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Abstract—Network function virtualization (NFV) in 6G 
can use standard virtualization techniques to enable 
network functions via software. Resource scheduling is one 
of the key research areas of NFV in 6G and is mainly used to 
deploy service function chains (SFCs) in substrate networks. 
However, determining how to utilize network resources 
efficiently has always been a difficult problem in SFC 
deployment. This paper focuses on how to efficiently 
provision online SFC requests in NFV with 6G. We first 
establish a mathematical model for the problem of online 
SFC provisioning. Then, we propose an efficient online 
service function chain deployment (OSFCD) algorithm that 
selects the path to deploy that is close to the SFC length. 
Finally, we compare our proposed algorithm with three 
other existing algorithms by simulation experiments. The 
experimental results show that the OSFCD algorithm 
optimizes multiple performance indicators of online SFC 
deployment. 

Index Terms— Network function provisioning; Resource 
efficiency; Latency; Network in box; 6G 

I.  INTRODUCTION 
Currently, communication networks adopt the architecture of 

dedicated hardware and software. The dedicated equipment 
produces not only reliability and high performance but also 
some new issues. For example, resources cannot be shared, 
scalability is limited, and capital expenditure (CAPEX) and 
operating expenditure (OPEX) remain high. The proposal of 
network function virtualization (NFV) [1] brings new 
development opportunities to communication networks, 
including 5G and 6G. NFV can use standard virtualization 
technology to enable network functions via software so that they 
can be run on standard server virtualization software and be 
installed or moved to any location in the network as required 
without deploying new hardware equipment. 

Network functions (NFs) in the traditional network are 
replaced by virtual network functions (VNFs), including 6G and 
wireless networks. When a user requests a network service from 
telecommunications service providers (TSPs), the network flow 
will pass through certain specific VNFs to reach the user. The 
abstract topology consisting of the TSP, specific VNFs, and the 
user forms the service function chain (SFC) [2]. Resource 

allocation is one of the key areas of NFV research. Resource 
allocation is mainly used to deploy SFC in the network topology 
and to efficiently use the network resources. The pros and cons 
of resource allocation will directly affect the costs of TSPs and 
the user experience. SFC deployment has been certified as an 
NP-H problem [3], which is difficult to solve in polynomial 
time.  

To date, many academics have invested in SFC deployment 
research. Liu et al. [4] proposed a two-step algorithm G-SA for 
SFC deployment, first finding nodes in the network to deploy 
VNFs. Then, they deploy VNLs by computing the shortest path 
from the source node to the sink node. The authors of Ref. [5] 
proposed three heuristic deployment algorithms: ER, ER_CS 
and ER_CS_ADJ. The ER algorithm mainly considered the 
reliability requirements, ER_CS optimized the network load 
based on ER, and the ER_CS_ADJ algorithm further optimized 
the bandwidth resource consumption of the deployment paths. 

Table 1 Performance optimization in different algorithms	

Algorithm Bandwidth Latency Success 
Ratio 

Load 
Balance 

G-SA P P O O 
ER O O O O 

ER_CS O O O P 
ER_CS_ADJ P O O P 

Although the algorithms mentioned above have different 
algorithm designs for SFC deployment, neither can efficiently 
use the underlying network resources. In addition, the two 
algorithms did not consider online SFC deployment. They also 
centrally deployed VNFs on partial nodes, resulting in an 
unbalanced network load and affecting the deployment of 
subsequent SFCs.  

However, they are not specifically designed for 6G. The 6G 
network can provide smart network services to users via 
network-as-a-service (Naas) that provisions the shared physical 
network resources to different users by using network slicing 
[6-8]. SDN, NFV and SFC orchestration work as key enablers 
for network slicing in 6G [9]. Therefore, the research in this 
work for efficient SFC provisioning can enable and drive 
network-in-a-box deployment for industrial applications in 6G 
networks. 

Therefore, we propose an online service function chain 
deployment (OSFCD) algorithm, including 6G and wireless 
networks. Because the performance of the SFC deployment 
problem is closely related to the hops of the deployment path, 
the main focus of the OSFCD algorithm is to choose the path 
that is close to the length of SFC to deploy and efficiently use 
network resources. In addition, the emergence of hot nodes or 
links will affect the deployment of the subsequent SFCs and 
reduce the overall success rate. It needs to design algorithms to 
achieve network load balancing. The main contributions of this 
paper are summarized as follows: 
l We establish a mathematical model for the problem of online 

SFC provisioning in Section III. Based on the established 
model, Section IV introduces an efficient deployment 
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algorithm OSFCD. The algorithm optimizes multiple 
performance indicators of online SFC deployment. 

l The load rate of the network is also considered to avoid hot 
nodes or links from appearing in the network. We prioritize 
the nodes or links with a smaller load rate for network load 
balancing in the deployment algorithm OSFCD. 

l Through the simulation experiment, we compare the 
performance of the OSFCD algorithm with the existing 
approaches in Section Ⅴ. 

The rest of this paper is arranged as follows. We review the 
related work in Section II. A mathematical model for online SFC 
provisioning is presented in Section Ⅲ. In Section IV, based on 
the established model, we introduce the OSFCD algorithm. 
Section Ⅴ introduces the simulation experiments and 
performance comparison of the OSFCD algorithm. We conclude 
this work in Section VI. 

II.  RELATED WORK 
A. Cost-efficient SFC provisioning 

The deployment of SFCs has attracted the attention of many 
academics, who have worked to reduce the deployment costs of 
SFCs. Tang et al. [10] studied SFC deployment in the 5G access 
network. A two-stage queue-aware deployment algorithm was 
proposed to optimize deployment cost and improve the stability 
of network. Zhao et al. [11] proposed SFC deployment 
algorithm SFCM- FOCL, which studied the orchestration of 
SFC in the 5G network environment to minimize the cost of 
deployment. In [12], the authors studied the composition and 
embedding of SFC in the 5G network. Based on a greedy 
algorithm, a heuristic algorithm was proposed to improve the 
success rate and reduce the embedding cost. The authors of [13] 
proposed a new SFC deployment framework X-FORCE in 5G 
network to deploy SFC and manage the SFC life cycle. The 
framework improved network performance and saved network 
resources. 
B. Low-latency SFC provisioning 

End-to-end delay may affect the users’ experiences. In [14], a 
delay-aware VNF orchestration algorithm was designed to 
improve the acceptance rate of SFCs by selecting VNFs with 
guaranteed delay. The authors of [15] studied SFC provisioning 
in the 5G network. A new algorithm eRESERV was proposed to 
improve the reliability of the 5G network under the delay 
constraint of SFC. In [16], a new SFC orchestration scheme was 
proposed to reduce the deployment path delay by optimizing the 
selection of VNFs and traffic control in the 5G network. The 
authors of [17] established an integer linear programming model 
for SFC orchestration. Based on the established model, a 
latency-aware heuristic algorithm was proposed to optimize the 
deployment delay of SFC requests. In [18], the authors 
investigated dynamic SFC orchestration under SDSN-NFV 
environments. They proposed a middlebox delay optimization 
(MDO) algorithm to reduce the transmission delay. 
C. SFC deployment with machine learning 

With the emergence of machine learning, an increasing 
number of academics have applied machine learning to SFC 
orchestration. Li et al. [19] utilized reinforcement learning 
technology to deploy SFCs with security requirements. The 
authors also designed a reward function to balance different 
optimization objectives. In [20], the authors used a partial 

observation Markov decision process (POMDP) to perceive the 
network topology. Based on POMDP, a deployment approach 
was designed that considered the particularity of SFC 
provisioning in cloud radio access networks. A deep learning 
model was designed to predict future virtual network function 
service chain (VNF-SC) requests for inter-DC networks in [21]. 
According to the predicted SFC requests, network resources can 
be predeployed. Lightpath establishment and VNF mapping can 
be performed accordingly. The authors of [22] combined the 
random cloud selection technology with the prediction model of 
support vector regression to improve the cost and latency of SFC 
provisioning. 

III.  PROBLEM STATEMENT AND MODELING 
A. Substrate network 

We can abstract the substrate network into an undirected 
topology 𝐺" = (𝑁", 𝐸") , where 𝑁" = {𝑛+, 𝑛,, … , 𝑛 ." }  is the 
set of network nodes and 𝐸" = 𝑒+, 𝑒,, … , 𝑒 1"  is the set of 
network links. |𝑁𝑃| and |𝐸𝑃| represent the amount of network 
nodes and links, respectively. A network node 𝑛4 represents a 
server in the network, which contains certain computing 
resources 𝑎(𝑛4) . We use 𝑟(𝑛4)  to denote the available 
computing resources. 𝑙𝑟(𝑛4) represents the node load rate. The 
calculation of 𝑙𝑟 𝑛4  is shown in Formula (1). 

           𝑙𝑟 𝑛4 = 8 9: ;< 9:
8(9:)

		∀	𝑛4 ∈ 𝑁" (1) 

 𝑒4 = 𝑒4
9@, 𝑒4

9A 				∀𝑒4 ∈ 𝐸" (2) 

For a substrate link 𝑒4 , 	𝑎(𝑒4)  represents total bandwidth 
resources. 𝑟(𝑒4) represents remaining bandwidth resources. The 
delay of link 𝑒4 is represented by 𝑑(𝑒4). 𝑒4

9@  and 𝑒4
9A  represent 

the two nodes connected by link 𝑒4. Therefore, link 𝑒4 can also 
be replaced by a node pair (𝑒4

9@, 𝑒4
9A), as shown in Formula (2). 

𝑙𝑟(𝑒4) represents the link load rate. The calculation of 𝑙𝑟(𝑒4) is 
shown in Formula (3). 

 𝑙𝑟 𝑒4 = 8 C: ;< C:
8(C:)

		∀	𝑒4 ∈ 𝐸"     (3) 

In addition, we use 𝑝(𝑛4, 𝑛E) to denote a path between nodes 
𝑛4  and 𝑛E , where 𝑝(𝑛4, 𝑛E) is a set that contains all substrate 
links on this path, which is shown in Formula (4). As shown in 
Formula (5), 𝑑 𝑝(𝑛4, 𝑛E)  represents end-to-end delay of 
𝑝(𝑛4, 𝑛E), which equals the sum of all link transmission delays. 
ℎ 𝑝(𝑛4, 𝑛E)  is used to denote the number of links on path 
𝑝 𝑛4, 𝑛E . 𝑏H49 𝑝(𝑛4, 𝑛E)  is used to indicate the minimum 
remaining bandwidth resource on path 𝑝 𝑛4, 𝑛E . These values 
are shown in Formulas (6) and (7). 

 𝑝 𝑛4, 𝑛E = 𝑒H,… , 𝑒I ⊆ 𝐸"		∀	𝑛4, 𝑛E ∈ 𝑁" (4) 

 𝑑 𝑝(𝑛4, 𝑛E) = 𝑑(𝑒I)CK∈L(9:,9M) 	∀	𝑛4, 𝑛E ∈ 𝑁"  (5) 

 ℎ 𝑝(𝑛4, 𝑛E) = 𝑝 𝑛4, 𝑛E 		∀	𝑛4, 𝑛E ∈ 𝑁"   (6) 

 𝑏H49 𝑝(𝑛4, 𝑛E) = 𝑟(𝑒I)CK∈L(9:,9M)
H49      (7) 

B. SFC request 
We denote an SFC request as 𝑆𝐹𝐶 =

	(𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST) . 𝑁Q = 	 {𝑣𝑛𝑓+, 𝑣𝑛𝑓,, … , 𝑣𝑛𝑓|.Q|}  represents 

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

 

 

the set of VNFs in the 𝑆𝐹𝐶 . |𝑁𝑆|  represents the number of 
VNFs. The computing resources requested by 𝑣𝑛𝑓4 are denoted 
as 𝑅(𝑣𝑛𝑓4) . We use 𝑁(𝑣𝑛𝑓4)  to represent the substrate node 
where the VNF 𝑣𝑛𝑓4  is deployed. Formula (8) indicates that 
𝑍 𝑣𝑛𝑓4, 𝑛E  is a binary variable. If 𝑍 𝑣𝑛𝑓4, 𝑛E = 1 , 𝑣𝑛𝑓4  is 
deployed on 𝑛E; otherwise, 𝑍 𝑣𝑛𝑓4, 𝑛E = 0. 

 𝑍 𝑣𝑛𝑓4, 𝑛E ∈ 0,1 	∀𝑣𝑛𝑓4 ∈ 𝑁Q, ∀𝑛E ∈ 𝑁"         (8) 

𝐸Q = 	 𝑣𝑛𝑙+, 𝑣𝑛𝑙,, … , 𝑣𝑛𝑙 1Q  represents the set of VNLs, and 
|𝐸𝑆| represents the number of VNLs. Similarly, deploying a 
VNL 𝑣𝑛𝑙4  needs to consume bandwidth resources 𝑅(𝑣𝑛𝑙4) . 
𝑣𝑛𝑙4

[9\@ and 𝑣𝑛𝑙4
[9\A represent the two VNFs connected by VNL 

𝑣𝑛𝑙4. We use 𝐸 𝑣𝑛𝑙4  to denote the path on which VNL 𝑣𝑛𝑙4 is 
deployed. 𝐷 𝑣𝑛𝑙4  denotes the latency, and 𝐵 𝑣𝑛𝑙4  is the 
bandwidth consumption for deploying the path of 𝑣𝑛𝑙4. These 
parameters are shown in Formulas (9) to (11). Formula (12) 
indicates that 𝑌 𝑣𝑛𝑙4, 𝑒E  is a binary variable. If 𝑌 𝑣𝑛𝑙4, 𝑒E = 1, 
𝑣𝑛𝑙4 is deployed on 𝑒E; otherwise, 𝑌 𝑣𝑛𝑙4, 𝑒E = 0. 

 𝐸 𝑣𝑛𝑙4 = 𝑝 𝑁 𝑣𝑛𝑙4
[9\@ , 𝑁 𝑣𝑛𝑙4

[9\A 		∀𝑣𝑛𝑙4 ∈ 𝐸Q (9) 

 𝐷 𝑣𝑛𝑙4 = 𝑑 𝐸 𝑣𝑛𝑙4 = 𝑑(𝑒I)CK∈1([9_:) ∀𝑣𝑛𝑙4 ∈ 𝐸Q (10) 

 𝐵 𝑣𝑛𝑙4 = 𝑅 𝑣𝑛𝑙4 ∗ ℎ 𝐸 𝑣𝑛𝑙4 		∀𝑣𝑛𝑙4 ∈ 𝐸Q  (11) 

 𝑌 𝑣𝑛𝑙4, 𝑒E ∈ 0,1 		∀𝑣𝑛𝑙4 ∈ 𝐸Q, ∀𝑒E ∈ 𝐸" (12) 

The locations of TSP and the user are represented by 𝑆 and 𝐷, 
respectively. In addition, network flows must pass through 

VNFs in the specified order, denoted as 𝐶ST = 	 {𝑣𝑛𝑓+
[9_a 𝑣𝑛𝑓,

[9_b …
[9_|cd|

𝑣𝑛𝑓|.Q|}. In the process of online SFC deployment, 
for an SFC 𝑆𝐹𝐶4, we use 𝑇(𝑆𝐹𝐶4) to represent the arrival time 
interval of 𝑆𝐹𝐶4 with the previous SFC, and 𝐹(𝑆𝐹𝐶4) represents 
the service time of 𝑆𝐹𝐶4. In addition, 𝑇𝑅(𝑆𝐹𝐶4) denotes the time 
required to respond to SFC request 𝑆𝐹𝐶4.  

Throughout the deployment process, we record all SFC 
requests in the collection 𝐿Qgh . For an SFC 𝑆𝐹𝐶4 , we use 
𝐷 𝑆𝐹𝐶4 	to represent end-to-end delay. 𝐵 𝑆𝐹𝐶4  represents the 
bandwidth consumption. These parameters are equivalent to the 
sum of transmission delay or bandwidth consumption of VNLs 
in 𝑆𝐹𝐶4, respectively, and are shown in Formulas (13) and (14). 
Formula (15) indicates that 𝑆 𝑆𝐹𝐶4  is a binary variable. If 
𝑆 𝑆𝐹𝐶4 = 1 , 𝑆𝐹𝐶4  is deployed successfully; otherwise, 
𝑆 𝑆𝐹𝐶4 = 0. 

  𝐷 𝑆𝐹𝐶4 = 𝐷 𝑣𝑛𝑙I 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh[9_K∈1d  (13) 

 𝐵 𝑆𝐹𝐶4 = 𝐵 𝑣𝑛𝑙I 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh[9_K∈1d  (14) 

     𝑆 𝑆𝐹𝐶4 ∈ 0,1 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh   (15) 
C. Online SFC deployment 
 (1) Online SFC deployment process 

During the entire SFC deployment process, we use 𝐿Qgh =
	{𝑆𝐹𝐶+, 𝑆𝐹𝐶,, … , 𝑆𝐹𝐶|idjk|	}  to record all requested SFCs. 
𝐿Qgh  represents the amount of SFCs. 𝑁𝑈𝑀nopp 𝐿Qgh  is used 

to represent the number of SFCs successfully deployed. In 
addition, 𝐵qrq 𝐿Qgh  and 𝐷qrq 𝐿Qgh  denote the total bandwidth 
consumption and latency, respectively. 𝑇𝑅qrq 𝐿Qgh  denotes the 
response time for 𝐿Qgh . Here, we only count the SFCs that are 
successfully deployed. These parameters are shown in Formulas 
(16) to (19). 

 𝑁𝑈𝑀nopp 𝐿Qgh = 𝑆(𝑆𝐹𝐶s)Qght∈idjk  (16) 

  𝐵qrq 𝐿Qgh = 𝐵 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk    (17) 

    𝐷qrq 𝐿Qgh = 𝐷 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk    (18) 

  𝑇𝑅qrq 𝐿Qgh = 𝑇𝑅 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk    (19) 

Because we are studying the problem of online SFC 
deployment, the dynamic arrival and departure of SFCs will be 
considered. We model the dynamic arrival and departure of an 
SFC as two Poisson processes. Therefore, the arrival time 
interval and service time of the SFC are independently and 
identically distributed and obey an exponential distribution. 
These processes are shown in Formulas (20) and (21), where 𝑢 
and 𝑣 are both random numbers between 0 and 1. In addition, 𝜆 
is the arrival rate. 𝜇 is the service rate. 

𝑇 𝑆𝐹𝐶4x+ = 𝑇 𝑆𝐹𝐶4 − _rz{

|
		𝑢 ∈ (0,1)        (20) 

    𝐹 𝑆𝐹𝐶4x+ = 𝐹 𝑆𝐹𝐶4 − _rz}

~
		𝑣 ∈ (0,1)  (21) 

 (2) Network resource constraints 
For the VNF 𝑣𝑛𝑓4  and the substrate node 𝑁 𝑣𝑛𝑓4 , the 

remaining resources of 𝑁 𝑣𝑛𝑓4  are required to exceed the 
computing resources requested by 𝑣𝑛𝑓4 . This requirement is 
shown in Formula (22). For the substrate node 𝑛E, the consumed 
computing resources are required to be less than all computing 
resources of node 𝑛E. This is shown in Formula (23). Formulas 
(24) and (25) indicate that during an SFC deployment, each 
VNF and substrate node are mapped one-to-one. This is to 
simplify the deployment schemes and to prevent the load from 
being concentrated on a part of the nodes and for better load 
balancing. 

 𝑟 𝑁 𝑣𝑛𝑓4 ≥ 𝑅 𝑣𝑛𝑓4 		∀𝑣𝑛𝑓4 ∈ 𝑁Q (22) 

𝑍 𝑣𝑛𝑓4, 𝑛E[9\:∈.dQghK∈idjk ×𝑅 𝑣𝑛𝑓4  

 ≤ 𝑎 𝑛E 		∀𝑛E ∈ 𝑁" (23) 

 0 ≤ 𝑍 𝑣𝑛𝑓4, 𝑛E ≤ 1		∀9M∈.� 𝑣𝑛𝑓4 ∈ 𝑁Q (24) 

 0 ≤ 𝑍 𝑣𝑛𝑓4, 𝑛E ≤ 1		∀[9\:∈.d 𝑛E ∈ 𝑁" (25) 

For the VNL 𝑣𝑛𝑙4  and the substrate path 	𝐸 𝑣𝑛𝑙4 , the 
remaining bandwidth resources of links on the path 𝐸 𝑣𝑛𝑙4  are 
required to be greater than the bandwidth demand of VNL 𝑣𝑛𝑙4. 
This is shown in Formula (26). For the substrate link 𝑒E , the 
consumed bandwidth resources are required to be less than all 
bandwidth resources of link 𝑒E. It is shown in Formula (27). In 
contrast to the deployment of VNFs, as shown in Formula (28), 
the deployment of a VNL requires only that one network link 
carries only one VNL during the deployment of an SFC. This is 
because one VNL can map into multiple substrate links. 

 𝑏H49 𝐸 𝑣𝑛𝑙4 ≥ 𝑅 𝑣𝑛𝑙4 		∀𝑣𝑛𝑙4 ∈ 𝐸Q (26) 

 𝑌 𝑣𝑛𝑙4, 𝑒E[9_:∈1dQghK∈idjk ×𝑅 𝑣𝑛𝑙4  

 ≤ 𝑎 𝑒E 		∀𝑒E ∈ 𝐸" (27) 

 0 ≤ 𝑌 𝑣𝑛𝑙4, 𝑒E ≤ 1		∀[9_:∈1d 𝑒E ∈ 𝐸" (28) 

(3) Online SFC provisioning example 
To better illustrate the online SFC provisioning, we give an 

example in Figures 1 to 3. These three figures represent the 
deployment of SFCs at three different moments. Each figure 
contains examples of SFC requests and the network topology. In 
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the figures, (𝑖, 𝑟(𝑛4)) is used to represent an attribute of the node. 
𝑖 and 𝑟(𝑛4) represent the node ID and the remaining computing 
resources, respectively. Similarly, (𝑖, 𝑟 𝑒4 , 𝑑(𝑒4))  is used to 
represent an attribute of the link, and 𝑖 is the link ID. 𝑟(𝑒4) and 
𝑑 𝑒4  represent the remaining bandwidth resources and the 
delay of the link, respectively. Here, for simplicity, we assume 
that the total resources of each node and each link are 50 units. 
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(7,46,10)
(8,42,10)

√
×
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Fig. 1. Online SFC deployment at time T1. 

In Figure 1, we show the deployment of an SFC at time T1. 
𝑆𝐹𝐶+ has just arrived. Here, we simply give two deployment 
schemes, 𝑠𝑐ℎ𝑒𝑚𝑒_1  and 𝑠𝑐ℎ𝑒𝑚𝑒_2 . Because the network 
resources are sufficient relative to 𝑆𝐹𝐶+ , both schemes can 
successfully deploy 𝑆𝐹𝐶+ . However, both the bandwidth 
consumption and latency of 𝑠𝑐ℎ𝑒𝑚𝑒_1 are 19, while these two 
indicators of 𝑠𝑐ℎ𝑒𝑚𝑒_2 are 24 and 32, respectively. Therefore, 
we select 𝑠𝑐ℎ𝑒𝑚𝑒_1  to deploy 𝑆𝐹𝐶+ . This example simply 
indicates that the performance indicators of SFC deployment are 
relevant to the hops of deployment paths. 

SFC2  : Arrival
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Fig. 2. Online SFC deployment at time T2. 
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Fig. 3. Online SFC deployment at time T3. 

Figure 2 shows that at time T2, 𝑆𝐹𝐶, has arrived, and 𝑆𝐹𝐶+ is 
still in service. Here, we still give two schemes, 𝑠𝑐ℎ𝑒𝑚𝑒_1 and 

𝑠𝑐ℎ𝑒𝑚𝑒_2. Similarly, 𝑆𝐹𝐶, can be deployed in both schemes. 
However, it is easy to calculate that the load rate of the nodes 
and links in 𝑠𝑐ℎ𝑒𝑚𝑒_2  has already been high, while the 
resources in 𝑠𝑐ℎ𝑒𝑚𝑒_1 are still abundant. Therefore, to achieve 
load balancing, we select 𝑠𝑐ℎ𝑒𝑚𝑒_1 to deploy 𝑆𝐹𝐶,. 

Figure 3 shows that at time T3, 𝑆𝐹𝐶+ completes the requested 
service and leaves, and the 𝑆𝐹𝐶, request is still in service. We 
need to return the network resources consumed by 𝑆𝐹𝐶+ to the 
network topology. These are reflected in the remaining 
resources of the nodes and links in the figure. 

IV. ALGORITHM DESIGN 
In the previous section, we have described the online SFC 

provisioning problem and established a mathematical model for 
it. To efficiently solve the researched problem, use the network 
resources, and optimize network load balancing, we propose the 
OSFCD algorithm within wired and wireless networks, 
including 6G.  
A. Online SFC deployment 

The OSFCD algorithm requires the network topology 𝐺" and 
SFC request as inputs and outputs a deployment scheme for this 
SFC. Here, the algorithm to find the minimum k (FMK) and 
shortest path deployment (SPD) algorithm are described in 
detail in Algorithm 2 and Algorithm 3, respectively. We first use 
the FMK algorithm to compute the length of path 𝑘 between the 
TSP and user that is greater than or equal to the length of the 
SFC in the network topology. Here, we use the number of links 
to measure the lengths of SFC and the deployment path.  

Algorithm 1: Online SFC deployment (OSFCD) algorithm 
Input: (1) Network topology 𝐺" = (𝑁", 𝐸"). 
    (2) SFC request 𝑆𝐹𝐶 = (𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST). 
Output: The deployment scheme for 𝑆𝐹𝐶. 
1: 𝑘 = 𝐹𝑀𝐾( 𝐸𝑆 , 𝑆, 𝐷); 
2: if 𝑘 < |𝐸𝑆|, do 
3: End Algorithm 1. 
4: end if 
5: if 𝑘 > |𝐸𝑆|, do 
6:      Expand 𝑆𝐹𝐶 so that |𝐸𝑆| is equal to 𝑘;  
7: end if 
8: 𝑆𝑃𝐷 𝑆𝐹𝐶, 0, 𝑆 . 

If 𝑘  is less than |𝐸𝑆| , we will directly abandon the 
deployment of this SFC. This is because in the network, there is 
no path with a length greater than or equal to |𝐸𝑆| between the 
TSP and user, or the existing path is too long, which will cause 
abundant resource consumption. If 𝑘  is greater than |𝐸𝑆| , it 
means that there is a path in the network that can map this SFC 
but there are extra nodes and links in the path. Therefore, we 
need to simply extend the SFC. To help to understand the SFC 
expansion, an example is shown in Figure 4. 

To make the SFC length equal to 𝑘, several VNFs and VNLs 
need to be added. The difference is that adding VNLs requires 
additional bandwidth resources, while adding VNFs does not. 
Therefore, to consume less bandwidth resources, we choose the 
VNL with the smallest 𝑅(𝑣𝑛𝑙4)  for expansion. As shown in 
Figure 4 (here, we assume 𝑘	 = 	5), we need to expand two 
VNLs. 𝑉𝑁𝐿� is the VNL with the minimum bandwidth resource 
request, so we add 𝑉𝑁𝐿�  and 𝑉𝑁𝐿� , and their bandwidth 
resource requests are the same as that of 𝑉𝑁𝐿�. In addition, we 
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have added two VNFs, 𝑉𝑁𝐹�  and 𝑉𝑁𝐹� . Their computing 
resource requests are all zero. 

VNF1 VNF2TSP User
R=10 R=7

VNL1 VNL2 VNL3

R=8 R=6 R=5

SFC1  : Before Expansion

SFC1  : After Expansion
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R=5

VNF1 VNF2TSP
R=10 R=7

VNL1 VNL2 VNL3
R=8 R=6 R=5 User

R=0 R=0

 
Fig. 4. Example of SFC expansion. 

After completing the above work, we can ensure that |𝐸𝑆| is 
equal to 𝑘. Next, we use SPD algorithm to deploy the SFC. The 
details of SPD algorithm are introduced in subsection C later in 
Section IV. 
B. Find minimum k 

For a network topology, we use 𝐴 to represent its adjacency 
matrix. We can obtain the number of paths whose length is equal 
to 𝑛 from the matrix 𝐴9 between any two nodes in the topology. 
Here, we just need to know whether there is a path of length 𝑘 
between two nodes.  

Algorithm 2: Find minimum k (FMK) 
Input: (1) Adjacency matrix of network topology 𝐴  
   and 𝐴+ → 𝐴+�; 
   (2) The # of VNLs: |𝐸𝑆|; 
    (3)	The locations of TSP 𝑆 and user 𝐷. 
Output: Length of path 𝑘. 
1: for 𝑖 = |𝐸𝑆| to 15, do 
2:  if 𝐴4 𝑆 𝐷 ≠ 0, do 
3:  return 𝑖. 
4:     end if 
5: end for 
6: return −1.    

The FMK algorithm needs to obtain the adjacency matrix 𝐴 
of the network topology and obtain the power of 𝐴. Since the 
length of the SFC is generally less than 10, we have prepared the 
matrices 𝐴+ to 𝐴+� here. In addition, Algorithm 2 also needs the 
number of VNLs in the SFC as well as the locations of TSP and 
the user as input. The FMK algorithm outputs the length of path 
𝑘 between the TSP and user that is greater than or equal to |𝐸𝑆|. 
We traverse from 𝐸𝑆  to 15 until 𝐴4 𝑆 𝐷  is not equal to zero 
and 𝑖  is returned. If 𝐴4 𝑆 𝐷 ≠ 0  is not found during the 
process of traversal, we return -1 as the flag that there is no 
suitable path in the topology to deploy the SFC. This satisfies the 
condition of 𝑘 < |𝐸𝑆| in Algorithm 1 because the length of all 
SFCs is greater than zero. 
C. Shortest path deployment 

After the preprocessing of Algorithm 2, the SPD algorithm is 
responsible for formally finding the path mapping the SFC in the 
network topology. The SPD algorithm deploys every VNF 
iteratively. In the process of deploying a VNF, the 
corresponding VNL is also deployed. Therefore, the SPD 
algorithm is not a two-step algorithm with nodes and links 
deployed separately. For the schemes of SFC deployment, the 
substrate node to host 𝑣𝑛𝑓4 is stored in 𝑁(𝑣𝑛𝑓4), and the path on 
which the VNL request 𝑣𝑛𝑙4 is deployed is stored in 𝐸(𝑣𝑛𝑙4). 
We can judge whether the SFC is deployed successfully or not 
and calculate the performance indicators.  

Algorithm 3 inputs an SFC request 𝑆𝐹𝐶 , a count variable 
𝑐𝑜𝑢𝑛𝑡 and the substrate node 𝑛L that maps the previous VNF. 
The count variable 𝑐𝑜𝑢𝑛𝑡  can be regarded as the number of 
VNFs that have been deployed. Since the source node of the 
SFC is known, we start the SFC deployment from the first VNF 
𝑣𝑛𝑓+. Therefore, in Algorithm 1, we initialize 𝑐𝑜𝑢𝑛𝑡 to 0 and 𝑛L 
to 𝑆. Finally, Algorithm 3 outputs the deployment scheme of the 
SFC request. 

 𝑠𝑓 𝑛8 = 𝛼 ∗ 𝑙𝑟 𝑛8 + (1 − 𝛼) ∗ 𝑙𝑟 𝑛L, 𝑛8   (29) 

Lines 1 to 4 of Algorithm 3 indicate that if 𝑐𝑜𝑢𝑛𝑡 is equal to 
𝑁𝑆 + 1, then the deployment of the SFC request has been 

completed, and Algorithm 3 will end. Otherwise, we traverse the 
adjacency list of node 𝑛L to find the substrate node to deploy the 
next VNF. Before traversal, we need to sort the nodes in the 
adjacent linked list in ascending order according to 𝑠𝑓 . As 
shown in Formula (29), 𝑠𝑓 is a weighted addition of the load 
rate of candidate nodes and links. Here, 𝛼 is a weighting factor 
between 0 and 1 and determines the effect of the node load rate 
and link load rate on 𝑠𝑓. We can adjust the value of 𝛼 according 
to actual needs. In the following experiments, we consider the 
node load rate and link load rate to be equally important. 

Algorithm 3: Shortest path deployment (SPD) 

Input: (1) SFC 𝑆𝐹𝐶 = (𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST); 
   (2) A count variable: 𝑐𝑜𝑢𝑛𝑡; 

    (3)	The substrate node that maps the previous VNF: 𝑛L. 
Output: The deployment scheme for 𝑆𝐹𝐶 
1: if 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆 + 	1, do 
2:  𝑆𝐹𝐶 is deployed successfully; 
3:  End Algorithm 3. 
4: end if 
5: Sort all nodes in the adjacent linked list of node 𝑛L according 

to 𝑠𝑓; 
6: for each node 𝑛8 in the adjacent linked list of node 𝑛L, do 
7:  if 𝑛8 has been visited, do 
8:    continue; 
9:     end if 
10:  if 𝑛8 = 𝐷, do 
11:   if 𝑐𝑜𝑢𝑛𝑡	 ≠ 𝑁𝑆 , do 
12:   continue; 
13:  else 
14:   if	𝑟 𝑛L, 𝑛8 ≥ 𝑅(𝑣𝑛𝑙|1Q|), do 
15:    𝐸 𝑣𝑛𝑙pro9qx+ = {(𝑛L, 𝑛8)}; 
16:    𝑆𝐹𝐶 is deployed successfully; 
17:    End Algorithm 3. 
18:   end if 
19:  end if 
20: else 
21:  if 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆 , do 
22:   continue; 
23:  else 
24:   if 𝑟 𝑛8 ≥ 𝑅 𝑣𝑛𝑓pro9qx+ 	&&	 
     𝑟 𝑛L, 𝑛8 ≥ 𝑅(𝑣𝑛𝑙pro9q), do 
25:    𝑁 𝑣𝑛𝑓pro9qx+ = 𝑛8; 
26:    𝐸 𝑣𝑛𝑙pro9qx+ = {(𝑛L, 𝑛8)}; 
27:    set 𝑛8 as visited; 
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28:    𝑆𝑃𝐷	(𝑆𝐹𝐶, 𝑐𝑜𝑢𝑛𝑡 + 1, 𝑛8); 
29:   end if 
30: end if 
31:  end if 
32: end for 
33: set 𝑛L as not visited. 

When we obtain an adjacent node 𝑛8 of 𝑛L, if node 𝑛8 has 
already been visited, we will skip this node and continue to visit 
the next node in the adjacent linked list of 𝑛L. Next, we discuss 
two different cases in terms of node 𝑛8 . When 𝑛8  is the 
destination node 𝐷, if all VNFs have not been deployed (i.e., 
𝑐𝑜𝑢𝑛𝑡	 ≠ 𝑁𝑆 ), we will skip the destination node and select the 
next node to map the current VNF. Otherwise, we will examine 
whether the link between 𝑛8  and 𝑛L  satisfies the constraint 
condition proposed by Formula (26). If this condition is satisfied, 
we will deploy the last VNL on the substrate link (𝑛L, 𝑛8). Then, 
we can announce the successful deployment of 𝑆𝐹𝐶  and end 
Algorithm 3.  

When node 𝑛8 is not the destination node 𝐷, if all VNFs have 
been deployed (i.e., 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆 ), this means that the node we 
need to find is the destination node	𝐷. Therefore, we will skip 
this node and look for the destination node 𝐷. If there are still 
VNFs that have not yet been deployed, we will examine whether 
the current node 𝑛8  and connected link (𝑛L, 𝑛8)  meet the 
resource constraints proposed by Formulas (22) and (26). If 
these constraints are met, we record the deployment scheme in 
𝑁(𝑣𝑛𝑓4) and 𝐸(𝑣𝑛𝑙4). In addition, we set node 𝑛8  to already 
visited and call the SPD algorithm to deploy the next VNF. At 
the end of Algorithm 3, we set node 𝑛L to be not visited. 
D. Complexity analysis 

The OSFCD algorithm is composed of the FMK algorithm 
and SPD algorithm. We assume that the network topology 
contains n nodes. The time complexity of our proposed OSFCD 
algorithm is analyzed as follows: 
l In the FMK algorithm, we traverse from 𝐸𝑆  to 15 until 
𝐴4 𝑆 𝐷  is not equal to zero. Therefore, the complexity of 
the FMK algorithm is a constant expression, which is 
recorded as O(L). In the process of SFC expansion, only a 
few virtual nodes and links are extended in SFC, so the 
complexity of SFC expansion can also be recorded as O(L). 
Where L denotes the length of SFC.	

l The SPD algorithm traverses the adjacent nodes of the 
current node in each iteration as it looks for nodes to deploy 
the current VNF. After traversing all adjacent nodes, if no 
suitable node is found, the algorithm will backtrack. 
Therefore, the complexity of the OSFCD algorithm is O(n2).	

   In summary, the time complexity of the proposed OSFCD 
algorithm is O(n2). 

V.  SIMULATION RESULTS AND ANALYSIS 
In this section, we carry out simulation experiments to 

compare our proposed OSFCD algorithm and the other three 
existing algorithms proposed in [5]. 
A. Simulation settings 

We use Java to evaluate different deployment algorithms. 
Similar to Ref. [5], we employ the Waxman 2 model of the 
GT-ITM tool to randomly generate small-scale and large-scale 
network instances as substrate networks to prove the 
applicability of the OSFCD algorithm in different situations. 

Here, the small and large substrate networks contain 50 nodes 
and 200 nodes, respectively. 

Similar to Ref. [11], each node or link contains 1500 units of 
resources. For a substrate link 𝑒4 , 𝑑(𝑒4)	 obeys a uniform 
distribution, U (10, 20). For two different topologies, the arrival 
rate 𝜆 is set to 0.04. For the large topology, the service rate 𝜇 is 
set to 5×10;�, while for the small topology, the service rate	𝜇 is 
2×10;�. For a VNF request 𝑣𝑛𝑓4, 𝑅(𝑣𝑛𝑓4) follows the uniform 
distribution U (10, 20). For a VNL request 𝑣𝑛𝑙4 , 𝑅(𝑣𝑛𝑙4)  is 
uniformly allocated, U (20, 40). 
B. Optimization goals 

In this paper, for online SFC deployment, our main concerns 
are the following performance indicators:  
(1) Success ratio 

The success ratio of SFC deployment is defined as follows. 
𝑁𝑈𝑀nopp 𝐿Qgh  is the number of SFCs successfully deployed. 
𝐿Qgh  is the number of all SFCs. 

 𝑅𝑎𝑡𝑖𝑜nopp =
.���{��(idjk)

|idjk|
 (30) 

(2) Average bandwidth resource consumption 
The definition is given in Formula (31). 𝐵qrq(𝐿Qgh) is the total 

bandwidth resource consumption.  

 𝐵8[C<8zC =
� ¡ (idjk)

.���{��(idjk)
   (31) 

(3) Average end-to-end delay 
The definition is given in Formula (32). 𝐷qrq(𝐿Qgh) is the total 

end-to-end delay. 
            𝐷8[C<8zC =

¢ ¡ (idjk)
.���{��(idjk)

                       (32) 

(4) Average response time 
The average response time is defined as follows. 𝑇𝑅qrq(𝐿Qgh) 

is the total response time. 

            𝑇𝑅8[C<8zC =
£T ¡ (idjk)

.���{��(idjk)
                       (33) 

(5) Maximum node load rate 
The definition is given in Formula (34). 𝑁𝑅H8¤  is used to 

represent the maximum node load rate.  
            𝑁𝑅H8¤ = {𝑙𝑟(𝑛I)}9K∈.�

H8¤                        (34) 

(6) Maximum link load rate 
The maximum link load rate can be expressed by Formula 

(35). 𝐸𝑅H8¤ is used to represent the maximum link load rate. 
            𝐸𝑅H8¤ = {𝑙𝑟(𝑒I)}CK∈1�

H8¤                        (35) 

C. Experimental results and analysis 
(1) Experimental results in two different topologies 

In this section, we introduce and analyze a performance 
comparison between our proposed algorithm and the 
comparison algorithms in two different topologies.  

Figure 5 shows the success ratio of SFCs s in two different 
topologies. Whether in the small or large topology, with 
sufficient network resources, the OSFCD algorithm maintains a 
success rate of more than 99%, and only a few SFC requests fail 
to be deployed. However, in the comparison algorithms, as the 
length of SFC increases, the success ratio continues to decrease. 
In both topologies, the OSFCD algorithm optimizes the success 
ratio by an average of 25%. 

Figure 6 shows the average bandwidth resource consumption 
in two different topologies. The two figures show that with the 
increase in the length of SFC, the average bandwidth resource 
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consumption also increases. The growth of the four algorithms is 
close to the average bandwidth resource requested by one VNL. 
However, this indicator of the OSFCD algorithm is always 
smaller than that of the other three algorithms. Our algorithm 
optimizes the average bandwidth resource consumption by 22.7% 
and 16% in the small and large topologies, respectively. 
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(b) 

Fig. 5. The success ratio of SFCs in two topologies (a) The 
small-scale topology; (b) The large-scale topology. 
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(b) 

Fig. 6. Average bandwidth consumption of SFCs in two 
topologies (a) The small-scale topology; (b) The large-scale 
topology. 

As shown in Figure 7, with an increase in the length of SFC, 
this indicator also increases. The growth rate of the four 
algorithms is nearly the average delay of a substrate link. The 
indicator of the OSFCD algorithm is always less than that of the 
other three algorithms, especially in the small-scale topology. 
This result occurs because the OSFCD algorithm tries to deploy 
SFCs on a path with shorter hops. Our algorithm optimizes the 
average end-to-end delay by 25.7% and 20% in the small and 
large topologies, respectively. 
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(b) 

Fig. 7. Average end-to-end delay of SFCs in two topologies (a) 
The small-scale topology; (b) The large-scale topology. 

In Figure 8, we show the maximum node load rate of SFCs in 
two different topologies. With an increase in the length of SFC, 
the maximum load rate of nodes also increases. However, the 
maximum node load rate and its growth rate of the OSFCD 
algorithm are smaller than those of the other three algorithms. 
As shown in Figure 8(b), the curve of the OSFCD algorithm is 
always under that of the other three algorithms. Finally, the 

maximum node load rate of comparison algorithms is nearly 1, 
while that of the OSFCD algorithm is always less than 0.5. 

In Figure 8(a), the optimization of the OSFCD algorithm is 
not obvious. However, we can see the results in combination 
with Figure 5(a). When length of SFC is greater than 6, the 
success ratio of the other three algorithms is significantly 
reduced, while the OSFCD algorithm still maintains a high 
success ratio. Therefore, when the length of SFC is greater than 
6, this indicator of comparison algorithms decreases because 
their success ratios also decrease. Nevertheless, the maximum 
node load rate of the OSFCD algorithm is always smaller than 
that of the other three algorithms. 
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(b) 

Fig. 8. Maximum node load rate of SFCs in two topologies (a) 
The small-scale topology; (b) The large-scale topology. 

In Figure 9, we show maximum link load rate in two different 
topologies. As the length of SFC increases, the maximum link 
load rate also increases, and the curve of the OSFCD algorithm 
is always below the other three algorithms, especially in the 
large topology. Moreover, with a decrease in the success ratio, 
the maximum link load rate of the other three algorithms also 
decreases but is still greater than that of the OSFCD algorithm. 
This is because ER and the other algorithms concentrate the load 
on part of the nodes or links, resulting in the emergence of hot 
nodes or links. However, the OSFCD algorithm preferentially 
deploys VNFs or VNLs on nodes or links with low load rates. 
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(b) 

Fig. 9. Maximum link load rate of SFCs in two topologies (a) 
The small-scale topology; (b) The large-scale topology.	
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(b) 

Fig. 10. Average response time of SFCs in two topologies (a) 
The small-scale topology; (b) The large-scale topology. 
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Finally, we show the average response time of SFC 
deployment in two different topologies in Figure 10. The 
average response time of the OSFCD algorithm is always 
smaller than that of the other three algorithms. A gap of tens or 
even hundreds of times is reached in large topologies. The 
response time of the other three algorithms in the large topology 
is obviously larger than that of the small topology, while the 
average response time of the OSFCD algorithm in the two 
topologies is similar. These results occur because algorithms 
such as ER must traverse all nodes in the topology when a VNF 
is deployed, while the OSFCD algorithm will end the algorithm 
after finding a suitable path. 
(2) Experimental results with different 𝜇 

To examine the performance of the OSFCD algorithm in 
different environments, we try to change the parameters in the 
experiments to observe the experimental results. Here, we give 
the experimental results of continuously changing the service 
rate 𝜇 in the large topology. 
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(b) 

Fig. 11. Two indicators with different 𝜇 (a) Average bandwidth 
consumption; (b) Average end-to-end delay. 

Figure 11 shows the average bandwidth resource 
consumption and average end-to-end delay with different 𝜇 
values. With the increase of 𝜇, both indicators of the other three 
algorithms fluctuate continuously, while those of the OSFCD 
algorithm maintain good stability. The average bandwidth 
resource consumption is maintained at approximately 208 and 
the average end-to-end delay is 104. In addition, the curve of the 
OSFCD algorithm is always below that of the other three 
algorithms. The OSFCD algorithm optimizes the average 
bandwidth consumption by an average of 18.23% and the 
average end-to-end delay by an average of 23.23%. 

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 N
od

e 
L

oa
d 

R
at

e

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

 
(a) 

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 L
in

k 
L

oa
d 

R
at

e

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

 
(b) 

Fig. 12. Two indicators with different 𝜇 values (a) Maximum 
node load rate; (b) Maximum link load rate. 

Figure 12 shows the maximum node load rate and maximum 
link load rate with different 𝜇  values, respectively. As 𝜇 
increases, the both indicators of the four algorithms decrease. 
This is because as 𝜇 increases, the number of SFCs existing in 
the network topology at a certain time decreases accordingly, so 
the load rate will decrease. However, the curve of the OSFCD 

algorithm is always below that of the other three algorithms. 
This finding also illustrates that the OSFCD algorithm further 
optimizes the load balancing of the network. 

Finally, in Figure 13, we show the effect of parameter 𝛼 in 
Formula (29) on the maximum node and link load rate. When 𝛼 
is set as 0.2, the OSFCD algorithm tends to choose the link with 
lower load rate. On the other hand, when 𝛼 is 0.8, the nodes with 
lower load rate will be preferred for VNF deployment. 
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Fig. 13. Two indicators with different 𝜇  and 𝛼  (a) Maximum 
node load rate; (b) Maximum link load rate.	

VI. CONCLUSION 
This paper studies the online SFC deployment problem in 

NFV for modern networks that include 6G. In the processes of 
the dynamic arrival and departure of SFCs, we are committed to 
the efficient use of network resources. We review the 
state-of-the-art and propose a mathematical model for online 
SFC provisioning. Based on the proposed model, an efficient 
online SFC provisioning approach, OSFCD, is proposed. The 
algorithm chooses a path of minimum hops to deploy the SFC. 
In addition, we carry out a simulation experiment and a 
performance comparative analysis with three other existing 
algorithms. The experimental results show that the OSFCD 
algorithm can optimize multiple performance indicators of 
online SFC deployment. Specifically, we reduce the bandwidth 
consumption and end-to-end delay by 22.7% and 25.7%, 
respectively. 

In this paper, we do not take into account the reliability of 
SFC deployment in the 6G networks. In the future, we will try to 
utilize emerging machine learning technology to optimize SFC 
provisioning by considering reliability problems and design 
corresponding algorithms to further efficiently utilize network 
resources in 6G. 
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