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Abstract: Tissue testing used to assess the chemical contents in potato plants is considered 8 

laborious, time-consuming, destructive, and expensive. Ground-based sensors have been assessed 9 

to provide efficient information on nitrogen using leaf canopy reflectance. In potatoes, however, 10 

the main organ required for tissue testing is the petiole to estimate the elements of all nutrients. 11 

This research aims to assess whether there is a correlation between the chemical contents of potato 12 

petioles and leaf spectrum, and to examine whether the spectrum of dried or fresh leaves have 13 

higher correlation values. Petiole chemical contents of all elements were tested as a reference point. 14 

Leaves were split equally into dried and fresh groups for spectral analysis (400-2500 nm). Lasso 15 

Regression models were built to estimate concentrations in comparison to actual values. The 16 

performances of the model were tested using the Ratio of (standard error of) Prediction to 17 

(standard) Deviation (RPD).  All elements showed reasonable to excellent RPD values except for 18 

sodium. All elements showed higher correlation in the dried testing mode except for nitrogen and 19 

potassium. The models showed that the most significant wavebands were in the visible and very 20 

near infrared range (400 - 1100 nm) for all macronutrients except magnesium and sulfur, while all 21 

micronutrients had the most significant wavebands in full range (400 - 2500 nm) with a common 22 

significant waveband at 1932 nm. The results show high potentials of a new approach to estimate 23 

potato plant elements based on foliar spectral reflectance. 24 

Manuscript File Click here to view linked References

mailto:ahmad.almallahi@dal.ca
https://www.editorialmanager.com/compag/viewRCResults.aspx?pdf=1&docID=13567&rev=2&fileID=254284&msid=9c4c9306-39f6-4c08-8bda-842405dea0a1
https://www.editorialmanager.com/compag/viewRCResults.aspx?pdf=1&docID=13567&rev=2&fileID=254284&msid=9c4c9306-39f6-4c08-8bda-842405dea0a1


2 

Key words: Spectroscopy, petiole, macronutrients, micronutrients, multiple linear regression 25 

Nomenclature 

N Nitrogen y Chemical results of petioles 

P Phosphorus xi Spectral results of the leaves of the i-th waveband 

K Potassium Βi Regression coefficient of the i-th waveband 

Ca Calcium β° Intercept 

Mg Magnesium Z Vector of spectrum inputs 

S Sulfur r2 Coefficient of determination 

Mn Manganese r Pearson’s correlation 

Zn Zinc SD Standard deviation 

Fe Iron SEP Standard Error of Prediction 

Na Sodium RPD Ratio of (standard error of) Prediction to (standard) Deviation 

Cu Copper C Number of datapoints 

Al Aluminum An Actual concentrations at n-th datapoint from 1 to C 

B Boron En Estimated concentrations at n-th datapoint from 1 to C 

Vis Visible range n Index of datapoint 1, …, C-1, C 

VNIR Very near infrared   λ Complexity parameter (Lambda) 

SWIR Short wave infrared   

 26 

1. Introduction 27 

In Canada, potatoes (Solanum tuberosum L) are the largest vegetable crop accounting for 27.2% and 28 

14.7% of all vegetable and horticultural receipts, respectively (Agriculture and Agri Food 29 

Canada, 2020). Since the early 1990s, Canadian potato production has expanded to meet 30 

international demand for frozen potato products (International year of the potato, 2008). Potato 31 

growers have then integrated management schemes to increase the production efficiency (Bohl and 32 

Johnson, 2010). One of these management schemes is to evaluate the level of inputs of fertilizers to 33 

produce quality potato tubers (Torabian et al., 2021).  34 

The nutritional composition of potato tubers is responded by the availability of both macro and 35 

micronutrients for plant uptake (Naumann et al., 2020). Macronutrients such as nitrogen (N), 36 

phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) are needed in large 37 

quantities with respect to their physiological functions in plant metabolism and for tuber yield 38 

formation (Koch et al., 2020). Also, the micronutrients such as manganese (Mn), zinc (Zn), iron 39 
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(Fe), sodium (Na), copper (Cu), aluminum (Al), and boron (B), whose inclusion in the fertilizer 40 

schedule is very essential to sustain production and quality, are needed in small quantities.  41 

Commonly, nutrients are applied either by soil or foliar treatments. However, as soil application is 42 

sometimes incapable to supply the nutrients in adequate quantity (Moinuddin et al., 2017), foliar 43 

application can be more efficient in the supply of nutrients (AL-Jobori and AL-Hadithy, 2014). 44 

Therefore, proper identification of nutritional status of crop species is important for foliar 45 

application to correct the diagnosis of nutrient deficiencies.  46 

Current methods such as visual diagnosis, plant tissue tests, soil tests, and cropping history are 47 

frequently used to assess nutrient deficiencies before taking the decision of application (Fageria et 48 

al., 2009). Among these methods, tissue tests were declared to be the most accurate (Motsara and 49 

Roy, 2008). However, the credibility of tissue testing immensely depends on the time gap between 50 

sample collection and testing. A study stated that tissue testing can be a credible tool for deficiency 51 

diagnosis when the tissue samples for vegetable crops are collected from the field, shipped to the 52 

laboratory, and analyzed in the lab in the next day, otherwise remedial actions would be disrupted 53 

(Hochmuth et al., 2018). Therefore, a rapid, efficient, and cost-effective techniques for routine 54 

analysis to identify nutritional status is needed (Liao et al., 2012).  55 

Non-destructive techniques have been used to provide efficient information on the plant functional 56 

traits including nutrient contents using leaf/ canopy reflectance (Herrmann and Berger, 2021). The 57 

concept of such techniques is based on the reflectance of visible light and near infrared which have 58 

proportional relationships with the chlorophyll content (Povh, and dos Anjos, 2014). Previous 59 

research found that significant spectral bands in forestry and crop applications exist at the visible 60 

and very near infrared (Vis-VNIR, 400 - 1100 nm) and in short wave infrared (SWIR, 1000 - 3000 61 

nm) (Saari et al., 2011).   62 
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Ground-based sensors, based on vegetation indices using specific wavelengths, are delivered to 63 

markets to estimate plant properties (Gabriel et al., 2017). Also, remote sensors are widely used to 64 

detect stressed plants by obtaining the electromagnetic wave reflectance information from canopy 65 

as the leaf area index (LAI) (Xue and Su, 2017). However, both sensors have drawbacks related to 66 

canopy reflectance including atmospheric and soil interference (Muñoz-Huerta et al., 2013). Several 67 

studies then analyzed the reflectance at the leaf level to eliminate the noise coming from atmospheric 68 

and soil interference such as Mahajan et al. (2021), Peng et al. (2020) and Liao et al. (2012). These 69 

studies relate the specific waveband found to the chemical analysis of the leaves as a reference point.  70 

Several studies have been done to detect N deficiencies using spectral results in different testing 71 

modes. Testing modes of leaves are differentiated into intact analysis directly in the field (fresh, 72 

intact leaves), fresh leaves removed from the plants for laboratory scanning (fresh removed leaves), 73 

and dried and ground leaf samples (dried ground leaves) (Prananto et al., 2020). A study done by 74 

Zerner and Parker (2019) estimated N using NIRS (350 nm - 1100 nm) on fresh/ intact wheat leaf 75 

in comparison to dried ground wheat leaves. In other studies, poor calibration models were found 76 

based on the analysis of fresh leaves such as the ones built by Rotbart et al. (2013) for olive leaf N, 77 

and Menesatti et al. (2010) for orange leaf P. Rotbart et al. (2013) refers the reason that leaf 78 

dehydration improves the model performance significantly by to a better calibration for N estimation 79 

using dried ground olive leaves, over fresh/ intact leaves.  80 

Predicting foliar nutrients other than N is still limited and their deficiency diagnosis still follows 81 

destructive methods. For fingered citron, a good calibration model was obtained for P, K, F, 82 

and Mn in dried leaves, whereas the prediction of Cu and Zn were poorly reliable (Liao et al., 83 

2012). Another research studied the possibility to estimate leaf NPK contents in temperate degraded 84 

vegetation using the wavelength range of 325 to 1075 nm (Peng et al., 85 
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2020). Their research demonstrated that the sensitive wavebands for P were in the green and NIR 86 

regions, and the sensitive bands for K were in the green, red and NIR regions. 87 

However, petioles are the main organ for tissue testing in potato plants. Nevertheless, spectrum over 88 

a petiole is impractical due to its thin shape that will not fill the ground of a handheld 89 

spectrophotometer or a cup for lab spectrophotometer. Moreover, collecting the petioles is 90 

destructive because there is a need to collect 40 to 50 petioles per sample for adequate lab analysis 91 

(Rowe, 1993). Therefore, few research has been ongoing to find the correlation between leaf 92 

spectrum and petiole chemical testing rather than leaf chemical testing. A study concluded a 93 

significant relationship between leaf reflectance and petiole nitrate-N for Ranger Russet and Russet 94 

Burbank early in the growing season with coefficient of determination values up to 0.65 (Davenport 95 

et al., 2005). Another study showed a strong correlation between petiole nitrate concentration of 96 

Russet Burbank and Shepody potato cultivars and leaf protein content for Russet Burbank, with 97 

correlation coefficients ranging between 0.48 and 0.89, and a strong correlation between petiole 98 

nitrate concentration and chlorophyll content with correlation coefficients not less than 0.63 (Botha 99 

et al., 2006). One more study assessed the relationships between leaf spectral reflectance at 400 - 100 

900 nm and N levels in potato petioles and leaves for the purpose to assess the potential of a satellite 101 

to perform spatial analysis of nitrogen levels in potatoes (Cohen et al., 2010). Another work used 102 

imaging spectroscopy to predict foliar nitrogen and petiole nitrate at different wavelength regions 103 

of different potato cultivars and planting seasons (Liu et al., 2021)  104 

There are no studies that compared the results of NIRS between leaves with petiole chemical testing 105 

for nutrients other than N. In addition, spectral analysis using the full spectrum (400 - 2500 nm) 106 

have not been widely tested for utility in predicting potato nutrient status. Therefore, the overall 107 

purpose of this research work is to investigate whether there is a correlation between the chemical 108 
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testing of potato petioles and leaf spectral data, and to examine which testing mode of dried or fresh 109 

leaves has higher correlation in a lab-based level. Our analysis includes all macro and micronutrients 110 

investigated by farmers in Canada.  The results of this research will be used into further analyses to 111 

build validated robust models. 112 

2. Materials and Methods 113 

2.1. Sample preparation  114 

The experiment of this research work followed the current protocol of sample collection, 115 

preparation, and chemical testing by potato growers in NB, Canada. A total of 40 datapoints of 116 

Russet Burbank, the major potato variety in NB, Canada, were taken from sub plots at two potato 117 

farms in the Lakeville of New Brunswick in season, and hereafter is called farm data. Sampling was 118 

performed from late June (40 - 45 days after planting), to late September 2020.  This sampling 119 

covers a period when measurement of crop nutrient status could give the best results (Zebarth et al., 120 

2007). Other 20 datapoints were taken at sub plots from an indoor cultivation area from September 121 

to December 2020 at the Department of Engineering in the Agriculture Campus of Dalhousie 122 

University in Truro, Nova Scotia, and hereafter is called indoor data. The indoor cultivation was 123 

implemented to increase datapoints to the dataset. 124 

The typical grower practice is to band-apply all fertilizer at the planting stage in Atlantic Canada 125 

(Zebarth et al., 2004). Thus, indoor cultivation area gives us the opportunity to apply different 126 

fertilization schemes. We followed an over application for NPK in one group (20-20-20 NPK 127 

application) and a cut in P content for the second group (22-0-22 NPK weekly) from the fourth week 128 

until the end of the season. 129 

At each location (the two farms in Lakeville and the indoor area at Dalhousie University), sampling 130 

took place every other week as per the protocol in Atlantic Canada (Zebarth et al., 2007).  Figure 1 131 
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shows the steps taken for sampling and analysis. Both petiole and leaf samples from the farm were 132 

collected from the fourth leaf from the apex of the shoot on healthy plants (Rowe, 1993). Each 133 

datapoint contained 40 petioles and 40 leaves for lab chemical testing. This quantity of petioles is 134 

also required by the DairyLand Lab inc. (Arcadia, Wisconsin, USA), at where the analysis took 135 

place, to give a dry weight of 3 gram necessary for chemical testing. The leaves were split equally 136 

into two groups, labelled as fresh and dried, with 20 in each. The leaves and petioles were 137 

immediately vacuum packed into sampling bags after peeling them off and refrigerated before 138 

shipment. At each location, sampling was random within the same sub plot over the season. The 139 

samples were packed with ice bag and the time lag until reception by lab was two days. The leaves 140 

were analyzed for their spectral reflectance using NIRS Analyzer (DS2500, Metrohm USA Inc.) 141 

(Table 1). The leaves and petioles were dried at 55 - 60 degree Celsius (°C) over 16 - 24 hours and 142 

till a constant weight was achieved. Chemical testing was performed for all nutrients following the 143 

official methods of the Association of Official Analytical Chemists (AOAC). 144 

2.2. Spectral measurements 145 

The NIRS Analyzer measures the reflectance of leaves between 400-2500 nm, whereas the data 146 

generated by the WinISI software of the analyzer are displayed after converting to absorbance (log 147 

(1/reflectance)). The spectral observations of the leaves were taken within a black cup to reduce 148 

the impact of stray light (Figure 1.c). The leaves were trimmed symmetrically for all samples to 149 

fit the size of the cups. The spectral measurements were given at 0.5 nm interval with a total of 150 

4,200 readings. The values of absorbance were converted back to reflectance values using the 151 

relationship of (10-Absorbance). Rather than using the entire 4200 readings, one reading was taken in 152 

an interval of 8 nm, (i.e., every 16 readings because the spectral resolution is 0.5 nm) as a 153 

representative spectral signature, so that a total of 262 readings were used for data analysis. All 154 
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subsequent steps were performed using the R statistical language (R Version 4.0.2; R Core Team, 155 

2021). 156 

2.3. Wavelength selection and development of models 157 

In this research, a Pearson’s correlation (r) analysis between the wavelengths range of 404 - 2492 158 

nm and the content of each element was first performed. The absolute highest correlation values 159 

could potentially be considered as the key wavelengths for the statistical models. We used multiple 160 

linear regression (MLR) to build models of correlation between the chemical results of petioles 161 

and spectral results of leaves. The chemical results of petioles acted as responses (y) and the 162 

spectral results of the leaves within the range of 404 - 2492 nm functioned as predictors (x), 163 

resulting in the following model: 164 

                                                        y = 𝛽° + ∑ 𝑥𝑖𝛽𝑖
𝑍𝑖
𝑖=1                                                              (1) 165 

 In this dataset, the number of predictors is larger than the number of datapoints, which may result 166 

in over-fitting (Ye et al., 2020). Prediction accuracy thus can be improved by shrinking or setting 167 

some coefficients to zero using subset selection methods. Lasso MLR is one of the shrinkage 168 

methods that performs regularization and identifies the most informative, least redundant features 169 

to predict the responses (Hastie et al., 2008). Lasso is regulated by a complexity parameter λ, which 170 

controls the amount of shrinkage: the larger the value of λ is, the greater the penalization of the 171 

non-zero coefficients in the model can be, and consequently a greater shrinkage imposed on 172 

coefficient values can be achieved. Efficient algorithms are available for computing the entire path 173 

of solutions as λ is varied (Hastie et al., 2008).  The model selects the value of λ which minimizes 174 

the root mean squared error (RMSE). The chosen λ parameter determines the number of 175 

coefficients that will compose the final model, which are selected as the ones with the greatest 176 

explanatory power in relation to the target variable. 177 
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Lasso was implemented using the glmnet and caret packages of the R statistical language 178 

(Friedman et al., 2010; Kuhn, 2022). Model training and performance assessment were conducted 179 

using 5-fold cross validation, with the value of λ chosen based on the smallest root mean squared 180 

error (RMSE). Table 3 shows the number of coefficients at the selected λ and the selected RMSE 181 

value by the model. Table 3 also shows the first four significant wavebands, as 4 bands are 182 

normally sufficient in NIRS analysis (Williams, 2019).  183 

 184 

2.4. Model performance 185 

 The values of r2 between the actual and estimated concentrations were calculated as the mean 186 

across the cross validation folds as shown in Table 4. The performance of the models was 187 

categorized based on the ratio of standard error of prediction (SEP) to standard deviation (SD) of 188 

actual concentrations (Williams, 2019), known as Ratio of (standard error of) Prediction to 189 

(standard) Deviation (RPD). This is calculated according to Equation (2).  190 

                                          RPD = 
√〈{∑ An

2 − [(∑ An)2 /𝐶]/ (𝐶−1)}〉

√〈{∑(An−En)2− [∑(An−En)2
 /𝐶]}/(𝐶−1)〉

                                                      (2) 191 

The RPD for the prediction of functionality factors such as grain texture were categorized as 192 

excellent (> 4.1), very good (≥ 3.5 - 4.0), good (≥ 3.0 - 3.4), fair (≥2.5 – 2.9), and poor (< 2.0) as 193 

described by Williams (2019) who mentioned that SEP shall be considerably lower than the SD, 194 

and ideally the ratio of the SD to SEP should be 3 or higher. Another study for monitoring the 195 

foliar nutrients status of mango using spectral indices gave another classification for RPD as 196 

excellent (>2), acceptable (≥ 1.4 - 2.0) and nonreliable (< 1.40) (Mahajan et al., 2021). Considering 197 

that mango is a horticultural crop (Saúco, 1997) as potato crop (Agriculture and Agri Food 198 

Canada, 2020), we followed the latter classification.  199 

3. Results and Discussion  200 
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3.1. Influence of temporal and spatial distribution on chemical analysis of potato petioles  201 

The results obtained from the chemical analysis over the entire growing season are presented in 202 

Table 2, which shows the range of maximum and minimum results for each element with 203 

arithmetic mean values in comparison to the normal range of nutrients in potato petioles as 204 

recommended by A & L Canada Laboratories Inc in Ontario. The normal range is similar to what 205 

was recommended by the University of Minnesota for potato petioles (Kaiser and Rosen, 2018). 206 

The form of lab analysis commonly includes the chemical testing of macro nutrients in percentages 207 

(%) and micronutrients in particles per million (ppm) except for Na which is in percentage (%). 208 

Figure 2 shows the temporal concentration of each element and their distribution along with the 209 

normal range. Figure 2 also shows the spatial distribution of the measured concentrations whether 210 

their sampling was in the farm or indoor cultivation area. The common practice in New Brunswick 211 

is to add commercial fertilizers to soil such as NPK to reduce the potential for nutrient losses in 212 

latter stages. Ca and Mg are supplied through lime, while the micronutrients are only supplemented 213 

if a deficiency is observed (Government of New Brunswick, Department of Agriculture, 214 

Aquaculture and Fisheries, 1988). Based on those practices, the illustration in Figure 2 of the 215 

chemical content of nutrients are the common ranges of nutrients found in soil within the season. 216 

At this level of research, we did not perform any soil testing and we cannot ensure that the low 217 

concentrations of elements in petioles are due to deficiency in soil or stressed plants, as our focus 218 

is to find correlation between the nutrients’ concentration in the petioles and the foliar spectral 219 

reflectance.   220 

3.1.1. Dilution of NPK and S, and effects on micronutrients (Mn, Fe and Cu) 221 

The high NPK concentrations in the beginning of the season refers to the current practice of largely 222 

applying fertilizers at early stages to fulfill the fertilizer requirements during plants’ vegetative and 223 
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reproductive stages and to avoid deficiencies later in the season (Figure 2.a, b, c). The decline of 224 

NPK during the growing season may be explained by the dilution phenomenon as plant biomass 225 

increases (Du et al., 2020; Gómez et al., 2020).  The higher uptake of N, and P at late stages was 226 

also documented by Liu et al. (2021) and Rosen et al. (2014), respectively. While the slight 227 

increase in concentrations of the NPK at the end of the season may refer to the reason that potato 228 

plant uptake of NPK reached to the maturity phase of the tubers and NPK elements are no longer 229 

moving from foliage to underground tubers. Apparent trend was similarly noticed for S through 230 

the season and its uptake possibly refers to the translocation within the plant both for its 231 

contribution to plant yield and quality (Koch et al., 2020). Knowing that the application of S to 232 

potato plants is usually fertilized with K2SO4 instead of KCl, the elevation in S concentration 233 

would be referred to the high K application at the beginning of the season which was found in 234 

Figure 2.d in response to concentrations in Figure 2.c. 235 

Another synergistic effect is potentially available between K, Mn, and Fe, as it was documented 236 

that the increasing level of K causes a larger uptake of Mn concentration (dos Anjos, and Monnerat, 237 

2000), and excessive level of K might result in excessive uptake of Mn and Fe (Torabian et al., 238 

2021). The link among K and Mn was noticed in our chemical results as shown in Figure 2.c, e till 239 

80 days after planting. The random distribution of Mn concentration thereafter may raise doubts 240 

about the reliability of the chemical testing. On the other hand, the synergistic effect between K 241 

and Fe was found in our chemical results as shown in Figure 2.c, f, except three concentrations 242 

were found to be anomalous at one specific timing and this could refer to less reliability of 243 

chemical testing in that week of petiole analysis. On the other hand, Cu concentration was noticed 244 

to decrease with K’s increase in the petioles as shown in Figure 2.c, g, and these results agree with 245 

a study done by dos Anjos, and Monnerat (2000). 246 
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3.1.2. Increasing uptake of Mg and Ca and their effects on micronutrients (Al, Zn and B) 247 

Mg is recognized as a competitive cation to K for plant uptake (Koch et al., 2020). That means a 248 

low concentration of K in plant samples would cause a rise in Mg concentrations, which was the 249 

case towards the end of the season as shown in Figure 2.h. A previous study observed a similar 250 

phenomenon based on a cation antagonism between K and Mg, where there was a significant 251 

decrease in Mg concentrations with higher K supply in potato plants (Koch et al., 2019).  In 252 

addition, the Ca concentrations have shown high values during the growing season (Fig 2.i) 253 

because of the probable transport of Ca via the xylem rather than being transported for tuber 254 

formation (Koch et al., 2020). Ca and Mg are commonly known for their contribution to maintain 255 

a stable pH in soil through the application of lime in the shape of Ca.Mg(CO3)2 (Government of 256 

New Brunswick, Department of Agriculture, Aquaculture and Fisheries, 2011).  257 

The supply of Ca is commonly used not only to neutralise the soil pH but also to inhibit the uptake 258 

of Al and Mn that may cause toxicity to potato plants. This could explain the Al concentrations 259 

under the maximum normal range for both farm and indoor data as shown in Figure 2.j. Moreover, 260 

three concentrations of Al at one specific timing were higher than the normal range and this could 261 

refer to the non-reliability of chemical testing at this time of sampling.  262 

Ca application will further impact the uptake of Zn due to the decrease in soil acidity.  A previous 263 

study stated that when pH is raised by the addition of lime, Zn will be less available to potato 264 

plants (Koch et al., 2020) and this could justify the decrease in Zn concentrations after 70 days 265 

from planting (Figure 2.k) concurrently with the increase of Ca shown in Figure 2.i. Furthermore, 266 

low B concentrations was documented to be found in the acidic soils (Waqar et al., 2012). 267 

Therefore, the addition of lime in shape of Ca shall increase the B concentration uptake, which 268 

correspond to our chemical results shown in Figure 2.i, l. 269 

https://link.springer.com/article/10.1007/s11540-019-09431-2#ref-CR67
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3.2. Correlation analysis and Lasso MLR analysis  270 

Table 3 shows the selected wavebands, most significant wavebands, and RMSE of the training 271 

model given by Lasso. These absorption bands of Vis-NIR are commonly known as overtones 272 

which can be assigned to specific functional groups. Sometimes two absorbers coincide to the 273 

extent that an absorption band appears near the sum of the frequencies of the two fundamental 274 

wavebands, and thus, we show the first four significant wavebands in Table 3 as recommended by 275 

Williams (2019). Figure 3 shows the results of the highest absolute r values between the petiole 276 

chemical contents and the reflectance of wavelength range from 404 - 2500 nm for both testing 277 

modes (dried and fresh leaves). The vertical bars of width 20 nm show the regions of the four most 278 

significant waveband given by the Lasso MLR models. This width is arbitrarily chosen to check 279 

whether the most significant wavebands would cross in the same range. 280 

3.2.1. Pearson’s correlation and Lasso MLR significant wavebands for macronutrients 281 

Amongst all macronutrients, S gave the highest r value in the fresh testing mode as shown in 282 

Figure 3.a-f. A comparable result was given by Lasso MLR for S with close r2 value in both modes 283 

(Table 4). Similarly, P and K were given highest r values in the dried testing mode (Figure 3.b, c), 284 

and Lasso MLR also gave indistinguishable r2 values in both modes. In contrast to Pearson’s 285 

correlation, Lasso MLR training model showed that N has highest r2 values for the fresh testing 286 

mode as shown in Figure 3.a.  287 

The most significant wavebands were in the Vis range for N, P and C as presented in Figure 3.a, 288 

b, d, except for one waveband found in the NIR range for K, Mg and S (Figure 3.c, e, f), which 289 

might possibly be related to the synergistic effect among them as explained earlier in Sections 290 

(3.1.1, 3.1.2). The significant wavebands in Vis range would probably explain having the highest 291 

correlation in fresh testing mode for N and K, in addition to P, and S as those wavebands will not 292 
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interfere with water absorbance spectra in the NIR range (Prananto et al., 2020). Similar significant 293 

wavebands were concluded for P prediction in the VNIR region of the spectrum in corn canopy 294 

(Siedliska et al., 2021), and for S and K prediction at Vis- VNIR range of the spectrum in mango 295 

leaves (Mahajan et al., 2021).  296 

3.2.2. Pearson’s correlation and Lasso MLR significant wavebands for micronutrients 297 

excluding Na 298 

All micronutrients show highest r values in the dried testing mode like the results given by Lasso 299 

MLR modelling, except for Fe that has a comparable r2 value in both modes (Figure 3.g-m, Table 300 

4). The four significant wavebands were found in Vis range only in Mn (Figure 3.g), while B had 301 

a solo significant waveband in NIR region (Figure 3.j) regardless its interference with Ca (Section 302 

3.1.1), which possibly give a fingerprint for B. Amongst the elements, Zn, Fe, Cu, and Al had 303 

similarities in having two significant adjacent wavelengths in Vis and NIR (Figure 3.h,i,k,l), 304 

respectively, whilst those wavebands in the NIR range are not interfering with the significant 305 

waveband found for the macronutrient affecting them such as K and Ca (Sections 3.1.1, 3.1.2). 306 

The above correlation analysis of the spectral data showed that the most significant wavebands 307 

were more prominent in the Vis-NIR region. These prominent spectral variations were also 308 

reported by Osco et al. (2020) for predicting macro and micronutrients in orange and by Ling et 309 

al. (2019) for detecting concentrations of leaf nutritional elements. 310 

3.3. Estimation of concentrations and models performance 311 

3.3.1. Lasso MLR models performance for macronutrients  312 

The Lasso MLR results suggest excellent performance for estimating all macronutrients based on 313 

the RPD classification shown in Table 4 except for S that showed acceptable RPD value. 314 

Moreover, the high RPD values shown in Table 4 may provide supporting evidence that the 315 
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generated models accounted for more of the variance in the datapoints represented by the chemical 316 

results shown in Figure 2.a-d, 2.h-i.  317 

For instance, the vast majority of the N concentrations (93%) was above the normal range (2.49 - 318 

3 %) (Figure 4.a), in spite of that, the model had reasonable estimation, likewise, for P estimation 319 

model presented in Figure 4.b.  In addition, K, and Mg estimation models showed fair distribution 320 

around the fitting line despite being beyond the normal range (Figure 4.c, e). Mg estimation model 321 

gave a fairly distribution of estimated concentrations around the fitting line more than the 322 

concentrations above the normal range (Figure 4.e).  323 

Only the Ca estimation showed a low correlation, but a high RPD value at 2.55 (Table 4), which 324 

would possibly refer to the fair variance in the actual measurements shown in Figure 2.i.  S was 325 

the only macronutrient that had all concentrations below the normal range, nevertheless, its model 326 

performance gave reasonable results of r2 and RPD values in comparison to other macronutrients 327 

(Table 4). For that reason, models of Ca and S may require enriching the datasets with more 328 

variability in chemical concentrations. 329 

3.3.2. Lasso MLR models performance for micronutrients excluding Na 330 

RPD evaluation hovered around acceptable to excellent performances for the estimation of all 331 

micronutrients as shown in Table 4. The Lasso MLR models unveiled considerably high 332 

correlation values except for Mn. Nevertheless, Mn estimation model showed an excellent RPD 333 

value (Table 4) which may correspond to the variance in the chemical concentrations shown in 334 

Figure 2.e. Al had less reliability in chemical concentrations at the beginning of season as 335 

explained in Section 1.3.2 and shown in Figure 2.j. Those unreliable concentrations of Al may 336 

have biased the model during training, especially since model selection was based on the lowest 337 

RMSE value. In Figure 4.l, the Al model shows good estimation results when the concentrations 338 
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were under 300 ppm, and beyond 1000 ppm, three datapoints were shown to be underestimated. 339 

For that purpose, additional analysis was performed on Al dataset after re-grouping datapoints to 340 

avoid underfitting that occurred due to the high concentrations in the beginning of the season. After 341 

re-grouping, Lasso testing model showed an improvement in r2 value from 0.67 to 0.71 and RPD 342 

value decreased slightly from 2.61 to 2.39. Moreover, when we considered the three datapoints 343 

shown at day 52 in Figure 2.j as out of accepted range of concentrations, the r2 value of the testing 344 

model was marginally decreased from 0.67 to 0.62 and the RPD value increased from 2.61 to 3.78. 345 

Thus, further investigation is required for Al modelling, with larger datasets.  346 

Likewise, Fe concentrations showed three inconsistent values in comparison to others within the 347 

growing season in Figure 2.f and Figure 4.i. Nevertheless, cross validation results of the Lasso 348 

model yielded r2 value at 0.65 and RPD value at 3.66 (Table 4). This high value of RPD commonly 349 

means that a small error of estimation is found in comparison to actual values. However, we had 350 

less confidence of these three concentrations in comparison to the other Fe concentrations during 351 

the season. For that purpose, we re-assessed the model performance after dropping these three 352 

concentrations and the results showed a decrease in the r2 value from 0.65 to 0.40 and RPD value 353 

from 4.23 to 4.24. Although r2 was devalued, the range of the actual Fe concentrations entered for 354 

training the model are more reliable. For the other micronutrients, the concentrations were well 355 

estimated around the fitting line (Figure 4.g, h, j, k) and the model performance with regards to 356 

RPD gave an acceptable to excellent accuracy for Zn, Cu and Mn, B, respectively (Table 4). 357 

3.4. Overall evaluation of the datasets and the developed models  358 

The dataset was made of samples collected from 3 locations and had no more than 60 datapoints 359 

collected over one season. In our effort to maximize the range of observations in terms of different 360 

nutrient concentration, we took the samples over one season with an interval of two weeks between 361 
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samples taken from the same subplot following the current protocol of sample collection, and 362 

preparation by potato growers in NB, Canada. This resulted in ranges that went higher, within and 363 

below the normal ranges for N, P, K, Mg, Zn and Mn (Figure 2.a, b, c, h, k, and l).  We were able 364 

to extend the range of P in particular by the indoor cultivation area which used to apply P in 365 

concentrations that cannot be implemented in commercial farms. In the future, we will continue to 366 

use the indoor area to expand the ranges of other macronutrients as well as testing the models on 367 

wider ranges of observations. 368 

This preliminary analysis assists in identifying the correlation between chemical contents of 369 

petioles and spectrum of leaves. Pearson’s correlation was initially considered to find out whether 370 

any correlation would exist between the chemical contents of petioles and spectrum of leaves, and 371 

to highlight the wavebands that could potentially be considered as significant wavelengths. The 372 

testing mode of the highest Pearson’s correlation agreed with the highest r2 value given by Lasso 373 

MLR estimation models for all elements except N, S and Zn. The models showed that most 374 

significant wavebands were in the Vis-VNIR range for all macronutrients except Mg and S, which 375 

had significant third and fourth wavebands in SWIR. On the other hand, all micronutrients had the 376 

most significant wavebands in both Vis-VNIR and SWIR with a common significant waveband at 377 

1932 nm, along with an adjacent waveband at 1940 nm. Similar results are supported by findings 378 

of other researchers such as N (Liu et al., 2020; Ye et al., 2020), P (Siedliska et al., 202), S and K 379 

(Mahajan et al., 2021). The visible correlation between the actual and estimated values of elements 380 

supported by reasonable RPD values shows a potential to estimate petiole elements based on foliar 381 

spectral reflectance in a lab-based level. The estimation models were trained by Lasso MLR on 48 382 

datapoints and tested using the remaining datapoints, which we will enhance in the following 383 
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seasons as we increase the number of datapoints used for the training and validation processes for 384 

all the models.  385 

3.4.1. Correlation of Na 386 

Na showed an exceptional pattern in comparison to other elements. The Na chemical content 387 

within the season showed a discrete distribution with a dominant concentration at 0.02% (Figure 388 

2.m). These unchanging concentrations might be due to the reason that the chemical analysis of 389 

Na is based on the percentage unit rather than ppm, unlike the other micronutrients. The percentage 390 

unit might not be capable to describe changes in Na concentrations occurring within the season. 391 

Despite this discrete distribution in Na concentrations, the Pearson’s correlation did not show an 392 

odd pattern in comparison to other elements as shown in Figure 3.m. In contrast, the Lasso MLR 393 

model gave a dominant estimation value at 0.02% (Figure 4.m) regardless to the other actual values 394 

up to 0.05 % shown in Figure 2.m. This estimation model resulted in a low r2 value at 0.19 (Table 395 

4). The RPD value at 4.36 (Table 4) indicates that the actual data variance is low, and thus the 396 

value for the RPD cannot be accurate to judge on the efficiency of the estimation capacity (Parrini 397 

et al., 2021). We are uncertain whether this low model performance happened as a reason for non-398 

reliable chemical concentrations of Na or there is in fact no correlation between petiole Na content 399 

and leaf spectrum. Accordingly, we will remove Na from the analysis.  400 

4. Conclusion 401 

The results of this research show that there is a correlation between the chemical contents of potato 402 

petioles and leaf spectrum for all elements tested except Na. The models over the two testing 403 

modes show that most elements had higher correlation in the dried leaves except for N and K. 404 

Besides, the models showed potential to estimate P, S, and Fe in the fresh mode as stated in Table 405 
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4. These results set off a new technique to estimate petioles chemical contents based on two sets 406 

of foliar spectral reflectance: dried or fresh leaves.  407 

5. Acknowledgment 408 

This work is supported by; the Natural Sciences and Engineering Research Council of Canada 409 

(NSERC) under the Collaborative Research and Development Grant – Project (CRDPJ 543912-410 

19), McCain Foods Limited, and Potatoes New Brunswick (PNB); and the New Brunswick 411 

Enabling Agricultural Research and Innovation (EARI) program of the Canadian Agricultural 412 

Partnership (CAP), project number: C1920-0056. 413 

6. Declaration of Conflicting Interests  414 

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or 415 

publication of this article. 416 

7. References 417 

Agriculture and Agri-Food Canada (2020). Potato market information review – 2019-2020. 418 

https://www.agr.gc.ca/eng/canadas-agriculture-sectors/horticulture/horticulture-sector-419 

reports/potato-market-information-review-2019-2020/?id=1606246042832  (accessed on May 420 

31, 2021). 421 

AL-Jobori, K.M.M., and AL-Hadithy, S.A. (2014). Response of potato (Solanum Tuberosum) to 422 

foliar application of iron, manganese, copper and zinc. International Journal of Agriculture and 423 

Crop Sciences (IJACS), 7 (7): 358-363. ISSN 2227-670X.Barczak, B., Nowak, K., and 424 

Knapowski, T. (2013). Potato yield is affected by sulphur form and rate. Agrochimica, 57 425 

(4):363-372. 426 

Bohl, W.H., and Johnson, S.B. (2010). Commercial potato production in North America: the potato 427 

association of America handbook, 2nd ed. Orono, United States. 428 

https://www.agr.gc.ca/eng/?id=1395690825741


20 

https://potatoassociation.org/wp-429 

content/uploads/2014/04/A_ProductionHandbook_Final_000.pdf (accessed on May 31, 2021). 430 

Botha, E. J., Zebarth, B. J., and Leblon, B. (2006). Non-destructive estimation of potato leaf 431 

chlorophyll and protein contents from hyperspectral measurements using the PROSPECT 432 

radiative transfer model. Canadian Journal of Plant Science, 86 (1):279-91. 433 

https://doi.org/10.4141/P05-017. 434 

Cohen, Y., Alchanatis, V., Zusman, Y., Dar, Z., Bonfil, D.J., Karnieli, A., Zilberman, A., Moulin, 435 

A., Ostrovsky, V., Levi, A., Brikman, R., and Shenker, M. (2010). Leaf nitrogen estimation 436 

in potato based on spectral data and on simulated bands of the VENμS satellite. Precision 437 

Agriculture, 11 (5): 520-37. https://doi.org/10.1007/s11119-009-9147-8.  438 

Davenport, J.R., Perry, E.M., Lang, N.S., and Stevens, R.G. (2005). Leaf spectral reflectance for 439 

nondestructive measurement of plant nutrient status. HortTechnology, 15 (1):31-35. 440 

https://doi.org/10.21273/HORTTECH.15.1.0031. 441 

dos Anjos, R. R. J. and Monnerat, P. H. (2000). Nutrient Concentrations in Potato Stem, Petiole 442 

and Leaflet in Response to Potassium Fertilizer. Scientia Agricola, 57 (2): 251–55. 443 

https://doi.org/10.1590/S0103-90162000000200009. 444 

Du, L., Li, L., Li, L., Wu, Y., Zhou, F., Liu, B., Zhao, B. , Li, X., Liu, Q., Kong, F., and Yuan, J. 445 

(2020).  Construction of a Critical Nitrogen Dilution Curve for Maize in Southwest China. 446 

Scientific Reports, 10 (1): 13084. https://doi.org/10.1038/s41598-020-70065-3. 447 

Fageria, N. K., Barbosa Filho, M.P., Moreira, A., and Guimarães, C. M. (2009). Foliar fertilization 448 

of crop plants. Journl of Plant Nutrition, 32 (6): 1044-64.  449 

https://doi.org/10.1080/01904160902872826. 450 

https://doi.org/10.4141/P05-017
https://doi.org/10.1007/s11119-009-9147-8
https://doi.org/10.21273/HORTTECH.15.1.0031
https://doi.org/10.1590/S0103-90162000000200009
https://www.nature.com/articles/s41598-020-70065-3#auth-Qinlin-Liu
https://www.nature.com/articles/s41598-020-70065-3#auth-Fanlei-Kong
https://www.nature.com/articles/s41598-020-70065-3#auth-Jichao-Yuan
https://doi.org/10.1038/s41598-020-70065-3
https://doi.org/10.1080/01904160902872826


21 

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear 451 

Models via Coordinate Descent. Journal of Statistical Software, 33 (1): 1-22. 452 

https://www.jstatsoft.org/v33/i01/ 453 

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The elements of statistical learning: data 454 

mining, inference, and prediction. Second edition. New York: Springer, 2008. 455 

Herrmann, I., and Berger, K. (2021) Remote and proximal assessment of plant traits. Remote 456 

Sensing, 13:1893. https://doi.org/10.3390/ rs13101893. 457 

Hochmuth, G. J., Maynard, D., Vavrina, C., Hanlon, E., and Simonne, E. (2018). Plant tissue 458 

analysis and interpretation for vegetable crops in Florida. Horticultural Sciences Department, 459 

UF/IFAS Extension, HS964 series. https://edis.ifas.ufl.edu/publication/ep081 (accessed on 460 

June 01, 2021). 461 

International year of the potato (2008). North America. FAO. http://www.fao.org/potato-462 

2008/en/world/northamerica.html (accessed on May 31, 2021). 463 

Gabriel, J.L., Zarco-Tejada, P.J., López-Herrera, P. J., Pérez-Martín, E., Alonso-Ayuso, M., and 464 

Quemada, M. (2017). Airborne and ground level sensors for monitoring nitrogen status in a 465 

maize crop. Biosystems Engineering, 160:124-33. 466 

https://doi.org/10.1016/j.biosystemseng.2017.06.003. 467 

Gómez, M.I., Magnitskiy, S., and Rodríguez, L.E. (2019). Critical Dilution Curves for Nitrogen, 468 

Phosphorus, and Potassium in Potato Group Andigenum. Agronomy Journal, 111 (1): 419–27. 469 

https://doi.org/10.2134/agronj2018.05.0357. 470 

Kaiser, D.E., and Rosen, C.J. (2018). Understanding plant analysis for crops. University of 471 

Minnesota Extension. https://extension.umn.edu/testing-and-analysis/understanding-plant-472 

analysis-crops (accessed on June 22, 2021). 473 

https://edis.ifas.ufl.edu/publication/ep081
http://www.fao.org/potato-2008/en/world/northamerica.html
http://www.fao.org/potato-2008/en/world/northamerica.html
https://doi.org/10.1016/j.biosystemseng.2017.06.003
https://doi.org/10.2134/agronj2018.05.0357
https://extension.umn.edu/testing-and-analysis/understanding-plant-analysis-crops
https://extension.umn.edu/testing-and-analysis/understanding-plant-analysis-crops


22 

Koch, M., Naumann, M., Pawelzik, E., Gransee, A., and Thiel, H. (2020). The importance of 474 

nutrient management for potato production part I: plant nutrition and yield. Potato Research, 63 475 

(1):97-119. https://doi.org/10.1007/s11540-019-09431-2. 476 

Koch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., and Pawelzik, E. 477 

(2019). Differential effects of varied potassium and magnesium nutrition on production and 478 

partitioning of photoassimilates in potato plants. Physiologia Plantarum, 166 (4):921-35. 479 

https://doi.org/10.1111/ppl.12846. 480 

Kuhn, M. (2022). caret: Classification and Regression Training. R package version 6.0-91. 481 

https://CRAN.R-project.org/package=caret 482 

Liao, H., Jianguo, W., Wenrong, C., Weidong, G., and Chunhai, S. (2012). Rapid diagnosis of 483 

nutrient elements in fingered citron leaf using near infrared reflectance spectroscopy. Journal 484 

of Plant Nutrition, 35 (11):1725- 34. https://doi.org/10.1080/01904167.2012.698352.  485 

Ling, B., Goodin, D.G., Raynor, E.J., and Joern, A. (2019). Hyperspectral analysis of leaf pigments 486 

and nutritional elements in tallgrass prairie vegetation. Frontiers in Plant Science, 10: 142. 487 

https://doi.org/10.3389/fpls.2019.00142. 488 

Liu, N., Townsend, P.A., Naber, M.R., Bethke, P.C., Hills, W.B., and Wang, Y. (2021). 489 

Hyperspectral imagery to monitor crop nutrient status within and across growing seasons. 490 

Remote Sensing of Environment, 255: 112303. https://doi.org/10.1016/j.rse.2021.112303. 491 

Liu, N., Zhao, R., Qiao, L., Zhang, Y., Li, M., Sun, H., Xing, Z., and Wang, X. (2020). Growth 492 

stages classification of potato crop based on analysis of spectral response and variables 493 

optimization. Sensors, 20 (14): 3995. https://doi.org/10.3390/s20143995. 494 

Mahajan, G. R., Das, B., Murgaokar, D., Herrmann, I., Berger, K., Sahoo, R.N., Patel, K., Desai, 495 

A., Morajkar, S., and Kulkarni, R.M. (2021). Monitoring the foliar nutrients status of mango 496 

https://doi.org/10.1007/s11540-019-09431-2
https://doi.org/10.1111/ppl.12846
https://cran.r-pr/
https://doi.org/10.1080/01904167.2012.698352
https://doi.org/10.3389/fpls.2019.00142
https://doi.org/10.1016/j.rse.2021.112303
https://doi.org/10.3390/s20143995


23 

using spectroscopy-based spectral indices and PLSR-combined machine learning models. 497 

Remote Sensing, 13 (4): 641. https://doi.org/10.3390/rs13040641. 498 

Menesatti, P., Antonucci, F., Pallottino, F., Roccuzzo, G., Allegra, M., Stagno, F., and Intrigliolo, 499 

F. (2010). Estimation of Plant Nutritional Status by Vis–NIR Spectrophotometric Analysis on 500 

Orange Leaves [Citrus Sinensis (L) Osbeck Cv Tarocco]. Biosystems Engineering, 105 (4): 501 

448–54. https://doi.org/10.1016/j.biosystemseng.2010.01.003. 502 

Moinuddin, G., Jash, S., Sarkar, A., and Dasgupta, S. (2017). Response of potato (Solanum 503 

tuberosum L.) to foliar application of macro and micronutrients in the red and lateritic zone of 504 

west Bengal. Journal of Crop and Weed, 13 (1):185-188. ISSN: 0974-6315.  505 

Motsara, M., and Roy, R.N. (2008) Guide to laboratory establishment for plant nutrient analysis. 506 

Food and agriculture organization of the United Nations, Rome. 507 

Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., 508 

Prado-Olivarez, J., and Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the 509 

nitrogen status in plants: advantages, disadvantages and recent advances. Sensors, 13: 10823-510 

10843. https://doi.org/10.3390/s130810823. 511 

Naumann, M., Koch, M., Thiel, H., Gransee, A., and Pawelzik, E. (2020). The importance of 512 

nutrient management for potato production part II: plant nutrition and tuber quality. Potato 513 

Research, 63 (1): 121-37. https://doi.org/10.1007/s11540-019-09430-3. 514 

Nigon, T.J., Yang, C., Paiao, G.D., Mulla, D.J., Knight, J.F., and Fernández, F.G. (2020). 515 

Prediction of Early Season Nitrogen Uptake in Maize Using High-Resolution Aerial 516 

Hyperspectral Imagery. Remote Sensing, 12 (8): 1234. https://doi.org/10.3390/rs12081234. 517 

Osco, L.P., Ramos, A.P.M., Pinheiro, M.M.F., Moriya, É.A.S., Imai, N.N., Estrabis, N.V., 518 

Ianczyk, F., de Araújo, F.F., Liesenberg, V., de Castro Jorge, L.A., Li, J., Ma, L., Gonçalves, 519 

https://doi.org/10.3390/rs13040641
https://doi.org/10.1016/j.biosystemseng.2010.01.003
https://www.cabdirect.org/cabdirect/search/?q=sn%3a%220974-6315%22
https://doi.org/10.1007/s11540-019-09430-3
https://doi.org/10.3390/rs12081234


24 

W.N., Marcato, J. J., and Creste, J. E. (2020). Machine learning framework to predict nutrient 520 

content in Valencia-Orange leaf hyperspectral measurements. Remote Sensing, 12 (6): 906. 521 

https://doi.org/10.3390/rs12060906. 522 

Parrini, S., Staglianò, N., Bozzi, R., and Argenti, G. (2021). Can Grassland Chemical Quality Be 523 

Quantified Using Transform Near-Infrared Spectroscopy?. Animals, 12 (1): 86. 524 

https://doi.org/10.3390/ani12010086. 525 

Peng, Y., Zhang, M., Xu, Z., Yang, T., Su, Y., Zhou, T., Wang, H., Wang, Y., and Lin, Y. (2020). 526 

Estimation of leaf nutrition status in degraded vegetation based on field survey and 527 

hyperspectral data. Scientific Reports, 10 (1): 4361. https://doi.org/10.1038/s41598-020-528 

61294-7. 529 

Povh, F.P., and dos Anjos, W.D.P.G. (2014). Optical sensors applied in agricultural crops. In 530 

Optical Sensors - New Developments and Practical Applications. edited by Yasin, M., Harun, 531 

S.W., Arof, H. (eds), InTech. ISBN: 978-953-51-1233-4. https://doi.org/10.5772/57145.  532 

Prananto, A.J., Minasny, B., and Weaver, T. (2020). Near infrared (NIR) spectroscopy as a rapid 533 

and cost-effective method for nutrient analysis of plant leaf tissues. In Advances in Agronomy, 534 

164:1-49. Elsevier. https://doi.org/10.1016/bs.agron.2020.06.001. 535 

Rotbart, N, Schmilovitch, Z., Cohen, Y., Alchanatis, V., Erel, R., Ignat, T., Shenderey, C., Dag, 536 

A., and Yermiyahu, U. (2013). Estimating olive leaf nitrogen concentration using visible and 537 

near-infrared spectral reflectance. Biosystems Engineering, 114 (4):426-34. 538 

https://doi.org/10.1016/j.biosystemseng.2012.09.005. 539 

Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkilä, J., Holmlund, C., Mäkynen, J., Ojala, 540 

K., and Antila, T. (2011). Unmanned aerial vehicle (UAV) operated spectral camera system 541 

for forest and agriculture applications. Proceedings Volume 8174, Remote Sensing for 542 

https://doi.org/10.3390/rs12060906
https://doi.org/10.3390/ani12010086
https://doi.org/10.1038/s41598-020-61294-7
https://doi.org/10.1038/s41598-020-61294-7
https://doi.org/10.5772/57145
https://doi.org/10.1016/bs.agron.2020.06.001
https://doi.org/10.1016/j.biosystemseng.2012.09.005
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8174.toc


25 

Agriculture, Ecosystems, and Hydrology XIII; 81740H.  543 

Event: SPIE Remote Sensing, Prague, Czech Republic. https://doi.org/10.1117/12.897585.  544 

Saúco, V. (1997). Horticultural practices of mango. Acta Horticulturae, 455:391-400 545 

https://doi.org/10.17660/ActaHortic.1997.455.50. 546 

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for 547 

Statistical Computing, Vienna, Austria. https://www.R-project.org/. 548 

Rosen, C.J., Kelling, K.A., Stark, J.C., and Porter, G.A. (2014). Optimizing phosphorus fertilizer 549 

management in potato production. American Journal of Potato Research, 91:145-160. 550 

https://doi.org/10.1007/s12230-014-9371-2. 551 

Rowe, R.C. (1993). Potato Health Management: The American Phytopathological Society. APS 552 

Press, Minnesota: 1-178. 553 

Sharifi, M., Cheema, M., McVicar, K., LeBlanc, L., and Fillmore, S. (2013). Evaluation of liming 554 

properties and potassium bioavailability of three Atlantic Canada wood ash sources. Canadian 555 

Journal of Plant Science, 93 (6):1209-16. https://doi.org/10.4141/cjps2013-168. 556 

Siedliska, A., Baranowski, P., Pastuszka-Woźniak, J., Zubik, M., and Krzyszczak, J. (2021). 557 

Identification of plant leaf phosphorus content at different growth stages based on hyperspectral 558 

reflectance. BMC Plant Biology, 21 (1):28. https://doi.org/10.1186/s12870-020-02807-4. 559 

Government of New Brunswick, Department of Agriculture, Aquaculture and Fisheries (2011). 560 

Crop fertilization guide. The Land Development Branch. 561 

https://www2.gnb.ca/content/dam/gnb/Departments/10/pdf/Agriculture/Fertilityguide2001.pdf 562 

(accessed on August 05, 2021). 563 

Government of New Brunswick, and the Department of Agriculture, Aquaculture and Fisheries 564 

(1988). Fertilizer. Agdex No. 200.21. 565 

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8174.toc
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/browse/SPIE-Remote-Sensing/2011
https://doi.org/10.1117/12.897585
https://doi.org/10.17660/ActaHortic.1997.455.50
https://doi.org/10.4141/cjps2013-168
https://doi.org/10.1186/s12870-020-02807-4
https://www2.gnb.ca/content/dam/gnb/Departments/10/pdf/Agriculture/Fertilityguide2001.pdf


26 

https://www2.gnb.ca/content/gnb/en/departments/10/agriculture/content/crops/nursery_landsc566 

ape/fertilizer.html (accessed on February 09, 2022). 567 

Torabian, S., Farhangi-Abriz, S., Qin, R., Noulas, C., Sathuvalli, V., Charlton, B., and Loka, D.A. 568 

(2021). Potassium: a vital macronutrient in potato production- a review. Agronomy, 11 (3): 569 

543. https://doi.org/10.3390/agronomy11030543. 570 

Waqar, A., Zia, M.H., Malhi, S.S., Niaz, A., and Saifullah (2012). Boron Deficiency in Soils and 571 

Crops: A Review, Crop Plant, Dr Aakash Goyal (Ed.), InTech. ISBN: 978-953-51-0527-5.  572 

http://www.intechopen.com/books/crop-plant/boron-deficiency-in-soils-and-crops-a-review 573 

Williams, P., Antoniszyn, J., and Manley, M. (2019). Near infrared technology: getting the best 574 

out of Light. AFRICAN SUN MeDIA. http://doi.org/10.18820/9781928480310. 575 

Xue, J., and Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of 576 

Developments and Applications. Journal of Sensors: 1–17. 577 

https://doi.org/10.1155/2017/1353691. 578 

Ye, X., Abe, S., and Zhang, S. (2020). Estimation and mapping of nitrogen content in apple trees 579 

at leaf and canopy levels using hyperspectral imaging. Precision Agriculture, 21: 198-225. 580 

https://doi.org/10.1007/s11119-019-09661-x. 581 

Zebarth, B., Moreau, G., and Karemangingo, C. (2007). Nitrogen management for potatoes: petiole 582 

nitrate testing. GHG Taking Charge Team Factsheet.  583 

https://www.soilcc.ca/ggmp_fact_sheets/pdf/Potato_pnit.pdf (accessed on June 17, 2021). 584 

Zebarth, B. J., Leclerc, Y., Moreau, G., and Botha, E. (2004). Rate and timing of nitrogen 585 

fertilization of Russet Burbank potato: Yield and processing quality. Canadian journal of plant 586 

science, 84 (3): 855-863. https://doi.org/10.4141/P03-123. 587 

https://doi.org/10.3390/agronomy11030543
http://www.intechopen.com/books/crop-plant/boron-deficiency-in-soils-and-crops-a-review
http://doi.org/10.18820/9781928480310
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1007/s11119-019-09661-x
https://www.soilcc.ca/ggmp_fact_sheets/pdf/Potato_pnit.pdf


27 

Zerner, M., and Parker, K. (2019). Rapid assessment of crop nitrogen and stress status - in-field 588 

assessment of a hand-held near infrared tool. https://grdc.com.au/resources-and-589 

publications/grdc-update-papers/tab-content/grdc-update-papers/2019/02/rapid-assessment-590 

of-crop-nitrogen-and-stress-statusin-field-assessment-of-a-hand-held-near-infrared-tool 591 

(accessed on July 04, 2021). 592 

https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2019/02/rapid-assessment-of-crop-nitrogen-and-stress-statusin-field-assessment-of-a-hand-held-near-infrared-tool
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2019/02/rapid-assessment-of-crop-nitrogen-and-stress-statusin-field-assessment-of-a-hand-held-near-infrared-tool
https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2019/02/rapid-assessment-of-crop-nitrogen-and-stress-statusin-field-assessment-of-a-hand-held-near-infrared-tool


 

 

Figure 1. (a) Steps of sample collection.  (b) Chemical testing.  (c) Spectral analysis performed over the 

two modes of dried and fresh leaves. 
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Figure 2. Temporal distribution for each nutrient during the growing season. Horizontal lines represent the 

limits of the maximum (     ) and minimum (     ) range of nutrients in potato petioles as recommended by 

A & L Canada Laboratories Inc in Ontario.  ,  presents farm and indoor data, respectively. 
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Figure 3. Pearson’s correlation (r) for dried (     ) and fresh leaves (     ) across the spectrum. Absolute peaks 

represent the highest r. The solid line outlines the testing mode of the highest coefficient of determination (r2) 

using Lasso Regression, while dashed line represents the testing mode with less r2. The bars present the region 

of the four most significant wavebands by Lasso Regression. The intensity of the grey scale  of the bars intensity 

gives the sequence of important wavebands from darker to brighter. 
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Figure 4. Validation results of the actual versus estimated concentrations of the testing mode (green for 

fresh, brown for dried) of the highest coefficient of determination (r2).    shows the normal range of 

nutrients in potato petioles as recommended by A & L Canada Laboratories. 
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Table 1.  Operating specifications of NIRS DS2500 Analyzer 

Item  Specification  

Measurement Mode Reflectance  

Wavelength Range  400 - 2500 nm  

Detectors Silicon (400 - 1100 nm) and Lead Sulfide (1100 - 2500 nm)  

Optical Bandwidth 8.75 ±0.1 nm  

Spectral resolution 0.5 nm  

Number of data points  4200  

Wavelength Accuracy ± 0.05 nm   
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Table 2.  Descriptive content of petiole nutritional concentrations during the entire growth season  

Parameter 

N 

  (%) 

P  

(%) 

K  

(%) 

Ca  

(%) 

Mg  

(%) 

S  

(%) 

Mn 

(ppm) 

Zn 

(ppm) 

Fe 

(ppm) 

Na 

(%) 

Cu 

(ppm) 

Al 

(ppm) 

B 

(ppm) 

Number of datapoints 60 52 52 52 52 52 52 52 52 50 52 49 49 

Maximum measured 6.04 0.70 11.74 2.24 1.43 0.27 2545 282 3343 0.05 28 2415 44 

Maximum recommended* 2.49 0.35 11 3 0.8 0.35 200 60 100 0.03 30 300 60 

Minimum measured 1.78 0.07 3.32 0.84 0.22 0.11 31 13 49 0.01 1 26 22 

Minimum recommended* 3 0.24 8 1.4 0.3 0.24 60 35 50 ND 10 ND 36 

Mean 4.36 0.31 7.54 1.53 0.64 0.18 360 96 280 0.02 8 263 32 

SD 1.02 0.19 2.36 0.37 0.35 0.04 471.36 59.97 621.98 0.01 5.52 483.99 6.16 

* Normal range in nutrient concentrations stated by A & L Canada Laboratories Inc. ND: not defined 
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1 

Table 3. Number, range, and first four significant wavebands resulting from Lasso MLR modelling at the better testing mode of each element  

Element Better testing mode Number of bands Range of bands (nm) First four significant wavebands (nm) RMSE value 

N Fresh 13 404 - 1828 660, 684, 404, 484 0.64 

P Dried 10 404 - 1924 708, 404, 540, 700 0.10 

K Fresh 17 404 - 2300 404, 428, 588, 948 1.23 

Ca Dried 20 404 - 2100 404, 444, 588, 540 0.30 

Mg  Dried 14 404 - 1940 700, 532, 1716, 524 0.18 

S Dried 18 404 - 1916 404, 588, 516, 1452 0.03 

Mn Dried 22 428 - 2492 660, 628, 428, 492 377.41 

Zn Dried 12 468 - 2124 1932, 524, 1852, 532 49.11 

Fe Dried 19 404 - 2316 1932, 636, 524, 2308 329.70 

B Dried 11 412 -1932 684, 1932, 412, 460 232.62 

Cu Dried 23 428 - 2484 1940, 676, 428, 1716 2.48 

Al Dried 17 404 - 2316 1932, 2308, 524, 652 232.62 

Na Fresh 20 548 - 2148 548, 972, 700, 1028 0.01 
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1 

Table 4. Validation results of Lasso MLR models estimating elements. 

Element Unit 

Testing mode used 

for modelling 

 
Validation results  

 

 r2  RPD  

N % Fresh  0.59 3.06  

P % Dried  0.74* 2.26  

K % Fresh  0.75** 2.44  

Ca % Dried  0.32 2.55  

Mg  % Dried  0.77 2.85  

S % Dried  0.50* 1.82  

Mn ppm Dried  0.24 2.30  

Zn ppm Dried  0.54 2.26  

Fe ppm Dried  0.65* 3.66  

B ppm Dried  0.62 2.08  

Cu ppm Dried  0.58 2.09  

Al ppm Dried  0.67 2.61  

Na % Fresh  0.19 4.36  

* r2 values are < 0.04 compared to values of the fresh mode 

 ** r2 values are ˂ 0.02 compared to values of the dried mode  
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