigate the 

effectiveness of SS- Conv, we used atrous convolution to 

replace the SS-Conv in the SAC block (denoted Backbone + 

SAC (atrous)). Table 7 shows that the proposed SAC block 

achieves 3% DSC improvement over the traditional atrous 

block (Backbone + SAC (atrous)) and reduces the MAE with  

0.061 in whole infection segmentation to achieve a s imilar 

improvement in other metrics. This, in turn, demonstrates that 

SS-Conv effectively enables improved feature fusion to extract  

high-level multi-scale contextual feature maps with high 

resolution and hence improve segmentation performance. 

 

5) Impact of MPP 

In an attempt to validate the usefulness of the proposed MPP 

block, we experiment with our Backbone architecture with and 

without MPP blocks for infection segmentation, as presented in 

Table 7.  It is obviously noted that the MPP block boosts the 

model performance. The ‘Backbone + MPP’ achieved a 5% 

improvement on DSC, and reduced the MEA with 0.057. This 

indicates MPP block could effectively encode the local 

contextual representation from the encoder generated maps 

feature maps. 

 

Table 5. Comparison between a different variant of the model to 

investigate the optimal position and kind of interaction blocks  

 Position of  
RR Block  

Interaction 
block 

DSC 

 
Enc  CE Dec 

R 
(SegSE) 

R Infection GGO Cons 

BLK-1      0.661 0.475 0.405 

BLK-2      0.414 0.274 0.314 

BLK-3      0.698 0.513 0.426 
BLK-4      0.571 0.369 0.321 

BLK-5      0.327 0.221 0.221 

BLK-6      0.545 0.373 0.395 

BLK-7      0.623 0.441 0.234 

BLK-8      0.421 0.239 0.326 

BLK-9      0.644 0.455 0.361 

BLK-
10 

     
0.733 0.669 0.511 

BLK-
11 

     
0.77 0.632 0.514 

BLK12      0.798 0.679 0.529 

R (SegSE) represent recalibration block,R represent recombination block 

Table 6. Experimental results for analyzing the impact of using sip 

connection in E-D architecture. 

Skip Connections DSC 

Conditioner 
path 

Segmentation 
path 

infection GGO  Cons 

  0.749 0.573 0.485 

  0.752 0.644 0.506 
  0.798 0.679 0.529 
  0.415 0.256 0.201 

 
Table 7. Ablation experiments on the proposed FSS-2019-nCov on CT-1 

dataset. 

Methods DSC↑ Sens↑ Spec↑ 𝑺𝜶 ↑ 𝑬𝝓 
 ↑  MAE↓ 

Baseline w/o 
pretraining  

0.643 0.681 0.834 0.721 0.719 0.278 

Baseline w/ 
pre-training 

0.665 0.718 0.881 0.741 0.735 0.181 

Backbone + 
SAC (atrous) 

0.701 0.737 0.929 0.769 0.815 0.166 

Backbone + 

SAC (SS-Conv) 
0.731 0.748 0.956 0.781 0.863 0.105 

Backbone + 
MPP 

0.715 0.712 0.941 0.749 0.841 0.119 

*FSS-2019-
nCov 

0.798 0.803 0.986 0.834 0.908 0.065 

↑ denote ‘higher is better’, ↓ denote ‘lower is better’ 
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6) Impact of Semi-supervised training 

In order to demonstrate the efficiency of semi-supervised 

training of the proposed FSS-2019-nCov, we compare 

performance when trained in a supervised and semi-supervised 

manner, and we report the corresponding results in Table 8. It 

can be noted that semi-supervised training shows significant 

performance improvements in segmenting infection lesion (i.e . 

DSC of 0.119, Sensitivity of 0.059, Specificity of 0.027, 𝑺𝜶 of 

0.06, 𝑬𝝓 
  of 0.105, and MAE of 0.040. This observation 

provides clear evidence regarding the effectiveness of 

incorporating unannotated CT data for training FSS-2019-

nCov.   

V. MANAGERIAL IMPLICATIONS 

COVID-19 segmentation is the task of determining the 

infection area within lung CT scans. This task could be 

addressed as a binary classification problem or a multi -

classification problem. In binary classification scenarios, we 

aim to distinguish between infected and uninfected areas . In a 

multi-class scenario, we aim to distinguish between different  

types of infection. The key challenge of this study is the limited 

amount of labeled CT scans. We propose a novel architecture 

that integrates pre-trained encoder, FSS, and SSL to overcome 

this limitation. The Res2Net50-based encoder enables 

improved network convergence. The FSS architecture enables 

learning from limited support samples and better generalization  

of query samples. We introduce adaptive recombination and 

recalibration module between the correspondence positions in 

the conditioner and segmentation path to facilitate knowledge 

representation exchange. This is established by our experiments  

since it can be safely claimed that RR significantly finetune 

knowledge interaction and hence improve the performance. 

Meanwhile, the CE module enables capturing contextual 

information of infection at different scales, facilitating the 

detection of different sizes of infections. Comprehensive 

experiments confirmed the effectiveness of each block.  As a 

direct implication, the proposed FSS-2019-nCov in study work 

can be utilized to develop an automated lung infection 

segmentation system with scarcely annotated data.  

VI. SHORTCOMINGS AND POSSIBLE REMEDIES 

Extra deep learning improvement will be addressed by future 

work in terms of performance improvement and computational 

complexity reduction. We aim to investigate three crucial 

challenges that we regard as specifically related to the medical 

image analysis community. (1) The training configuration of 

FSS-2019-nCov denotes a challenging task since it still 

necessitates a comprehensive parameter improving to attain the 

highest results. An automatized tuning tool can be used for this. 
(2) The predictions usually lack laborious uncertainty 

quantification. We aim to develop Bayesian variants or 

fuzzified variants of proposed FSS-2019-nCov that could 

enable estimating uncertainty in prediction. (3) Although 

extensive analysis has provided us with a great understanding 

of the behavior of FSL and FSS, accountability and 

interpretability are considered as a downside of our FSS-2019-

nCov and an attention technique could mitigate this. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a novel semi-supervised few-shot 

segmentation model for COVID-19 segmentation from axial 

CT scans using dual-path architecture. The two paths had a 

symmetric structure and comprise an encoder-decoder 

architecture with a smoothed context fusion module. The 

encoder architecture was based on pre-trained ResNet34 

architecture to facilitate the learning process. We proposed to 

merge recombination and recalibration to transfer learned 

knowledge from the support set to be used for query slices 

segmentation. The model trained in semi-supervised strategy by 

incorporating unlabeled CT slices and labeling one during 

training, improving generalization performance. We 

investigated the proposed FSS-2019-nCov and numerous 

baselines on publicly available COVID-19 CT scans. The 

results showed that our model could outperform all approaches 

to multiple evaluation metrics. We also introduced 

comprehensive experiments for architectural selection 

concerning RR blocks, Skip connections, and the proposed 

building blocks. However, the segmentation performance of the 

proposed FSS-2019-nCov was unable to achieve a very precise 

segmentation due to limited supervision, which could be 

handled with a generative learning schema. An additional 

limitation was a lack of volumetric data representation, which 

could be alleviated by expanding our model to 3D CT volumes 

of COVID-19. Consequently, we aim to investigate the 

segmentation of COVID-19 using a large amount of volumetric 

3D data in the near future.  
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