
 

Abstract— The extensive propagation of Industrial Internet of 

things (IIoT) technologies has encouraged the intruders to initiate 

a variety of attacks that need to be identified to maintain the 

security of end-user data and the safety of services offered by 

service providers. Deep learning (DL), especially recurrent 

approaches, has been applied successfully to the analysis of IIoT 

forensics but their key challenge of recurrent DL models is that 

they struggle with long traffic sequences and can’t be parallelized. 

Multi-head Attention (MHA) tried to address this shortfall but 

fails to capture the local representation of IIoT traffic sequences. 

In this paper, we propose a forensics-based DL model (called 

Deep-IFS) to identify intrusions in IIoT traffic. The model learns 

local representations using local gated recurrent unit (LocalGRU), 

and introduces an MHA layer to capture and learn global 

representation (i.e., long-range dependencies). A residual 

connection between layers is designed to prevent information loss. 

Another challenge facing the current IIoT forensics frameworks is 

their limited scalability, limiting performance in handling Big IIoT 

traffic data produced by IIoT devices. This challenge is addressed 

by deploying and training the proposed Deep-IFS in a fog 

computing environment. The intrusion identification becomes 

scalable by distributing the computation and the IIoT traffic data 

across worker fog nodes for training the model. The master fog 

node is responsible for sharing training parameters and 

aggregating worker nodes output. The aggregated classification 

output is subsequently passed to the cloud platform for mitigating 

attacks. Empirical results on the Bot-IIoT dataset demonstrate 

that the developed distributed Deep-IFS can effectively handle Big 

IIoT traffic data compared with the present centralized DL-based 

forensics techniques. Further, the results validate the robustness 

of the proposed Deep-IFS across various evaluation measures. 

 
Index Terms—Deep Learning, Industrial Internet of Things, 

Forensics, Intrusion Detection 

I. INTRODUCTION 

HE Industrial Internet of Things (IIoT) is a ubiquitous 

network with a wide span of interconnected smart devices 

that afford a variety of intelligent computing amenities in the 

industrial environment. For instance, IIoT nodes can discern, 

handle, and transfer a diversity of information into and out of  
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IIoT platforms to offer efficient services and user experience in 

domains varying from manufacturing to service provision. In 

the opposite direction, IIoT infrastructures and devices can also 

be invaded by attackers seeking to attain critical information 

and promote outrageous actions [1]. 

In order to alleviate the hazard of intrusions on IIoT devices, 

effective Intrusion Detection System (IDS) are required to 

constantly screen IIoT flows that originate from a variety of 

sources, and scrutinize them to recognize indications of possible 

intrusions /cyber-attacks [2], [3]. IDS can be categorized into two 

groups: signature-dependent and anomaly-dependent. Signature-

dependent IDS identify malicious interventions (or doubtful 

actions) by analyzing flows based on formerly learned rules of 

acknowledged attacks. However, signature-dependent IDS have a 

number of problems. First, they can only recognize previously 

identified intrusions with well-examined features. They fail to 

identify new and unseen threats, which is problematic since 

intruders continuously improve their techniques, changing 

intrusion actions to evade outdated security measurements [2]. 

Second, the rise in the count newly acknowledged intrusions/ 

cyber-attacks significantly increases the count of signatures, 

causing extra comparisons between stored outlines and received 

actions. This increases the IDS workload, explicitly impacting the 

responsivity of the IDS resulting in a critical problem for 

immediate detection of intrusions. Consequently, such IDS usually 

exclude scrutiny of proceedings at particular rates based on 

accessible processing capabilities [3]. Third, IDS often necessitate 

intervention from human experts to investigate, analyze, and 

interpret signatures for the novel intrusions, and it could take a year 

to examine the attributes of a certain intrusion or cyber-attack [4]. 

 
The before-mentioned problems have been investigated using 

anomaly-dependent IDS that monitor a sequence of received IIoT 

traffic and the trained model distinguishes anomalies according to 

the resemblance index between standard and anomalous remarks. 

The key challenge of such systems is to learn an exceptional 

normal event that comprises numerous underlying changing 

activities produced by separate sources of IIoT traffic. Various 

kinds of IIoT sources could produce various events raising the 

false-positive ratio due to lower resemblance between received 

events and the normal learning activities [5]. 

  

Recently, there has been increasing research interest in 

investigating the usefulness of artificial intelligence (AI) 

approaches in developing cybersecurity methods, such as privacy-

preservation [6], threat prediction [7], malware disclosure [8], and 
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forensic exploration [1]. Among AI approaches, deep learning 

(DL) introduces improved learning models that have been 

achieving great success in various domains of computations, 

including IIoT based systems. According to the adopted learning 

scheme, these models are usually divided into three groups: 

supervised models, unsupervised models, and semi-supervised 

models [9]. The supervised models (convolutional neural network 

(CNN), recurrent neural network (RNN)) are trained to maps the 

features of IIoT flow to the corresponding class, i.e., benign or 

malicious, and they are trained using labeled data. On the other 

hand, the unsupervised models (autoencoder (AE) and deep belief 

network (DBN)) are trained to learn from the unlabeled features of 

IIoT flow by learning the informative patterns the IIoT data. Still, 

they often need substantial amounts of data and often 

computationally exhaustive [13]. Hence, semi-supervised models 

emerged as a combination of supervised and unsupervised models 

and are trained to learn from both labeled and unlabeled data to 

classify unlabeled data.  

The present approaches for detecting intrusions rely chiefly on 

a centralized cloud, which means that they cannot cope with 

current IIoT requirements, such as the distribution of computation, 

fast response, and scalability [14]. In IIoT environments, requests 

and computations are initiated at a large number of IoT devices, 

which produce vast amounts of traffic data. Centralized cloud 

computing is vitally essential in IIoT since it permits individuals to 

access and use various IIoT services accessible through the 

internet. However, due to its reliance on centralized computation, 

it is unable to process the traffic effectively from IIoT devices 

while carrying out exhaustive computations [15]. Moreover, long 

recognition times are experienced due to the extended distance 

between the IIoT devices and the centralized intrusions/cyber-

attack recognition system, causing a long communication time 

[16]. Consequently, an evolving distributed IIoT computation 

called fog computing (FC) is employed to overcome these 

limitations. The primary notion behind FC is to position data 

processing/ storage closer to the IIoT traffic sources. Thus, the fog 

layer is used to deploy the intelligent security technique since it 

contains several fog nodes that enable the distribution of the 

computation [17]. Therefore, expensive storage and processing 

incurred by the IIoT devices could be reduced by the deployment 

of distributed IDS [18]. Accordingly, we propose to develop a 

novel distributed DL framework to detect IIoT intrusions FC 

environment. 

 

To summarize, the main challenges addressed in this study are 

summarized as follows. First, current ML techniques have shown 

unstable and significantly affected by the nature of data and the 

feature engineering employed. Second, the present DL approaches 

either use CNN or recurrent networks. However, CNN fails to 

capture the long-term characteristics of IIoT traffic data. 

Additionally, recurrent networks suffer from the problem of 

gradient explosion and vanishing, which chiefly restrict their 

capability to capture long-term patterns; their sequential 

characteristics make them tremendously difficult, if not 

impossible, to be parallelized during the execution. Although the 

MHSA mechanism tried to address some of the limitations of 

RNNs, it still suffers from positional information loss since it deals 

with every position equally, and it disregards the local 

representation of IIoT traffic that is intrinsically significant. Third, 

centralized cloud computing-based IDS suffer from limited 

scalability, latency, and expensive computations, meaning that 

they exhibit a long detection time and are ineffective in handling 

enormous IIoT traffic data.   

In view of this, we propose the Deep-IFS model that combines 

the benefits of RNNs and MHSA and simultaneously overcomes 

their limitations. The LocalGRU was proposed to extract and learn 

local representations from the normalized IIoT traffic. The MHSA 

layer is followingly introduced to capture long-term information. 

The residual “add and normalize” connection is employed to avoid 

losing information from one layer to another.  After that, a feed-

forward layer is proposed to perform a non-linear feature 

transformation. To overcome the shortcomings of centralized 

training, we propose to train the Deep-IFS in a distributed manner 

in a fog computing environment. 

 

The main contributions of this work are as follows. 

 We propose a novel DL model, called Deep-IFS, to 

overcome the limitations of meeting the current DL 

approaches for detection of intrusions and cyber-attacks. 

  We employ Local GRU to enable efficient extraction of 

local representation from IIoT traffic. 

  We capture the long-term dependencies using the MHSA 

layer, which enables distributing/parallelizing the execution 

of the model. 

  We distribute the learning of Deep-IFS across different fog 

computing nodes to mitigate the drawbacks of centralized 

learning. 

 

The remainder of the paper is as follows. Section II introduces 

the research literature relevant to IIoT-based cyber-attacks, IDS for 

IIoT environment, DL-dependent IDSs, DL for big data analytics, 

and DL for the fog environment. Section III describes the proposed 

Deep-IFS for intrusion detection in IIoT networks. Section IV 

introduces the experimental configurations, results, comparisons, 

analysis, and limitations. Finally, conclusions and further work are 

presented in section V. 

II. RELATED STUDIES 

In this section, we introduce the studies related to this work. 

Initially, we present the recent work related to IIoT-based cyber-

attacks. Then we discuss the recent approaches for IIoT 

intrusion/anomaly detection, including some of the most recent and 

relevant DL approaches. We then present the challenges presented 

in recent literature to IIoT environments. Finally, we present recent 

fog computing studies that addressed these challenges.   

A. Digital forensic in the Internet of Things 

Digital forensics (DF) is a group of methods developed by 

researchers to investigate, analyze, and identify the adversaries to 

protect the critical information processed and transferred through 

IIoT networks. Over time, and owing to continuous technological 

and industrial improvements, the DF has been advanced into 

numerous subclasses, each concentrating on events of occurring in 

diverse settings, specifically: IoT forensics, mobile forensics, 

memory forensics, data forensics, and cloud forensics [29].  



This study focuses on IoT forensics (IFS), which addresses security 

events in IoT networks, commonly using logs and acquired 

packages to identify intrusions/cyber-attacks.  As argued in the 

previous section, several IDS have been introduced [11,12,30]. 

However, none has emerged as the favored technique by 

specialists, since calibration is missed, and differing state of affairs 

necessitates various tools and techniques [2,31,32]. 

B. Intrusion Detection Approaches for IIoT environment 

The current learning approaches for IIoT forensics are 

comprehensively surveyed in [2], which investigated the key 

challenges facing IIoT security and IDS, including the learning 

techniques by intruders, the privacy of the learning techniques, and 

the structure of these techniques. Machine learning (ML) 

approaches (i.e., extreme learning machine (ELM), regression, k-

means, support vector machine (SVM), and the Bayesian network) 

have been employed for identifying and detecting IIoT anomalies 

and intrusions [10]. These intelligent approaches are able to deliver 

appropriate solutions for detecting intrusions/cyber-attacks with 

the respectable performance [14]. However, ML approaches have 

several limitations. First, their performance relies heavily on the 

robustness of the employed feature engineering technique, limiting 

their stability. Second, their performance worsens when applied to 

big and high-dimensional data. Third, the learning capabilities are 

not robust enough to cope with the dynamic nature of data (cyber-

attacks) in the IIoT environment [16].  

 

Therefore, DL has emerged as a novel learning paradigm to address 

the before-mentioned limitations due to its powerful learning 

capabilities (especially from high-dimensional data), adaptivity to 

dynamic environments, and independence from any feature 

engineering. DL techniques have been demonstrated to have the 

intrinsic ability to alleviate and resolve the issues associated with 

conventional approaches [23]. A variety of DL approaches have 

been applied in IDS such as CNN [13], RNN [20], DBN [19,] and 

longest-short-term-memory (LSTM) [20]. For example, Ferrag et 

al. [13] investigated CNN, RNN, and DNN for intrusion detection 

and completed a comparative analysis of their performance under 

different configurations. Amma et al. [18] introduced vector 

convolution to build IDS in fog based IoT. However, CNN usually 

fails to sequential IoT streams, especially those that they have a 

long-term dependency. Hence, Sahakian et al. [4] proposed to use 

the LSTMs to alleviate this problem, where an ensemble of LSTMs 

employed to act as detectors and their output were merged into a 

decision tree for final classification. Similarly, Alkadi et al. [30] 

developed IDS using bidirectional LSTM (Bi-LSTM) that are 

integrated into the blockchain-enabled system. However, the 

computational cost of these models is high.  To address this, Liaqat 

et al. [5] proposed a novel framework that integrates CNN and 

Cuda LSTM (cuDNNLSTM) to timely and effectually detect 

complex malware botnets in the medical IoT environment. 

 

To summarize the recent research findings in IDS, Table I present 

the most relevant studies for IDS, including their reference, 

publication year, security paradigm (i.e., centralized or distributed 

processing), the novelty of algorithm (i.e., standard DL, hybrid 

model, novel model). Whether they use feature selection or not, the 

DL techniques employed, the number of datasets used, and the 

statistical test used in each study.  
 

C. DL For Big Data Analytics 

The recent and continuing development of smart computing 

(i.e., smart devices) has produced massive volumes of data that 

lead to big data analytics requirements. However, the multiplicity 

of big data opportunities in commercial applications, smart 

industries, smart healthcare, and intelligent transportation, big data 

processing remains a challenging task because of its 

characteristics, including huge volume and multi-dimensionality 

velocity, diversity, and reliability [23]. DL approaches have shown 

to effectively extract features, recognize important patterns, learn 

representative information from the massive data volumes [24]. 

Fig. 1. Systematic diagram of the proposed IIoT forensics framework 

Table I. Summarization of the recent cutting-edge study for  IIoT intrusions/Cyber-attacks detection. 

Study (year) Year 
Security 

Paradigm 

Algorithm 

Novelty 
Model 

Feature 

selection 
Dataset 

Significance 

test 

Shafiq et al. [28] 2020 Centralized Standard a bijective soft set+ 5 ML algorithms Yes  One Dataset None 

Koroniotis et al. [19] 2020 Centralized Novel DL + particle swarm optimization No  Two datasets None  

Alkadi et al. [30] 2020 Distributed Standard Bi-LSTM No  Two datasets None 

Saharkhizan et al. [4]  2020 Centralized Novel Ensemble of LSTMs + decision tree No One Dataset None  

Wu et al. [7] 2019 Centralized Novel LSTM + Gaussian Naïve Bayes No Three Datasets None 

Ferrag et al. [13] 2020 Centralized Standard DNN, CNN, RNN No Two datasets None  

Koroniotis et al. [20] 2019 Centralized Standard SVM, RNN, and LSTM Yes Two datasets None 

Amma et al. [18] 2020 Distributed Standard Vector convolutional DL (VCDL) No  One dataset None 

 



Thus, DL could be broadly employed to effectively resolve big data 

challenges, which is not possible using traditional ML techniques 

since Significant human participation is mandatory for developing 

efficient techniques [23]. Fine-grained data representation has been 

exposed by the DL models to produce timely and precise 

recognitions; nevertheless, the most critical challenges occur in 

computation distribution and computational scalability [24]. Thus, 

fog computing (FC) has emerged to offer distributed learning from 

big data. 

D. DL For Fog environment 

Recently, several studies reviewed and investigated different 

learning techniques in the fog environment. The main target of FC 

is to alleviate the workloads of the IIoT network at the cloud by 

bringing the storage and the complex computations closer to the 

client devices. To tackle the scalability problem incurred during 

learning from big traffic data originated from different IIoT- 

enabled devices, fog nodes are employed to act as a substituting 

computational unit. DL approaches can be exploited to 

demonstrate the viability of deploying intelligent learning 

paradigms in the fog environment. Furthermore, the learning and 

the inferencing time could be minimized through parallel and 

distributed processing of different IIoT forensics. Therefore, we 

propose a novel DL approach (Deep-IFS) to analyze and recognize 

anomalies/intrusions in IIoT traffic presented in an FC 

environment. 

III. PROPOSED APPROACH 

The IIoT network encompasses a large number of IIoT devices 

that are could be located in diverse places. Thus, intrusion 

detection techniques might be skilled enough to learn from the 

generated traffic data by these devices to offer a reliable response 

in for user’s requests within a short time. In view of this, the 

centralized approach of IIoT forensics has shown inefficient 

detection time and accuracy. The proposed Deep-IFS is developed 

to process the traffic flow data from smart IIoT devices by dividing 

the workload across different worker FC nodes. Fig.1 shows the 

developed IIoT forensics approach, including the device layer, fog 

layer, and the cloud layer. The device layer contains the smart IIoT 

devices interconnected with each other. It has limited 

computational power and restricted bandwidth; thereby, it fails to 

handle emerging actions. The fog layer encompasses the tools and 

devices required to constitute the connections of the IIoT network. 

It is accountable for minimalizing computational overhead on the 

IIoT devices that have limited resources. The cloud layer is 

responsible for authenticating the information attained from the 

fog. It offers guiding principles to the fog layer for improving the 

eminence of services (i.e., responses) afforded the fog node. The 

proposed Deep-IFS for IIoT forensics accomplish distributed 

training by scattering the computation evenly on the fog nodes. 

Specifically, the proposed Deep-IFS is shared between the worker 

fog nodes. The master node, the worker nodes employed to learn 

to discriminate between the IIoT traffic as either benign or 

intrusion and followingly passed for supplementary computation 

on the cloud layer. 

A. The representation of IIoT traffic 

The traffic sample of the IIoT network is represented as 𝑇𝑆 =
[𝑡𝑓1, 𝑡𝑓2, ⋯ , 𝑡𝑓𝑛 , 𝐶𝑙] , where 𝑡𝑑𝑖  denote the 𝑖 − 𝑡ℎ  the traffic 

features and the 𝐶𝑙  represented the corresponding the label of the 

IIoT traffic sample. Hence, the whole dataset of IIoT traffic can be 

denoted with equation (1). 

𝑇𝐷 = ||

𝑡𝑓1
1 𝑡𝑓2

1 ⋯ 𝑡𝑓𝑛
1

𝑡𝑓1
2 𝑡𝑓2

2 ⋯ 𝑡𝑓𝑛
2

⋮
𝑡𝑓1

𝑘
⋮

𝑡𝑓2
𝑘

⋱
⋯

⋮
𝑡𝑓𝑛

𝑘

|| (1) 

where 𝑛 𝑎𝑛𝑑 𝑘 denote the number of features and the number of 

samples, respectively. The 𝑚𝑖𝑛 − 𝑚𝑎𝑥 normalization is applied to 

normalize the feature into the interval [0, 1]  according to the 

equation (2). 

𝑋𝑖
𝑘 =

𝑡𝑓𝑖
𝑗

− 𝑚𝑖𝑛 (𝑇𝑆𝑗)

𝑚𝑎𝑥 (𝑇𝑆𝑗) − 𝑚𝑖𝑛 (𝑇𝑆𝑗)
 (2) 

where 𝑡𝑓𝑖
j
 represents the 𝑖 − 𝑡ℎ  feature in 𝑗 − 𝑡ℎ  sample. The 

𝑚𝑎𝑥(𝑇𝑆𝑗)  and the 𝑚𝑖𝑛 (𝑇𝑆𝑗)  represent the minimum and 

maximum value of the 𝑗 − 𝑡ℎ sample, respectively. So, the 

normalized IIoT traffic dataset can be represented by equation (3). 

𝑇𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = ||

𝑋1
1 𝑋2

1 ⋯ 𝑋𝑛
1

𝑋1
2 𝑋2

2 ⋯ 𝑋𝑛
2

⋮
𝑋1

𝑘
⋮

𝑋2
𝑘

⋱
⋯

⋮
𝑋𝑛

𝑘

|| (3) 

The normalized data (3) is fed into the proposed Deep-IFS to learn 

to detect intrusions/ cyber-attacks from the network traffic.  

B. The proposed Deep-IFS Approach 

Since RNNs fail to acquire long-standing dependencies and are 

unable to accomplish parallel computation on sequential/temporal 

data (i.e., traffic data), recent studies proposed to eschew the 

recurrent model in favor of the attention technique [25]. Because a 

multi-head self-attention mechanism (MHSA) enables capturing 

interrelated positional information, it offers a flexible flow of 

information without incurring any loss. Nevertheless, the MHA 

still suffers from ignoring the imperative local patterns 

(representation) [26].  Motivated by the transformer network [25], 

we propose Deep-IFS to combine RNN and MHA benefits while 

evading the before-mentioned limitations. The Deep-IFS 

comprises of three layers, as revealed by Fig.2. The lowermost part 

is proposed to learn local traffic information using gated recurrent 

unit (GRU), which is well known for its robustness for sequential 

learning and also more time-efficient compared to the other 

recurrent DL models (i.e., LSTM) [6-7]. The intermediate layer is 

formed using the MHSA layer. The topmost layer is responsible 

for performing non-linear feature transformation. 

The local GRU systematizes the incoming long traffic sequence 

into a shorter sub-sequence that contains the local representation 

that is individualistically and conformably handled by a common 

GRU. The Deep-IFS constitutes a local window with width 𝑀 for 

Fig. 2. The architecture of proposed Deep-IFS for intrusion detection in IoT. 



each targeted traffic, which comprises 𝑀 successive positions and 

ends at the target site. Consequently, local GRU just emphasizes 

local short-range dependencies. Figure 2 shows a schematic of the 

local RNN. Uniquely, the position of a local sub-sequences of 

length 𝑀 is specified as 𝑀 = [𝑥𝑡−𝑀−1, 𝑥𝑡−𝑀−2, ⋯ , 𝑥𝑡], which are 

handled by the local GRU to produce a vectorized representation 

of 𝑀 hidden states, where the latter hidden vector is epitomized as 

a feature of the local sub-sequence. 

ℎ𝑡 = 𝐿𝑜𝑐𝑎𝑙𝐺𝑅𝑈(𝑥𝑡−𝑀−1, 𝑥𝑡−𝑀−2, ⋯ , 𝑥𝑡) 
(4) 

Thus, the local GRU slides each window one at a time and 

subsequently links the representation of each local area as a 

vectorized representation of the local hidden state of the whole 

traffic sequences. 

ℎ1, ℎ2, ⋯ ℎ𝑛 = 𝐿𝑜𝑐𝑎𝑙𝐺𝑅𝑈(𝑥1, 𝑥2, ⋯ 𝑥𝑛) 
(5) 

 After that, the vector of hidden state representation is fed into the 

MHSA layer to extract and learn the long-term reliance patterns 

from the input traffic sequence. While having the present vector 

representation, the computation of the output of the MHSA layer 

is computed according to the equation (6). 

𝑢𝑡 = 𝑀𝐻𝑆𝐴(ℎ1, ℎ2, ⋯ ℎ𝑛) =

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (ℎ𝑒𝑎𝑑1(ℎ𝑡),

ℎ𝑒𝑎𝑑2(ℎ𝑡), ⋯ , ℎ𝑒𝑎𝑑𝑛(ℎ𝑡)) 𝑊𝑜  

(6) 

where the ℎ𝑒𝑎𝑑k(ℎ𝑡) represents the computed attention score by 

the 𝑘 − 𝑡ℎ  head, and the 𝑊𝑜  denotes the regularization matrix. 

Every attention head is a linearization mapping matrix. The output 

of every attention head is computed as a weighted combination of 

a group of vectors, as presented in equation (7). 

{∝1, ∝1, ⋯ , ∝𝑛} = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (7) 

ℎ𝑒𝑎𝑑𝑖(ℎ𝑡) = ∑ ∝𝑗 𝑉𝑗

𝑛

𝑗=1

 (8) 

where the 𝑄, 𝐾, and 𝑉 represent the query, key, and value of the 

matrix. The q, 𝑘𝑖 , 𝑣𝑖  are the vectors mapped by the following 

mapping matrices 𝑊𝑞, 𝑊𝑘 , 𝑎𝑛𝑑 𝑊𝑣 , which are learned during 

training. The mapping is performed with equation (9). 

𝑞, 𝑘𝑖 , 𝑣𝑖 = 𝑊𝑞ℎ𝑡 , 𝑊𝑘ℎ𝑡, 𝑊𝑣ℎ𝑡 
(9) 

Finally, the feed-forward layer is employed for non-linear 

feature transformation according to equation (10) 

𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 (𝑚𝑡) = 𝑚𝑎𝑥(0, 𝑢𝑡𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (10) 
Moreover, the residual Add& Norm module is proposed to 

handle the connectivity between layers without losing information. 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐼𝑛1 + 𝑂𝑡1, ⋯ 𝐼𝑛𝑛 + 𝑂𝑡𝑛) (11) 

where the 𝐼𝑛i𝑎𝑛𝑑 𝑂𝑡i  represent the 𝑖 − 𝑡ℎ input element and the 

𝑖 − 𝑡ℎ output element of the current layer.  

C. Distributed Learning in Fog Environment 

As depicted in Fig.1, the fog layer consists of two types of nodes. 

First, the master node is responsible for universal learning. Second, 

the are multiple worker nodes that perform local learning. Every 

fog node (master or worker) contains networking, transportation, 

link, and application module. The identification of 

intrusions/cyber-attacks within IIoT flow is carried out at the 

networking and the transportation modules comprising the smart 

IIoT devices, such as routing and switching devices. The worker 

nodes of the fog layer manipulate and learn from the traffic data 

originated from such interconnected IIoT. The proposed forensics 

framework (see Fig.1) shows that the computational overhead 

(Deep-IFS training) is similarly distributed on the presented 

worker nodes of the fog layer to realize distributed learning. This 

distributed computation overcomes the scalability problems 

incurred by the centralized cloud computing-based forensics 

framework. After the Deep-IFS learns, its outputs are forwarded 

and saved at the master node and employed to detect 

intrusions/cyber-attacks in newly generated and unidentified IIoT 

traffic samples. Accordingly, this distributed learning schema 

enables attaining the optimal parameters for Deep-IFS training and, 

hence, evades training overfitting. 

D. Identifying intrusion in IIoT traffic 

 The intrusions/cyber-attacks within the IIoT traffic are 

identified at the master node of the FC layer. After the features are 

extracted by the transformer network, they are compressed using 

the pooling layer. Later, the compressed features are fed into full 

connected layers for computing the final classification decision. 

For binary classification, the last layer contains two neurons, and 

the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  function is used to calculate the probability that 

traffic records are malicious or normal (legitimate). In a multi-class 

classification scenario, the final layer neurons are equal to the 

number of class labels. The probability of each class is also 

computed using the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation. Since the Deep-IFS has 

been developed to be deployed in the FC environment, it is trained 

at every fog node in parallel, and the achieved output of this 

distributed deployment is transferred to the cloud network. The 

legitimate IIoT traffic sample is directed to its target (propagated 

through the network), and the detected intrusions/cyber-attacks are 

directed to the system of attack mitigation. 

IV. EXPERIMENTS AND ANALYSIS 

A. Experimental Setup 

The overall experiments of this study were performed on an 

Intel(R) Xeon (R) CPU E5-2670 0@ 2.60GHz (2 processors), with 

RAM of 256 GB size, under 64-Bit Windows 10 system, and 

accelerated with NVIDIA-Quadro-k2200. The implementation of 

the proposed Deep-IFS was carried out using Keras Library and 

TensorFlow API. For training, the Deep-IFS was trained using 

Adam optimizer and Batch size of 32 for 100 epochs. The Cooja 

simulator is employed to simulate the motes of a radio sensor 

network to establish the IoT edge layer. The CONTIKI-NG 

framework is employed to implement IoT WSN motes. The fog 

layer nodes are designed utilizing three laptops, and they are linked 

with the virtual edge sensors. In the cloud-based platform, the 

Deep-IFS is deployed in the cloud utilizing an Amazon EC2 virtual 

server. 

B. Evaluation Measures 

To assess the performance of the proposed Deep-IFS, evaluation 

metrics like false-negative (FN), false positive (FP), true negative 

(TN), true positive (TP) and, were employed for Performance 

analysis. The value is these metrics are presented as a confusion 

matrix of the model output. Further, extra evaluation measures 

such as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐹𝑎𝑙𝑙 − 𝑜𝑢𝑡, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑎𝑛𝑑 𝐹1 −
𝑚𝑒𝑎𝑠𝑢𝑟𝑒) and area under the curve (AUC), which are computing 

according to equations (12), (13), (14), (15), and (16) 

correspondingly. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (12) 

𝐹𝑎𝑙𝑙 − 𝑜𝑢𝑡 (𝐹 − 𝑜𝑢𝑡) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100 (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐶) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100    (14) 



𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐶𝐿) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (15) 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹1) = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (16) 

C. Dataset Description 

Bot-IoT dataset: The Bot-IoT data [20] contains the IIoT traffic 

samples produced by IIoT smart home appliances such as smart 

thermostats, smart remotely controlled garage, smart-motion-

controlled lights, smart fridge-freezers, and smart weather 

monitoring systems. The data splitting is presented in Table II, 

where the training set contains 3,037,933 samples of IIoT traffic, 

and the test set contains 3,668,522 samples of IIoT traffic. Previous 

studies [18]-[20] often use two groups of features of this data, i.e., 

group of all features (G1) and a group of best ten features (G2). 

Hence, we decide to experiment Deep-IFS on both groups.   

UNSW-NB15 dataset [6]: This data consists of nine classes of 

intrusions, particularly fuzzes, analysis, backdoor, DoS, exploits, 

generic, reconnaissance, shellcode, and worms. It consists of a total 

of 42 attributes. The data contain 175341 training samples and 

82332 test samples. The distribution of samples across different 

classes is presented in Table III. This dataset is often used in two 

groups of features of this data, i.e., group of all features (G1) and a 

group of best 20 features (G2). In this study, we experiment with 

the proposed Deep-IFS in binary and multi-class classifications. 

For binary classification, we use the dataset in two classes 

(legitimate and attack). For multi-class classification, we use the 

data with attack categories (i.e., five classes in the Bot-IoT dataset 

and ten classes in the UNSW-NB15 dataset). 
Table II. The splitting of IoT traffic samples in BoT-IoT Dataset 

IIoT Traffic No.Train Instances No.Test Instances 

Binary class scenario 

Attack 3036915 3668045 

legitimate 1018 477 

Multi-class scenario 

Theft 119 79 

Reconnaissance 115167 91082 

DDoS 2027166 1926624 

DoS 894463 1650260 

legitimate 1018 477 

 
Table III. The splitting of IoT traffic samples in the UNSW-NB15 dataset 

IIoT Traffic No.Train Instances No.Test Instances 

Binary class scenario 

Normal/Legitimate 56000 37000 

attack 119341 45332 

Multi-class scenario 

Normal 56000 37000 

Generic 400000 18871 

Exploits 33393 11132 

Fuzzers 18184 6062 

DoS 12264 4089 

Reco. 10491 3496 

Analysis 2000 677 

Backdoors 1746 583 

Shell 1133 378 

Worms 130 44 

 
Table IV. The Features of the BoT-IoT Data 

 

Table V. The confusion matrix of proposed Deep-IFS in binary classification 
scenario using the Bot-IoT test set.  

 Features Used Class  
Predicted Classes 

legitimate Attack 

A
ct

u
al

 

C
la

ss
es

 

G2 
legitimate 460 17 

Attack 8523 3659522 

G1 
legitimate 451 26 

Attack 8971 3659074 

 

Table VI. The confusion matrix of proposed Deep-IFS in a multi-class 
classification scenario using the G1 of the Bot-IoT test set. 

Predicted Classes 

A
c
tu

a
l 

C
la

ss
e
s 

Traffic legitimate DDoS DoS Recon Theft 

legitimate 462 4 4 6 1 

DDoS 12 1923800 2443 366 3 

DoS 18 2440 1648049 151 2 

Recon 5 14 47 91016 0 

Theft 0 2 1 2 76 

 
Table VII. The confusion matrix of proposed Deep-IFS in a multi-class 

classification scenario using G2 of the Bot-IoT test set. 

Predicted Classes 

A
c
tu

a
l 

C
la

ss
e
s 

Traffic legitimate DDoS DoS Recon Theft 

Legitimate 464 3 7 3 0 

DDoS 11 1924585 1832 196 0 

DoS 18 1705 1648478 59 0 

Recon 3 10 20 91049 0 

Theft 0 1 0 1 77 

D. Results 

This subsection presents the results attained by the proposed 

Deep-IFS from four experiments on every dataset. The first two 

experiments train and evaluate the Deep-IFS for classifying 

attacks from legitimate traffic. The other two experiments train 

and evaluate the Deep-IFS to discriminate between various 

categories of traffic data. 
 

BoT-IoT Dataset: For the binary classification, Table V presents 

the confusion matrix of Deep-IFS. It could be noted that the 

training the Deep-IFS using the G2 realizes higher TP and TN 

(460, 3659522) compared to training using G1. This observation 

indicates better performance. It could be noted that training on 

either G2 or G1 realizes comparable performance. However, the 

G2 based Deep-IFS show marginal performance improvements on 

F1-measure and accuracy. Moreover, two experiments were 

performed to evaluate the performance of Deep-IFS for the multi-

class classification. In the first experiment, G1 is employed for 

training and evaluating the Deep-IFS and the realized confusion 

matrix is presented in Table VI. In the second experiment, the 

Deep-IFS is trained and evaluated using the G2. The corresponding 

confusion matrix is presented in Table VII, in which most of the 

misclassifications occur in DoS and DDoS classes. It can also be 

seen that most confusion happens in DoS and DDoS classes. It can 

also be seen that the precision of G2 based Deep-IFS outperforms 

the precision of Deep-IFS trained on G1 with 1% and 8% 

improvements on both legitimate and theft classes, respectively. 

Similarly, the recall of G2 based Deep-IFS outperforms the recall 

of Deep-IFS trained on G1 with 2% on DDoS class. Additionally, 

it is obvious that the F1-measure attained by G2 based Deep-IFS 

outperforms the F1-measure of Deep-IFS trained on G1 with 1% 

and 4% improvements on both legitimate traffic and theft traffic, 

respectively. 

 

Features Used Feature Names 

BoT-IoT (G1)  
seq, stddev, N IN Conn P SrcIP, min, state number, 

mean, N IN Conn P DstIP, drate, srate, max 

UNSW-NB15  

(G1) 

Proto, service, state, spkts, dpkts, sbytes, dbytes, dttl, 
dloss, sinpkt, djit, swin, tcprtt, smean, dmean, 

trans_depth, response_body_len, ct_srv_ src, 

ct_dst_sport_ltm, is_sm_ips_ ports 



UNSW-NB15 dataset: for binary classification, two experiments 

performed on the G1 and G2 of the data, and the resulting 

confusion matrices are presented in Table VIII. It could be noted 

that Deep-IFS show comparable performance on the two data 

groups with a slight improvement on G2. Further, two additional 

experiments are carried out on G1 and G2 for multi-class 

classification and the corresponding confusion matrices are 

presented in Table IX and Table X. Unlike other DL models, Deep-

IFS realized similar performance on both data groups. The 

observations mentioned above show that our model can extract and 

distinguish important features in IIoT traffic data, making it more 

efficient. Discernibly, it also reduces the time required for training 

and inferencing, as demonstrated in later sections. 

E. Comparative Analysis 

To validate the importance of the proposed Deep-IFS, we 

compare its performance against the recently introduced ML and 

DL approaches presented in Table I. It could be seen that most of 

the recent studies just addressed the intrusion/anomaly detection in 

IIoT traffic using predefined or traditional ML or DL approaches. 

It is also obvious that the security paradigms adopted in these 

studies were centralized. The distributed security paradigm was 

addressed in [30], [18].  To ensure fair comparisons, we reproduced 

the results of the before-mentioned approaches by reimplementing 

them according to the parameters and configurations reported in 

their corresponding paper.  

 

Table XI tabularizes the comparative results on the BoT-IoT 

dataset and also presents the corresponding training time. For the 

binary-class scenario, the lowest performance was realized by the 

SVM on all measures. On the other hand, the NB [28] trained with 

a bijective soft set approach has shown great improvements over 

the SVM. With regard to recurrent approaches, RNN and LSTM 

[20] achieved comparable performance. However, the LSTM is 

more time-consuming due to the gating mechanisms it uses to keep 

long-term computation [20]. Moreover, in the convolutional 

approach, the CNN [13] has lower performance than the before-

mentioned recurrent networks. Nevertheless, VCDL [18] has 

revealed great performance on all measures. More importantly, the 

proposed Deep-IFS achieved a robust performance (Accuracy: 

99.77; Precision: 99.99; Recall: 99.77; F1-measure: 99.88).  For 

Table XI. Comparison between Deep-IFS and the cutting-edge approaches on BoT-IoT 

 

Binary-class scenario Multi-class scenario 

Acc PRC RCL F1 F-out AUC 
Training 

Time (s) 
Acc PRC RCL F1 F-out AUC 

Training 

Time (s) 

SVM [20] 99.99 99.99 100 99.99 0 97.1 1557.9  91.31 91.42 90.13 90.77 9.87 89.9 1701.8 

RNN [20] 97.91 99.99 97.91 98.94 2.09 98.3  326.2 92.14 93.94 92.84 93.39 7.16 92.4 401.3 

LSTM [20] 98.06 99.99 98.06 99.02 1.94 100  415.1 96.1 95.52 94.44 94.98 5.56 97.1 518.7 

NV [28] 99.78 99 98 98.50 2 98.7  1408.3 92.04 92.15 91.23 91.69 8.77 91.3 1647.8 

Bi-LSTM [30] 98.96 99.99 98.92 99.45 1.08 99.8 689.8 96.67 95.92 96.12 96.02 3.88 97.7 8231.5  

CNN [13] 98.45 99.86 98.42 99.13 1.58 98.9  191.4 92.89 97.11 92.84 94.93 7.16 94.8 257.6 

VCDL [18] 99.74 99.99 99.75 99.87 0.25 99.1  198.1 93.44 97.52 93.44 95.44 6.56 95.3 247.1 

Deep-IFS 99.75 99.99 99.75 99.87 0.25 99.9  135.6 98.1 96.95 98.0 97.5 1.9 99.7 184.8 

 

Table IX. Confusion matrix of the Deep-IFS on G1 of UNSW-NB15 test set 
A

c
tu

a
l 

c
la

ss
e
s 

Predicted Class 

 N G E F D R A B S W 

N 36981 4 2 1 3 1 2 4 2 0 

G 2 18844 3 4 9 2 4 3 0 0 

E 1 3 11111 1 2 6 4 1 3 0 

F 2 1 1 6042 1 3 3 5 4 0 

D 0 2 4 3 4071 2 5 1 1 0 

R 0 1 2 5 2 3481 1 2 1 1 

A 1 4 5 1 3 1 656 4 2 0 

B 0 1 0 4 4 6 1 564 3 0 

S 1 2 1 2 1 8 3 7 353 0 

W 0 1 0 0 0 0 0 1 0 42 

N: Normal, G: Generic, E: Exploits, F: Fuzzers, R: Reconnaissance, A: Analysis, 

B: Backdoors, S: Shell, W: Worms. 

 Table X. Confusion matrix of the Deep-IFS on the G2 UNSW-NB15 test set 

A
c
tu

a
l 

c
la

ss
e
s 

Predicted Class 

 N G E F D R A B S W 

N 36985 0 2 1 3 1 2 4 2 0 

G 1 18856 2 1 4 2 2 2 1 0 

E 1 1 11119 1 2 3 0 1 3 0 

F 2 1 1 6048 1 3 3 1 2 0 

D 0 2 2 2 4077 2 2 1 1 0 

R 1 0 2 2 2 3484 1 2 1 1 

A 1 2 3 1 2 1 661 4 2 0 

B 1 0 0 2 1 3 1 573 2 0 

S 1 1 2 2 4 5 3 2 358 0 

W 0 0 1 0 0 1 0 0 0 42 

N: Normal, G: Generic, E: Exploits, F: Fuzzers, R: Reconnaissance, A: Analysis, B: Backdoors, S: Shellcodem, W: Worms. 

 

Table VIII. The confusion matrix of proposed Deep-IFS in 
binary classification scenario using the UNSW-NB15 test 

set. 

 

Features  

Used 
Class  Predicted Classes 

  legitimate Attack 

A
ct

u
al

 

C
la

ss
es

 

G1 
legitimate 36951 49 

Attack 29 45303 

G2 
legitimate 36979 21 

Attack 9 45323 

 



the Multi-class scenario. It cab be noted that the performance of all 

previous models degrades compared with the binary scenario. 

Nevertheless, the Deep-IFS shows great performance 

improvement over the other models. 

 

The same models are compared on the UNSW-NB15 dataset and 

the results are presented in Table XII.  For the binary class 

scenario, it could be noted that the ML models [20],[28] achieve 

the lowest performance with an accuracy of 81.6% and 80.11%, 

respectively. The CNN models [13][18] show more improved 

performance compared with ML models, with an accuracy of 

98.45% and 99.74%. Further, the LSTM models [20][30] show 

higher performance with an accuracy of 98.82% and 99.15% 

correspondingly. More importantly, the Deep-IFS outperform 

other models on all measures. In addition, for a multi-class 

scenario, the performance of all models significantly degrades, 

whereas SVM and NB achieve accuracy of 76.12% and 75.18%, 

respectively. CNN [13] and VCDL [18] achieved an accuracy of 

85.13% and 91.25% correspondingly. LSTM [20] and Bi-LSTM 

[30] realized accuracy of 93.14% and 97.94% respectively. The 

proposed Deep-IFS again achieved robust performance (Accuracy 

of 99.75, F1-measure of 98.14, and AUC of 99.98) as with binary 

classification.  

The reason that SVM and NB achieve the lowest performance is 

that they fail to deal with high dimensional data, and they have a 

poor feature extraction capability. Additionally, the robustness of 

CNN models over ML is explained by the robust feature extraction 

capability of convolutional kernels. However, it fails to capture the 

sequential characteristics of data, which means that the LSTM 

based model is more efficient for this task. The proposed Deep-IFS 

combines the advantages of both spatial learning and sequential 

learning using the local GRU layer and also is able to focus on 

important features using an attention mechanism. 

 

Furthermore, comparing the training time of the models on BoT-

IoT shows that Deep-IFS has the lowest training time with 135.6 

and 184.8 seconds for binary and multi-class classification, 

respectively. Similarly, on the UNSW-NB15 dataset, Deep-IFS 

also exhibited the lowest training time with 56.7 and 67.2 seconds 

for binary and multi-class classification. This result further 

explains the time efficiency of the proposed Deep-IFS. 

F. Statistical significance Analysis  

To further validate the robust performance of the proposed 

Deep-IFS, we use a paired t-test to quantify the statistical 

significance over other models using the accuracy measure. The 

calculated p-values from the two datasets are presented in Table 

XIII. These results were calculated in a multi-class 

classification scenario, which is more challenging than binary 

classification. It could be seen that the quantified 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 

are less than 0.05. 

G. Ablation Study Analysis 

In our experiments, we select LSTM as the baseline architecture 

of our model, and we performed an ablation experiment to 

assess the contribution of different blocks, as presented in Table 

XIV. It could be noted that implementing the local GRU 

improves accuracy with 2% and 1.5% on BoT-IoT and UNSW-

NB15 datasets, respectively. The MHA layer enhances the 

accuracy with 1.4% on BoT-IoT and 3% on UNSW-NB15 since 

it enables the model to focus more on essential representations 

and ignore useless ones. Accuracy improvement of 1% and 

0.5% were achieved by adding the FF layer. The inclusion of 

the Add & Normalize layer improves the model accuracy with 

1% on both datasets as it prevents losing information across the 

layer and reduces training time. 

H. Analysis of Recognition Time 

To investigate the impact of distributed learning compared to 

a centralized learning scheme. Hence, we experiment with the 

proposed Deep-IFS in both learning schema using the G2 

feature data and G1 data and calculated the recognition time 

incurred in every learning scheme, as presented in Fig.3. It 

could be seen that the recognition times of the distributed Deep-

IFS using trained with the G2 have the lowest recognition time. 

When trained using the G1, it shows better recognition time 

than the centralized Deep-IFS. This observation further 

demonstrates the effectiveness of distributed learning in fog 

environments compared with centralized learning (i.e., cloud-

based learning). 

, Table XII. Comparison between Deep-IFS and the cutting-edge approaches on UNSW-NB15 dataset 

Model 

Binary-class scenario  Multi-class scenario  

Acc PRC RCL F1 F-out AUC 
Training 

time 
Acc PRC RCL F1 F-out AUC 

Training 

time 

SVM [20] 81.6 81.91 95.67 88.26 4.33 93.31 457.3  76.12 75.1 76.4 75.74 23.6 83.4 488.3 

RNN [20] 97.6 97.14 98.52 97.83 1.48 99.69  91.3 91.15 90.13 93.82 91.94 6.18 93.8 100.2 

LSTM [20] 98.82 98.14 98.63 98.38 1.37 99.69  110.4 93.14 92.14 93.11 92.62 6.89 93.5 132.7 

NV [28] 80.11 80.22 85.34 82.70 14.66 84.7   408.3 75.18 76.47 78.11 77.28 21.89 82.2  447.1 

Bi-LSTM [30] 99.15 98.74 98.9 98.82 1.1 99.71 181.2  97.94 96.35 96.74 96.54 3.26 98.1 210.3  

CNN [13] 98.01 97.23 98.21 97.72 1.79 99.69  100.5 85.13 84.11 88.4 86.20 11.6 92.3 115.2 

VCDL [18] 98.74 98.9 97.31 98.10 2.69 99.55  98.9 91.25 91.12 90.1 90.61 9.9 95.89 121.4 

Deep-IFS 99.94 99.92 99.94 99.93 0.06 99.99  56.7 99.75 98.09 98.2 98.14 1.8 99.98 67.2 

 
Table XIII. The statistical significance results of Deep-IFS using 

accuracy measure on both datasets. 

Models 
BoT-IoT 

dataset 

UNSW-

NB15 dataset 

SVM [20] 0.0021 0.0011 

RNN [20] 0.021 0.0024 

LSTM [20] 0.0187 0.0387 

NV [28] 0.0091 0.0027 

Bi-LSTM [30] 0.0381 0.0424 

CNN [13] 0.0189 0.0054 

VCDL [18] 0.0272 0.0097 

 

 
Table XIV. The ablation study of Deep-IFS. 

 BoT-IoT dataset UNSW-NB15 dataset 

 Acc F1 AUC Acc F1 AUC 

Baseline 92.6 91.26 94.42 93.6 92.25 94.43 

Local GRU 94.6 95.03 97.82 94.91 93.83 96.71 

Local GRU +MHA 95.98 94.35 98.19 97.82 96.38 98.41 

Local GRU 

+MHA+FF 
97.01 96.71 98.92 98.24 97.31 98.55 

Deep-IFS 98.10 97.5 99.7 99.75 98.14 99.98 

 



I. Impact of Number of Fog nodes 

To investigate the impact of the number of nodes, we 

experiment with the proposed Deep-IFS (using the G2 and G) 

on a varied number of worker fog nodes and compare its 

accuracy with other models, as depicted in Fig.4. It can be 

observed that the proposed Deep-IFS exhibits rapid 

convergence since it attains the best accuracy using 15 nodes, 

and no accuracy improvement attained beyond that number.  

J. Response Time Analysis 

To assess the proposed deep-IFS efficiency, we compare its 

implementation in a fog-based and cloud-based IoT platform. In 

this experiment, the response time is calculated ten times, and the 

mean value of various network speeds. As presented in Fig. 5, the 

response time of the fog-based Deep-IFS is less than the cloud-

based Deep-IFS as the fog nodes position the computation closer 

to the edge layer and hence can recognize malware traffic with low 

latency. The unstructured data that originated from IoT devices 

could be effectively recognized by Deep-IFS as it can attend to 

important patterns. 

V. LIMITATIONS AND FUTURE WORKS 

Despite the superiority of the proposed Deep-IFS, it does have 

some limitations. First, the Deep-IFS is trained in a supervised 

manner, which prevents learning from unlabeled traffic. Thus, 

we intend to expand the Deep-IFS to learn from unlabeled 

traffic using semi-supervised learning i.e., generative networks 

or self-ensembling. Second, the proposed framework did not 

address how data privacy will be kept, which is an important 

aspect of sensitive industrial applications. Thus, we aim to 

address this challenge using federated learning and privacy-

protection techniques in Multi-Access Edge Computing. 

Further, we also intended to address this limitation using 

blockchain-enabled fog/edge computing. Third, messaging 

complexity represents the charge of broadcasting a new chunk 

to all parties within an IIoT environment, which might worsen 

the proficiency of alarm aggregation and realizing composite 

intrusions immediately. Fourth, large volumes of IIoT traffic 

might lower the efficiency of Deep-IFS in manipulating the 

incoming traffics with no miss. This could be handled using an 

ignorance technique that decides the amount of traffic to be 

neglected when the network traffic surpasses the proposed 

Deep-IFS supreme processing ability.   Furthermore, in plans, 

we aim to investigate the Deep-IFS interpretability to offer a 

further transparent framework for sensing the intrusions/cyber-

attacks in IIoT traffics. Additionally, we plan to improve this 

work and apply it in a real-world scenario, especially in smart-

manufacturing, smart-transportation, and smart-healthcare 

applications. Finally, we will investigate our model for large 

imbalanced data in intrusion detection tasks. 

VI. CONCLUSIONS 

This paper presents a novel DL-approach, called Deep-IFS, 

for detecting intrusions in IIoT traffic in an FC environment. 

The main target was to defeat the limited scalability of the 

current IDS. In order to realize scalable IDS, traffic data 

samples were distributed across numerous fog workers to learn 

concurrently from the features of IIoT traffic. Additionally, 

training and inferencing were achieved by the proposed Deep-

IFS employing the LocalGRU layer for local information 

extraction and using MHSA for global learning. Thus, Deep-

IFS helps alleviate the risk of gradient vanishing and parallelize 

the learning computation (GPU execution), which is not 

possible in traditional RNNs. The performance of the proposed 

Deep-IFS approach was assessed with the Bot-IoT dataset. The 

realized performance of Deep-IFS distributed learning in an FC 

environment has reduced recognition time compared to 

centralized learning on the cloud and has realized a substantial 

performance enhancement compared with cutting-edge DL-

based IDS. Moreover, the experimental analysis demonstrated 

that the Deep-IFS attained better accuracy when trained with 

G2 than when trained using the entire set of features. Deep-IFS 

permits simpler communication of data among fog nodes and 

minimizes overheads providing a useful decision support 

framework to support the individuals and IIoT service providers 

to communicate their data in a trusted and secure way.  
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