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Metal-binding polymer fibres have attracted major attention for diverse applications in 

membranes for metal sequestration from waste waters, non-woven wound dressings, matrices 

for photocatalysis, and many more. This paper reports the design and synthesis of an 8-

hydroxyquinoline-based zinc-binding styrenic monomer, QuiBoc. Its subsequent 

polymerisation by reversible addition-fragmentation chain transfer (RAFT) yielded well-

defined polymers, PQuiBoc, of controllable molar masses (6 and 12 kg/mol) with low 

dispersities (Ð, Mw/Mn < 1.3). Protected (PQuiBoc) and deprotected (PQuiOH) derivatives of 

the polymer exhibited high zinc-binding capacity, as determined by semi-quantitative 

SEM/EDXA analyses, allowing the electrospinning of microfibres from a 

PQuiBoc/polystyrene (PS) blend without the need for removal of the protecting group. Simple 

“dip-coating” of the fibrous mats into ZnO suspensions showed that PQuiBoc/PS microfibres 

with only 20% PQuiBoc content had almost three-fold higher loadings of ZnO (29%) in 

comparison to neat PS microfibres (11%). 

Introduction 

Organic-inorganic composite polymer materials continue to draw large attention due to their 

attractive properties, combining the processability and physical properties of an organic 

polymer component with the functionality of an inorganic moiety.1 One of the most extensively 



employed techniques for the preparation of the composite materials with high surface area and 

loading of inorganic components is electrospinning, an electro-hydrodynamic process that 

allows the fabrication of nano- and microfibres with a wide range of secondary structures, 

compositions and applications: from biological scaffolds to water purification.2 The main 

advantage of fibres is their high surface area-to-volume ratio and outstanding mechanical 

properties.3  

Polystyrene (PS) fibres have been of major interest as a readily available material in a range of 

molar masses that exhibits excellent physical properties, such as high tensile and flexural stress 

with high long-term stability.4,5 Moreover, good control over the size, size distribution, 

wettability6 and the morphology of the fibres has been achieved, including formation of 

pores,7,8 wrinkles and folds.9 A good understanding of the structure-property relationship of 

the electrospun PS fibres and their relatively low cost have led to PS being the first choice 

material for producing fibres for diverse applications, including gas and chemical sensors,9 

fluorescent pH-sensors,10 oil clean-up sorbents,11–14 ion-exchange membranes,15 antibacterial 

wound dressings,16 biological scaffolds17 among others. Fibres of more sophisticated 

morphologies can be obtained by electrospinning PS-containing block copolymers of various 

polymer architectures.10,18–20 These block copolymer fibres exhibit advantageous properties, 

such as highly enhanced hydrophobicity,20 elastomeric properties and liquid-crystalline 

behavior.21 Furthermore, simple fabrication and solvent compatibility with various materials 

has allowed subsequent layer-by-layer functionalisation of the PS fibres with polyelectrolytes, 

deoxyribonucleic acids and composite polymer/nanoparticle layers to obtain hollow composite 

fibres.22   

Another advantage of electrospun PS fibres is that the polymer solutions can be loaded with 

various additives and components. Additives such as cellulose, sisal or single-walled carbon 

nanotubes have been used to improve the mechanical properties of the fibres.23–25 Furthermore, 

PS nanofibres are often used as scaffolds, or matrices, for the incorporation of inorganic 



nanoparticles, such as gold,26 silica,27 TiOx and ZnO28 or serving as templates for the 

fabrication of such nanoparticles.16 For example, incorporation of Fe2O3 in nanofibres for the 

removal of oil from water, whilst allowing facile removal of the nanofibres after the sorption 

process,29 or loading a PS fibre matrix with gold nanoparticles in for the colorimetric detection 

of oestrogenic compounds in dairy products.30   

However, the post-spinning modification of PS nanofibres with a high loading of nanoparticles 

has so far been inaccessible because of the limited interactions between PS and the 

nanoparticles, although for many applications the distribution of the particles on the fibre 

surface is important for the functionality, e.g. in wound dressings or photocatalysis.31,32  

To this end, a novel tert-butyloxycarbonyl (Boc) protected 8-hydroxyquinoline monomer has 

been designed and polymerised by reversible addition-fragmentation chain transfer (RAFT) 

polymerisation for subsequent blending with PS to create microfibres with high metal-binding 

capability. The design of this monomer has been inspired by previous reports of the metal-

binding property of the 8-hydroxyquinoline moiety in various applications, such as emitters or 

electron-transporting layers (as a complex with aluminium or zinc, Alq3 or Znq2) in organic 

light emitting devices (OLEDs),33–35 photoconductors,36 or even as potential 

antineurodegenerative or antibiotic drugs (such as clioquinol).37 Our approach herein exploits 

the use of low molar mass PQuiBoc/PS/ZnO microfibres which are highly loaded with ZnO 

post-spinning by simply “dip-coating” the fibre mats in ZnO suspensions. Moreover, to 

decrease the number of processing steps, and therefore fabrication costs, the PQuiBoc polymer 

is introduced into the blend without deprotection, allowing high ZnO surface loadings on the 

fibre even at low PQuiBoc loadings (2:8 PQuiBoc:PS). 



Experimental 

Materials 

5-Bromo-8-hydroxyquinoline (> 96.0%, TCI Europe N.V.), 5-chloro-8-hydroxyquinoline 

(95%, Alfa Aesar), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (Xphos, 98+%, Alfa 

Aesar), bis(acetonitrile)dichloropalladium(II) (Pd 40.5%, Alfa Aesar), 

tetrakis(triphenylphosphine)palladium(0) (99.8% metals basis, Pd 9% min, Alfa Aesar), di-

tert-butyl dicarbonate (ReagentPlus®, ≥ 99%, Sigma Aldrich), copper iodide (99.999% trace 

metals basis, Sigma Aldrich), N-ethyldiisopropylamine (DIPEA, 99%, Sigma Aldrich), 4-

(dimethylamino)pyridine (DMAP, ReagentPlus®, ≥ 99%, Sigma Aldrich), 

ethynyltrimethylsilane (98%, Alfa Aesar), sodium azide (ReagentPlus®, ≥ 99.5%, Sigma 

Aldrich), potassium fluoride (anhydrous powder, ≥ 99.99% trace metals basis, Sigma Aldrich),  

zinc oxide nanoparticles 40-100 nm NanoArc® ZN-2605 (Alfa Aesar), acetone, propan-2-ol 

(IPA), methanol, diethyl ether, dichloromethane (all Fisher Scientific, Laboratory grade) were 

used as received. 4-Vinylbenzyl chloride (VBC, 90%, Sigma Aldrich) was extracted with 10% 

aqueous NaOH solution to remove the inhibitor. 2,2’-Azobis(isobutyronitrile) (AIBN, Fisher 

Scientific) was recrystallised from methanol and dried in vacuo before use. 2-

(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) was synthesised according 

to Lai et al.38 and recrystallised from hexane before use. 4-Vinylbenzyl azide was synthesised 

according to Li et al.39 Anhydrous tetrahydrofuran (THF, ≥ 99.9%, inhibitor free, Sigma 

Aldrich) and acetonitrile (anhydrous, 99.8%, Sigma Aldrich) were purged with nitrogen before 

use. Polystyrene (PS, Mn ~ 5 kg/mol) was synthesised according to a previous report.40 

Characterisation methods 

1H and 13C NMR spectra were recorded using a Bruker NMR spectrometer (300 MHz). All 

chemical shifts are reported in ppm (δ) and referenced to the chemical shifts of the residual 

solvent resonances.  



Fourier transform infrared (FTIR) spectra were obtained using KBr discs on a Perkin Elmer 

Spectrum One spectrometer over the range 4000–500 cm-1 for 16 scans with a resolution of 

4 cm-1.  

Number-average molar mass (Mn) and dispersity (Mw/Mn, Ð) were measured using gel 

permeation chromatography (GPC) (flow rate 1 ml/min) through three PL gel 5 mm 300 × 

7.5 mm mixed-C columns using a degassed THF eluent system containing 2 % (v/v) 

triethylamine. The system, operating at 40 °C, was calibrated with narrow PS standards (Mp 

range = 162 to 6 035 000 g/mol). All data were analysed using PL Cirrus software (version 

2.0) supplied by Agilent Technologies (previously Polymer Laboratories).  

Ultraviolet and visible (UV-Vis) absorbance spectra were obtained using a Perkin Elmer 

Lambda 35 system in the wavelength range 300 - 800 nm, using THF as solvent at 0.01 mg/ml. 

The photoluminescence spectra were obtained on a Hitachi FL-2500 spectrophotometer with 

an excitation wavelength at the maximum absorbance.  

The glass transition temperature, Tg, and deprotection temperature of the polymer (Tdep) were 

measured using differential scanning calorimetry (DSC) equipment DSC 1 STARe (Mettler 

Toledo) at a heating rate of 10 °C/min under nitrogen atmosphere with flow rate of 60 ml/min. 

Typically, one analysis included a heating step from 0 to 300 °C, a cooling step to 0 °C, and a 

second heating run from 0 to 200 °C.  

Synthesis of the monomer precursor 8-tert-butoxycarbonyloxy-5-ethynylquinoline (3) 

An oven-dried round-bottom flask was backfilled twice with nitrogen atmosphere and charged 

with 3.0 g (9.25 mmol) of the protected 5-bromo-8-hydroxyquinoline, 500 mg of Pd(PPh3)4  

and 88 mg (0.46 mmol) of CuI  and 350 ml of dry THF.  The solution was purged with nitrogen 

for 15 min. The flask was equipped with a magnetic follower and sealed with a rubber septum. 

DIPEA (30 ml) and trimethylsilylacetylene (6.54 ml, 46.27 mmol) were added through the 

rubber septum and the reaction mixture stirred at 60 °C for 24 h. The mixture was filtered 



through celite to remove the copper salts, using diethyl ether as eluent. The filtrate was 

concentrated and the residue redissolved in methanol. Resulting mixture was stirred with 

800 mg of potassium fluoride at room temperature for 5 h. To the mixture filtered through a 

filter paper, 40 ml of water added and methanol was evaporated at room temperature. The 

residue was extracted with dichloromethane (2 x 300 ml). Organic layer was separated, dried 

over magnesium sulfate and concentrated under vacuum. Final product was purified by column 

chromatography (15% ethyl acetate in hexane) to yield 2.26 g of yellow powder (yield 91%). 

1H NMR (CDCl3, δ ppm): 1.59 (s, 9 H), 3.47 (s, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.52 (dd, J = 

4.2, 8.5 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 8.63 (dd, J = 1.7, 8.5 Hz, 1H), 8.96 ppm (dd, J = 

1.7, 4.2 Hz, 1H).  

Synthesis of the monomer, tert-butyl-{5-[2-(4-vinylbenzyl)-2H-1,2,3-triazol-4-yl]quinolin-8-

yl}) carbonate QuiBoc (5) 

A solution of 3 (1.2 g, 4.45 mmol), 4-vinylbenzyl azide (4, 0.71 g, 4.46 mmol) and 5 mg CuI 

in dry THF was charged into a round-bottom flask and purged with nitrogen and stirred for 15 

minutes. After purging, the solution was heated to 40 °C and left stirring overnight. The solvent 

was evaporated and the solid redissolved in DCM and washed with water to remove the copper 

catalyst. The organic phase was subsequently dried over magnesium sulfate. The solvent was 

evaporated under vacuum and the residue purified using column chromatography on silica gel 

(ethyl acetate:hexane, 1:1) to provide the product (1.83 g, yield 96%) as a white powder. M.p. 

136-138 °C.  1H NMR (CDCl3, δ ppm): 1.62 (s, 9H), 5.31 (d, J = 10.9 Hz, 1H), 5.67 (s, 2H), 

5.75 (d, J = 17.5Hz, 1H), 6.69 (dd, J = 17.5, 10.9 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H),  7.46-7.49 

(d, J = 8.2 Hz, 2H), 7.45-7.51 (dd, J = 4.2, 8.2 Hz, 1H), 7.53 (d, J = 7.85 Hz, 1H), 7.65 (d, J = 

7.85 Hz, 1H), 7.72 (s, 1H), 8.93 (dd, J = 8.2, 1.6, 1H), 8.98 (dd, J  = 1.6, 4.2 1H). 13C 

PENDANT NMR (CDCl3, δ ppm): 25.75 (CH3), 54.33 (CH2), 83.90 (C*), 115.28 (CH2) 122.18 

(C*), 122.3 (CH), 127.02 (CH), 127.47 (CH), 133.61 (C*), 134.77 (CH), 138.40 (C*), 150.62 

(C=O). ESI-MS [M+]: found 429.1909, calculated: 429.1927. Elemental analysis calcd. (%) for 



C25H24N4O3: C 70.08%, H 5.65%, N 13.07%, O 11.20%; found C 70.02%; H 5.63%, N 13.22%, 

O 11.13%. 

RAFT polymerisation of QuiBoc (5)  

The following procedure describes the polymerisation of QuiBoc in THF at 60 °C with 

[AIBN]0/[DDMAT]0/[QuiBoc]0 = 1/1/20 (i.e. a target degree of polymerisation, Dp, of 20); this 

is representative of all QuiBoc polymerisations undertaken in this work (Scheme 2). A 25 ml 

polymerisation tube equipped with a magnetic follower was charged with a mixture of 

monomer (0.4 g, 0.93 mmol), AIBN (7.7 mg, 0.047 mmol), DDMAT (17 mg, 0.047 mmol) and 

THF (4 ml). The flask was sealed with a rubber septum and the solution was stirred and purged 

with nitrogen for 15 minutes. Following which, the flask was placed in an oil bath at 60 °C. 

After 36 h polymerisation was cooled rapidly to 0 °C to quench the polymerisation. 10 ml THF 

was added and the resulting solution was precipitated in 100 ml of cold diethyl ether. The 

PQuiBoc precipitate was collected by filtration, washed with cold diethyl ether multiple times 

and dried in vacuo. 

Deprotection of PQuiBoc (6) to obtain PQuiOH (7) 

PQuiBoc polymer (20 mg) was dissolved in 5 ml of DCM before 2 drops of piperidine were 

added to the solution, with stirring. After 5 min the colour of the polymer solution transformed 

from colourless to yellow and later precipitated as pale yellow flakes. Filtration afforded 17 mg 

of PQuiOH product (yield 98%). 

Electrospinning 

In a typical electrospinning procedure, a polymer solution (33 wt%) was prepared in 

chloroform by dissolving 120 mg of PS (~ 5 kg/mol) and 30 mg of PQuiBoc14 (~ 6 kg/mol), in 

a 2:8 ratio. The solution was sonicated for 10 minutes until complete dissolution of the solids 

was achieved. DC high-voltage generator (Genvolt lab unit 73030) was applied to produce 

voltages ranging from 0 to 25 kV. Polymer solutions were charged into a 1 ml syringe and fed 

into the needle capillary tip (inner diameter 0.3 mm) by a syringe pump at a speed of 3.5 ml/h. 



A collecting sheet of aluminium foil, connected to the ground, was placed 20 cm from the 

needle tip. Voltage was supplied to the needle of the tip at a constant value of 20 kV.  

Fibre characterisation 

Surface morphology and zinc binding performance were studied using scanning electron 

microscopy with energy dispersive X-ray analysis (SEM/EDXA) on a Zeiss EVO60 

microscope, fitted with Oxford Instruments Inca System350 Energy Dispersive X-ray 

Spectrometer (EDX) at a beam intensity of 20 kV and a probe current of 130 pA. Before 

imaging the polymer fibres, mats were coated with a layer of carbon of the (10 nm approximate 

thickness). The polymer fibre mat was imaged pristine or after soaking in a methanol 

suspension of zinc oxide (ZnO) nanoparticles and subsequent multiple washing with methanol 

and sonication to remove any non-bound zinc oxide.  

Results and discussion 

Monomer synthesis 

The monomer was specifically designed to satisfy two main criteria: (i) possess an 8-

hydroxyquinoline moiety for strong metal chelation and (ii) contain a styrenic group for simple 

polymerisation and to allow compatibility with the PS component of the fibres. Synthesis of 

the monomer (QuiBoc) was achieved in a small number of high yielding steps (> 90%, Scheme 

1).  

 

Scheme 1. Synthetic route toward the QuiBoc monomer. 



The starting material, aryl bromide, was first protected with a tert-butyloxycarbonyl (Boc) 

group. This group provides several advantages, since (i) it is stable under the mild basic 

conditions of Sonogashira coupling and (ii) it can be easily removed (chemically or by thermal 

treatment).  

Synthesis of 8-tert-butoxycarbonyloxy-5-ethynylquinoline (3) was carried out by Sonogashira 

coupling. This is an efficient way to form a C-C bond between the aryl bromide 2 (or a 

corresponding iodide) and trimethylsilylacetylene, whereas aryl chlorides are not converted 

under these conditions and normally require a Buchwald ligand and copper salt.41 However, in 

this work it was found that the coupling of aryl chloride can be carried out using 2-

dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (XPhos) ligand in combination with an 

acetonitrile palladium complex, both commercially available, without the addition of copper 

salt. Furthermore, caesium carbonate, usually employed in aryl chloride cross-coupling as a 

base, cannot be used in this reaction as it would cause the protecting group to be removed. 

Thus, N-ethyldiisopropylamine (DIPEA) has been proved to be suitable here. Other ligands, 

such as (2-biphenyl)di-tert-butylphosphine (Johnphos) or 2-dicyclohexylphosphino-2′,6′-

diisopropoxybiphenyl (Ruphos), were not found to be efficient.  

4-Vinylbenzyl azide, precursor 4, was synthesised from commercially available 4-vinylbenzyl 

chloride. The most critical step of the synthesis was the ‘click reaction’ of 8-tert-

butoxycarbonyloxy-5-ethynylquinoline (3) with 4-vinylbenzyl azide (4) which had to be 

carried out at room temperature to prevent spontaneous polymerisation of 4 and other side 

reactions. It was observed that the reaction could proceed without a copper catalyst, but using 

a copper (I) salt increased the rate and conversion (up to quantitative).  

The efficiency of the ‘click reaction’ was confirmed by 1H NMR and FTIR (see ESI, Figure 

S1) where the signal corresponding to the terminal alkynyl proton at 3.5 ppm (labelled as Ha 

in Figure 1) of precursor 3 was significantly shifted to 7.73 ppm (Figure 1b) due to the different 

environment of this proton, transformed to be a part of a 1,2,3-triazole ring (Figure 1). 



 

Figure 1. 1H NMR spectra of precursor 3 (a) and QuiBoc monomer 5 (b); residual solvent 

peaks are labelled with asterisks. 

RAFT polymerisation and subsequent deprotection 

To obtain well-defined polymers of QuiBoc, reversible addition-fragmentation chain transfer 

(RAFT) polymerisation was employed (Scheme 2) owing to its good control over polymer 

chain length and architecture for various monomers.42–45 The use of a chain transfer agent 

(CTA) allows further modification of the resulting polymers, including synthesis of block 

copolymers46,47 or derivatisation of the polymer with single molecules.48 Furthermore, 



appropriate CTAs allow polymerisation from a solid substrate or anchoring the final polymer 

to nanoparticles.49,50  

Scheme 2. RAFT polymerisation of QuiBoc monomer 5 and subsequent deprotection to 

obtain PQuiOH (7). 

Based on previous reports, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid 

(DDMAT) was chosen as the CTA, owing to its efficiency in the polymerisation of other 

styrenic monomers.51,52 The initiator to CTA ratio was set to 1:1 ([AIBN]0/[DDMAT]0 = 1.0) 

and the solvent, as well as the monomer concentration, was chosen based on solubility studies 

of the monomer in various organic solvents. Toluene and anisole were found to be unsuitable 

for the QuiBoc monomer, whereas THF allowed a solvent to solids ratio of 10:1 v/w (i.e. 10 ml 

of THF per 1 g of QuiBoc) to be attained. Polymerisations of QuiBoc with target Dp of 20 and 

40 were undertaken; their results are summarised in Table 1.  

  



Table 1. Summary of monomer conversion and molar mass data for the homopolymerisation 

of QuiBoc using AIBN and DDMAT in THF at 60 °C. 

Target 

Dp 

Target Mn 

(kg/mol) 

Time 

(h) 

Conversiona 

(%) 

Dp
b 

Mn
b 

(kg/mol) 

Mw/Mn, 

Ð 

20 8.9 36 91 14 6.2 1.29 

40 17.5 42 84 28 12.4 1.24 

a Calculated using 1H NMR spectroscopy. b Calculated by GPC against PS 

standards in THF at 40 °C.  

 

GPC traces of the two final polymers, PQuiBoc14 and PQuiBoc28, are presented in Figure 2. It 

can be seen that the polymer peak for PQuiBoc28 has a small low molar mass shoulder, whereas 

the PQuiBoc14 peak appears unimodal. Nevertheless, both polymers were relatively low 

dispersity (Ð < 1.30) and close to the target Dp (taking into account the obtained values are 

relative to PS standards) with high monomer conversion (≥ 84%). To note, PQuiBoc was 

soluble in chlorinated organic solvents, such as chloroform, dichloromethane, and non-

chlorinated polar aprotic solvents, such as acetone and THF and completely insoluble in cold 

ether, hexane, toluene, alcohols and water.  
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Figure 2. GPC traces of PQuiBoc14 (6 kg/mol, solid line) and PQuiBoc28 (12 kg/mol, dotted 

line) produced by RAFT under following conditions: [AIBN]0/[DDMAT]0 = 1.0, QuiBoc:THF 

= 1:10 at 60 °C.  

Deprotection of PQuiBoc to produce PQuiOH (Scheme 2) was efficiently and rapidly 

performed by stirring the polymer solution in DCM using piperidine as a strong base.53 The 

product of the reaction was confirmed by 1H NMR and FTIR spectroscopies where the 

corresponding peak attributed to the protons of the Boc group (Figure 3a) in 1H NMR and the 

carbonyl peak at 1760 cm-1 in FTIR disappear (Figure 3b). Moreover, in agreement with 

previous reports,54 the thermal deprotection of PQuiBoc is also possible by heating at 160 °C, 

as determined by differential scanning calorimetry (DSC, see ESI, Figure S2). 

 

Figure 3.  (a) 1H NMR spectra of PQuiBoc and PQuiOH; residual solvent peaks are labelled 

with asterisks. (b) FTIR spectra of PQuiBoc and PQuiOH, where ‘Boc’ denotes the carbonyl 

stretching vibrations of the Boc protecting group.   

Surface zinc binding capacity 

To demonstrate the ability of PQuiBoc bind metal oxides, its surface zinc binding capacity, 

estimated by SEM/EDXA, was selected as an exemplar. As has been shown in previous reports, 

SEM/EDXA is a semi-quantitative technique that, among other analyses, can allow one to 

estimate the loading of inorganic nanoparticles on a polymer surface.51 To this end, polymer 

films of PQuiBoc and PS (adopted as a control) were deposited from 5 mg/ml THF solutions 

directly onto aluminium SEM substrates. Subsequently, zinc oxide nanoparticles (ZnO) were 



deposited onto the polymer films from a methanol suspension, and, after annealing, the films 

were thoroughly washed with methanol to remove all non-bound ZnO from the surface. As 

previously shown for other polymers,51 the molar mass has no effect on the zinc binding 

capacity of the polymer films, therefore for PQuiBoc, only one molar mass was studied, 

12.4 kg/mol (Dp of 28). It is important to note that the polymer films were annealed at 140 °C 

(Tg) and at 160 °C (Tdep), as determined by DSC (see ESI Figure S2).  

When PQuiBoc28 was annealed at Tg (140 °C), ZnO surface coverage was shown to be 72% 

(±3.1%), comparable to the polymer annealed at its deprotection temperature (160 °C), i.e. 

PQuiOH28, for the same time (69%, ±2.5%). These findings indicate that the protected 

PQuiBoc28 is also capable of strongly binding to ZnO, based on hydrogen bonds and dipole-

dipole interactions. Indeed, the Boc group has two oxygen centres to form hydrogen bonds 

with the surface hydroxyl groups, present in ZnO nanoparticles. PS, used as a control, showed 

negligible ZnO binding of 4.1% (±1.2%).  

These results show that pristine PQuiBoc polymer has several advantages over its deprotected 

version, PQuiOH: (i) PQuiBoc has a marginally higher ZnO-binding capacity; (ii) PQuiBoc is 

soluble in common organic solvents typically used in the electrospinning of PS fibres, such as 

chloroform, tetrahydrofuran and toluene, whereas PQuiOH is not; and (iii) PQuiBoc does not 

require an extra processing step (chemical or thermal treatment). Thus, PQuiBoc, in its pristine, 

protected form, was used in a blend with PS to obtain microfibres. 

Electrospun polymer fibres 

Since PQuiBoc has demonstrated a high affinity for ZnO nanoparticles, the amount of PQuiBoc 

in the blend with PS was kept as low as 20% (2:8 PQuiBoc:PS mass ratio) to ensure a low 

production cost, while achieving good loadings of ZnO on the fibres. It is noteworthy that since 

polymer molar mass has a pronounced effect on the spinnability of polymers, only PQuiBoc14 

(~ 6 kg/mol) has been used in the electrospinning studies since its molar mass more closely 



matches that of the PS employed (~ 5 kg/mol) in this work. This also demonstrates that such 

low molar mass polymer blends can be electrospun under these conditions. 

Based on previous reports on the electrospinning of PS blends,3,55 and good solubility of both 

PS and PQuiBoc polymers even at high concentrations, the fibers were produced from 

chloroform (33 wt% solution). Of note, more dilute solutions (< 33 wt%) resulted in 

inhomogenous fibre formation with beaded morphologies owing to insufficient entanglements 

between chains.56 The electrospinning of PQuiBoc14/PS mixtures and neat PS (as described in 

the Experimental section) yielded microfibres (2-6 µm diameter) with a smooth homogenous 

surface without pores or folds (Figure 4), in line with previous reports.6,8   

 

Figure 4. SEM images of pristine electrospun PQuiBoc14/PS (a and b) and neat PS (d and e) 

and after dipping into a suspension of ZnO nanoparticles and washing with methanol so that 

only surface-bound ZnO nanoparticles remain: PQuiBoc14/PS/ZnO (c) and PS/ZnO (f).  

The composition of resulting fibres has been revealed by FTIR (Figure 5), where the 

PQuiBoc14/PS fibres exhibit a carbonyl band at 1760 cm-1 attributed to the BOC group of the 

PQuiBoc14 material. The two bands at 1226 and 1254 cm-1 are assigned to the C-H in-plane 

bending vibrations of the quinoline and triazole ring protons,57 whereas the band at 1140 cm-1 

arises from the C-O bending in the ester group attached to the quinoline system.58 Importantly, 



even such low loadings of PQuiBoc14 (20% of the total polymer loading) resulted in an increase 

in hydrophobicity of the fibres, reflected in an increase in the water contact angle from 137º to 

152º (Figure 5), despite the presence of the oxygen and nitrogen atoms. 
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Figure 5. FTIR spectra of PQuiBoc14/PS microfibres (black) and PS microfibres (blue) 

electrospun from 33 wt% chloroform solution at 20 kV, 3.5 ml/h feed rate and 20 cm needle-

to-collector distance.  

To load the fibres with ZnO nanoparticles, the fibre mats were dipped into a ZnO suspension 

in methanol for 10 min and then washed multiple times with methanol and sonicated in 

methanol to remove any ZnO that was not strongly bound to the fibres. The uptake of ZnO 

nanoparticles was estimated by SEM/EDXA to be 29% (± 0.4%) by PQuiBoc14/PS microfibres 

and only 11% (± 2.7%) by neat PS microfibres (Figure 4, c and f). The presence of tightly 

bound ZnO on the surface of microfibres is accompanied by a decrease of the contact angle to 

92º, reflecting the more hydrophilic nature of the ZnO particles. 

Thus, the combination of PS used as a matrix and PQuiBoc used as functional metal-binding 

component is employed in fabrication of composite microfibres with increased surface area 

and high zinc-binding capacity. The introduction of only 20% PQuiBoc into the blend results 

in the fabrication of smooth microfibres with an almost three-fold increase in surface ZnO 

loading, as compared to neat PS fibres, critical for applications such as photocatalysis, 

antibacterial wound dressings and UV-absorbing fabrics. Of specific note, using PQuiBoc 



instead of PQuiOH provides several advantages: (i) allows electrospinning from the same 

single solvent (chloroform); (ii) decreases the number of processing steps and thus the 

fabrication costs of the fibres, whilst (iii) providing comparable (if not marginally higher) zinc-

binding capacity than PQuiOH. Furthermore, the high affinity of PQuiBoc for metals gives 

potential for this approach to be used in heavy metal sequestration in waste water treatment or 

as absorbents for sample preparation in atomic spectroscopy.   

Conclusions 

This paper reports the design and synthesis of a new styrene-based monomer, intended to 

incorporate the zinc-binding moiety of 8-hydroxyquinoline, and its subsequent polymerisation 

by RAFT. RAFT polymerisation herein yielded well-defined polymers, PQuiBoc, with relative 

degrees of polymerisation of 14 and 28 (against PS standards), furnished with carboxylic acid 

terminal functionality with the potential of copolymerisation or derivatisation. Suitable 

conditions for RAFT were defined as a 1:1 ratio of initiator to CTA ([AIBN]0/[DDMAT]0 = 

1.0) at a relatively high dilution of 1:10 monomer:THF at 60 °C. As shown by SEM/EDXA, 

the ZnO binding capacity of protected PQuiBoc was comparable to (if not marginally higher 

than) deprotected PQuiOH, which allowed the fabrication of electrospun fibres from a 

PQuiBoc/PS blend without the need for deprotection (removal of the Boc group). Electrospun 

PQuiBoc/PS microfibres with only 20% content of PQuiBoc had almost three-fold higher 

loadings of ZnO (29%) in comparison to neat PS microfibres (11%). Thus, the new zinc-

binding PQuiBoc material allows straightforward and relatively inexpensive fabrication of 

composite polymeric fibres which provide a high surface loading of ZnO nanoparticles for 

future use in photocatalysis or wound dressings with a high surface area, suitable for 

membranes in heavy metal sequestration. 
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