
1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

Dynamic Network Function Provisioning to Enable Network in
Box for Industrial Applications

Gang Sun, Member, IEEE, Zhu Xu, Hongfang Yu, Member, IEEE, Victor Chang

Abstract—Network function virtualization (NFV) in 6G
can use standard virtualization techniques to enable
network functions via software. Resource scheduling is one
of the key research areas of NFV in 6G and is mainly used to
deploy service function chains (SFCs) in substrate networks.
However, determining how to utilize network resources
efficiently has always been a difficult problem in SFC
deployment. This paper focuses on how to efficiently
provision online SFC requests in NFV with 6G. We first
establish a mathematical model for the problem of online
SFC provisioning. Then, we propose an efficient online
service function chain deployment (OSFCD) algorithm that
selects the path to deploy that is close to the SFC length.
Finally, we compare our proposed algorithm with three
other existing algorithms by simulation experiments. The
experimental results show that the OSFCD algorithm
optimizes multiple performance indicators of online SFC
deployment.

Index Terms— Network function provisioning; Resource
efficiency; Latency; Network in box; 6G

I. INTRODUCTION
Currently, communication networks adopt the architecture of

dedicated hardware and software. The dedicated equipment
produces not only reliability and high performance but also
some new issues. For example, resources cannot be shared,
scalability is limited, and capital expenditure (CAPEX) and
operating expenditure (OPEX) remain high. The proposal of
network function virtualization (NFV) [1] brings new
development opportunities to communication networks,
including 5G and 6G. NFV can use standard virtualization
technology to enable network functions via software so that they
can be run on standard server virtualization software and be
installed or moved to any location in the network as required
without deploying new hardware equipment.

Network functions (NFs) in the traditional network are
replaced by virtual network functions (VNFs), including 6G and
wireless networks. When a user requests a network service from
telecommunications service providers (TSPs), the network flow
will pass through certain specific VNFs to reach the user. The
abstract topology consisting of the TSP, specific VNFs, and the
user forms the service function chain (SFC) [2]. Resource

allocation is one of the key areas of NFV research. Resource
allocation is mainly used to deploy SFC in the network topology
and to efficiently use the network resources. The pros and cons
of resource allocation will directly affect the costs of TSPs and
the user experience. SFC deployment has been certified as an
NP-H problem [3], which is difficult to solve in polynomial
time.

To date, many academics have invested in SFC deployment
research. Liu et al. [4] proposed a two-step algorithm G-SA for
SFC deployment, first finding nodes in the network to deploy
VNFs. Then, they deploy VNLs by computing the shortest path
from the source node to the sink node. The authors of Ref. [5]
proposed three heuristic deployment algorithms: ER, ER_CS
and ER_CS_ADJ. The ER algorithm mainly considered the
reliability requirements, ER_CS optimized the network load
based on ER, and the ER_CS_ADJ algorithm further optimized
the bandwidth resource consumption of the deployment paths.

Table 1 Performance optimization in different algorithms	

Algorithm Bandwidth Latency Success
Ratio

Load
Balance

G-SA P P O O
ER O O O O

ER_CS O O O P
ER_CS_ADJ P O O P

Although the algorithms mentioned above have different
algorithm designs for SFC deployment, neither can efficiently
use the underlying network resources. In addition, the two
algorithms did not consider online SFC deployment. They also
centrally deployed VNFs on partial nodes, resulting in an
unbalanced network load and affecting the deployment of
subsequent SFCs.

However, they are not specifically designed for 6G. The 6G
network can provide smart network services to users via
network-as-a-service (Naas) that provisions the shared physical
network resources to different users by using network slicing
[6-8]. SDN, NFV and SFC orchestration work as key enablers
for network slicing in 6G [9]. Therefore, the research in this
work for efficient SFC provisioning can enable and drive
network-in-a-box deployment for industrial applications in 6G
networks.

Therefore, we propose an online service function chain
deployment (OSFCD) algorithm, including 6G and wireless
networks. Because the performance of the SFC deployment
problem is closely related to the hops of the deployment path,
the main focus of the OSFCD algorithm is to choose the path
that is close to the length of SFC to deploy and efficiently use
network resources. In addition, the emergence of hot nodes or
links will affect the deployment of the subsequent SFCs and
reduce the overall success rate. It needs to design algorithms to
achieve network load balancing. The main contributions of this
paper are summarized as follows:
l We establish a mathematical model for the problem of online

SFC provisioning in Section III. Based on the established
model, Section IV introduces an efficient deployment

 Gang Sun is with Key Lab of Optical Fiber Sensing and Communications (Ministry
of Education), University of Electronic Science and Technology of China, Chengdu,
China; and he is also with Agile and Intelligent Computing Key Laboratory of Sichuan
Province, Chengdu, China (e-mail: gangsun@uestc.edu.cn).
 Zhu Xu is with Key Lab of Optical Fiber Sensing and Communications (Ministry of
Education), University of Electronic Science and Technology of China, Chengdu,
China (e-mail: 2215766944@qq.com).
 Hongfang Yu is with Key Lab of Optical Fiber Sensing and Communications
(Ministry of Education), University of Electronic Science and Technology of China,
Chengdu, Chian; and is also with Peng Cheng Laboratory, Shenzhen, China (e-mail:
yuhf@uestc.edu.cn)
 Victor Chang is with Artificial Intelligence and Information Systems Research
Group, School of Computing and Digital Technologies, Teesside University,
Middlesbrough, UK (e-mail: ic.victor.chang@gmail.com).

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

algorithm OSFCD. The algorithm optimizes multiple
performance indicators of online SFC deployment.

l The load rate of the network is also considered to avoid hot
nodes or links from appearing in the network. We prioritize
the nodes or links with a smaller load rate for network load
balancing in the deployment algorithm OSFCD.

l Through the simulation experiment, we compare the
performance of the OSFCD algorithm with the existing
approaches in Section Ⅴ.

The rest of this paper is arranged as follows. We review the
related work in Section II. A mathematical model for online SFC
provisioning is presented in Section Ⅲ. In Section IV, based on
the established model, we introduce the OSFCD algorithm.
Section Ⅴ introduces the simulation experiments and
performance comparison of the OSFCD algorithm. We conclude
this work in Section VI.

II. RELATED WORK
A. Cost-efficient SFC provisioning

The deployment of SFCs has attracted the attention of many
academics, who have worked to reduce the deployment costs of
SFCs. Tang et al. [10] studied SFC deployment in the 5G access
network. A two-stage queue-aware deployment algorithm was
proposed to optimize deployment cost and improve the stability
of network. Zhao et al. [11] proposed SFC deployment
algorithm SFCM- FOCL, which studied the orchestration of
SFC in the 5G network environment to minimize the cost of
deployment. In [12], the authors studied the composition and
embedding of SFC in the 5G network. Based on a greedy
algorithm, a heuristic algorithm was proposed to improve the
success rate and reduce the embedding cost. The authors of [13]
proposed a new SFC deployment framework X-FORCE in 5G
network to deploy SFC and manage the SFC life cycle. The
framework improved network performance and saved network
resources.
B. Low-latency SFC provisioning

End-to-end delay may affect the users’ experiences. In [14], a
delay-aware VNF orchestration algorithm was designed to
improve the acceptance rate of SFCs by selecting VNFs with
guaranteed delay. The authors of [15] studied SFC provisioning
in the 5G network. A new algorithm eRESERV was proposed to
improve the reliability of the 5G network under the delay
constraint of SFC. In [16], a new SFC orchestration scheme was
proposed to reduce the deployment path delay by optimizing the
selection of VNFs and traffic control in the 5G network. The
authors of [17] established an integer linear programming model
for SFC orchestration. Based on the established model, a
latency-aware heuristic algorithm was proposed to optimize the
deployment delay of SFC requests. In [18], the authors
investigated dynamic SFC orchestration under SDSN-NFV
environments. They proposed a middlebox delay optimization
(MDO) algorithm to reduce the transmission delay.
C. SFC deployment with machine learning

With the emergence of machine learning, an increasing
number of academics have applied machine learning to SFC
orchestration. Li et al. [19] utilized reinforcement learning
technology to deploy SFCs with security requirements. The
authors also designed a reward function to balance different
optimization objectives. In [20], the authors used a partial

observation Markov decision process (POMDP) to perceive the
network topology. Based on POMDP, a deployment approach
was designed that considered the particularity of SFC
provisioning in cloud radio access networks. A deep learning
model was designed to predict future virtual network function
service chain (VNF-SC) requests for inter-DC networks in [21].
According to the predicted SFC requests, network resources can
be predeployed. Lightpath establishment and VNF mapping can
be performed accordingly. The authors of [22] combined the
random cloud selection technology with the prediction model of
support vector regression to improve the cost and latency of SFC
provisioning.

III. PROBLEM STATEMENT AND MODELING
A. Substrate network

We can abstract the substrate network into an undirected
topology 𝐺" = (𝑁", 𝐸") , where 𝑁" = {𝑛+, 𝑛,, … , 𝑛 ." } is the
set of network nodes and 𝐸" = 𝑒+, 𝑒,, … , 𝑒 1" is the set of
network links. |𝑁𝑃| and |𝐸𝑃| represent the amount of network
nodes and links, respectively. A network node 𝑛4 represents a
server in the network, which contains certain computing
resources 𝑎(𝑛4) . We use 𝑟(𝑛4) to denote the available
computing resources. 𝑙𝑟(𝑛4) represents the node load rate. The
calculation of 𝑙𝑟 𝑛4 is shown in Formula (1).

 𝑙𝑟 𝑛4 = 8 9: ;< 9:
8(9:)

		∀	𝑛4 ∈ 𝑁" (1)

 𝑒4 = 𝑒4
9@, 𝑒4

9A 				∀𝑒4 ∈ 𝐸" (2)

For a substrate link 𝑒4 , 	𝑎(𝑒4) represents total bandwidth
resources. 𝑟(𝑒4) represents remaining bandwidth resources. The
delay of link 𝑒4 is represented by 𝑑(𝑒4). 𝑒4

9@ and 𝑒4
9A represent

the two nodes connected by link 𝑒4. Therefore, link 𝑒4 can also
be replaced by a node pair (𝑒4

9@, 𝑒4
9A), as shown in Formula (2).

𝑙𝑟(𝑒4) represents the link load rate. The calculation of 𝑙𝑟(𝑒4) is
shown in Formula (3).

 𝑙𝑟 𝑒4 = 8 C: ;< C:
8(C:)

		∀	𝑒4 ∈ 𝐸" (3)

In addition, we use 𝑝(𝑛4, 𝑛E) to denote a path between nodes
𝑛4 and 𝑛E , where 𝑝(𝑛4, 𝑛E) is a set that contains all substrate
links on this path, which is shown in Formula (4). As shown in
Formula (5), 𝑑 𝑝(𝑛4, 𝑛E) represents end-to-end delay of
𝑝(𝑛4, 𝑛E), which equals the sum of all link transmission delays.
ℎ 𝑝(𝑛4, 𝑛E) is used to denote the number of links on path
𝑝 𝑛4, 𝑛E . 𝑏H49 𝑝(𝑛4, 𝑛E) is used to indicate the minimum
remaining bandwidth resource on path 𝑝 𝑛4, 𝑛E . These values
are shown in Formulas (6) and (7).

 𝑝 𝑛4, 𝑛E = 𝑒H,… , 𝑒I ⊆ 𝐸"		∀	𝑛4, 𝑛E ∈ 𝑁" (4)

 𝑑 𝑝(𝑛4, 𝑛E) = 𝑑(𝑒I)CK∈L(9:,9M) 	∀	𝑛4, 𝑛E ∈ 𝑁" (5)

 ℎ 𝑝(𝑛4, 𝑛E) = 𝑝 𝑛4, 𝑛E 		∀	𝑛4, 𝑛E ∈ 𝑁" (6)

 𝑏H49 𝑝(𝑛4, 𝑛E) = 𝑟(𝑒I)CK∈L(9:,9M)
H49 (7)

B. SFC request
We denote an SFC request as 𝑆𝐹𝐶 =

	(𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST) . 𝑁Q = 	 {𝑣𝑛𝑓+, 𝑣𝑛𝑓,, … , 𝑣𝑛𝑓|.Q|} represents

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

the set of VNFs in the 𝑆𝐹𝐶 . |𝑁𝑆| represents the number of
VNFs. The computing resources requested by 𝑣𝑛𝑓4 are denoted
as 𝑅(𝑣𝑛𝑓4) . We use 𝑁(𝑣𝑛𝑓4) to represent the substrate node
where the VNF 𝑣𝑛𝑓4 is deployed. Formula (8) indicates that
𝑍 𝑣𝑛𝑓4, 𝑛E is a binary variable. If 𝑍 𝑣𝑛𝑓4, 𝑛E = 1 , 𝑣𝑛𝑓4 is
deployed on 𝑛E; otherwise, 𝑍 𝑣𝑛𝑓4, 𝑛E = 0.

 𝑍 𝑣𝑛𝑓4, 𝑛E ∈ 0,1 	∀𝑣𝑛𝑓4 ∈ 𝑁Q, ∀𝑛E ∈ 𝑁" (8)

𝐸Q = 	 𝑣𝑛𝑙+, 𝑣𝑛𝑙,, … , 𝑣𝑛𝑙 1Q represents the set of VNLs, and
|𝐸𝑆| represents the number of VNLs. Similarly, deploying a
VNL 𝑣𝑛𝑙4 needs to consume bandwidth resources 𝑅(𝑣𝑛𝑙4) .
𝑣𝑛𝑙4

[9\@ and 𝑣𝑛𝑙4
[9\A represent the two VNFs connected by VNL

𝑣𝑛𝑙4. We use 𝐸 𝑣𝑛𝑙4 to denote the path on which VNL 𝑣𝑛𝑙4 is
deployed. 𝐷 𝑣𝑛𝑙4 denotes the latency, and 𝐵 𝑣𝑛𝑙4 is the
bandwidth consumption for deploying the path of 𝑣𝑛𝑙4. These
parameters are shown in Formulas (9) to (11). Formula (12)
indicates that 𝑌 𝑣𝑛𝑙4, 𝑒E is a binary variable. If 𝑌 𝑣𝑛𝑙4, 𝑒E = 1,
𝑣𝑛𝑙4 is deployed on 𝑒E; otherwise, 𝑌 𝑣𝑛𝑙4, 𝑒E = 0.

 𝐸 𝑣𝑛𝑙4 = 𝑝 𝑁 𝑣𝑛𝑙4
[9\@ , 𝑁 𝑣𝑛𝑙4

[9\A 		∀𝑣𝑛𝑙4 ∈ 𝐸Q (9)

 𝐷 𝑣𝑛𝑙4 = 𝑑 𝐸 𝑣𝑛𝑙4 = 𝑑(𝑒I)CK∈1([9_:) ∀𝑣𝑛𝑙4 ∈ 𝐸Q (10)

 𝐵 𝑣𝑛𝑙4 = 𝑅 𝑣𝑛𝑙4 ∗ ℎ 𝐸 𝑣𝑛𝑙4 		∀𝑣𝑛𝑙4 ∈ 𝐸Q (11)

 𝑌 𝑣𝑛𝑙4, 𝑒E ∈ 0,1 		∀𝑣𝑛𝑙4 ∈ 𝐸Q, ∀𝑒E ∈ 𝐸" (12)

The locations of TSP and the user are represented by 𝑆 and 𝐷,
respectively. In addition, network flows must pass through

VNFs in the specified order, denoted as 𝐶ST = 	 {𝑣𝑛𝑓+
[9_a 𝑣𝑛𝑓,

[9_b …
[9_|cd|

𝑣𝑛𝑓|.Q|}. In the process of online SFC deployment,
for an SFC 𝑆𝐹𝐶4, we use 𝑇(𝑆𝐹𝐶4) to represent the arrival time
interval of 𝑆𝐹𝐶4 with the previous SFC, and 𝐹(𝑆𝐹𝐶4) represents
the service time of 𝑆𝐹𝐶4. In addition, 𝑇𝑅(𝑆𝐹𝐶4) denotes the time
required to respond to SFC request 𝑆𝐹𝐶4.

Throughout the deployment process, we record all SFC
requests in the collection 𝐿Qgh . For an SFC 𝑆𝐹𝐶4 , we use
𝐷 𝑆𝐹𝐶4 	to represent end-to-end delay. 𝐵 𝑆𝐹𝐶4 represents the
bandwidth consumption. These parameters are equivalent to the
sum of transmission delay or bandwidth consumption of VNLs
in 𝑆𝐹𝐶4, respectively, and are shown in Formulas (13) and (14).
Formula (15) indicates that 𝑆 𝑆𝐹𝐶4 is a binary variable. If
𝑆 𝑆𝐹𝐶4 = 1 , 𝑆𝐹𝐶4 is deployed successfully; otherwise,
𝑆 𝑆𝐹𝐶4 = 0.

 𝐷 𝑆𝐹𝐶4 = 𝐷 𝑣𝑛𝑙I 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh[9_K∈1d (13)

 𝐵 𝑆𝐹𝐶4 = 𝐵 𝑣𝑛𝑙I 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh[9_K∈1d (14)

 𝑆 𝑆𝐹𝐶4 ∈ 0,1 			∀𝑆𝐹𝐶4 ∈ 𝐿Qgh (15)
C. Online SFC deployment
 (1) Online SFC deployment process

During the entire SFC deployment process, we use 𝐿Qgh =
	{𝑆𝐹𝐶+, 𝑆𝐹𝐶,, … , 𝑆𝐹𝐶|idjk|	} to record all requested SFCs.
𝐿Qgh represents the amount of SFCs. 𝑁𝑈𝑀nopp 𝐿Qgh is used

to represent the number of SFCs successfully deployed. In
addition, 𝐵qrq 𝐿Qgh and 𝐷qrq 𝐿Qgh denote the total bandwidth
consumption and latency, respectively. 𝑇𝑅qrq 𝐿Qgh denotes the
response time for 𝐿Qgh . Here, we only count the SFCs that are
successfully deployed. These parameters are shown in Formulas
(16) to (19).

 𝑁𝑈𝑀nopp 𝐿Qgh = 𝑆(𝑆𝐹𝐶s)Qght∈idjk (16)

 𝐵qrq 𝐿Qgh = 𝐵 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk (17)

 𝐷qrq 𝐿Qgh = 𝐷 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk (18)

 𝑇𝑅qrq 𝐿Qgh = 𝑇𝑅 𝑆𝐹𝐶s ∗ 𝑆(𝑆𝐹𝐶s)Qght∈idjk (19)

Because we are studying the problem of online SFC
deployment, the dynamic arrival and departure of SFCs will be
considered. We model the dynamic arrival and departure of an
SFC as two Poisson processes. Therefore, the arrival time
interval and service time of the SFC are independently and
identically distributed and obey an exponential distribution.
These processes are shown in Formulas (20) and (21), where 𝑢
and 𝑣 are both random numbers between 0 and 1. In addition, 𝜆
is the arrival rate. 𝜇 is the service rate.

𝑇 𝑆𝐹𝐶4x+ = 𝑇 𝑆𝐹𝐶4 − _rz{

|
		𝑢 ∈ (0,1) (20)

 𝐹 𝑆𝐹𝐶4x+ = 𝐹 𝑆𝐹𝐶4 − _rz}

~
		𝑣 ∈ (0,1) (21)

 (2) Network resource constraints
For the VNF 𝑣𝑛𝑓4 and the substrate node 𝑁 𝑣𝑛𝑓4 , the

remaining resources of 𝑁 𝑣𝑛𝑓4 are required to exceed the
computing resources requested by 𝑣𝑛𝑓4 . This requirement is
shown in Formula (22). For the substrate node 𝑛E, the consumed
computing resources are required to be less than all computing
resources of node 𝑛E. This is shown in Formula (23). Formulas
(24) and (25) indicate that during an SFC deployment, each
VNF and substrate node are mapped one-to-one. This is to
simplify the deployment schemes and to prevent the load from
being concentrated on a part of the nodes and for better load
balancing.

 𝑟 𝑁 𝑣𝑛𝑓4 ≥ 𝑅 𝑣𝑛𝑓4 		∀𝑣𝑛𝑓4 ∈ 𝑁Q (22)

𝑍 𝑣𝑛𝑓4, 𝑛E[9\:∈.dQghK∈idjk ×𝑅 𝑣𝑛𝑓4

 ≤ 𝑎 𝑛E 		∀𝑛E ∈ 𝑁" (23)

 0 ≤ 𝑍 𝑣𝑛𝑓4, 𝑛E ≤ 1		∀9M∈.� 𝑣𝑛𝑓4 ∈ 𝑁Q (24)

 0 ≤ 𝑍 𝑣𝑛𝑓4, 𝑛E ≤ 1		∀[9\:∈.d 𝑛E ∈ 𝑁" (25)

For the VNL 𝑣𝑛𝑙4 and the substrate path 	𝐸 𝑣𝑛𝑙4 , the
remaining bandwidth resources of links on the path 𝐸 𝑣𝑛𝑙4 are
required to be greater than the bandwidth demand of VNL 𝑣𝑛𝑙4.
This is shown in Formula (26). For the substrate link 𝑒E , the
consumed bandwidth resources are required to be less than all
bandwidth resources of link 𝑒E. It is shown in Formula (27). In
contrast to the deployment of VNFs, as shown in Formula (28),
the deployment of a VNL requires only that one network link
carries only one VNL during the deployment of an SFC. This is
because one VNL can map into multiple substrate links.

 𝑏H49 𝐸 𝑣𝑛𝑙4 ≥ 𝑅 𝑣𝑛𝑙4 		∀𝑣𝑛𝑙4 ∈ 𝐸Q (26)

 𝑌 𝑣𝑛𝑙4, 𝑒E[9_:∈1dQghK∈idjk ×𝑅 𝑣𝑛𝑙4

 ≤ 𝑎 𝑒E 		∀𝑒E ∈ 𝐸" (27)

 0 ≤ 𝑌 𝑣𝑛𝑙4, 𝑒E ≤ 1		∀[9_:∈1d 𝑒E ∈ 𝐸" (28)

(3) Online SFC provisioning example
To better illustrate the online SFC provisioning, we give an

example in Figures 1 to 3. These three figures represent the
deployment of SFCs at three different moments. Each figure
contains examples of SFC requests and the network topology. In

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

the figures, (𝑖, 𝑟(𝑛4)) is used to represent an attribute of the node.
𝑖 and 𝑟(𝑛4) represent the node ID and the remaining computing
resources, respectively. Similarly, (𝑖, 𝑟 𝑒4 , 𝑑(𝑒4)) is used to
represent an attribute of the link, and 𝑖 is the link ID. 𝑟(𝑒4) and
𝑑 𝑒4 represent the remaining bandwidth resources and the
delay of the link, respectively. Here, for simplicity, we assume
that the total resources of each node and each link are 50 units.

(D,35) (E,40)

(TSP,50) (User,50)

VNF1 VNF2TSP User

(A,20) (B,20)

R=10 R=7
VNL1 VNL2 VNL3

R=8 R=6 R=5

Scheme_1 : TSPà A(VNF1)à B(VNF2)à User

Scheme_2 : TSPà C(VNF1)à D(VNF2)à Eà User

SFC1 : Arrival

(1,20,7) (3,15,6)

(2,40,10)

(5,39,5) (6,42,7)

(4,21,6)

(7,46,10)
(8,42,10)

√
×

(C,40)

Fig. 1. Online SFC deployment at time T1.

In Figure 1, we show the deployment of an SFC at time T1.
𝑆𝐹𝐶+ has just arrived. Here, we simply give two deployment
schemes, 𝑠𝑐ℎ𝑒𝑚𝑒_1 and 𝑠𝑐ℎ𝑒𝑚𝑒_2 . Because the network
resources are sufficient relative to 𝑆𝐹𝐶+ , both schemes can
successfully deploy 𝑆𝐹𝐶+ . However, both the bandwidth
consumption and latency of 𝑠𝑐ℎ𝑒𝑚𝑒_1 are 19, while these two
indicators of 𝑠𝑐ℎ𝑒𝑚𝑒_2 are 24 and 32, respectively. Therefore,
we select 𝑠𝑐ℎ𝑒𝑚𝑒_1 to deploy 𝑆𝐹𝐶+ . This example simply
indicates that the performance indicators of SFC deployment are
relevant to the hops of deployment paths.

SFC2 : Arrival

(C,40) (D,35) (E,40)

(User,50)

VNF1 VNF2TSP User

(A,10) (B,13)

R=10 R=7
VNL1 VNL2 VNL3

R=8 R=6 R=5

SFC1 : In service

(1,12,7) (3,9,6)

(2,40,10)

(5,39,5) (6,42,7)

(4,16,6)

(7,46,10)
(8,42,10)

VNF3 VNF4TSP User

R=10 R=9
VNL4 VNL5 VNL6

R=7 R=8 R=6
VNF5

R=9
VNL7
R=9

Scheme_1 : TSPà C(VNF3)àD(VNF4)à E(VNF5)à User

Scheme_2 : TSPàA(VNF3)àB(VNF4)à E(VNF5)à User

√
×

(TSP,50)

Fig. 2. Online SFC deployment at time T2.

SFC2 : In Service

(C,40) (D,35) (E,40)

(User,50)

VNF1 VNF2TSP User

(A,20) (B,20)

R=10 R=7
VNL1 VNL2 VNL3

R=8 R=6 R=5

SFC1 : Departure

(1,20,7) (3,15,6)

(2,40,10)

(5,39,5) (6,42,7)

(4,21,6)

(7,46,10)
(8,42,10)

VNF3 VNF4TSP User

R=10 R=9
VNL4 VNL5 VNL6

R=7 R=8 R=6
VNF5

R=9
VNL7
R=9

(TSP,50)

Fig. 3. Online SFC deployment at time T3.

Figure 2 shows that at time T2, 𝑆𝐹𝐶, has arrived, and 𝑆𝐹𝐶+ is
still in service. Here, we still give two schemes, 𝑠𝑐ℎ𝑒𝑚𝑒_1 and

𝑠𝑐ℎ𝑒𝑚𝑒_2. Similarly, 𝑆𝐹𝐶, can be deployed in both schemes.
However, it is easy to calculate that the load rate of the nodes
and links in 𝑠𝑐ℎ𝑒𝑚𝑒_2 has already been high, while the
resources in 𝑠𝑐ℎ𝑒𝑚𝑒_1 are still abundant. Therefore, to achieve
load balancing, we select 𝑠𝑐ℎ𝑒𝑚𝑒_1 to deploy 𝑆𝐹𝐶,.

Figure 3 shows that at time T3, 𝑆𝐹𝐶+ completes the requested
service and leaves, and the 𝑆𝐹𝐶, request is still in service. We
need to return the network resources consumed by 𝑆𝐹𝐶+ to the
network topology. These are reflected in the remaining
resources of the nodes and links in the figure.

IV. ALGORITHM DESIGN
In the previous section, we have described the online SFC

provisioning problem and established a mathematical model for
it. To efficiently solve the researched problem, use the network
resources, and optimize network load balancing, we propose the
OSFCD algorithm within wired and wireless networks,
including 6G.
A. Online SFC deployment

The OSFCD algorithm requires the network topology 𝐺" and
SFC request as inputs and outputs a deployment scheme for this
SFC. Here, the algorithm to find the minimum k (FMK) and
shortest path deployment (SPD) algorithm are described in
detail in Algorithm 2 and Algorithm 3, respectively. We first use
the FMK algorithm to compute the length of path 𝑘 between the
TSP and user that is greater than or equal to the length of the
SFC in the network topology. Here, we use the number of links
to measure the lengths of SFC and the deployment path.

Algorithm 1: Online SFC deployment (OSFCD) algorithm
Input: (1) Network topology 𝐺" = (𝑁", 𝐸").
 (2) SFC request 𝑆𝐹𝐶 = (𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST).
Output: The deployment scheme for 𝑆𝐹𝐶.
1: 𝑘 = 𝐹𝑀𝐾(𝐸𝑆 , 𝑆, 𝐷);
2: if 𝑘 < |𝐸𝑆|, do
3: End Algorithm 1.
4: end if
5: if 𝑘 > |𝐸𝑆|, do
6: Expand 𝑆𝐹𝐶 so that |𝐸𝑆| is equal to 𝑘;
7: end if
8: 𝑆𝑃𝐷 𝑆𝐹𝐶, 0, 𝑆 .

If 𝑘 is less than |𝐸𝑆| , we will directly abandon the
deployment of this SFC. This is because in the network, there is
no path with a length greater than or equal to |𝐸𝑆| between the
TSP and user, or the existing path is too long, which will cause
abundant resource consumption. If 𝑘 is greater than |𝐸𝑆| , it
means that there is a path in the network that can map this SFC
but there are extra nodes and links in the path. Therefore, we
need to simply extend the SFC. To help to understand the SFC
expansion, an example is shown in Figure 4.

To make the SFC length equal to 𝑘, several VNFs and VNLs
need to be added. The difference is that adding VNLs requires
additional bandwidth resources, while adding VNFs does not.
Therefore, to consume less bandwidth resources, we choose the
VNL with the smallest 𝑅(𝑣𝑛𝑙4) for expansion. As shown in
Figure 4 (here, we assume 𝑘	 = 	5), we need to expand two
VNLs. 𝑉𝑁𝐿� is the VNL with the minimum bandwidth resource
request, so we add 𝑉𝑁𝐿� and 𝑉𝑁𝐿� , and their bandwidth
resource requests are the same as that of 𝑉𝑁𝐿�. In addition, we

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

have added two VNFs, 𝑉𝑁𝐹� and 𝑉𝑁𝐹� . Their computing
resource requests are all zero.

VNF1 VNF2TSP User
R=10 R=7

VNL1 VNL2 VNL3

R=8 R=6 R=5

SFC1 : Before Expansion

SFC1 : After Expansion

VNF3 VNF4
VNL4

R=5
VNL5

R=5

VNF1 VNF2TSP
R=10 R=7

VNL1 VNL2 VNL3
R=8 R=6 R=5 User

R=0 R=0

Fig. 4. Example of SFC expansion.

After completing the above work, we can ensure that |𝐸𝑆| is
equal to 𝑘. Next, we use SPD algorithm to deploy the SFC. The
details of SPD algorithm are introduced in subsection C later in
Section IV.
B. Find minimum k

For a network topology, we use 𝐴 to represent its adjacency
matrix. We can obtain the number of paths whose length is equal
to 𝑛 from the matrix 𝐴9 between any two nodes in the topology.
Here, we just need to know whether there is a path of length 𝑘
between two nodes.

Algorithm 2: Find minimum k (FMK)
Input: (1) Adjacency matrix of network topology 𝐴
 and 𝐴+ → 𝐴+�;
 (2) The # of VNLs: |𝐸𝑆|;
 (3)	The locations of TSP 𝑆 and user 𝐷.
Output: Length of path 𝑘.
1: for 𝑖 = |𝐸𝑆| to 15, do
2: if 𝐴4 𝑆 𝐷 ≠ 0, do
3: return 𝑖.
4: end if
5: end for
6: return −1.

The FMK algorithm needs to obtain the adjacency matrix 𝐴
of the network topology and obtain the power of 𝐴. Since the
length of the SFC is generally less than 10, we have prepared the
matrices 𝐴+ to 𝐴+� here. In addition, Algorithm 2 also needs the
number of VNLs in the SFC as well as the locations of TSP and
the user as input. The FMK algorithm outputs the length of path
𝑘 between the TSP and user that is greater than or equal to |𝐸𝑆|.
We traverse from 𝐸𝑆 to 15 until 𝐴4 𝑆 𝐷 is not equal to zero
and 𝑖 is returned. If 𝐴4 𝑆 𝐷 ≠ 0 is not found during the
process of traversal, we return -1 as the flag that there is no
suitable path in the topology to deploy the SFC. This satisfies the
condition of 𝑘 < |𝐸𝑆| in Algorithm 1 because the length of all
SFCs is greater than zero.
C. Shortest path deployment

After the preprocessing of Algorithm 2, the SPD algorithm is
responsible for formally finding the path mapping the SFC in the
network topology. The SPD algorithm deploys every VNF
iteratively. In the process of deploying a VNF, the
corresponding VNL is also deployed. Therefore, the SPD
algorithm is not a two-step algorithm with nodes and links
deployed separately. For the schemes of SFC deployment, the
substrate node to host 𝑣𝑛𝑓4 is stored in 𝑁(𝑣𝑛𝑓4), and the path on
which the VNL request 𝑣𝑛𝑙4 is deployed is stored in 𝐸(𝑣𝑛𝑙4).
We can judge whether the SFC is deployed successfully or not
and calculate the performance indicators.

Algorithm 3 inputs an SFC request 𝑆𝐹𝐶 , a count variable
𝑐𝑜𝑢𝑛𝑡 and the substrate node 𝑛L that maps the previous VNF.
The count variable 𝑐𝑜𝑢𝑛𝑡 can be regarded as the number of
VNFs that have been deployed. Since the source node of the
SFC is known, we start the SFC deployment from the first VNF
𝑣𝑛𝑓+. Therefore, in Algorithm 1, we initialize 𝑐𝑜𝑢𝑛𝑡 to 0 and 𝑛L
to 𝑆. Finally, Algorithm 3 outputs the deployment scheme of the
SFC request.

 𝑠𝑓 𝑛8 = 𝛼 ∗ 𝑙𝑟 𝑛8 + (1 − 𝛼) ∗ 𝑙𝑟 𝑛L, 𝑛8 (29)

Lines 1 to 4 of Algorithm 3 indicate that if 𝑐𝑜𝑢𝑛𝑡 is equal to
𝑁𝑆 + 1, then the deployment of the SFC request has been

completed, and Algorithm 3 will end. Otherwise, we traverse the
adjacency list of node 𝑛L to find the substrate node to deploy the
next VNF. Before traversal, we need to sort the nodes in the
adjacent linked list in ascending order according to 𝑠𝑓 . As
shown in Formula (29), 𝑠𝑓 is a weighted addition of the load
rate of candidate nodes and links. Here, 𝛼 is a weighting factor
between 0 and 1 and determines the effect of the node load rate
and link load rate on 𝑠𝑓. We can adjust the value of 𝛼 according
to actual needs. In the following experiments, we consider the
node load rate and link load rate to be equally important.

Algorithm 3: Shortest path deployment (SPD)

Input: (1) SFC 𝑆𝐹𝐶 = (𝑁Q, 𝐸Q, 𝑆, 𝐷, 𝐶ST);
 (2) A count variable: 𝑐𝑜𝑢𝑛𝑡;

 (3)	The substrate node that maps the previous VNF: 𝑛L.
Output: The deployment scheme for 𝑆𝐹𝐶
1: if 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆 + 	1, do
2: 𝑆𝐹𝐶 is deployed successfully;
3: End Algorithm 3.
4: end if
5: Sort all nodes in the adjacent linked list of node 𝑛L according

to 𝑠𝑓;
6: for each node 𝑛8 in the adjacent linked list of node 𝑛L, do
7: if 𝑛8 has been visited, do
8: continue;
9: end if
10: if 𝑛8 = 𝐷, do
11: if 𝑐𝑜𝑢𝑛𝑡	 ≠ 𝑁𝑆 , do
12: continue;
13: else
14: if	𝑟 𝑛L, 𝑛8 ≥ 𝑅(𝑣𝑛𝑙|1Q|), do
15: 𝐸 𝑣𝑛𝑙pro9qx+ = {(𝑛L, 𝑛8)};
16: 𝑆𝐹𝐶 is deployed successfully;
17: End Algorithm 3.
18: end if
19: end if
20: else
21: if 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆 , do
22: continue;
23: else
24: if 𝑟 𝑛8 ≥ 𝑅 𝑣𝑛𝑓pro9qx+ 	&&	
 𝑟 𝑛L, 𝑛8 ≥ 𝑅(𝑣𝑛𝑙pro9q), do
25: 𝑁 𝑣𝑛𝑓pro9qx+ = 𝑛8;
26: 𝐸 𝑣𝑛𝑙pro9qx+ = {(𝑛L, 𝑛8)};
27: set 𝑛8 as visited;

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

28: 𝑆𝑃𝐷	(𝑆𝐹𝐶, 𝑐𝑜𝑢𝑛𝑡 + 1, 𝑛8);
29: end if
30: end if
31: end if
32: end for
33: set 𝑛L as not visited.

When we obtain an adjacent node 𝑛8 of 𝑛L, if node 𝑛8 has
already been visited, we will skip this node and continue to visit
the next node in the adjacent linked list of 𝑛L. Next, we discuss
two different cases in terms of node 𝑛8 . When 𝑛8 is the
destination node 𝐷, if all VNFs have not been deployed (i.e.,
𝑐𝑜𝑢𝑛𝑡	 ≠ 𝑁𝑆), we will skip the destination node and select the
next node to map the current VNF. Otherwise, we will examine
whether the link between 𝑛8 and 𝑛L satisfies the constraint
condition proposed by Formula (26). If this condition is satisfied,
we will deploy the last VNL on the substrate link (𝑛L, 𝑛8). Then,
we can announce the successful deployment of 𝑆𝐹𝐶 and end
Algorithm 3.

When node 𝑛8 is not the destination node 𝐷, if all VNFs have
been deployed (i.e., 𝑐𝑜𝑢𝑛𝑡 = 𝑁𝑆), this means that the node we
need to find is the destination node	𝐷. Therefore, we will skip
this node and look for the destination node 𝐷. If there are still
VNFs that have not yet been deployed, we will examine whether
the current node 𝑛8 and connected link (𝑛L, 𝑛8) meet the
resource constraints proposed by Formulas (22) and (26). If
these constraints are met, we record the deployment scheme in
𝑁(𝑣𝑛𝑓4) and 𝐸(𝑣𝑛𝑙4). In addition, we set node 𝑛8 to already
visited and call the SPD algorithm to deploy the next VNF. At
the end of Algorithm 3, we set node 𝑛L to be not visited.
D. Complexity analysis

The OSFCD algorithm is composed of the FMK algorithm
and SPD algorithm. We assume that the network topology
contains n nodes. The time complexity of our proposed OSFCD
algorithm is analyzed as follows:
l In the FMK algorithm, we traverse from 𝐸𝑆 to 15 until
𝐴4 𝑆 𝐷 is not equal to zero. Therefore, the complexity of
the FMK algorithm is a constant expression, which is
recorded as O(L). In the process of SFC expansion, only a
few virtual nodes and links are extended in SFC, so the
complexity of SFC expansion can also be recorded as O(L).
Where L denotes the length of SFC.	

l The SPD algorithm traverses the adjacent nodes of the
current node in each iteration as it looks for nodes to deploy
the current VNF. After traversing all adjacent nodes, if no
suitable node is found, the algorithm will backtrack.
Therefore, the complexity of the OSFCD algorithm is O(n2).	

 In summary, the time complexity of the proposed OSFCD
algorithm is O(n2).

V. SIMULATION RESULTS AND ANALYSIS
In this section, we carry out simulation experiments to

compare our proposed OSFCD algorithm and the other three
existing algorithms proposed in [5].
A. Simulation settings

We use Java to evaluate different deployment algorithms.
Similar to Ref. [5], we employ the Waxman 2 model of the
GT-ITM tool to randomly generate small-scale and large-scale
network instances as substrate networks to prove the
applicability of the OSFCD algorithm in different situations.

Here, the small and large substrate networks contain 50 nodes
and 200 nodes, respectively.

Similar to Ref. [11], each node or link contains 1500 units of
resources. For a substrate link 𝑒4 , 𝑑(𝑒4)	 obeys a uniform
distribution, U (10, 20). For two different topologies, the arrival
rate 𝜆 is set to 0.04. For the large topology, the service rate 𝜇 is
set to 5×10;�, while for the small topology, the service rate	𝜇 is
2×10;�. For a VNF request 𝑣𝑛𝑓4, 𝑅(𝑣𝑛𝑓4) follows the uniform
distribution U (10, 20). For a VNL request 𝑣𝑛𝑙4 , 𝑅(𝑣𝑛𝑙4) is
uniformly allocated, U (20, 40).
B. Optimization goals

In this paper, for online SFC deployment, our main concerns
are the following performance indicators:
(1) Success ratio

The success ratio of SFC deployment is defined as follows.
𝑁𝑈𝑀nopp 𝐿Qgh is the number of SFCs successfully deployed.
𝐿Qgh is the number of all SFCs.

 𝑅𝑎𝑡𝑖𝑜nopp =
.���{��(idjk)

|idjk|
 (30)

(2) Average bandwidth resource consumption
The definition is given in Formula (31). 𝐵qrq(𝐿Qgh) is the total

bandwidth resource consumption.

 𝐵8[C<8zC =
� ¡ (idjk)

.���{��(idjk)
 (31)

(3) Average end-to-end delay
The definition is given in Formula (32). 𝐷qrq(𝐿Qgh) is the total

end-to-end delay.
 𝐷8[C<8zC =

¢ ¡ (idjk)
.���{��(idjk)

 (32)

(4) Average response time
The average response time is defined as follows. 𝑇𝑅qrq(𝐿Qgh)

is the total response time.

 𝑇𝑅8[C<8zC =
£T ¡ (idjk)

.���{��(idjk)
 (33)

(5) Maximum node load rate
The definition is given in Formula (34). 𝑁𝑅H8¤ is used to

represent the maximum node load rate.
 𝑁𝑅H8¤ = {𝑙𝑟(𝑛I)}9K∈.�

H8¤ (34)

(6) Maximum link load rate
The maximum link load rate can be expressed by Formula

(35). 𝐸𝑅H8¤ is used to represent the maximum link load rate.
 𝐸𝑅H8¤ = {𝑙𝑟(𝑒I)}CK∈1�

H8¤ (35)

C. Experimental results and analysis
(1) Experimental results in two different topologies

In this section, we introduce and analyze a performance
comparison between our proposed algorithm and the
comparison algorithms in two different topologies.

Figure 5 shows the success ratio of SFCs s in two different
topologies. Whether in the small or large topology, with
sufficient network resources, the OSFCD algorithm maintains a
success rate of more than 99%, and only a few SFC requests fail
to be deployed. However, in the comparison algorithms, as the
length of SFC increases, the success ratio continues to decrease.
In both topologies, the OSFCD algorithm optimizes the success
ratio by an average of 25%.

Figure 6 shows the average bandwidth resource consumption
in two different topologies. The two figures show that with the
increase in the length of SFC, the average bandwidth resource

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

consumption also increases. The growth of the four algorithms is
close to the average bandwidth resource requested by one VNL.
However, this indicator of the OSFCD algorithm is always
smaller than that of the other three algorithms. Our algorithm
optimizes the average bandwidth resource consumption by 22.7%
and 16% in the small and large topologies, respectively.

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

io

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

io

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 5. The success ratio of SFCs in two topologies (a) The
small-scale topology; (b) The large-scale topology.

3 4 5 6 7 8 9
0

100

200

300

A
ve

r.
 B

an
dw

. C
on

su
m

pt
io

n
(U

ni
ts

)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11
0

100

200

300

A
ve

r.
 B

an
dw

. C
on

su
m

pt
io

n
(U

ni
ts

)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 6. Average bandwidth consumption of SFCs in two
topologies (a) The small-scale topology; (b) The large-scale
topology.

As shown in Figure 7, with an increase in the length of SFC,
this indicator also increases. The growth rate of the four
algorithms is nearly the average delay of a substrate link. The
indicator of the OSFCD algorithm is always less than that of the
other three algorithms, especially in the small-scale topology.
This result occurs because the OSFCD algorithm tries to deploy
SFCs on a path with shorter hops. Our algorithm optimizes the
average end-to-end delay by 25.7% and 20% in the small and
large topologies, respectively.

3 4 5 6 7 8 9
0

40

80

120

160

A
ve

r.
 E

nd
-t

o-
en

d
D

el
ay

 (U
ni

ts
)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11
0

40

80

120

160

A
ve

r.
 E

nd
-t

o-
en

d
D

el
ay

 (U
ni

ts
)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 7. Average end-to-end delay of SFCs in two topologies (a)
The small-scale topology; (b) The large-scale topology.

In Figure 8, we show the maximum node load rate of SFCs in
two different topologies. With an increase in the length of SFC,
the maximum load rate of nodes also increases. However, the
maximum node load rate and its growth rate of the OSFCD
algorithm are smaller than those of the other three algorithms.
As shown in Figure 8(b), the curve of the OSFCD algorithm is
always under that of the other three algorithms. Finally, the

maximum node load rate of comparison algorithms is nearly 1,
while that of the OSFCD algorithm is always less than 0.5.

In Figure 8(a), the optimization of the OSFCD algorithm is
not obvious. However, we can see the results in combination
with Figure 5(a). When length of SFC is greater than 6, the
success ratio of the other three algorithms is significantly
reduced, while the OSFCD algorithm still maintains a high
success ratio. Therefore, when the length of SFC is greater than
6, this indicator of comparison algorithms decreases because
their success ratios also decrease. Nevertheless, the maximum
node load rate of the OSFCD algorithm is always smaller than
that of the other three algorithms.

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 N
od

e
L

oa
d

R
at

e

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 N
od

e
L

oa
d

R
at

e

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 8. Maximum node load rate of SFCs in two topologies (a)
The small-scale topology; (b) The large-scale topology.

In Figure 9, we show maximum link load rate in two different
topologies. As the length of SFC increases, the maximum link
load rate also increases, and the curve of the OSFCD algorithm
is always below the other three algorithms, especially in the
large topology. Moreover, with a decrease in the success ratio,
the maximum link load rate of the other three algorithms also
decreases but is still greater than that of the OSFCD algorithm.
This is because ER and the other algorithms concentrate the load
on part of the nodes or links, resulting in the emergence of hot
nodes or links. However, the OSFCD algorithm preferentially
deploys VNFs or VNLs on nodes or links with low load rates.

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 L
in

k
L

oa
d

R
at

e

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 L
in

k
L

oa
d

R
at

e

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 9. Maximum link load rate of SFCs in two topologies (a)
The small-scale topology; (b) The large-scale topology.	

3 4 5 6 7 8 9
0

4

8

12

16

20

A
ve

r.
 R

es
po

ns
e

T
im

e
(U

ni
ts

)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

5 6 7 8 9 10 11

0

20

40

60

80

100

120

A
ve

r.
 R

es
p

on
se

 T
im

e
(U

n
it

s)

Length of SFC

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 10. Average response time of SFCs in two topologies (a)
The small-scale topology; (b) The large-scale topology.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

Finally, we show the average response time of SFC
deployment in two different topologies in Figure 10. The
average response time of the OSFCD algorithm is always
smaller than that of the other three algorithms. A gap of tens or
even hundreds of times is reached in large topologies. The
response time of the other three algorithms in the large topology
is obviously larger than that of the small topology, while the
average response time of the OSFCD algorithm in the two
topologies is similar. These results occur because algorithms
such as ER must traverse all nodes in the topology when a VNF
is deployed, while the OSFCD algorithm will end the algorithm
after finding a suitable path.
(2) Experimental results with different 𝜇

To examine the performance of the OSFCD algorithm in
different environments, we try to change the parameters in the
experiments to observe the experimental results. Here, we give
the experimental results of continuously changing the service
rate 𝜇 in the large topology.

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
200

220

240

260

280

300

A
ve

r.
Ba

nd
w

. C
on

su
m

pt
io

n
(U

ni
ts

)

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
80

100

120

140

A
ve

r.
 E

nd
-t

o-
en

d
D

el
ay

 (U
ni

ts
)

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 11. Two indicators with different 𝜇 (a) Average bandwidth
consumption; (b) Average end-to-end delay.

Figure 11 shows the average bandwidth resource
consumption and average end-to-end delay with different 𝜇
values. With the increase of 𝜇, both indicators of the other three
algorithms fluctuate continuously, while those of the OSFCD
algorithm maintain good stability. The average bandwidth
resource consumption is maintained at approximately 208 and
the average end-to-end delay is 104. In addition, the curve of the
OSFCD algorithm is always below that of the other three
algorithms. The OSFCD algorithm optimizes the average
bandwidth consumption by an average of 18.23% and the
average end-to-end delay by an average of 23.23%.

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 N
od

e
L

oa
d

R
at

e

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(a)

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 L
in

k
L

oa
d

R
at

e

µ

 OSFCD
 ER
 ER_CS
 ER_CS_ADJ

(b)

Fig. 12. Two indicators with different 𝜇 values (a) Maximum
node load rate; (b) Maximum link load rate.

Figure 12 shows the maximum node load rate and maximum
link load rate with different 𝜇 values, respectively. As 𝜇
increases, the both indicators of the four algorithms decrease.
This is because as 𝜇 increases, the number of SFCs existing in
the network topology at a certain time decreases accordingly, so
the load rate will decrease. However, the curve of the OSFCD

algorithm is always below that of the other three algorithms.
This finding also illustrates that the OSFCD algorithm further
optimizes the load balancing of the network.

Finally, in Figure 13, we show the effect of parameter 𝛼 in
Formula (29) on the maximum node and link load rate. When 𝛼
is set as 0.2, the OSFCD algorithm tends to choose the link with
lower load rate. On the other hand, when 𝛼 is 0.8, the nodes with
lower load rate will be preferred for VNF deployment.

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 N
od

e
L

oa
d

R
at

e

µ

 OSFCD (α=0.2)
 OSFCD (α=0.8)

(a)

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 L
in

k
L

oa
d

R
at

e

µ

 OSFCD (α=0.2)
 OSFCD (α=0.8)

(b)

Fig. 13. Two indicators with different 𝜇 and 𝛼 (a) Maximum
node load rate; (b) Maximum link load rate.	

VI. CONCLUSION
This paper studies the online SFC deployment problem in

NFV for modern networks that include 6G. In the processes of
the dynamic arrival and departure of SFCs, we are committed to
the efficient use of network resources. We review the
state-of-the-art and propose a mathematical model for online
SFC provisioning. Based on the proposed model, an efficient
online SFC provisioning approach, OSFCD, is proposed. The
algorithm chooses a path of minimum hops to deploy the SFC.
In addition, we carry out a simulation experiment and a
performance comparative analysis with three other existing
algorithms. The experimental results show that the OSFCD
algorithm can optimize multiple performance indicators of
online SFC deployment. Specifically, we reduce the bandwidth
consumption and end-to-end delay by 22.7% and 25.7%,
respectively.

In this paper, we do not take into account the reliability of
SFC deployment in the 6G networks. In the future, we will try to
utilize emerging machine learning technology to optimize SFC
provisioning by considering reliability problems and design
corresponding algorithms to further efficiently utilize network
resources in 6G.

ACKNOWLEDGEMENT
This research was partially supported by the National Key Research
and Development Program of China (2019YFB1802800), and PCL
Future Greater-Bay Area Network Facilities for Large-scale
Experiments and Applications (PCL2018KP001).

REFERENCES
[1] Jia Y, Wu C, Li Z, et al. Online scaling of NFV service chains

across geo-distributed datacenters. IEEE/ACM Transactions on
Networking, 2018, 26(2): 699-710.

[2] Sun G, Zhu G, Liao D, et al. Cost-efficient service function chain
orchestration for low-latency applications in NFV networks. IEEE
Systems Journal, 2019, 13(4): 3877-3888.

[3] Zheng D, Peng C, Guler E, et al. Hybrid Service Chain
Deployment in Networks with Unique Function. IEEE
International Conference on Communications, 2019: 1-6.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3042872, IEEE
Transactions on Industrial Informatics

[4] Liu J, Li Y, Zhang Y, et al. Improve service chaining performance
with optimized middlebox placement. IEEE Transactions on
Services Computing, 2015, 10(4): 560-573.

[5] Sun J, Zhu G, Sun G, et al. A reliability-aware approach for
resource efficient virtual network function deployment. IEEE
Access, 2018, 6: 18238-18250.

[6] Yang P, Xiao Y, Xiao M, et al. 6G wireless communications:
Vision and potential techniques. IEEE Network, 2019, 33(4):
70-75.

[7] Tariq F, Khandaker M R A, Wong K K, et al. A speculative study
on 6G. IEEE Wireless Communications, 2020, 27(4): 118-125.

[8] Huang C, Hu S, Alexandropoulos G C, et al. Holographic MIMO
surfaces for 6G wireless networks: Opportunities, challenges, and
trends. IEEE Wireless Communications, 2020.

[9] Khan L U, Yaqoob I, Imran M, et al. 6G Wireless Systems: A
Vision, Architectural Elements, and Future Directions. IEEE
Access, 2020, 8: 147029-147044.

[10] Tang L, Yang H, Ma R, et al. Queue-aware dynamic placement of
virtual network functions in 5G access network. IEEE Access,
2018, 6: 44291-44305.

[11] Zhao D, Ren J, Lin R, et al. On Orchestrating Service Function
Chains in 5G Mobile Network. IEEE Access, 2019, 7:
39402-39416.

[12] Spinnewyn B, Isolani P H, Donato C, et al. Coordinated service
composition and embedding of 5G location-constrained network
functions. IEEE Transactions on Network and Service
Management, 2018, 15(4): 1488-1502.

[13] Medhat A M, Carella G A, Pauls M, et al. Extensible framework
for elastic orchestration of service function chains in 5g networks.
IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2017: 327-333.

[14] Sun G, Xu Z, Yu H, et al. Low-latency and Resource-efficient
Service Function Chaining Orchestration in Network Function

Virtualization. IEEE Internet of Things Journal, 2020, 7(7):
5760-5772.

[15] Thiruvasagam P K, Kotagi V J, Murthy C S R. The More the
Merrier: Enhancing Reliability of 5G Communication Services
with Guaranteed Delay. IEEE Networking Letters, 2019, 1(2):
52-55.

[16] Cheng Y, Yang L, Zhu H. Deployment of service function chain
for NFV-enabled network with delay constraint. IEEE
International Conference on Electronics Technology, 2018:
383-386.

[17] Sun G, Zhou R, Sun J, et al. Energy-Efficient Provisioning for
Service Function Chains to Support Delay-Sensitive Applications
in Network Function Virtualization. IEEE Internet of Things
Journal, 2020, 7(7): 6116-6131.

[18] Ouyang C, Wei Y, Leng S, et al. Service chain performance
optimization based on middlebox deployment. IEEE International
Conference on Communication Technology, 2017: 1947-1952.

[19] Li G, Zhou H, Feng B, et al. Automatic Selection of Security
Service Function Chaining Using Reinforcement Learning. IEEE
Globecom Workshops, 2018: 1-6.

[20] Yang Y, Chen Q, Zhao G, et al. The Stochastic-Learning-Based
Deployment Scheme for Service Function Chain in Access
Network. IEEE Access, 2018, 6: 52406-52420.

[21] Li B, Lu W, Liu S, et al. Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service
chaining in inter-DC elastic optical networks. IEEE/OSA Journal
of Optical Communications and Networking, 2018, 10(10):
D29-D41.

[22] Gupta L, Samaka M, Jain R, et al. COLAP: A predictive
framework for service function chain placement in a multi-cloud
environment. IEEE 7th Annual Computing and Communication
Workshop and Conference, 2017: 1-9.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 05,2021 at 11:50:07 UTC from IEEE Xplore. Restrictions apply.

