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Abstract: Distributed edge intelligence is a disruptive research area that enables the execution of
machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since
edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have
to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion
analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a
distributed way, paying special attention to how techniques are adapted or designed to execute on
these restricted devices. The techniques under discussion pervade the processes of caching, training,
inference, and offloading on edge devices. We also explore the benefits and drawbacks of these
strategies.

Keywords: machine learning; artificial intelligence; distributed; edge intelligence; fog intelligence;
Internet of Things

1. Introduction

Nowadays, with the rise of the Internet of Things (IoT), a large number of smart
applications are being built, taking advantage of connecting several types of devices to
the internet. These applications will generate a massive amount of data that need to be
processed promptly to generate valuable and actionable information. Edge intelligence (EI)
refers to the ability to bring about the execution of machine learning tasks from the remote
cloud closer to the IoT/Edge devices, either partially or entirely. Examples of edge devices
are smartphones, access points, gateways, smart routers and switches, new generation base
stations, and micro data centers.

Some edge devices have considerable computing capabilities (although always much
smaller than cloud processing centers), but most are characterized by very limited capa-
bilities. Currently, with the increasing development in the area of MEMS (Micro–Electro–
Mechanical Systems) devices, there is a tendency to carry out part of the processing within
the data producing devices themselves (sensors) [1–4]. There are certainly several chal-
lenges involved in performing processing on resource-limited devices, including the need
to adapt complex algorithms and divide the processing among several nodes.

Therefore, in Edge Intelligence, it is essential to promote collaboration between devices
to compensate for their lower computing capacity. Some synonyms of this concept found
in the literature are: distributed learning, edge/fog learning, distributed intelligence,
edge/fog intelligence and mobile intelligence [5–7].

The leverage of edge intelligence reduces some drawbacks of running ML tasks entirely
in the cloud, such as:
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• High latency [8]: offloading intelligence tasks to the edge enables achievement of faster
inference, decreasing the inherent delay in data transmission through the network backbone;

• Security and privacy issues [9,10]: it is possible to train and infer on sensitive data
fully at the edge, preventing their risky propagation throughout the network, where
they are susceptible to attacks. Moreover, edge intelligence can derive non-sensitive
information that could then be submitted to the cloud without further processing;

• The need for continuous internet connection: in locations where connectivity is poor
or intermittent, the ML/DL could still be carried out;

• Bandwidth degradation: edge computing can perform part of processing tasks on raw
data and transmit the produced data to the cloud (filtered/aggregated/pre-processed),
thus saving network bandwidth. Transmitting large amounts of data to the cloud
burdens the network and impacts the overall Quality of Service (QoS) [11];

• Power waste [12]: unnecessary raw data being transmitted through the internet
demands power, decreasing energy efficiency on a large scale.

The steps for data processing in ML vary according to the specific technique in use,
but generally occur in a well-defined life cycle, which can be represented by a workflow.
Model building is at the heart of any ML technique, but the complete life cycle of a learning
process involves a series of steps, from data acquisition and preparation to model deploy-
ment into a production environment. When adopting the Edge intelligence paradigm, it is
necessary to carefully analyze which steps in the ML life cycle can be successfully executed
at the edge of the network. Typical steps that have been investigated for execution at the
edge are data collection, pre-processing, training and inference.

Considering the aforementioned steps in ML and the specific features of edge nodes,
we can identify many challenges to be addressed in the edge intelligence paradigm, such
as (i) running ML/DL on devices with limited resources, (ii) ensuring energy efficiency
without compromising the inference accuracy; (iii) communication efficiency; (iv) ensuring
data privacy and security in all steps; (v) handling failure in edge devices; and (vi) dealing
with heterogeneity and low quality of data. In this paper, we present the results of a
systematic literature review on current state-of-the-art techniques and strategies developed
for distributed machine learning in edge computing. We applied a methodological process
to compile a series of papers and discuss how they propose to deal with one or more of the
aforementioned challenges.

The purpose of this survey is to present the outcome of a recent literature review on
EI, identify key components, and analyze the retrieved studies thoroughly, correlating
techniques, strategies, frameworks and application domains. To achieve this end, we first
present the challenges we found on EI; secondly, we discuss all techniques and strategies we
found related to pre-processing federated learning and scheduling; thirdly, we describe the
frameworks we found for supporting EI, as well as which group of techniques and strategies
they are mainly related to; and fourthly, the paper presents a taxonomy of application
domain areas, which involves industry, surveillance, security, intelligent transport systems,
and health and energy management. We also present a comparison of our work with
related works (surveys and others) we found in the literature, as well as presenting open
issues and future directions.

The rest of this paper is organized as follows: Section 2 describes related surveys we
found in literature, as well as a comparison with this one. Section 3 approaches our research
methodology to support the reproducibility of this systematic review. Section 4 presents our
findings aligned to our Research Questions (RQs), Section 3. More specifically, regarding
RQ2, we would like to draw attention to the nine groups of techniques and strategies we
found (federated learning, model partitioning, right sizing, edge pre-processing, scheduling,
cloud pre-training, edge only, model compression, and others), as well as the six application
domainsw of edge intelligence we found (Industry, Surveillance, Security, Intelligent
Transportation Systems, Health and Energy Management). Section 5 presents the open
issues and future directions in EI. Finally, Section 6 presents the conclusions of this work.
Figure 1 shows a schematic overview of our paper structure.
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Figure 1. A schematic overview of the organization (structure) of this paper.

2. Related Work

Some surveys have been published that address the edge intelligence subject re-
cently. However, they adopt different perspectives from the one adopted in this SLR. Al-
Rakhami et al. [13] propose and analyze a framework based on the distributed edge/cloud
paradigm using docker technology which provides a very lightweight and effective virtual-
ization solution. This solution can be utilized to manage, deploy and distribute applications
onto clusters (e.g., small board devices such as Raspberry PI). It is able to provide an advan-
tageous combination of various benefits and lower costs of data processing performed at the
edge instead of central servers. However, the authors base their proposal on experiments
to support the proposal of a new framework. The research does not mention any of the
nine groups of techniques we present in our work.

Wang et al. [14] survey is centered on the connection between Deep Learning and the
edge, either to apply DL in optimizing the edge or to use the edge to run DL algorithms.
The study is divided into five fronts: DL applications on edge; DL inference in edge;
edge computing for DL; DL training at the edge; DL for optimizing the edge. The paper
discusses hardware and virtualization aspects. Concerning the (groups of) techniques and
strategies, it is more restricted to Federated Learning and the optimization of the edge with
DL. In contrast, in our survey we discuss further aspects, focusing on edge pre-processing,
training, inference and offloading. Furthermore, the authors did not explicitly group the
techniques as we did.

Xu et al. [10] approach edge intelligence under the perspectives of edge caching, edge
training, edge inference, and edge offloading in a very comprehensive way. We discuss
all these aspects in our work but explore additional techniques, and strategies related to
pre-processing, federated learning, and scheduling. One intersection of this paper with
ours is the overlap of three groups of techniques we present (Federated Learning, Edge
Pre-processing and Scheduling). However, we deepened our discussion into more groups
of techniques.

The work presented by Zhou et al. [15] covers artificial intelligence to edge AI, showing
a generalized representation of application architecture used in the lifecycle management of
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ML. In the edge layer: sensors/actuators; edge analytics; logging and monitoring. In the fog
layer: visualization; live streaming engines; batch processing; data ingestion; storage and
ML model development platforms and libraries. Our paper approaches several more do-
mains in which edge intelligence is used, which are not present in this survey. Compared to
these other surveys, we analyze the literature more comprehensively, including a discussion
on application domains of edge intelligence and their correlation with identified techniques.
This is also an excellent source of research in our scope, for dealing with applications of
artificial intelligence applied to edge or edge intelligence. Although there is an intersection
of this paper with ours in three groups of techniques we present (Federated Learning,
Model Compression and Model Partitioning), they did not present the other six we discuss.

Verbraeken et al. [16] provide an extensive overview of the current state-of-the-art in
terms of outlining the challenges and opportunities of distributed machine learning over
conventional machine learning, discussing the techniques used for distributed machine
learning. The paper follows the same line of research of Wang et al. [14], with a focus on
machine learning applied to the distributed environment. To this end, it makes inroads
into the various types of algorithms to solve problems using ML. However, the article does
not refer to any of the nine groups of techniques that are described in our paper for edge
applications. It can be considered a cornerstone article in the edge intelligence field to
tackle questions of challenges, frameworks and application domains.

In this scenario, the contribution of the current manuscript to the existing surveys and
review papers, when compared to the research published in 2020, is mainly in terms of the
groups of techniques and strategies. Table 1 shows the comparison between our work and
the other surveys mentioned in this section. In summary, the main gaps of the analyzed
works are focused on aspects such as “Techniques and Strategies” on the edge. The table
also shows the aspects of “Challenges”and “Different Application Domains”, where edge
intelligence can be used.

To show the difference of our work compared to the related work we found, we used
the six challenges, eight groups of techniques and strategies and six application domains
that emerged from our SLR. Considering the six challenges we describe in this work, we
observed that [13] does not even mention any challenge questions, [14,16] only address
one of the challenges we describe, [10] addresses all the challenges we also discuss and [15]
addresses two of these challenges. On the other hand, when considering the groups of
techniques, [10] describes only three of the eight groups we present and [13] presents two
of them, [14,15], four of them, and [16] does not cite any of them. Finally, considering the
six application domains we discuss, [10,15,16] do not discuss any of them, [13] discusses
only one and [14] discusses four of them. Table 1 shows these numbers. In this way, our
SLR is more complete than all these related works.

Table 1. Comparison of existing surveys.

Scope

Paper Challenges Group
of Techniques

Different Application
Domains

Al-Rakhami et al. [13] 0/6 2/8 1/6
Wang et al. [14] 1/6 4/8 4/6
Verbraeken et al. [16] 1/6 0/8 0/6
Zhou et al. [15] 2/6 4/8 0/6
Dianlei Xu et al. [10] 6/6 3/8 0/6
Our work 6/6 8/8 6/6

Regarding the framework, our paper presents several frameworks that were developed
to implement techniques and strategies from different groups that we identified and as a
source for other EI works. Our work does not propose any framework. We just organize
and compile information from a considerable numbers of frameworks from the researched
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literature that has contributed to this field of research. We intend to elaborate an aggregated
base so that new works can use this research as a reference source. It is a survey paper, not
a research paper, and our goal is to report the state of the art of the field.

3. Research Methodology

The research methodology used in this paper consists of a Systematic Literature
Review (SLR), where a rigorous protocol of searching the literature is defined and applied
to extract information that answers specific research questions. The use of this methodology
enables impartial results and an auditable process. This section details the methodology
used in the review.

According to Brereton et al. [17], an SLR is performed procedurally through distinct
processes. This proposal includes an initial phase called ’Plan Review’, which includes:
(i) specifying research questions; (ii) developing review protocol; (iii) validating review
protocol. In the second phase, ’Conduct Review’, the following are carried out: (iv)
identifying relevant research; (v) selecting primary studies; (vi) assessing study quality;
(vii) extracting required data; (viii) synthesising data. In the last phase, ’Document Review’,
the activities of producing and validating the reports with the reviewed findings are
performed, respectively: (ix) writing of the review report, and (x) validating the report.

3.1. Research Questions

The definition of the research questions is the most important part of an SLR, since
they guide all further steps of the review. The goal is to formulate questions that will be
answered by the review of primary works retrieved from the literature.

To define the research questions, a thorough search was conducted to list all subjects
that were being addressed in the area of Distributed Machine Learning in Edge Computing.
Then, we identified research gaps that were not addressed by other surveys. The questions
shown in Table 2 were formulated based on this list of subjects.

Table 2. Research Questions (RQs).

Research Questions (RQs) Goals

RQ1 What are the main challenges
and open issues in the dis-
tributed learning field?

To obtain an understanding of
the main challenges and open is-
sues in the distributed learning
field.

RQ2 What are the techniques and
strategies currently used in dis-
tributed learning?

To characterize techniques and
strategies used in distributed
learning.

RQ3 What are the frameworks cur-
rently used in distributed learn-
ing?

To characterize frameworks used
in distributed learning.

RQ4 What are the different appli-
cation domains of edge intelli-
gence?

To characterize the different ap-
plication domains of edge intelli-
gence.

3.2. Search Process

After defining the research questions, we began the search for articles on the Sco-
pus [18] online library of scientific papers, which enables advanced search according to
predefined input criteria. The following string was used in the search for papers:

“edge intelligence” OR “edge artificial intelligence” OR “fog intelligence” OR
“fog artificial intelligence"

In our research, we considered the use of Scopus as the main and unique source
of research, taking into account some aspects: subject, size, type of record and citation
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search. According to Gusenbauer and Haddaway [19], who make a comparison between
28 academic consultation bases and evaluate 26 requisites, Scopus has a significant content
depth, which motivated our choice of using Scopus as the source for our literature search.

We also chose Scopus due to over 10% of the Scopus database comprising conference
papers (over 9.5 million), of which 2.5 million are published in journals, book series and
other sources, 16 million author profiles, 70,000 affiliation profiles and 1.7 billion cited
references dating back to 1970 [20]. The publication categories include books, journals,
articles and conference papers in the field of computer, information science; medical
and health sciences; physical sciences; mathematical sciences; economics; and seventeen
others. The number of active titles indexed by Scopus vs. the nearest competitor based
on geographical region is as follows: 54% in North America, 236% in the Middle East and
Africa; 75% in Western Europe; 220% in Eastern Europe and Russia; 193% in Latin America;
265% in the Asia Pacific and 225% in Australia and New Zealand.

3.3. Inclusion and Exclusion Criteria

As the search returned a huge number of articles, some criteria for inclusion and
exclusion of initial studies were necessary to select the ones that should be the focus
of a more in-depth analysis. The inclusion and exclusion criteria used in this work are,
respectively, presented in Tables 3 and 4.

Table 3. Criteria adopted to include papers in the study.

Inclusion Criteria

IC1 The study presents or discusses opportunities or challenges to run ML at the edge
IC2 The study presents or discusses applications of ML at the edge

IC3 The study presents or discusses techniques, strategies and/or frameworks that
enable ML to run at the edge of the network

Table 4. Criteria adopted to exclude papers from the study.

Exclusion Criteria

EC1 The study is not related to Edge/Fog Computing
EC2 The study is not related to distributed ML in Edge/Fog Computing
EC3 The study is a previous version of a more complete study about the same research
EC4 The study was not approved according to the relevance criteria

Regarding Table 4, a filter called relevance criteria was created to verify the relevance
of any selected study, based on the number of citations. To apply the inclusion criteria,
the retrieved papers were subject to peer review, where two researchers independently
analyzed the same paper, which was accepted for inclusion only when both researchers
agreed with its selection.

3.4. Quality Criteria

After applying the inclusion and exclusion criteria described in the previous subsec-
tion, an additional step involved filtering selected works according to a quality assessment,
where the following criteria were proposed:

• QC1—Is there a clear definition of the research objectives?
• QC2—Is the proposed architecture/algorithm/protocol fully and properly explained?

Articles that did not meet these criteria were excluded.
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3.5. Selection Process Steps

In this survey, the three main phases proposed by Brereton et al. [17] were followed:
Plan Review, Conduct Review and Document Review. We conducted ten activities. In our
Plan Review phase, the research questions were defined and the search string was tailored
and applied. A total of 1560 scientific papers were retrieved. The results were inserted into
a table to lay the groundwork for the subsequent steps. The Conduct Review phase should
comprise the activities of identifying relevant research, selecting primary studies, assessing
study quality, extracting required data and synthesizing data.

From those 1560 initial studies, 615 were selected to undergo the inclusion and exclu-
sion criteria. This selection was based on the relevance of the papers regarding the number
of citations. Thus, each researcher was responsible for evaluating a fair number of papers.
This first analysis was based on the examination of the abstracts. The first round of analysis
resulted in the exclusion of 291 papers. Then, the included articles were subject to the
second round of analysis conducted by a different researcher, resulting in the elimination
of 110 additional works. Twelve new papers were included by specialists as noteworthy.

In the end, a total of 106 papers—given the constraint of time—was selected for a
complete examination. Figure 2 summarizes the number of articles excluded/included in
each step described above. Data regarding the selected papers were extracted to another
table. The fields included in the data extraction table are listed below:

• Paper, Application Domain, Main Challenges, Technique and Strategies, Frameworks
and Notes.

The third and final phase, Document Review, involves reporting the review findings,
aiming at providing answers to the posed research questions. Considering the four defined
RQs, Section 4.1 presents our findings regarding RQ1, Section 4.2 reports the findings
related to RQ2, Section 4.3 provides answers to RQ3 and Section 4.4 discusses application
domains, the target of RQ4.

Figure 2. Number of papers excluded step by step in the SLR.

3.6. Threats to Validity

The conducted systematic mapping and its results may have been affected by some
threats to validity. In the following, we discuss some of these limitations.
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The completeness of this systematic mapping may have been affected by missing
relevant studies. To reduce this threat, we used electronic databases that are among the
most relevant available sources in computer science and engineering. However, there are
still limitations:

• Some studies may have been missed due to technical limitations of the automated
search engines, an issue that is out of our control.

• The selected electronic databases do not represent an exhaustive list of publication
sources, so other databases might also be included.

• We did not perform snowballing, a useful technique that consists of checking the
reference lists of the read studies aiming to find additional studies that were not
retrieved in the automated search procedure. Therefore, other possibly relevant
studies could have been identified and considered in this systematic mapping.

4. Answering the RQs

In the following subsections, we present our findings related to each RQ described earlier.

4.1. RQ1—Research Challenges in Edge Intelligence (EI)

In this section, we summarize the challenges faced by the Edge Intelligence (EI)
paradigm that the analyzed studies either mentioned or aimed to tackle. The discussion
presented in this section aims to provide answers to RQ1: What are the main challenges
and open issues in the distributed learning field?

As mentioned earlier, performing ML techniques at the edge of the network promises
to bring several benefits, but it raises several challenges. As this field is still in its beginning,
solutions to such challenges are still being investigated. The surveyed studies tackle several
challenges, which can be broadly grouped into six categories, displayed in Table 5 and
described in what follows.

Table 5. Challenges in distributed machine learning in edge computing.

Challenges

CH1 Running ML/DL on devices with limited resources
CH2 Ensuring energy efficiency without compromising the accuracy
CH3 Communication efficiency
CH4 Ensuring data privacy and security
CH5 Handling failure in edge devices
CH6 Heterogeneity and low quality of data

CH1 consists of dealing with the typical low processing power of edge devices. Edge
devices often have little processing capacity, mainly when compared to the powerful data
centers at the cloud. On the other hand, many ML applications require high computa-
tional power that outweighs the possibilities of resource-constrained IoT and edge devices.
Limited resources also include memory and storage capacities. NN and ML algorithms
generally require storing of and access to a handful of parameters that describe the model
architecture and weight values forming the classification model. With limited storage, it
may not be possible to have continued access to the original training data, or the data
may have been removed altogether to free up space. Therefore, a significant challenge is
reducing memory access and storing the data locally to avoid costly reading and writing to
external memory modules.

CH2 consists of ensuring the energy efficiency of edge devices without compromising
the accuracy of the system. In general, the higher the complexity of the required processing,
the more energy is consumed. Edge devices can be battery-powered. In these cases, the en-
ergy consumption of algorithms must be minimized to reach energy efficiency. However,
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this should be done with care so as not to compromise the quality of the data generated
and the decisions/inferences made. So, there is an important trade-off to be managed.

CH3 concerns communication issues, where edge intelligence models must consider
that the devices might face poor connectivity. In such cases, the model update time in
training tasks may be delayed. Valerio, Passarella and Conti [21] claim that the infer-
ence is highly sensitive to the available bandwidth in communication. Challenges in
communication include network traffic, fluctuations in the bandwidth, intermittent or
unavailable connectivity.

CH4 is related to data privacy and security. Several applications in edge intelligence
handle sensitive data, such as healthcare. Thus, distributed ML algorithms must be able to
preserve user privacy and information security when data are transferred throughout the
devices. Distributed Edge-Intelligence (EI) has multiple points of vulnerability to possible
malicious attacks or leakage of confidential or important data in the ML workflow.

CH5 is the challenge posed by failures in edge devices. Since devices might fail at
some point, the distributed algorithm must consider ways to overcome this situation.
Lastly, heterogeneity and lack of quality in available data rise challenge CH6. For most
ML algorithms, especially in supervised machine learning, high accuracy depends on the
high quality of training data. However, this often does not apply in edge intelligence
scenarios, where the collected data are sparse and unlabelled [10]. Distributed edge
intelligence can handle data from different sources in different formats and is subject to
noise. The application must handle noise and heterogeneity in the sensed data used as
input to attain good accuracy.

Table 6 presents references to each of the described challenges, as well as studies that
propose approaches to tackle these challenges. This table aims to only show an overview
on the number of papers by each challenge. We can observe that challenge CH1 is the one
with more papers present in literature. All of the cited works are better described later in
this paper.

Table 6. References to the challenges of Edge Intelligence.

References Works That Tackle the Challenges

CH1 [10,15,22–31] [14,28,31–66]
CH2 [10,15,23,26,28,30,41] [8,24,28,31,33,36–38,49,52,56,59,61,65–67]
CH3 [10,24,28,29,46,66] [16,21,23,33–36,39,43,46,56,68,69]
CH4 [10,24,27,36,44,70] [8–10,24,44,51,71–73]
CH5 [10,27] –
CH6 [10,24,44,74,75] [10,38,70]

4.2. RQ2—Techniques and Strategies

The discussion presented in this section aims to provide answers to Research Question
2: What are the techniques and strategies currently used in distributed learning?

In our discussion, we focus on three main aspects, namely: (i) the system architecture,
(ii) how the ML tasks are distributed among the devices, and (iii) the underlying adopted
techniques. We classify the several approaches used in distributed learning based on
these three aspects. We identified nine groups of techniques and strategies, described in
what follows: Federated learning; Model partitioning; Right-sizing; Edge pre-processing;
Scheduling; Cloud pre-training; Edge only; Model Compression; and Other techniques.

4.2.1. Federated Learning

One of the most well-known and commonly implemented approaches in the EI re-
search field is Federated Learning (FL). FL is based on the concept of Distributed Selective
Stochastic Gradient Descent (DSSGD), introduced by Shokri [76] in 2015, and initially
related to privacy-preserving in deep learning. This approach allows each part of the
system to keep its local model private while iteratively updating it by integrating gradients
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of others through a parameter server. According to Lyu et al. [72], DSSGD exploits the fact
that SGD can be parallelized and executed asynchronously.

As reported by McMahan et al. [77], the use of FL enables to train ML models on
private client data through the iterative communications of parameters between the server
and clients. The whole process begins with the initialization of a random global model
in the server. Then, iteratively, the server sends the parameters to random clients, which
must update the model with their own data and upload the new values to the server that
averages the updated ones and replaces the global model with the averaged one. This
process is repeated until it achieves the desired performance.

The great advantage of FL that made this strategy so attractive to the EI community is
that edge nodes exchange and aggregate their local ML models, thereby preserving data
privacy, while at the same time avoiding extra computation, and reducing communication
overhead when ML model sizes are sufficiently smaller than data sizes [26].

There are different implementations/versions of federated learning trying to overcome
possible weak points. The FedCS [39], for example, is an FL protocol that focuses on client
selection. In cases of heterogeneous clients, clients with more data, compared to others,
will require a longer time to update models unless they have better/higher computational
resources. In this protocol, clients notify the server of their resource information. Using
this information, the Mobile Edge Computing (MEC) operator determines which clients
should be chosen to complete the subsequent steps within a certain deadline.

Abeshu and Chilamkurti [71] present a different approach, where both server and
clients are edge nodes, but belong to distinct hierarchies. Then, the so-called worker nodes
(clients in FL) train independently and send the weights and biases to the master node
(server in FL). The master node, therefore, sends these updates to the other nodes.

The architecture of Fog-embedded Privacy-Preserving Deep Learning (FPPDL) [72]
presents an extra layer to the default FL. The data are collected by the end nodes (devices)
that forward the transformed data to a nearby fog node. The intermediate nodes are
responsible for the client function of the classic FL, computing model gradients based on
the data received.

In conventional federated learning, the parameters of the entire Deep Neural Network
(DNN) structure are updated at the same time, contributing to a huge communication
overhead. The parameters of the shallow layers help the system to learn general features
of the content access. On the other hand, a large number of parameters are generated at
the deep layers to learn specific features related to specific content features and context
information of the end nodes. In Fadlullah and Kato [78], as a consequence, the parameters
of the shallow layers could be updated more frequently in contrast with those of the deep
layers in an asynchronous fashion.

Doku and Rawat [79] describe a proposal of a network that incorporates federated
learning with blockchain, called iFLBC edge. It brings the novelty of designing and em-
ploying a Proof of Common Interest (PoCI) mechanism to deal with the scarcity of relevant
data, which ensures that the data used to train models in the network are trustworthy.
The Federated Learning method is used to gather local updates of potential members of a
shard and to generate an averaged global model update that is shared by the members and,
then, stored on a blockchain that is unique to each Interest Group. Members of an Interest
Group can later download the shared model to provide EI to clients that request it.

4.2.2. Model Partitioning

DNN partitioning is the paradigm of distributed machine learning which segments a
DNN model into some successive parts and deploys each part on different sites. Figure 3
depicts the elements of Model Partitioning.
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Figure 3. Model Partitioning.

Complying with this paradigm, the authors Li, Ota, and Doung [35] use DL in edge
computing to process multimedia information. The lower layers of a DNN—the ones
closest to the input layer—are offloaded onto edge servers and the others onto the cloud.
In DL, the intermediate data are smaller than the initial data. In this way, this technique
reduces traffic in the network. In addition, as the initial data undergo some modifications
to an intermediate state before being sent to the cloud, the technique can also contribute to
the privacy problem.

Metha and Shourey [80] design a new Convolutional Neural Network (CNN) splitting
algorithm to efficiently distribute CNN between edge and cloud to reduce bandwidth
consumption. Since random layer partitioning may increase bandwidth consumption,
several parameters are taken into account to select the optimal splitting layer, such as
input image dimensions, bandwidth constraints and task load at the border of the network.
The authors show that the best splitting occurs at layers with lower output dimensions
than the input images. Because the pre-trained CNN architecture is not modified, there is
no loss of accuracy.

Zhang et al. [81] run multiple Kubernetes pods for each edge node. Each pod hosts sev-
eral docker-containerized Tensorflow jobs that could be categorized as model computation
or parameter update jobs for the NN. Model splitting and parallelization occur between
nodes. The cloud is responsible for Kubernetes management, with dynamic scaling and
maintaining consistency when a node is no longer up but the job is not finished yet.

4.2.3. Right-Sizing

Although the initial layers of the DNN reduce the size of the data, sometimes the
intermediate result generated is still large, or the whole process is too slow. Therefore, a
method for rapid inference is necessary. Thus, the network must be trained in a different
way to generate good results before reaching the end of the network (early-exit), being
able to give a result in real-time, without the need to send it to the cloud, thereby reducing
the traffic. This method is known as model right-sizing [34], where the DNN model has
different exit points and a shorter branch implies a smaller size and thus a shorter runtime.
This mechanism focuses on adjusting its size to the limitation of the existing environment.

Regardless the number of devices, the right-sizing method aims at optimizing the use
of external resources to accelerate computation. As for DNN right-sizing, the emphasis is
placed on tailoring the model size to the constraints of the available environment, which
requires advanced training techniques to create a new adjusted model from the original one.
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Teerapittayanon et al. [82] propose using Distributed Deep Neural Networks (DDNNs)
for fast and localized inference using shallow portions at end devices. It uses DDNNs in the
geographical diversity of sensors to improve functions of objects and recognition accuracy
and reduce communication costs. Then, it is possible to enhance sensor fusion, system fault
tolerance, fast inference and privacy in applications.

The proposals in Li, Zeng, and Chen [34] and Li, Ota, and Dong [68] integrate both
mechanisms of DNN partitioning and DNN right-sizing. Suppose the fog nodes are not able
to make an accurate inference by themselves. In that case, they will continue to upload the
intermediate data of the DNN to the remote cloud servers for further processing. However,
if the fog devices or nodes have obtained results that meet their requirements, they can just
stop uploading intermediate values and adopt fast inference as the final results.

Zeng et al. [53] present a system called Boomerang, which is designed with two key
concepts aimed at meeting the requirement for inference tasks on the manufacturing process.
The first key concept is DNN right-sizing, which is employed to accelerate the execution of
inference by exiting DNN execution early at a selected intermediate DNN layer. Another
key concept is DNN partition, where the DNN computation is partitioned adaptively and
distributed to the IoT devices and the edge server according to the available bandwidth.

4.2.4. Edge Pre-Processing

Another mechanism often used to reduce the size of the data in transit through the
network is to manipulate it in the edge tier. This method is commonly used in multime-
dia applications.

In Hossain et al.’s [83] paper, the data captured by end nodes/devices suffer some
preliminary processes at the edge and after processed, smaller in size, they are sent to the
server (at the cloud). A framework is proposed to classify and reduce environmental noises
in conversations through smartphones. Smartphones or recorders send audio to the edge
cloudlet via RAN (Radio Access Network) and the it performs the initial processing. Then
these data are sent to the core of the network. Cloudlet is a small-scale data center or cloud
located at the border of the internet. Its objective is to bring cloud-computing capabilities
closer to the consumer. They are typically used for mobile consumers or devices. CNN
is adapted and integrated for the Mel-spectrogram. The latter is a good representation of
short-time varying sounds, while CNN is good for other types of sounds. Both algorithms
integration make big mobile data, integrating an urban environment robust classification
system applied to any sound classification.

Hossain [84] presents an example of an audio-visual application. In the example,
the edge carries out the speech and video processing such as extraction of pitch and feature
extraction. In Liu [37], the author use images from data entry, and they are pre-processed
and segmented in the border before being sent to the server where they will pass through a
DNN. A similar approach of this mechanism can be found in Wang [29], where the edge is
responsible for feature extraction and algorithm selection. The algorithm selected is run in
the cloud.

Compressive Sensing (CS) [85] was proposed to sample and compress the signals si-
multaneously with the sampling rate far lower than the Nyquist sampling rate based on the
sparsity. Meanwhile, accurate reconstruction is achievable. Without losing the information,
the signal can be sampled with the fewest observations to reduce its dimensions and save
the cost of sampling and transmission. CS can be regarded as a cryptosystem when the
random measurement matrix is used as a key [86]. However, the measurement matrix used
as a key is inconvenient for communication since it has a huge size far larger than the size
of plain text; therefore, Chaotic Compressive Sensing (CCS) was proposed to solve the
problem of key communication [87]. In other words, a large-size measurement matrix is
replaced by a few values.

A formal analysis of results of the employment of edge pre-processing shows how
small changes in the prediction accuracy can enable substantial performance improvements.
Between the factors that affect the computational cost, there is the number of features ex-
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tracted from the data. Gómez-Carmona et al. [48], for example, claim that computational
effort can be reduced by 80% assuming a decline of the classification accuracy of only 3%.
This work utilizes data pre-processing, a three-point median filter to smooth the signal fol-
lowed by a segmentation process and a feature selection method (Chi2 filtering [88]), which
consists of a discriminating process to find essential features that have more weight in the
model. It reduces the dimension of the feature matrix by removing the irrelevant features.

For the original sampling provided by the dataset, using only the top three features
penalized the results by 3.19%. However, from the baseline parameters (all features and
all the signal components) to the final simplified stage (three features and only the most
representative component), the time reduction was 81.24% for a laptop, 82.05% for a 540
Raspberry Pi and 92.32% for a Raspberry Zero.

Feature selection powered by swarm search is used as a pre-processing method for
improving the accuracy and speed of local Fog data analytics. Fong and Mohammed [63]
conduct an experiment testing several feature selection search methods on the Gas Sensor
Array Drift dataset, confronting a conventional decision tree algorithm (C4.5) with a data
stream mining decision tree algorithm, called Hoeffding Tree (HT), and conclude that fog
computing using HT coupled with Harmony feature selection could reach good accuracy,
low latency and scalability for this dataset.

Raafat et al. [89] present a new approach for novelty detection in sensor signals based
on Levene’s test, which tests the homogeneity of variances of samples taken from the
same population and combined with other statistical and autocorrelation features. That is
done by extracting seven statistical features into an NN used for event detection (novelty
detection), and the computation is carried out at the fog layer. In order to eliminate noise
before extracting features, EMD (Empirical Mode Decomposition) is used.

The use of deep learning in edge applications such as augmented reality, real-time
video analytic, and others to support decision making is covered by Ali et al. [33]. The au-
thors emphasize very high accuracy levels that were achieved with DNNs and CNNs.
The proposed approach performs initial processing of the data close to the source at fog
nodes, resulting in a significant reduction in the data that are transferred and stored in
the cloud.

Ferdowsi et al. [75] provide a framework for edge computing and analytics architecture
applied to vehicular networks. The paper presents a discussion about different machine
learning techniques to implement an edge analytics framework in Intelligent Transportation
Systems (ITS). This framework allows the transmission of only a summary or basic results
extracted from big data to the cloud instead of transmitting the whole amount generated.
According to the paper, the framework provides low latency and high reliability.

A similar technique applied to mobile crowd sensing (MCS) was approached by
Zhou et al. [74], where raw data such as images or video clips are processed on edge nodes
by implementing preliminary filtering, while authentication verification and relevance
identification is performed at the border of the network. Unqualified, adulterated and
irrelevant information is detected and filtered out, and only the useful sensory information
that is preserved is aggregated and uploaded to the sensing platform. In this way, the total
amount of data that must be delivered to the sensing platform can be significantly reduced.

Another example is found in the work of Hossain and Muhammad [84] where the
authors use a CNN model to recognize emotions through video and speech. In the proposed
framework, pre-processing of video and sound is performed at the edge. In addition,
the trained parameters of the CNN model are retrieved from the cloud and used at the
edge for testing.

4.2.5. Scheduling

A different set of frameworks for addressing EI problems is focused on where to offload
the intelligence tasks of the application (edge or cloud). While the mechanism of model
partitioning addresses the division of the model between those locations, in the scheduling
paradigm, intelligence is implemented at both layers. The application needs to choose
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at which layer the tasks will more efficiently be offloaded. For example, Ahn et al. [90]
propose a two-tier offloading method, in which the optimized decision is made according
to the trade-off between low latency and energy saving. Cao et al. [91] split human fall
detection between edge devices and servers in the cloud, with front-end IoT devices
performing lightweight computation for fall detection, while data are also transmitted to
the back-end cloud servers for more intensive computation. The framework proposed
by Cao et al. [67] offloads sound manipulation algorithms to both layers, keeping more
complicated processing in the cloud.

A framework encompassing storage and offloading techniques for edge computing
applications is presented by Hassan et al. [36]. The authors introduce a dynamic offload
method according to the capabilities of the edge devices. Based on values of latency,
bandwidth, processing and memory, the execution time of the application is predicted to
partition it.

The scheduling technique in EI can be employed in many research fields. Wei et al. [41]
use scheduling in a satellite network. The satellites are distributed into layers from the edge
to the cloud, where the computing capability gradually increases. Computing with low
complexity can be performed on the satellite IoT fog node. However, if local computing and
storage resources are insufficient, the target detection data may be offloaded to a nearby
satellite edge or cloud node. Computing with high complexity and requirements is suitable
for completion in the satellite IoT cloud node.

Authors Sun, Liu, and Yue [92] train the NN with large-scale data in the cloud, then
train and customize the pre-trained model with small-scale data in the edge and offload
tasks to appropriate servers. For mobile devices that do not find an appropriate edge or
remote server, the tasks can be accomplished locally at their CPU. For computing tasks with
predicted delay to the remote cloud lower than their delay requirement, the computing
tasks tend to be routed to the remote cloud, since it is more powerful and can provide the
highest accuracy. Therefore, the authors seek to achieve accuracy maximization offloading
with latency constraints (AMLC).

Zhou and Chen [93] focus on how to coordinate the edge and cloud to train EI models,
with a view to minimizing resource usage. Training data are buffered in a queue before
being scheduled to the edge or cloud for processing. They quantify the degree of privacy
preservation with the ratio of the total amount that are processed in the cloud to the total
amount that arrive in the long term, where a smaller ratio indicates that less data were
offloaded to the cloud, and privacy was better preserved. By enforcing the above ratio to
remain tolerable, data privacy is promoted.

4.2.6. Cloud Pre-Training

In deep learning applications, where the number of data can be massive, training rep-
resents a costly task. Due to the limitations of processing, memory and other considerations,
training on the edge is still challenging. Cloud pre-training is another efficient strategy that
uses the collaboration between the edge and the cloud to improve data privacy and reduce
network traffic.

In applications such as that presented by Lin [94] and Hossain and Muhammad [84]
the cloud will perform the computationally expensive training of the models and, once
they are trained, the trained parameters are transmitted back to the edge nodes that will be
able to execute the inference process.

Moon, Kum, and Lee [42] propose a slightly different approach, where the cloud
receives the data and tries to predict an appropriate model for them. The selected one is
then sent to the edge. The model manager stores it, allowing the inference module to use it
to generate predictions quickly.

To deal with the problem of predicting system disruption in Industry 4.0, Brik et al. [95]
propose a framework in which the cloud is responsible for the creation of the model that will be
further handled by fog computing to predict a resource’s location in real-time.
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Bura et al. [40] present an adaptable and affordable design for a smart parking system.
Data collected by cameras and other sensors are processed by advanced deep learning algo-
rithms in edge devices. In this system, the vehicle tracking is performed by a trained Tiny
Yolo model run on top of the Nvidia Jetson Tx2. The Tiny Yolo is very light and is, therefore,
suitable for devices with limited resources. Moreover, CNN is used in applications of IoT.
While comparing the experimental results with other solutions, the system presented good
accuracy and a shorter time for inference.

Liu et al. [38] propose pre-training DNNs in the cloud server and sending the weights
to the edge server, which operates a deep Q-learning process, presenting a framework with
an efficient energy scheduling scheme with deep reinforcement learning.

4.2.7. Edge Only

In the most extreme cases of distributed learning, the computations are all performed
in edge devices or nodes, with the cloud server, when used, acting only as host for data
storage. Bura et al. [40] and Ke et al. [43] apply this concept to the context of smart parking.
Similar methods are proposed by Rachakonda et al. [96] and Hossain [23]. This method
tries to bring the computations as close as possible to where the data are collected, reducing
the maximum time spent on communications. Privacy and security are also advantages
of this method since sensitive and private information will not circulate through the
public network.

OpenEI [46] is a framework with a lightweight deep learning Package Manager similar
to TensorFlow Lite, optimized to run AI algorithms at the edge, which guarantees low
power consumption and low memory footprint. Its Model Selector algorithm looks for
the most suitable one for a specific edge platform based on users’ requirements and the
capabilities of the hardware platform using the four-element tuple ALEM: "Accuracy,
Latency, Energy, Memory footprint". In addition, it supports training the model locally.

Other works, such as those presented by Jiang et al. [73] and Kuo et al. [97], adopt the
blockchain infrastructure in their works. This method works like FL, however without a
cloud server to distribute the model. Instead, the MEC nodes serve as data storage and
model sharing. The models are trained based on distributed deep learning (DDL) [98],
meaning that they are trained independently in each node. When they converge, the pa-
rameters are chosen by smart contracts; based on an agreement, consensus between two
or more parties can be achieved. Blockchain can be seen as a tamper-resistant distributed
system to share and store data among a large number of nodes while maintaining the
security and privacy of the network [99].

Sanchez et al. [62] introduce a novel algorithm architecture approach to enable real-
time low-power CNN processing on edge devices. The core of the proposed approach is
utilizing 1D dimensional convolution with an architecture that can truly benefit from the
algorithm optimization. The proposed architecture operates near the sensor and avoids
storing the streaming data in the main memory. In fact, they avoid unnecessary buffering
and create a more latency-friendly and ultimately real-time dataflow architecture.

Lemley, Bazrafkan, and Corcora [100] present different use cases for Edge-AI (Artificial
Intelligence in the Edge), such as eye-gaze systems and biometric authentication. A key
aspect in this study is that the data generated by these applications require a great level
of privacy and security response speed. Therefore, the whole acquisition and processing
should occur on the device or on the periphery.

Al-Rakhami et al. [101] propose a lightweight architecture based on Docker [102] to
distribute, deploy and manage cloud and edge applications into the clusters, leveraging EI
by means of the Regularized Extreme Learning Machine (RELM) algorithm [103], and ex-
perimental results suggest a fast training and testing time compared to traditional ELM
and Support Vector Machine (SVM) as presented by the Ugulino [104] dataset, also having
reported slightly better accuracy.
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4.2.8. Model Compression

Model compression is an efficient technique for deploying NN models on edge devices
with limited resources by altering the network architecture itself in an attempt to reduce its
parameters, and therefore its size.

In this context, He et al. [105] propose AutoML for Model Compression (AMC), us-
ing reinforcement learning and achieving model compression in a fully automated way.
Zhou et al. [15] perform the compression by removing neurons with low contribution in a
network, thus reducing the model size while maintaining its accuracy. Zhang et al. [46] seek
deep compression with methods for parameter sharing and pruning, low-rank approxima-
tion, and knowledge transfer [106,107]. Deep compression has also achieved remarkable
results in SqueezeNet [108].

Bearing the domain of Transportation Cyber-Physical Systems (T-CPS) insight, Zhou et al. [32]
introduce a lightweight deep learning model to support MEC applications in the field, aiming
to reduce latency and improve context-awareness. It uses Factorization Convolutional (FC)
layers, alternating with compression layers, which is named as lightweight CNN-FC by the
authors. Experimental results indicate that lightweight CNN-FC significantly decreases the
number of unnecessary parameters and model size while maintaining high accuracy compared to
conventional CNN.

The Semi-Parallel DNN (SPDNN) [109] combines a number of deep architectures to
produce a final model that takes advantage of specialized layers of each architecture while
being much smaller than the combined sizes of these networks.

A traditional approach for compressing NN models is called pruning, which seeks to
remove redundancies in over-parameterized networks [65], thus reducing the number of
parameters without significant impact on the results. Different pruning techniques can be
applied either in training [110,111] or during the inference stage [64,112].

Model compression can also be attained with quantization [113] by representing
weights and activations of a NN with reduced precision. For instance, Palossi et al. [45] use
data quantization to reduce the numerical representation of weights and activations from
32 to 16 bits, as well as modify the receptive field of max-pooling layers from 3 × 3 to 2 × 2,
producing the same final results.

The extreme use of quantization leads to Binary NNs (BNNs), where the activations
and weights are reduced to binary representations, with massive reductions in resource
usage and costs for edge computing. Nonetheless, binarization must be applied very
carefully to not prompt drastic performance and scalability issues in complex tasks.

Liu et al. [55] propose assessing the degree of redundancy of each layer before applying
binarization since its use on layers with a higher degree of redundancy will ultimately lead
to lower performance loss, while layers with a negative degree of redundancy should be
kept un-binarized.

Several algorithms fail to counter the degradation caused by binarizing weights and
activations completely. To confront this problem, Hybrid-Net [65] applies the Principal
Component Analysis (PCA) in a reverse manner: instead of its traditional use as a dimen-
sionality reduction technique, PCA is used here to identify layers that contribute to the most
relevant transformations, based on their ability to expand data into higher-dimensional
space, where it could be linearly separable. Then the bit precision in the inputs and weights
of these significant layers increases. At the same time, the remaining layers are kept en-
tirely binary, producing a successful mixed-precision network topology in the challenge of
optimized and highly accurate quantized NNs with binary representations.

Lu et al. [49] explore the connection between Binary and Spiking Neural Networks
(SNNs) to seek a reduction in computation time and a considerable reduction in model size,
relying on competitive accuracies of SNNs in large-scale image recognition datasets, such
as ImageNet. The authors apply standard training techniques for non-spiking networks to
generate their SNNs with a conversion process and explore design and run-time optimiza-
tion techniques to reduce inference time for binary and full-precision models. In Figure 4,
an example of the technique of model compression is shown.
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Figure 4. Model compression example.

Table 7 shows the studies grouped by the eight main techniques of edge intelligence.

Table 7. References considering techniques and/or strategies of edge intelligence implementations.

Techniques Works

Federated Learning [39,71,72]
Model Partitioning [34,35,38,68]
Model Right-sizing [34,68,82]

Edge Pre-Processing [29,83,84]
Scheduling [36,41,67,90]

Cloud Pre-Training [42,84,94]
Edge Only [23,38,40,43,73,74,96,97]

Model Compression [15,45,46,55,64,65,91,105,108–113],

4.2.9. Other Techniques

Other approaches that differ from the previously discussed techniques have been
identified in recent edge intelligence studies.

Gossip Training, for instance, is a technique where each node updates its hosted DNN
model locally during the gradient update step and then shares its information with another
randomly selected node in the mixing update step. These steps are repeated until all the
DNN converge and reach a consensus.

The aim of GoSGD [114] is to address the issue of speeding up the training of con-
volutional networks. Instead, another gossip-based algorithm—gossiping SGD [115]—is
designed to retain the positive features of both synchronous and asynchronous SGD meth-
ods. Gossiping SGD replaces the all-reduce joint operation of synchronous training with a
gossip aggregation algorithm, achieving asynchrony.

Kamath et al. [69] present a decentralized stochastic gradient descent method to
solve large linear regression problems that can be applied in learning/predicting seismic
anomalies via real-time imaging. The decentralized reduce operation of the algorithm is
based on Gossip Averaging. The method is then applied to a real problem using an edge
computing testbed. Results showed it outperformed many alternative methods.

In Da et al.’s [116] approach, parallel transfer learning is used between edge nodes,
where aggregation models allow straightforward parallelization to distribute the com-
putations on individual experts. The authors propose a new factorized training strategy
and principled aggregation model, named Tr-BCM, for transfer learning to accelerate full
transfer Gaussian processes with large-scale source inputs.

Similarly, Hypothesis Transfer Learning (HTL) is used by Valerio et al. [21] with a
deep learning pipeline of processing stages across the edge, cloudlet, or fog resources. HTL
is a standard machine learning technique used to train models on separate disjoint training
sets and then transfer the different parts—instead of data—to reach a unique learning
model. In addition to the quick and dynamic adapting models using on-device resources,
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the technique also bolsters the privacy of user-specific information while keeping it on a
local device.

Rincon et al. [117] present an assistant robot based on EI, which incorporates two
devices capable of classifying emotional states and physical activities performed by the user.
The training uses Keras [118], and after obtaining the H5 model, there is a transformation
to TensorFlow lite and, finally, the K model is obtained with a Mobilenet network [119].

Xu et al. [47] use a central fog node as responsible for health data pre-processing
with load management and model-ensemble-based prediction with a fully connected NN.
In order to achieve load balance, multiple nodes are designed for collaborative analysis.

In Guo et al.’s [50] work, a Non-Intrusive Load Monitoring (NILM) algorithm takes
real-time measurements, including power, current, and power factor. It identifies the type
of appliance considering a dataset for appliance characteristics. There is an offline training
phase and an online application phase. In the training phase, the database for appliance
characteristics is established using given data of the measurements and the corresponding
type of appliances. When the measurement data are acquired, raw data balancing is
performed, then feature scaling is conducted. The result is fed to the machine-learning-
based NILM classifiers. The training process can be completed on a computer to handle a
large amount of information, but it should be guaranteed that the trained classifiers can be
applied in the microcontrollers of smart plugs.

Two distributed machine learning methods based on Deep Reinforcement Learning
(DRL) were implemented by Liu et al. [38]: edge DRL and coordinated DRL. The sys-
tem is distributed over the network. In the first approach, the entire learning system is
implemented at the edge layer. In the coordinated strategy, the cloud processes a DNN
and its outputs become the input of a Q-Learning method implemented at the border. So,
there is a hybrid method with reinforcement learning that is operating on edge devices.
These methods were compared with the system completely implemented in the cloud.
Coordinated DRL showed less resource consumption and less delay.

Shao et al. [120] propose a Lightweight Residual Network (LRN) architecture and
a framework for image de-raining on resource-constrained edge cameras. The LRN can
improve the visual quality of images under heavy rain at the expense of marginally com-
promising the Peak Signal to Noise Ratio (PSNR). To decrease the network complexity, they
employ an Inverted Residual Block (IRB) [121] as the basic building block, with significantly
low computational cost as it replaces standard convolution with a sequence of pointwise
convolutions and depthwise convolutions. A pointwise convolutional layer expands the
number of input feature maps, and then a depthwise convolutional layer extracts features,
which are linearly combined by the last pointwise convolutional layer. In order to keep
space complexity low, each layer uses stride 2 to down-sample the feature maps into a
smaller size, then upsample them back using deconvolutional layers.

Kulkarni et al. [122] implement a novel NN architecture to integrate industrial Domain
Knowledge (DK) with machine learning in the context of Prognostic Health Management
(PHM) solutions for industrial applications. A distributed computational architecture for
motion control with edge intelligence and cloud processing is adopted.

Liu and Zhang [123] study how to improve the overall reliability of the time-critical
object detection and classification in MEC with the imperfect transmission, where multiple
user equipment and edge servers are present, and a certain level of image distortion is
tolerated. The authors then formulate an optimization problem to maximize the overall
service reliability under latency constraints. The Semidefinite Relaxation (SDR)-based
algorithm is designed to find a solution for the association between the user equipment and
edge servers and communication and computing resource allocation. The performance of
the proposed algorithm is evaluated using the practical object detection methods (SSD [124]
and YOLOv2 [125]) in multiple scenarios, showing that the SDR-based algorithm performs
similarly to the exhaustive method, at a much lower complexity.

Distributed deep learning applications in an osmotic computing environment are
presented by Morshed et al. [70]. The authors focus on biomedical applications, presenting
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a Holistic Distributed Deep Learning (HDDL) approach to provide the integration of differ-
ent data and the orchestration of mobile edge, edge and cloud computing in distributed
deep learning applications. Some of the main challenges depicted for the development of
HDDL reside in how to provide semantic interoperability, privacy, data quality, and vol-
ume. The authors propose a high-level HDDL architecture to integrate different systems,
especially the biomedical applications that are highlighted in the paper.

4.3. RQ3—Frameworks for Edge Intelligence

This section describes the studies that provided answers to the RQ3 of this survey.
Table 8 lists the main frameworks currently used in distributed ML applications. The table
also correlates each framework with the corresponding EI group of techniques or the main
related strategy.

Table 8. EI frameworks.

Framework
Groups of

Techniques or
Strategies

Comments

Neurosurgeon [126] Model Partitioning Lightweight scheduler to automatically
partition DNN computation between
edge devices and cloud at the granular-
ity of NN layers

JointDNN [127] Model Partitioning JointDNN provides an energy- and
performance-efficient method of query-
ing some layers on the mobile device
and some layers on the cloud server.

H. Li et al. [35] Model Partitioning They divide the NN layers and deploy
the part with the lower ones (closer to
the input) into edge servers and the part
with higher layers (closer to the output)
into the cloud for offloading processing.
They also propose an offline and an on-
line algorithm that schedules tasks in
Edge servers.

Musical chair [128] Model Partitioning Musical Chair aims at alleviating the
compute cost and overcoming the re-
source barrier by distributing their com-
putation: data parallelism and model
parallelism.

AAIoT [129] Model Partitioning Accurate segmenting NNs under multi-
layer IoT architectures

MobileNet [46] Model Compression
Model Selector Presented by Google Inc., the two hy-

perparameters introduced allow the
model builder to choose the right sized
model for the specific application.

Squeezenet Model Compres-
sion

It is a reduced DNN that achieves
AlexNet-level accuracy with 50 times
fewer parameters
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Table 8. Cont.

Framework
Groups of

Techniques or
Strategies

Comments

Tiny-YOLO Model Compres-
sion

Tiny Yolo is a very lite NN and is hence
suitable for running on edge devices.
It has an accuracy that is comparable
to the standard AlexNet for small class
numbers but is much faster.

BranchyNet Right sizing Open source DNN training framework
that supports the early-exit mechanism.

TeamNet [130] Model Compression
Transfer Learning TeamNet trains shallower models using

the similar but downsized architecture
of a given SOTA (state of the art) deep
model. The master node compares its
uncertainty with the worker’s and se-
lects the one with the least uncertainty
as to the final result.

OpenEI [46]
Model Compression
Data Quantization

Model Selector
The algorithms are optimized by com-
pressing the size of the model, quantiz-
ing the weight. The model selector will
choose the most suitable model based
on the developer’s requirement (the de-
fault is accuracy) and the current com-
puting resource.

TensorFlow
Lite [131]

Data Quantization TensorFlow’s lightweight solution,
which is designed for mobile and edge
devices. It leverages many optimiza-
tion techniques, including quantized
kernels, to reduce the latency.

QNNPACK (Quan-
tized Neural Net-
works PACKage)
[132]

Data Quantization Developed by Facebook, is a mobile-
optimized library for high-performance
NN inference. It provides an imple-
mentation of common NN operators on
quantized 8-bit tensors.

ProtoNN [133] Model Compres-
sion

Inspired by k-Nearest Neighbor (KNN)
and could be deployed on the edges
with limited storage and computational
power.

EMI-RNN [134] Right Sizing It requires 72 times less computation
than standard Long Short term Mem-
ory Networks (LSTM) and improves its
accuracy by 1%.
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Table 8. Cont.

Framework
Groups of

Techniques or
Strategies

Comments

CoreML [135] Model Compression
Data Quantization Published by Apple, it is a deep learn-

ing package optimized for on-device
performance to minimize memory foot-
print and power consumption. Users
are allowed to integrate the trained ma-
chine learning model into Apple prod-
ucts, such as Siri, Camera, and Quick-
Type.

DroNet [37] Model Compression
Data Quantization The DroNet topology was inspired by

residual networks and was reduced in
size to minimize the bare image pro-
cessing time (inference). The numerical
representation of weights and activa-
tions reduces from the native one, 32-
bit floating-point (Float32), down to a
16-bit fixed point one (Fixed16).

Stratum [136] Model Selector
Dynamic Scheduling Stratum can select the best model by

evaluating a series of user-built models.
A resource monitoring framework within
Stratum keeps track of resource utiliza-
tion and is responsible for triggering ac-
tions to elastically scale resources and mi-
grate tasks, as needed, to meet the ML
workflow’s Quality of Services (QoS). ML
modules can be placed on the edge of the
Cloud layer, depending on user require-
ments and capacity analysis.

Efficient distributed
deep learning
(EDDL) [57]

Model Compression
Model Partitioning

Right-Sizing
A systematic and structured scheme
based on balanced incomplete block de-
sign (BIBD) used in situations where
the dataflows in DNNs are sparse. Ver-
tical and horizontal model partition
and grouped convolution techniques
are used to reduce computation and
memory. To speed up the inference,
BranchyNet is utilized.

In-Edge AI [5] Federated Learning Utilizes the collaboration among de-
vices and edge nodes to exchange the
learning parameters for better training
and inference of the models.

Edgence [137] Blockchain Edgence (EDGe + intelligENCE) is
proposed to serve as a blockchain-
enabled edge-computing platform to
intelligently manage massive decentral-
ized applications in IoT use cases.
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Table 8. Cont.

Framework
Groups of

Techniques or
Strategies

Comments

FederatedAveraging
(FedAvg) [77]

Federated Learning Combines local stochastic gradient de-
scent (SGD) on each client with a server
that performs model averaging.

SSGD [76] Federated Learning System that enables multiple parties
to jointly learn an accurate neural net-
work model for a given objective with-
out sharing their input datasets.

BlockFL [138] Blockchain
Federated Learning Mobile devices’ local model updates

are exchanged and verified by leverag-
ing blockchain.

Edgent [6] Model Partitioning
Right-Sizing Adaptively partitions DNN computa-

tion between the device and edge, in or-
der to leverage hybrid computation re-
sources in proximity for real-time DNN
inference. DNN right-sizing accelerates
DNN inference through the early exit
at a proper intermediate DNN layer to
further reduce the computation latency.

PipeDream [139] Model Partitioning PipeDream keeps all available GPUs
productive by systematically partition-
ing DNN layers among them to balance
work and minimize communication.

GoSGD [114] Gossip Averaging Method to share information between
different threads based on gossip algo-
rithms and showing good consensus
convergence properties.

Gossiping
SGD [140]

Gossip Averaging Asynchronous method that replaces the
all-reduce collective operation of syn-
chronous training with a gossip aggre-
gation algorithm.

GossipGraD [141] Gossip Averaging Asynchronous communication of gradi-
ents for further reducing the communica-
tion cost.

INCEPTIONN [142] Data Quantization Lossy-compression algorithm for floating-
point gradients. The framework reduces
the communication time by 70.9 80.7%
and offers 2.2 3.1× speedup over the con-
ventional training system while achieving
the same level of accuracy.
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Table 8. Cont.

Framework
Groups of

Techniques or
Strategies

Comments

Minerva [143] Data Quantization
Model compression Quantization analysis minimizes bit

widths without exceeding a strict pre-
diction error bound. Compared to
a 16-bit fixed-point baseline, Minerva
reduces power consumption by 1.5×.
Minerva identifies operands that are
close to zero and removes them from
the prediction computation such that
model accuracy is not affected. Selec-
tive pruning further reduces power con-
sumption by 2.0× on top of bit width
quantization.

AdaDeep [144] Model Compres-
sion

Automatically selects a combination
of compression techniques for a given
DNN that will lead to an optimal
balance between user-specified perfor-
mance goals and resource constraints.
AdaDeep enables up to 9.8× latency
reduction, 4.3× energy efficiency im-
provement, and 38× storage reduction
in DNNs while incurring negligible ac-
curacy loss.

JALAD [145] Data Quantization
Model Partitioning Data compression by jointly considering

compression rate and model accuracy.
A latency-aware deep decoupling strat-
egy to minimize the overall execution la-
tency is employed. Decouples a deep NN
to run a part of it at edge devices and the
other part inside the conventional cloud.

When correlating the EI strategies with frameworks, it is possible to notice some
interesting associations. There are ten of these techniques and strategies, of which only
three are present in more than 60% of the papers. They are: (i) Model Compression with 24%,
(ii) Model Partitioning with 20%, (iii) Data Quantization with 17%. Federated Learning,
Right-Sizing, Gossip Averaging and Model Selector correspond to 9% each. The others
have less than 8%. Figure 5 illustrates these ten classes of strategies.

Among these strategies, Model Compression is the most suitable for solving the
process of training and testing with the raw data and reducing the dimensionality in real-
time. This strategy allows ML algorithms to have faster responses, using lower resources
of bandwidth, power and processing. In addition, this technique has proven to be more
economical and better at data security once the processing is realized entirely on the edge.
In terms of algorithms, the most common is the DNN paradigm of machine learning, which
segments models into successive parts (layers). This algorithm allows for the deployment
of each part on distinguished sites (model partitioning). DNN also enables compression
techniques such as removing nodes or layers, allowing offloading of a whole model in
resource-constrained devices.
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Figure 5. Edge Intelligence strategies.

EI techniques tackle latency problems when part of the entire process is realized on
edge devices, decreasing data traffic on the network and, consequently, decreasing the
inherent delay in data transmission. Regarding security and privacy issues, it is possible
to train and infer on sensitive data partially or fully at the edge, preventing their risky
propagation throughout the network, where they are susceptible to attacks.

4.4. RQ4—Edge Intelligence Application Domains

In this section, we present a taxonomy to characterize the application domains where
the field of EI has been adopted, providing inputs to answer the RQ4. According to the
researched articles, it was possible to group them into six main domains: (i) Industry, (ii)
Surveillance, (iii) Security, (iv) Intelligent Transport, (v) Health, and (vi) Energy Manage-
ment. This does not mean that other domains cannot be created due to new research.
Figure 6 illustrates this taxonomy up to a third level. Table 9 shows the works that tackle
these domains. Figure 7 summarizes the statistics of the six domains of the publishing
by field.

Figure 6. EI application domains.
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Figure 7. Publications by domain application.

Table 9. Application domains and corresponding works.

Domains Works That Approach the Theme

Industry (8) [8,31,51,53,68,92,95,122]
Surveillance (5) [42,69,81,120,146]
Security (4) [9,29,71,147]
Intelligent Transport Sys-
tems (ITS) (13)

[26,40,43,45,51,52,56,58,75,148–151],

Health (14) [13,25,28,47,48,51,67,70,84,91,101,117,152,153]
Energy Management (4) [38,50,51,94]

4.4.1. Industry 4.0

Thanks to the development of the Internet of Things (IoT), more precisely the Industrial
Internet of Things (IIoT) incorporating Artificial Intelligence (AI) and big data technologies,
a new revolution in industry is possible, giving birth to the concept of Industry 4.0, the smart
industry. In this new concept, sensors are spread throughout the entire industrial plant,
collecting a huge amount of data in real-time. Traditionally, the data are sent to the cloud,
where they are processed and analyzed by AI algorithms. The output of the processing
is intelligent solutions that can improve manufacturing efficiency and inspection [68],
enhance product quality, reduce cost, pollution and risk in industrial production, reducing
manual labor and time spent.

IIoT becomes a powerful tool in a big data era, where industrial companies are
confronted with market pressures in managing both product quality and manufacturing
productivity [53]. According to GE Digital, IIoT is estimated to benefit 46 percent of the
global economy [154]. However, with the rise of big data sent to the cloud platforms in
IIoT, some problems such as high latency and data privacy are emerging. EI is closer to the
user in terms of geographical position and network distance, bypassing the bottleneck of
network bandwidth, latency and cost [8]. Moreover, restricted data may be pre-processed
before being sent to the cloud or not be sent at all.

4.4.2. Surveillance

Surveillance applications such as seismic imaging [69], air pollution prediction [42],
smoke detection [146] and human activity recognition often require systems that can moni-
tor ongoing activities in nearly real-time through object tracking and detection [155], action
and activity recognition, event detection, and scene understanding [156–158]. Therefore,
latency is a critical aspect of this domain, which validates the recent works in this field
using edge intelligence as an alternative to the cloud.
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4.4.3. Security

The increase in the number and diversity of smart objects has raised substantial
concerns about the vulnerability of IoT systems. The new and emerging IoT applications,
and even further the concept of the smart city, require novel cybersecurity controls, models,
and decisions distributed at the edge of the network to tackle challenges such as attack [71],
intrusion [29] and anomaly detection [147], trust management [9], data privacy and others.

The cloud can provide a set of desirable features such as sufficient computing power,
memory, energy, etc. However, in a distributed system, some security applications might
require a very short response time, and some might produce a large quantity of data (big
data) which causes a burden for the network. As a result, cloud computing may not be
efficient enough to support these applications [29].

Motivated by the advent of edge computing, a great number of works have been
proposed to improve the existing intelligent security applications in this new paradigm of
distributed systems. In general, these frameworks can provide better results in comparison
to non-distributed ones as the data can be processed at the edge for a shorter response time,
helping to reduce the workload for the central server and the delay.

4.4.4. Intelligent Transport System (ITS)

Smart cities are cities that incorporate information and communication technologies
(ICT) to improve the quality and performance of urban services such as communication,
governance, safety, energy, sustainability and transport.

The Internet of Vehicles (IoV) is an emerging paradigm that is driven by recent advance-
ments in vehicular communications, networking and processing power [148]. This new con-
jecture enables a plethora of new exciting applications [26,40,43,45,51,52,56,58,75,148–151] that
go beyond the concept already well disseminated of autonomous vehicles as smart parking
systems, unmanned aerial vehicles (UAVs), traffic monitoring, intelligent roadways, etc.

However, such as in the other domain fields analyzed in this paper, centralized
processing also presents important drawbacks in the ITS subject. Autonomous systems,
in general, require real-time response since any delay or latency in transmitting information
could be extremely dangerous. Furthermore, monitoring services are based on sound,
image and/or video analysis which represents tons of megabytes of data per second that
are estimated to increase [159].

Zhang et al. [51] use EI to achieve higher results in QoS and Quality of Experience. It
is based on the principle that the infrastructure must provide mechanisms of collaborative
sensing and cognitive services to Cognitive Internet of Things applications. As a proof of
concept, the authors implemented four applications and services. One of the services is
Content Sharing of Vehicular Networks that uses the strategies Heterogeneous Informa-
tion Network (HIN), Latent Semantic Indexing (LSI) and Collaborative Filtering (CF) to
determine the popular content for storage in caches of Roadside Units.

4.4.5. Health

Nowadays, even though we live in a so-called globalized world, insufficient medical re-
sources are still a global problem according to the World Health Organization (WHO) [160].
Patients in the countryside or developing countries have difficulty obtaining high-quality
and timely healthcare because of geographical barriers.

The recent effort in integrating IoT into the healthcare scenario has been a great
catalyst to the development of novel smart care applications or the enhancement of past
ones, which may include telemedicine, tele-consultancy, pervasive health monitoring
applications, human activity [101] and/or emotion recognition [117], and others.

Recently, the topic of data privacy has gained prominence in the industry, news and
courts. When referring to health data, it is no different. On the contrary, it requires even
more concern, as we are talking about extremely sensitive data. In response to the demand
for privacy, trust and control over the data, executing machine learning tasks at the edge of
the system has the potential to make the healthcare services more human-centric [48].



Sensors 2022, 22, 2665 27 of 36

Besides the easy-to-notice benefits to latency-sensitive and aforementioned data-
sensitive tasks, edge AI can also allow healthcare to be less costly, more efficient and
incredibly beneficial in the field of cognitive assistants for the elderly, people living alone,
or the people geographically segregated. EI is an interesting tool for the democratization of
healthcare services.

4.4.6. Energy Management

In recent years, energy management systems (smart grid [51], smart buildings [24],
smart plugs [50] and so on) have received huge research and industrial attention with
the explosive development of smart cities [38]. As one of the most critical urban services,
electric power systems play a vital role in supporting our society and economy. Therefore,
it is incumbent on smart cities to propose solutions to energy management by ubiquitous
monitoring and reliable communications.

IoT manufacturers and application developers are devoting themselves to developing
frameworks to store sensed data in edge nodes and perform data processing via analytics
at the edge of the network.

Within the wide scope of this field, the smart grid is a proposition to improve the
performance of the standard electric network and manage the various distributed energy
resources by continuously monitoring the dynamics of electricity consumption through a
considerable number of sensors scattered over the network.

In a narrower scope of smart homes, there is a typical IoT device, smart plugs (or smart
outlets) [161]. A smart plug can monitor the power usage of the appliance plugged into it
in real-time, transmit it as well as other measurements to the processing server (edge or
cloud), and receive remote commands or settings to control the operation of the connected
device, turning conventionally passive devices into “smart” ones [50].

5. Open Issues and Future Directions

Although the EI research field has been gaining traction and becoming a global trend,
some issues are still open, without a concrete solution at this stage.

Security and privacy are very important topics that concern both the industry and
academia. How to store data and make it available in a safe and privacy-aware way for
training and inference [27]? As presented throughout the text, many techniques, such as
model compression, face the burden of managing the tradeoff between low latency and/or
light solution and inference accuracy [26].

The CAP (Consistency, Availability e Partition tolerance) Theorem [162] states that
it is impossible for a distributed data store to simultaneously provide more than two out
of the following three guarantees: consistency, availability and partition tolerance. This
concept can be translated pretty well to the paradigm of EI, once it involves distributed data
storage, transport and processing [71]. Moreover, Zhang et al. [51] mention the difficulty
of achieving data consistency on edge devices in an efficient and distributed approach.

Another point that requires the attention of the research community is the adaptability
of statically trained models [71]. Since edge devices are known for not having a high power
of processing and/or storage, some strategies take the training step to be run in a controlled
and powerful environment. Subsequently, the model is offloaded to the nodes. However,
this translation has still not been perfected.

New researches increasingly refer to the growing demand for research related to the
heterogeneous environment present at the edge, with the need for ubiquitous comput-
ing, communication, and caching resources. According to Zhang et al. [163] and also
Ke et al. [43], the strength of 5G technology is likely to be an essential enabler for the IoT
intelligence environment. This technology, by offering intelligent cloud services and close
to the production environment with low latency and lower cost, should allow the evolution
of many other lines of research to support edge intelligence, as well as for the improvement
in terms of network security and preventing vulnerable transactions from malicious nodes.
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6. Conclusions

Edge intelligence refers to the ability to bring the execution of machine learning tasks
from the cloud closer to the IoT devices, either partially or entirely. Some synonyms of this
concept found in the literature include distributed learning, edge/fog learning, distributed
intelligence, edge/fog intelligence and mobile intelligence. In this work, we presented a
survey on distributed edge intelligence, debating its challenges: (i) limited resources; (ii)
ensuring energy efficiency of edge devices; (iii) communication efficiency (iv) ensuring
data privacy and security; (v) handling edge device failure; and (vi) heterogeneity and
quality of data.

We established our research methodology in compliance with a thorough Systematic
Literature Review protocol to attain a comprehensive, impartial and auditable process
of review. By analyzing the results of our literature review, we could identify some
promising strategies bringing ML/DL to edge computing, although prevailing studies are
still flourishing. So far, we also found a slightly predominant tendency to use CNN and
DNN in edge intelligence, but without prejudice to other approaches.

In this survey, we understand that the distributed ML/DL in edge computing is an
emerging new area, which opens up many research opportunities to deal with the existing
challenges of distributed tasks on restricted devices. In terms of the challenges, we point
out the need to offer (i) running of ML/DL on devices with limited resources; (ii) ensuring
energy efficiency without compromising the accuracy; (iii) communication efficiency; (v)
ensuring data privacy and security; (vi) handling failure in edge devices; (viii) heterogeneity
and low quality of data.

Finally, we present in this paper not only a comprehensive overview of what has
been investigated and developed for Edge Intelligence but also provide means to direct
future researches in this context. We aim to contribute to the more effective development of
intelligence at the edge with these analyses.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AMC AutoML for Model Compression
CF Collaborative Filtering
CH Challenge
CNN Convolutional NN
CS Compressive Sensing
CCS Chaotic Compressive Sensing
DK Domain Knowledge
DL Deep Learning
DNN Deep NN
DDNN Distributed DNN
DRL Deep Reinforcement Learning
DSSGD Distributed Selective SGD
EC Exclusion Criteria
Edge-AI Artificial Intelligence in the Edge
EI Edge Intelligence
ELM Extreme Learning Machine
FC Factorization Convolutional [layers]
FL Federated Learning
FPPDL Fog-embedded Privacy-Preserving Deep Learning
GoSGD Gossip Stochastic Gradient Descent
HDDL Holistic Distributed Deep Learning
HIN Heterogeneous Information Network
HT Hoeffding Tree
HTL Hypothesis Transfer Learning
IC Inclusion Criteria
IRB Inverted Residual Block
IIoT Industrial Internet of Things
ITS Intelligent Transportation Systems
LRN Lightweight Residual Network
LSI Latent Semantic Indexing
MEC Mobile Edge Computing
MEMS Micro-Electro-Mechanical Systems
ML Machine Learning
NILM Non-Intrusive Load Monitoring
NN Neural Network
PHM Prognostic Health Management
PoCI Proof of Common Interest
PSNR Peak Signal to Noise Ratio
QC Quality Criteria
QoS Quality of Service
RAN Radio Access Network
RELM Regularized ELM
RQ Research Question
SDR Semidefinite Relaxation
SGD Stochastic Gradient Descent
SLR Systematic Literature Review
SNN Spiking NN
SPDNN Semi-Parallel DNN
SVM Support Vector Machine
T-CPS Transportation Cyber-Physical Systems
WHO World Health Organization
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