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Abstract 32 

Among the numerous work-related risk factors, construction workers are often exposed to 33 

awkward working postures that may lead them to develop work-related musculoskeletal disorders 34 

(WMSDs). To mitigate WMSDs among construction workers, awkward working posture 35 

recognition is the first step in proactive WMSD prevention. Several researchers have proposed 36 

wearable sensor-based systems and machine learning classifiers for awkward posture recognition. 37 

However, these wearable sensor-based systems (e.g., surface electromyography) are either 38 

intrusive or require attaching multiple sensors on workers’ bodies, which may lead to workers’ 39 

discomfort and systemic instability, thus, limiting their application on construction sites. In 40 

addition, machine learning classifiers are limited to human-specific shallow features which 41 

influence model performance. To address these limitations, this study proposes a novel approach 42 

by using wearable insole pressure system and recurrent neural network (RNN) models, which 43 

automate feature extraction and are widely used for sequential data classification. Therefore, the 44 

research objective is to automatically recognize and classify different types of awkward working 45 

postures in construction by using deep learning-based networks and wearable insole sensor data. 46 

The classification performance of three RNN-based deep learning models, namely: (1) long-short 47 

term memory (LSTM), (2) bidirectional LSTM (Bi-LSTM), and (3) gated recurrent units (GRU), 48 

was evaluated using plantar pressure data captured by a wearable insole system from workers on 49 

construction sites. The experimental results show that GRU model outperforms the other RNN-50 

based deep learning models with a high accuracy of 99.01% and F1-score between 93.19% and 51 

99.39%. These results demonstrate that GRU models can be employed to learn sequential plantar 52 

pressure patterns captured by a wearable insole system to recognize and classify different types of 53 

awkward working postures. The findings of this study contribute to wearable sensor-based posture-54 

related recognition and classification, thus, enhancing construction workers’ health and safety.  55 

 56 

Keywords: Awkward working postures; Deep learning networks; Wearable insole pressure 57 

system, Work-related musculoskeletal disorders, Work-related risk recognition.  58 
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1. Introduction 59 

The construction industry suffers from numerous health and safety problems because construction 60 

activities involve diverse resources and physically demanding tasks. In Australia, there were 26 61 

out of 183 fatalities in the construction industry in 2019, which accounted for a 2.2 fatality rate 62 

(fatalities per 100,000 workers) across all industries (Safety Work Australia, 2020). Among 63 

construction-related health and safety problems, work-related musculoskeletal disorders (WMSDs) 64 

are the leading cause of non-fatal occupational injuries (Umer et al., 2017a; Anwer et al., 2021; 65 

Anwer et al., 2021). WMSDs refer to a wide range of injuries or disorders that result in pain and/or 66 

other sensations in the muscles, nerves, tendons, ligaments, and joints (Wang et al., 2015a). 67 

Examples of WMSDs include low back disorders, carpel tunnel syndrome, tendonitis, and bursitis 68 

(Umer et al., 2017a; Antwi-Afari et al., 2018a). According to the Health and Safety Executive 69 

(HSE) in the UK, WMSDs accounted for 57% of 81,000 work-related ill health cases injuries 70 

(HSE, 2020). Gibb et al. (2018) estimated that in the UK, WMSDs costs construction employers 71 

about GBP 650 million/year out of a total estimated burden of occupational ill-health cost of about 72 

GBP 850 million/year. Given that WMSDs still remain a health and safety problem in construction, 73 

there is an urgent need to recognize work-related risk factors that may lead workers to develop 74 

WMSDs. 75 

 76 

The high prevalence rate of WMSDs among construction workers could be attributed to several 77 

work-related physical risk factors, psychosocial stressors, and individual factors (Wang et al., 78 

2015a; Umer et al., 2017b). Taken together, they can lead to work absenteeism, schedule delays, 79 

increased cost of medical expenses, loss of income and productivity, and early retirement (Umer 80 

et al., 2017a; Yu et al., 2021). Examples of work-related risk factors include repetitive motions, 81 
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gender, age, safety concerns, overexertion, awkward working posture, and poor working 82 

conditions such as high vibration, and extreme temperature (Wang et al., 2015a; Umer et al., 2020; 83 

Anwer et al., 2021; Yu et al., 2021). Among the various work-related risk factors, awkward 84 

working postures (e.g., stoop, squat) are the major risk factor that causes WMSDs in construction. 85 

According to the Center for Construction Research and Training (CPWR), roofers and painters are 86 

on their knees, crouching or stooping more than 60% of the time, and brick masons spend 93% of 87 

their time bending and twisting their bodies (CPWR, 2018). Consequently, research on automated 88 

recognition of awkward working postures has become relevant to both researchers and 89 

practitioners in developing proactive interventions which could aid WMSDs risk factors 90 

prevention in construction. 91 

 92 

Generally, one of the critical steps to mitigate WMSDs risk factors is to identify an ergonomic risk 93 

approach for recognizing a potential work-related risk factor. In the past decades, work-related 94 

risk factors were mainly recognized by using ergonomic risk approaches such as observation-based 95 

methods (McAtamney and Corlett, 1993; Hignett and McAtamney, 2000). Although these 96 

traditional ergonomic risk approaches are simple and less expensive, they mostly involve 97 

subjective judgments and a large amount of manual data which make them time-consuming, and 98 

error-prone (David, 2005). Alternatively, wearable sensing technologies have been developed to 99 

monitor and recognize work-related risk factors effectively, thus preventing WMSDs (Antwi-Afari 100 

et al., 2019a). Among them, wearable inertial measurement units (WIMUs) have been widely used 101 

for automated recognition and classification of awkward working postures among construction 102 

workers (Chen et al., 2017; Valero et al., 2017; Lee et al., 2020). WIMUs-based systems collect 103 

acceleration, angular velocity, and geomagnetic field measurements of a worker’s bodily 104 
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movements, which are used to automatically monitor awkward working postures (Chen et al., 2017; 105 

Valero et al., 2017). However, attaching multiple WIMUs-based systems on different body parts 106 

not only significantly intrude a worker’s task, but also often causes synchronization issues, body 107 

discomfort, and sensor stream deviations due to varying sensor locations (Guo et al., 2017). 108 

 109 

In recent years, research works on automated recognition and classification of work-related risk 110 

factors have demonstrated the application of computational techniques such as machine learning 111 

classifiers to train and evaluate classifier performance (Akhavian and Behzadan, 2016; Nath et al., 112 

2018; Ryu et al., 2019; Antwi-Afari et al., 2020a; Umer et al., 2020). Even though these studies 113 

have shown promising results, traditional machine learning classifiers implement pattern 114 

recognition approaches. These approaches require multiple pre-processing steps such as manual 115 

segmentation of continuous time-series sensor data with different window sizes, and further 116 

extraction of statistically significant feature vectors, which are inefficient and time-consuming 117 

(Portugal et al., 2018). In addition, the use of human-specific shallow features leads to poor 118 

performance in incremental learning. Moreover, traditional machine learning classifiers treat each 119 

time step of the time-series sensor data as statistically independent, thus, ignoring the temporal 120 

relationship between consecutive time steps (Rashid and Louis, 2019). These limitations of 121 

traditional machine learning classifiers motivate this current research to use deep learning 122 

networks to automatically extract relevant features with spatio-temporal dependency captured by 123 

a wearable insole pressure system.  124 

 125 

To date, the literature mostly focuses on WIMUs-based systems and machine learning applications 126 

for automated recognition and classification of work-related risk factors. Although they provided 127 

useful evidence for mitigating WMSD risk factors among construction workers, they were limited 128 
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due to attaching intrusive wearable sensor-based systems and adopting machine learning classifiers 129 

that use hand-crafted feature extraction methods for model evaluation. To address these limitations, 130 

the present study proposed a non-intrusive wearable insole sensor system, which was used to 131 

collect plantar pressure data and deep learning-based networks for classification performance. 132 

Therefore, the objective of this research was to evaluate a novel approach of using deep learning-133 

based networks and wearable insole sensor data to automatically recognize and classify different 134 

types of awkward working postures in construction. Consequently, the current study adopted 135 

recurrent neural networks (RNNs), deep learning models to train time-series plantar pressure data 136 

captured by a wearable insole pressure sensor. In this study, plantar pressure data were collected 137 

from a construction site when construction workers performed several awkward working postures 138 

(i.e., overhead working, squatting, stooping, semi-squatting, and one-legged kneeling) during their 139 

daily activities. In the context of a real construction site experiment, it was hypothesized that the 140 

proposed approach could produce reliable and better performance accuracy for classifying 141 

different types of awkward working postures. The findings of this study could not only 142 

complement existing wearable sensor-based systems used for work-related risk factors recognition 143 

but also provide a novel method that could be beneficial to both researchers and safety managers 144 

to mitigate WMSDs risk factors in construction.   145 

 146 

2. Research Background 147 

This section mainly presents existing research studies related to ergonomic risk approaches for 148 

recognizing work-related risk factors. In addition, extant literature on wearable sensor-based 149 

systems for automated recognition and WMSDs prevention are thoroughly discussed. Lastly, the 150 
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feasibility of using wearable insole sensor data and deep learning network-based classification in 151 

construction is discussed.  152 

 153 

2.1. Ergonomic risk approaches for recognizing work-related risk factors  154 

To mitigate the risk of developing WMSDs, several ergonomic risk recognition approaches have 155 

been developed. For instance, observational-based approaches involve manual field observations 156 

and visual inspections of work-related risk factors and workers’ activities by experienced expert 157 

observers. Examples of observational-based approaches used for recording and evaluating work-158 

related risk factors include the Ovako Working Analysis System (OWAS) (Kivi and Mattila, 1991), 159 

the Rapid Upper Limb Assessment (RULA) (McAtamney and Corlett, 1993), and Rapid Entire 160 

Body Assessment (REBA) (Hignett and McAtamney, 2000). While OWAS is designed to 161 

recognize awkward postures in workers on manufacturing lines, the RULA tool evaluates 162 

ergonomic posture risks by calculating the angles between body parts. Zhang et al. (2018) 163 

performed ergonomic posture recognition from site cameras based on OWAS. Although 164 

observational-based approaches are applied to numerous work-related risk factors, they are mostly 165 

impractical due to the substantial cost, time, subjective judgments by the experts, and technical 166 

knowledge required for post-analysis of large amounts of non-heterogeneous data (David, 2005). 167 

 168 

Vision-based approaches consist of the use of computer-aided visual sensing technologies, such 169 

as single or multi-video cameras, stereo cameras, depth cameras, and MS Kinect, to capture human 170 

motions and recognize WMSD risk factors in construction. Ray and Teizer (2012) utilized a depth 171 

camera to detect a worker’s non-ergonomic postures by modeling the worker’s skeleton and 172 

measuring its joint angles. Seo et al. (2015) proposed an approach that could perform 3D 173 
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biomechanical analysis using visionary data from a stereo camera. While vision-based approaches 174 

are intuitive and provide reliable results, they are limited to privacy and ethical issues since 175 

cameras are generally perceived as recording devices (Yilmaz et al., 2006). In addition, with the 176 

cluttered nature of the construction industry, characterized by diverse categories of specialized 177 

resources and risk factors, and continuously changing working conditions, they may result in 178 

several technical issues such as illumination and occlusion (Chen and Shen, 2017).  179 

 180 

In recent years, several researchers have utilized direct measurement approaches such as wearable 181 

sensor-based systems to recognize work-related risk factors for developing WMSDs among 182 

construction workers. Examples of these approaches include surface electromyography (sEMG), 183 

electrocardiography (ECG), photoplethysmography (PPG), electrodermal activity (EDA), 184 

electroencephalogram (EEG), WIMUs-based system, and wearable insole pressure system. Umer 185 

et al. (2017b) compared the differences in lumbar biomechanics (i.e., trunk muscle activity and 186 

trunk kinematics) during three typical rebar tying postures measured by sEMG and WIMUs. 187 

Similarly, Antwi-Afari et al. (2018a) investigated the risk of developing low back disorders in 188 

rebar workers by examining muscle activity and spinal kinematics during repetitive rebar lifting 189 

tasks by using sEMG and WIMUs. Yan et al. (2017) developed a real-time motion 190 

warning personal protective equipment that enables workers’ self-awareness and self-management 191 

of ergonomically hazardous operational patterns for the prevention of WMSDs based on WIMUs. 192 

By using a wearable insole pressure system, Antwi-Afari and colleagues have proposed methods 193 

to recognize awkward working postures (Antwi-Afari et al., 2018f), and recognize overexertion-194 

related workers’ activities (Antwi-Afari et al., 2020a). While previous studies have made 195 

significant contributions for automated recognition of work-related risk factors for mitigating 196 

https://www.sciencedirect.com/topics/engineering/personal-protective-equipment
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WMSDs among construction workers, they mostly utilized direct measurement approaches in a 197 

laboratory experimental setting. In this regard, whether a wearable insole pressure system would 198 

perform well on a real construction dataset remains to be evaluated in this paper. 199 

 200 

2.2. Wearable sensor-based systems for automated recognition and WMSDs prevention 201 

Monitoring and recognizing workers’ activities and work-related risk factors in real-time play a 202 

significant role in evaluating workers’ productivity and mitigating WMSDs risks. Consequently, 203 

automated recognition of awkward working postures is an initial step for mitigating WMSDs. With 204 

recent advancements in information technologies, wearable sensor-based systems are mostly used 205 

as ergonomic intervention tools for proactive monitoring and recognizing workers’ activities. 206 

Combined with computational analyses such as machine learning classifiers, these approaches 207 

have demonstrated their feasibility in the construction domain and provided good performance 208 

evaluation for recognizing workers’ activities and work-related risk factors. 209 

 210 

Numerous wearable sensor-based systems such as global positioning system (GPS), wearable 211 

biosensors (e.g., sEMG, ECG, PPG, EEG), ultra-wideband (UWB), and radio-frequency 212 

identification (RFID) are widely used for monitoring location-based activities, physiological 213 

responses, and detecting worker-object interactions (Antwi-Afari et al., 2019a). Caldas et al. (2006) 214 

assessed the potential of using GPS sensors to improve the tracking and location of materials on 215 

construction sites.  Goodrum et al. (2006) developed a tool tracking and inventory system for 216 

storing operation and maintenance data by using commercially available active RFID tags. Xing 217 

et al. (2020) explored the effects of physical fatigue on the induction of mental fatigue in 218 

construction workers in a pilot experimental method by using wearable EEG sensors. Combining 219 
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the efforts of previous studies in the application of location tracking and proximity detection 220 

wearable sensor-based systems within the construction environment, they all provided reliable and 221 

more robust information for enhancing and monitoring construction operations such as workers, 222 

materials, and equipment. The main limitation for applying these location tracking and proximity 223 

detection wearable sensor-based systems is the need to install tags, sensors, or markers on each 224 

individual resource, which is costly and time-consuming and thereby makes deployment on 225 

construction sites unsuitable (Teizer et al., 2007). 226 

 227 

To overcome these challenges, researchers and practitioners have recently adopted WIMUs-based 228 

systems for human activity recognition and work-related risk factors recognition. WIMUs-based 229 

systems consist of an accelerometer, gyroscope, and magnetometer that measure 3-axes 230 

acceleration, angular velocity, and geomagnetic field, respectively. They are smaller in size, lighter 231 

in weight, have high capacity, and provide reliable accuracy for human activity recognition and 232 

WMSDs risk prevention. In the past decades, they have been widely used in research disciplines 233 

such as rehabilitation, sports science, and healthcare, to provide multimodal interactions, support 234 

independent living in elderly people, and context-aware personalized activity assistance 235 

(Mantvjarvi et al., 2001; Bao and Intille, 2004; Delrobaei et al., 2018). Mantyjarvi et al. (2001) 236 

recognize human ambulation and posture based on acceleration data collected from the hip. 237 

Delrobaei et al. (2018) proposed a WIMUs-based system to quantify full-body tremor and to 238 

separate tremor-dominant from non-tremor-dominant Parkinson’s Disease patients and healthy 239 

individuals. In these previous studies, they suggested that WIMU-based systems could serve as a 240 

portable ergonomic intervention tool that can be used in the home environment to monitor patients 241 

and facilitate therapeutic interventions. In the realm of construction, numerous studies have also 242 
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focused on human activity recognition and WMSD prevention by using WMIUs-based systems 243 

(Joshua and Varghese, 2010; Valero et al., 2017; Alwasel et al., 2017; Chen et al., 2017). Despite 244 

significant efforts, attaching multiple WIMUs-based systems on workers’ bodies lead to workers’ 245 

discomfort and systemic instability, thus, limiting their application on construction sites.  246 

 247 

To remedy this situation and considering the rapid development of microelectromechanical 248 

systems (MEMS), WIMUs-based systems have become smaller to be incorporated into smart-249 

wearable systems such as smartphones, smartwatches, smart belts, and smart wristbands for 250 

recognizing workers’ activity and work-related risk factors. Smartphones and smart wearable 251 

systems are characterized as unobtrusive because they are embedded with multiple sensor-based 252 

systems (e.g., accelerometer, gyroscope, magnetometers, barometer, light and temperature 253 

sensors), which provide a self-sufficient data collection, computing, and storage scheme. In 254 

addition, they are more intelligent, intuitive, and ubiquitous wearable systems for wireless 255 

communication networks with modern software development environments and require relatively 256 

lower maintenance and operating cost as compared to WIMUs-based systems. These approaches 257 

have been widely applied in human activity recognition and work-related risk factors classification 258 

in construction (De Dominicis et al., 2013; Akhavian and Behzadan, 2016; Nath et al., 2018; Ryu 259 

et al., 2019). De Dominicis et al. (2013) investigated the capability of smartphones for real-time 260 

data collection of geo-localization information for construction site managers. Akhavian and 261 

Behzadan (2016) presented an activity analysis framework for recognizing and classifying various 262 

construction workers’ activities by using a smartphone's built-in accelerometer and gyroscope 263 

sensors. Their method used five different types of machine learning algorithms to recognize 264 

various types of construction activities. The results indicate that neural networks outperform other 265 
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classifiers by offering an accuracy ranging from 87% to 97% for user-dependent and 62% to 96% 266 

for user-independent categories. Nath et al. (2018) proposed a method for monitoring ergonomic 267 

risk levels caused by overexertion through body-mounted smartphones (i.e., accelerometer, linear 268 

accelerometer, and gyroscope signals). By adopting a support vector machine (SVM) classifier, 269 

the results achieved an accuracy of 90.2%. Ryu et al. (2019) examined the feasibility of the wrist-270 

worn accelerometer-embedded activity tracker for automated action recognition during simulated 271 

masonry work in a laboratory setting. It was found that the multiclass SVM with a 4-s window 272 

size showed the best accuracy (88.1%) for classifying four different subtasks of masonry work. 273 

These machine learning classifiers have been effectively demonstrated to recognize WMSD risk 274 

factors and workers’ activities, but a remaining challenge is the lack of applicable features that 275 

accurately represent the change in a worker’s bodily movements caused by awkward working 276 

postures. Nevertheless, smartphones with embedded sensor-based systems by their nature are not 277 

fixed wearable sensors because of varying device locations and orientations, which can lead to 278 

data misrepresentation. 279 

 280 

Given the above limitations, it is still crucial to deploy other automated wearable sensing systems 281 

for activity recognition and WMSDs prevention by collecting sensing data from workers on a 282 

construction site. In addition, it would be appropriate to select computational activity models that 283 

could allow software systems to conduct reasoning algorithms to infer workers’ motion or 284 

movement. To do this, the current study seeks to evaluate a novel approach by using wearable 285 

insole sensor data and deep learning-based networks to automatically recognize and classify 286 

awkward working postures in construction. The next section provides more details on its feasibility 287 

and application on construction sites.  288 
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2.3. Wearable insole sensor data and deep learning-based networks for recognizing 289 

awkward working postures in construction 290 

Automated recognition and classification of WMSD risk factors play a crucial role in mitigating 291 

WMSDs among construction workers. It could also help researchers and safety managers to 292 

retrieve important WMSD risk factor information to facilitate their analyses and decision-making 293 

support in WMSD prevention. Previous studies have extensively focused on the application of 294 

wearable insole sensor data and machine learning classifiers for recognizing and classifying loss 295 

of balance events (Antwi-Afari et al., 2018e), awkward working postures (Antwi-Afari et al., 296 

2018f), and overexertion related construction activities (Antwi-Afari et al., 2020a). Antwi-Afari 297 

et al. (2018f) developed a non-invasive method to recognize and classify awkward working 298 

postures based on wearable insole pressure data and machine learning classifiers. The results 299 

achieved a classification accuracy of 99.7% by using the SVM, indicating the feasibility of using 300 

a wearable insole pressure system to recognize risk factors for developing WMSDs among 301 

construction workers. However, the main limitation of traditional machine learning classifiers is 302 

the fact that they treat individual dimensions of the sensor data statistically independently. Thus, 303 

each dimension of the data is converted into feature vectors without due consideration of their 304 

spatio-temporal context. To address this limitation, the current study adopted RNN-based deep 305 

learning models, which incorporate temporal dependencies of sensor data streams and are more 306 

appropriate for monitoring work-related risk factors than considering the data stream 307 

independently. Moreover, RNN-based deep learning models provide a high level of performance 308 

for time series sequential data classification, which severs as the memory units through the gradient 309 

descent steps. 310 

 311 
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Recently, deep learning networks have received great interest from the construction-related 312 

research fields because they have achieved exceptional performance in various research topics, 313 

including image classification (Yang et al., 2018; Zhong et al., 2020), object detection and 314 

recognition (Fang et al., 2018; Fang et al., 2018), natural language processing (Zhong et al., 2020), 315 

and work-related risk factors recognition (Zhang et al., 2018; Son et al., 2019; Yu et al., 2019; Kim 316 

and Cho, 2020; Lee et al., 2020; Yang et al., 2020; Zhao and Obonyo, 2020; Seo and Lee, 2021; 317 

Wang et al., 2021; Zhao and Obonyo, 2021). Son et al. (2019) presented a method to detect 318 

construction workers under varying poses against changing backgrounds in image sequences. Yu 319 

et al. (2019) analyzed a joint-level vision-based ergonomic assessment tool for construction 320 

workers (JVEC) to provide automatic and detailed ergonomic assessments of construction workers 321 

based on construction videos. The main limitation of vision-based ergonomic assessments (i.e., 322 

images and videos) is that they require a direct line of sight to register the movements in a 323 

construction environment (Han and Lee, 2013).  324 

 325 

Kim and Cho (2020) achieved a classification performance of 82.39% to 94.73% accuracy for 326 

long-short term memory (LSTM) model than conventional machine learning classifiers. Lee et al. 327 

(2020) proposed an automatic detecting technique for excessive carrying-load (DeTECLoad) to 328 

predict load-carrying weights and postures, achieving 92.46% and 96.33% performance, 329 

respectively. Yang et al. (2020) adopted a bidirectional LSTM (Bi-LSTM) algorithm for physical 330 

load detection, and they achieved 74.6 to 98.6% accuracy. Zhao and Obonyo (2021) investigated 331 

the feasibility of deploying a convolutional long short-term memory (CLN) model under 332 

incremental learning for recognizing workers’ posture and achieved 87% (personalized) and 84% 333 

(generalized) recognition performance. Wang et al. (2021) developed a novel vision-based real-334 
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time monitoring, evaluation, and prediction method for workers’ working postures. Their method 335 

achieved 87.0% accuracy of joint point recognition and 96.0% accuracy of posture risk prediction. 336 

 337 

The abovementioned previous studies applied various deep learning networks for recognizing and 338 

classifying work-related risk factors such as physical loads and awkward working postures. 339 

Compared to traditional machine learning classifiers, deep learning-based networks considerably 340 

reduce the effort of choosing the right features by automatically extracting abstract features 341 

through several hidden layers, and they have been proven to work well with unsupervised learning 342 

(Seyfioǧlu et al., 2018; Nguyen et al., 2019) and reinforcement learning (Ijjina and Chalavadi, 343 

2017). The major limitation of these studies which hinders their application in construction is that 344 

wearable sensing data were collected by using WIMUs. It is known that attaching multiple 345 

WIMUs-based systems on workers’ bodies lead to workers’ discomfort and systemic instability, 346 

thus, limiting their application on construction sites (Antwi-Afari and Li, 2018g). Knowledge from 347 

these previous studies made significant contributions to automated work-related risk factors 348 

recognition for WMSD prevention, but still, there is a need to further improve the methods to 349 

prevent WMSDs in construction workers. Even though many previous studies on deep learning-350 

based classification have been conducted, and the fact that human activity recognition, object 351 

detection and recognition, and WMSD risk recognition have widely been studied in construction, 352 

no recent study has utilized wearable insole sensor data collected from workers on construction 353 

sites as input data for recognizing and classifying awkward working postures among construction 354 

workers. To this end, the current study employs different types of deep learning networks to 355 

recognize and classify awkward working postures based on plantar pressure data collected from a 356 

wearable insole pressure system.  357 
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3. Research gaps, research objective, and contributions 358 

Although awkward working postures remain one of the most prevalent work-related risk factors 359 

that may lead construction workers to develop WMSDs, little research has been conducted in 360 

recognizing and classifying different types of awkward working postures among construction 361 

workers. Thus, the main research question to be answered in this study is how to combine wearable 362 

insole sensor data and deep learning-based networks for recognizing and classifying different types 363 

of awkward working postures in construction. Given the above, the present study proposed a non-364 

intrusive wearable insole sensor system for capturing plantar pressure data, and deep learning-365 

based networks for awkward working posture recognition and classification. Therefore, the 366 

objective of this study was to recognize and classify different types of awkward working postures 367 

by using time-series wearable insole data and deep learning-based networks.  368 

 369 

The main contributions of the present study can be summarized in two folds: (1) the feasibility of 370 

onsite experimental data collection for work-related risk factor recognition using a wearable insole 371 

pressure system. Numerous previous studies on work-related risk factor recognition are conducted 372 

by student participants in a controlled laboratory setting (Chen et al., 2017; Antwi-Afari et al., 373 

2018f; Umer et al., 2020). These experimental conditions affect the generalization and validity of 374 

a given study. To improve the experimental design and data collection procedures, the present 375 

study analyzed wearable insole data collected from workers on construction sites for work-related 376 

risk factor recognition. Real time-series data collected from workers on construction sites are 377 

practically challenging due to the dynamic nature of the construction environment. Based on the 378 

field experiments, this study would provide a deeper insight towards validating the use of 379 

recognized awkward working postures performed by workers at the workplace; (2) occupational 380 
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awkward working posture recognition and classification. In the construction domain, traditional 381 

ergonomics risk monitoring and recognition approaches (e.g., observational methods) for 382 

mitigating WMSDs are time-consuming, unreliable, and prone to errors. The proposed work-383 

related risk factor recognition uses time-series wearable insole data (i.e., plantar pressure patterns) 384 

and RNN-based deep learning models (e.g., LSTM, Bi-LSTM, and gated recurrent units (GRU)) 385 

for recognizing and classifying awkward working postures in construction. With this approach, 386 

workers’ awkward working postures could be automatically monitored throughout the course of 387 

their work without any expert’s interference or observation. In addition, this present study will add 388 

to the extant literature in this domain by utilizing both time series wearable insole sensor data and 389 

deep learning networks for practical application on construction sites. By adopting deep learning 390 

models, wearable insole data will be automatically extracted with highly representative features, 391 

containing spatio-temporal of plantar pressure patterns. Notably, this helps to enrich wearable 392 

sensor pattern data derived purely from time-series data for computational analysis and reasoning. 393 

Consequently, this proposed approach could enhance the generality and automation in construction 394 

safety management, especially for WMSD prevention.  395 

 396 

4. Research methods 397 

This section discusses the experimental design and data collection procedures such as recruiting 398 

participants, experimental apparatus (i.e., wearable insole pressure system), and field experiment, 399 

and plantar pressure data collection from rebar workers on construction site. It also explains the 400 

data processing and data segmentation approach by adopting the sliding window technique. Next, 401 

three RNN-based deep learning models were adopted and discussed. The final stage is model 402 

training and performance evaluation, where each RNN-based deep learning model was trained by 403 
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using plantar pressure patterns as input data and the performance of the trained models was 404 

evaluated using metrics. Fig. 1 illustrates the framework of the proposed approach. Further details 405 

are presented below.  406 

 407 
Fig. 1. A framework of the proposed approach 408 

 409 

4.1. Experimental design and data collection   410 

4.1.1. Participants 411 

Ten male participants (i.e., construction rebar workers) were voluntarily recruited to participate in 412 

the experiments. Construction rebar workers were recruited and participated in this study because 413 

repetitive rebar tasks (e.g., preparing and assembling rebars) are physically demanding and often 414 

involve long working hours, awkward working postures, and manual lifting activities (Buchholz 415 

et al., 2003; Anwer et al., 2021). The participants mean age, weight, height, and shoe size were 38 416 

± 1.82 years, 76 ± 2.79 kg, 1.75 ± 0.32 m, and 10.32 ± 1.03 EU size, respectively. All participants 417 

had no history of (1) significant foot injuries or lower extremity abnormalities during the last 12 418 

months preceding the start of the study, and (2) neurological conditions or disabilities or other 419 

conditions that affected fall and/or balance. The experimental protocol for data collection was 420 

reviewed and approved by the Institutional Review Board. In addition, a written consent was 421 

obtained from each participant after a verbal explanation of the experimental procedures. 422 



 

19 
 

4.1.2. Experimental apparatus  423 

An OpenGo system (Moticon GmbH, Munich, Germany), which is a wearable insole pressure 424 

system for measuring plantar pressure distribution was used in the current study. Each left or right 425 

wearable sensor insole contains 16 capacitive pressure sensors, a 3-axis gyroscope (MEMS 426 

LSM6DSL, ST Microelectronics), and a 3-axis accelerometer. A sampling frequency of 50Hz was 427 

used for data collection. Further details of this wearable insole pressure system are presented in 428 

related studies (Antwi-Afari and Li, 2018g; Antwi-Afari et al., 2018e; Antwi-Afari et al., 2018f). 429 

Fig. 2 shows the overview of the mobile application user interface of the wearable insole system. 430 

 431 
Fig. 2. Overview of the mobile application user interface of the wearable insole system 432 

 433 

4.1.3. Field experiment and data collection   434 

Data collection was conducted on a construction site. Participants wore a safety boot with an 435 

inserted wearable insole. Each participant was studied during daily repetitive rebar tasks such as 436 

lifting, carrying, cutting, or tying rebars. While the participants performed their daily workplace 437 

activities, only five different types of awkward working postures were observed and collected. 438 
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They mainly included overhead working, squatting, stooping, semi-squatting, and one-legged 439 

kneeling. These awkward working postures were studied because they are often used in repetitive 440 

rebar tasks and expose rebar workers to high risk of developing WMSDs (Umer et al., 2017b; 441 

Antwi-Afari et al., 2018a). Fig. 3 depicts the field experimental trials of different types of awkward 442 

working postures. In the overhead working posture, participants were captured in an upright stance 443 

while working with their hands touching a bar above their head (Fig. 3a). Squat posture was 444 

identified when the participants maintained a full squat (Fig. 3b). Stoop posture involved full trunk 445 

flexion with bilateral knee extension in standing (Fig. 3c). Semi-squat posture involved bilateral 446 

knee bending (Fig. 3d). Lastly, one-legged kneeling was seen when the participants bent either of 447 

their knees to work in a kneeling position (Fig. 3e). Each participant performed a total of 75 448 

experimental tasks, consisting of 5 types of awkward working postures and 15 repeated 449 

experimental trials. Each experimental trial lasted for 30 seconds. Before field data collection, all 450 

participants were given sufficient time to familiarize themselves with the experimental apparatus 451 

(i.e., wearable insole pressure system) to eliminate systematic bias. The participants were also 452 

given enough rest (approx. 5 mins) between successive experimental trials to prevent injuries and 453 

physical fatigue. Notably, all experimental trials were conducted in an outdoor construction 454 

environment under natural conditions. The participants’ plantar pressure data were synchronized 455 

and recorded by using a video camera for all experimental tasks. In this study, awkward working 456 

postures were defined as postures that deviated significantly from the neutral position and might 457 

cause WMSDs after being sustained for a long time (Karwowski, 2001). Moreover, it is worth 458 

mentioning that these awkward working postures exceeded the internationally recommended trunk 459 

inclination for the angles of various body parts for static working postures as defined by the 460 

International Organization for Standardization (ISO 11226:2000) (ISO, 2006).  461 



 

21 
 

 462 
Fig. 3. Field experiments of different types of awkward working postures: (a) Overhead working; 463 

(b) Squatting; (c) Stooping; (d) Semi-squatting; and (e) One-legged kneeling 464 

 465 

4.2. Data processing and data segmentation 466 

After data collection, the next stage is data processing and data segmentation. The collected data 467 

were stored in the mobile phone, and they were wirelessly transferred onto a desktop computer for 468 

data processing. For each observed awkward working posture, the participants performed 15 469 

repeated trials. It is worth noting that the wearable insole pressure system can capture plantar 470 

pressure patterns, acceleration, angular velocity, ground reaction force, and center of pressure data. 471 

However, all the collected data except plantar pressure patterns data were removed from the dataset 472 

during data processing. As such, only plantar pressure patterns were labelled and used for data 473 

segmentation. Class labelling was conducted by using the recorded videos and the collected plantar 474 

pressure data. The signals were visually inspected for noise or signal artefacts. Since plantar 475 

pressure patterns were evenly distributed and didn’t cause any unrelated changes to different types 476 

of awkward working postures, no further signal artefacts were conducted during data processing.  477 

In the data segmentation stage, a sliding window technique was adopted to divide plantar pressure 478 

data into smaller segments, each segment containing a specified number of data samples (Preece 479 

et al., 2009). The purpose of this stage is to obtain labeled segments from the continuous stream 480 
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of wearable insole data to evaluate the performance of the deep learning networks. Since the 481 

sampling frequency for data collection was 50 Hz, 50 data samples are obtained every second for 482 

data processing. Given the experimental conditions, the dataset contains 10 participants with 483 

1,125,000 data samples of five classes. By considering the conducted experiments which involved 484 

repetitive rebar tasks, a window size of 5.12 s, which represents 256 (28) was suitable for dividing 485 

plantar pressure data into smaller segments. This window size data segment was chosen by initially 486 

analyzing the collected plantar pressure data to include representative awkward working postures 487 

in order to optimize the recognition performance. To prevent missing relevant data, an overlapping 488 

of consecutive windows was conducted. A 50% overlap of adjacent data segment lengths was used 489 

as demonstrated in previous studies (Antwi-Afari et al., 2018e; Antwi-Afari et al., 2018f).  490 

 491 

4.3. Deep learning-based networks 492 

4.3.1. Recurrent neural network (RNN) model architectures 493 

RNN is a subset of deep learning-based networks on the principle of extracting the output layer 494 

and feeding it back as the input of another layer to predict the output of the current layer (Inoue et 495 

al., 2018). Fig. 4 represents an overview of the RNN model architecture. As shown in Fig. 4a, the 496 

basic architecture of an RNN consists of an input, output, activation function, and a recurrent loop. 497 

Fig. 4b illustrates the structure of an unfolded RNN into a full network that allows it to perform a 498 

sequence of input data. Generally, RNN model receives the input x0 from the sequence of input 499 

data, performs some calculations resulting in h0, which, together with x1, compose the input to the 500 

next step. Similarly, the output h1 with the input x2 will be the input to the next step, and so on. It 501 

is worth noting that yt is the same as ht.  502 

 503 
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The value of ht is calculated using Equation 1. As illustrated in Equation 1, the input xt is modified 504 

by W and ht-1 is modified by U.  505 

ℎ𝑡 =  𝜎(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1)                                                                                                                               (1) 506 

Where, xt represents the input of the structure at time step t, ht, is the output of the structure at time 507 

step t, W is the weight matrix of the input to the hidden layer at time t, U is the weight matrix of 508 

the hidden layer at time t-1, and 𝜎 represents the activation function.  509 

 510 

Like other neural network structures, RNN models learn weights (W, U) through training using 511 

the backpropagation technique. The network then determines the accuracy of the model by using 512 

an error function (loss function) and calculating the derivates of the loss function with respect to 513 

the weight. In addition, the network uses an activation function to simplify the mathematical 514 

calculations related to the application of backpropagation. In the following section, this study 515 

presents three types of RNN-based deep learning models that were used for classifying different 516 

types of awkward working postures.  517 

 518 
Fig. 4. An overview of the RNN model architecture: (a) The basic architecture of an RNN; and (b) 519 

The structure of an unfolded RNN 520 
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4.3.1.1. Long-short term memory (LSTM) 521 

LSTM is a type of RNN model with an enhanced function to calculate hidden states. Hochreiter 522 

and Schmidhuber (1997) proposed LSTM network to solve temporal sequences and long-term 523 

dependency problems by adding the gating mechanism. Compared to traditional RNN models, 524 

LSTM network can solve the vanishing and exploding gradient problems because it extends RNN 525 

with memory cells which can ease the learning of temporal relationships on long time scales.  526 

 527 

Fig. 5 shows LSTM cell architecture. This cell determines which data to keep in memory and 528 

which data to ignore using the concept of gating. LSTM cell has three gates, namely, input, forget, 529 

and output gates. These gates can be seen as write (deciding what new information should be kept 530 

in memory by the input gate), reset (deciding what information should be forgotten by the forget 531 

gate), and read (deciding what information should be output by the output gate) operations for the 532 

cells. LSTM cell state is the key component that carries the information between each LSTM cell. 533 

Modifications to the cell state are controlled by the three gates mentioned above. The first stage of 534 

the LSTM cell architecture is the forget gate, which is responsible for specifying which data to 535 

remember and which data to erase. This decision is made through the sigmoid layer as shown in 536 

Equation 2. 537 

𝑓𝑡 =  𝜎(𝑥𝑡𝑊𝑓 + ℎ𝑡−1𝑈𝑓 + 𝑏𝑓)                                                                                                                 (2)                                                                                                                              538 

The output is 0 or 1, where 0 means forget, and 1 means keep. The second stage is the input gate, 539 

which decides which information to be stored or added to the cell state. The input gate also consists 540 

of another sigmoid layer that is used to determine new candidate values that could be updated to 541 

the cell state, as shown in Equation 3.  542 

𝑖𝑡 =  𝜎(𝑥𝑡𝑊𝑖 + ℎ𝑡−1𝑈𝑖 + 𝑏𝑖)                                                                                                                    (3) 543 
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The next stage in LSTM is the memory update, where the old cell is updated to the new cell. The 544 

tanh function creates a vector of candidate values that could be added to the state as shown in 545 

Equation 4. 546 

Ĉ𝑡 = tanh(𝑥𝑡𝑊𝑔 + ℎ𝑡−1𝑈𝑔 + 𝑏𝑐)                                                                                                           (4) 547 

The cell state is then ready for the update by concatenating both 𝑓𝑡 and Ĉ𝑡. LSTM updates the old 548 

cell state 𝐶𝑡−1to be 𝐶𝑡as shown in Equation 5. 549 

𝐶𝑡 = 𝜎(𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × Ĉ𝑡)                                                                                                                      (5) 550 

The final stage of LSTM is the output gate, which uses a sigmoid function to determine which part 551 

of the cell state will come out as shown in Equation 6. 552 

𝜊𝑡 = 𝜎(𝑥𝑡𝑊𝑜 + ℎ𝑡−1𝑈𝑜 + 𝑏𝑜)                                                                                                                  (6) 553 

In Equation 7, by multiplying 𝜊𝑡 with tanh (𝐶𝑡), we implicitly determine which part to take out. 554 

ℎ𝑡 = tanh(𝐶𝑡) × 𝜊𝑡                                                                                                                                      (7) 555 

Where, 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates, respectively. 𝑊𝑖, 𝑊𝑓, and 𝑊𝑜are the 556 

weights for the input, forget, and output gates at time step t, respectively. 𝑊𝑔is the weight for the 557 

candidate layer. 𝑈𝑖, 𝑈𝑓, and 𝑈𝑜are the weights for the input, forget, and output gates at time step 558 

t-1. 𝑈𝑔is the weight for the candidate layer. 𝑥𝑡is the input at current time step t. ℎ𝑡 and ℎ𝑡−1are the 559 

output of the cell at current time step t and previous time step t-1, respectively. 𝐶𝑡 and 𝐶𝑡−1are the 560 

cell states at time steps t and t-1, respectively. 𝑏𝑖, 𝑏𝑓, and 𝑏𝑜are the biases for the input, forget, and 561 

output gates, respectively. 𝑏𝑐 is the bias for the candidate layer, and σ is the sigmoid function.  562 
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 563 
Fig. 5. LSTM cell architecture 564 

 565 

4.3.1.2. Bidirectional LSTM (Bi-LSTM) 566 

Fig. 6 depicts the Bi-LSTM layer structure, where the two independent layers share the same input 567 

sequence while the outputs from the two layers are concatenated and represented in the sequence. 568 

Bi-LSTM model consists of two separate layers that divide the state neurons of a regular LSTM 569 

into a forward layer, which is responsible for positive time direction, and a backward layer, which 570 

is responsible for negative time direction. The outputs of the forward and backward layers are 571 

concatenated, which make it possible to obtain the forward and backward information at each time 572 

step in the sequence. This approach enhances the learning process due to the dependency found 573 

between the neighboring data pairs. 574 

 575 



 

27 
 

 576 
Fig. 6. Bi-LSTM layer structure 577 

 578 

4.3.1.3. Gated recurrent units (GRU) 579 

GRU is an improved version of the standard RNN and a simplified version of LSTM (Gers et al. 580 

2002). Like LSTM, GRU is designed to reset or update its memory adaptively. Hence, GRU has a 581 

reset gate and an update gate, which are identical to the forget and the input gates in LSTM. Fig. 582 

7 represents the GRU cell architecture, which is like the LSTM structure but with fewer parameters 583 

that enable it to capture long-term dependencies more easily. The update gate monitors the amount 584 

of memory content that must be forgotten from the previous time step. 585 

The operation of a GRU cell can be described as follows:  586 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)                                                                                                                      (8) 587 

The model uses the reset gate to decide the amount of past information to forget as given in 588 

Equation 9.  589 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                                                                                                                       (9) 590 

New memory content is introduced by using the reset gate as calculated in Equation 9 and relevant 591 

past information is stored as shown in Equation 10. 592 
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ĥ𝑡 = tanh(𝑊 ∙ [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)                                                                                                     (10) 593 

Finally, the network calculates the hidden state ℎ𝑡, which is a vector that carries information for 594 

the current unit and passes it down to the network. Thus, the update gate is essential since it decides 595 

what is needed from the current memory content ĥ𝑡  and the previous step ℎ𝑡−1 . Equation 11 596 

calculates the value of ℎ𝑡. 597 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ĥ𝑡                                                                                                               (11) 598 

Where, 𝑧𝑡 and 𝑟𝑡are the output of the update and reset gates. 𝑊𝑧 and 𝑊𝑟 are the weights for the 599 

update and reset gates. 𝑏𝑧 and 𝑏𝑟 are the biases for the update and reset gates. ℎ𝑡 and ℎ𝑡−1 are the 600 

output of the cell at the current time step t and previous time step t-1, respectively. 𝑥𝑡 is the input 601 

at the current time step t, and σ is the sigmoid function.  602 

 603 
Fig. 7. GRU cell architecture 604 
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4.4.  Deep learning model training and performance evaluation  605 

During the deep learning model training, all RNN-based deep learning models (i.e., LSTM, Bi-606 

LSTM, and GRU) have been designed to receive the same input data. Each class label belongs to 607 

the same participant from plantar pressure data. For each experimental task, the plantar pressure 608 

data vector has a dimensionality of 32 vectors (2 × 16 pressure sensors for each foot) × 256 data 609 

samples. The total number of data samples is 4,394 values. Since each window size contains 256 610 

data samples, the current study used input data of 1,124,864 data samples. The network models 611 

are three layers deep, and the number of hidden units ranges from 100 to 500 for each deep learning 612 

model. A previous study used a similar architecture, with 200 hidden units per layer (Alawneh et 613 

al., 2021). In this study, we used the cross-entropy loss (log loss function) as a cost function for 614 

model accuracy. The loss function determines the model’s accuracy in the classification problem. 615 

The smaller the loss value, the more accurate the actual value. Updating the weights and biases in 616 

the model is the responsibility of the optimization function. In addition to the Adam optimization 617 

function, an adaptive version of the stochastic gradient descent was used for model training 618 

(Kingma and Ba, 2014). The Adam optimizer is a reliable optimizer that ensures fast and accurate 619 

results when updating the network parameters. To prevent overfitting in the model, this study 620 

applied the widely used stochastic regularization method known as the dropout technique 621 

(Srivastava et al., 2014). Overfitting arises when the loss function is very small for training data 622 

while it is very large for testing data. The main objective of the dropout technique is to prevent the 623 

neurons in the network from excessive co-adapting, which results in a lack of model generalization. 624 

The model evaluation process is performed by dividing the dataset into training and testing datasets, 625 

thus, 90% for training and the remaining 10% for testing. The training dataset was further split 626 

into two datasets (80% for training and 20% for validation). The validation dataset was used for 627 
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hyper-parameter tuning and to determine the optimal unit numbers of the RNN-based deep 628 

learning models. The 10-folds cross-validation technique was adopted to test the classification 629 

performance of RNN-based deep learning models, similar to previous studies utilizing deep 630 

learning networks (Kim and Cho, 2020; Yang et al., 2020). By conducting 10-folds cross-631 

validation, the best hyper-parameters can be selected, and the RNN-based deep learning models 632 

can be evaluated as generalized models that show the desired classification performance with an 633 

unseen dataset. The parameters values based on the model that provided the best accuracy with the 634 

lowest training time were selected. The results show that our tuning process achieved the best 635 

accuracy for the datasets when setting the values of the epoch, dropout, batch size, learning rate, 636 

and hidden units at 100, 0.5, 64, 0.001, and 200, respectively. The experiments were conducted 637 

and trained on a computer 2.60 GHz Intel (R) Core (TM) i7-9750H CPU, 16GB RAM, 64-bit 638 

operating system, Windows 10 Pro, and Intel Iris Plus Graphics 650 1536MB GPU using 639 

MATLAB R2020b. The detailed dataset and tuned hyper-parameters of the proposed RNN-based 640 

deep learning models are shown in Table 1.  641 

Table 1. Dataset and hyper-parameters of the proposed RNN-based deep learning models 642 

Dataset and hyper-parameters Value 

Number of classes 5 

Number of plantar pressure sensors 32 capacitive pressure sensors 

Window size 5.12 s 

Overlap of adjacent windows 50% 

Sampling rate 50 Hz 

Epoch 100 

Dropout 0.5 

Batch size 64 

Learning rate 0.001 

Hidden units 200 

Number of sample data 1,125,000 data samples 

 643 

In performance evaluation and classification, the performance of the three types of RNN-based 644 

deep learning models was assessed by using evaluation metrics such as accuracy, precision, recall, 645 
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specificity, and F1-score (Attal et al. 2015). Equations 12 to 16 show how each evaluation metric 646 

is calculated. Accuracy is the most standard metric to summarize the overall classification 647 

performance for all classes. It is defined as the ratio of correctly classified instances to the total 648 

number of instances. Precision is the measure of determining how many instances classified as 649 

positive are actually positive, thus, it is a measure of exactness. It is defined as the ratio of correctly 650 

classified positive instances to the total number of instances classified as positive. Recall or 651 

sensitivity is the number of positive instances correctly classified as positive, thus, it is a measure 652 

of correctness. It is defined as the ratio of correctly classified positive instances to the total number 653 

of positive instances. Specificity is the number of negative instances correctly classified as 654 

negative. It is defined as the ratio of correctly classified negative instances to the total number of 655 

instances classified as negative. The F1-score combines precision and recall into a single value, 656 

and it is used to measure the performance of the classification model by avoiding systematic bias 657 

(Ordóñez and Roggen, 2016). Besides these evaluation metrics, the performance of each model on 658 

individual classes was assessed using a confusion matrix, while the accuracy and loss curves were 659 

drawn for the best model.  660 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                     (12) 661 

𝑃𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                             (13) 662 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                  (14) 663 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                                                        (15) 664 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                            (16) 665 
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Where, True Positive (TP) is the number of positive instances that were classified as positive, True 666 

Negative (TN) is the number of negative instances that were classified as negative, False Positive 667 

(FP) is the number of negative instances that were classified as positive, and False Negatives (FN) 668 

is the number of positive instances that were classified as negative.  669 

 670 

5. Results  671 

This section presents the results derived from the conducted experimental design and data 672 

collection procedures. Table 2 shows the classification accuracy and training time for different 673 

types of RNN-based deep learning models which were evaluated by 10-folds cross-validation. The 674 

classification accuracy for all three RNN-based deep learning models was greater than 97%. As 675 

indicated in Table 2, the classification accuracies were 97.99%, 98.33%, and 99.01% for LSTM, 676 

Bi-LSTM, and GRU, respectively. The results revealed that GRU model achieved the highest 677 

performance among all tested RNN-based deep learning models in terms of training plantar 678 

pressure pattern data for classifying different types of awkward working postures. On the other 679 

hand, when the performance of the three types of RNN-based deep learning models was evaluated 680 

in terms of training time, the average duration of LSTM, Bi-LSTM, and GRU networks lasted 31 681 

mins, 56 mins, and 54 mins, respectively. The results show that Bi-LSTM network requires more 682 

training time than either LSTM or GRU models.  683 

Table 2. Classification accuracy and training time for RNN-based deep learning models  684 

RNN-based deep learning models  Accuracy (%) Training time (minutes) 

Long-short term memory (LSTM) 97.99 31 

Bidirectional LSTM (Bi-LSTM) 98.33 56 

Gated recurrent units (GRU) 99.01 54 

 685 

The confusion matrix and evaluation metrics for LSTM model are presented in Table 3. Generally, 686 

the evaluation metrics achieved high performance of LSTM model on the plantar pressure data for 687 
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classifying different types of awkward working postures. In terms of precision metric, LSTM 688 

model achieved classification performance values between 88.30% and 99.82%. The highest 689 

instance of correct classified awkward working posture was overhead working posture, 690 

representing 98.74%. Conversely, stooping posture had little impact on the LSTM model (i.e., 691 

67.48%) among the different types of awkward working postures. The values of specificity and 692 

F1-score metrics are in the range of 95.33% to 99.94%, and 76.50% to 98.40%, respectively. To 693 

identify the classes that are misclassified or confused with other classes, the confusion matrix was 694 

presented. As shown in Table 3, each row represents the actual classes, while the columns represent 695 

the predicted classes. The diagonal cells represent the correct instances as highlighted in bold font 696 

for a more detailed evaluation of the classification performance at the end of the 100th epoch. The 697 

other cells show the misclassified instances. From Table 3, it was revealed that overhead working 698 

posture class had the best recognition performance because plantar pressure data are different from 699 

the values in other classes. It can also be seen that the top two most misclassified classes are 700 

stooping and overhead working postures. Stooping posture is confused 30 times with overhead 701 

working posture. Data collection for both stooping and overhead working postures involved 702 

bilateral knee extension in static positions. As such, the confusion between stooping and overhead 703 

working postures can be explained by the similar plantar pressure data collected from the wearable 704 

insole system.  705 
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Table 3. Confusion matrix and evaluation metrics for long-short term memory (LSTM) 706 

  Predicted class  

 

 

 

 

True class 

Overhead 

working 
625 0 5 3 0 

Squatting 10 350 4 3 1 

Stooping 30 4 83 6 0 

Semi-

squatting 
23 0 2 433 0 

One-legged 

kneeling 
8 0 0 9 533 

 
Overhead 

working 
Squatting Stooping 

Semi-

squatting 

One-legged 

kneeling 

Accuracy      97.99% 

Precision  89.80% 98.87% 88.30% 95.37% 99.82% 

Recall  98.74% 95.11% 67.48% 94.54% 97.02% 

Specificity  95.33% 99.78% 99.46% 98.76% 99.94% 

F1-score  94.06% 96.95% 76.50% 94.96% 98.40% 

 707 

Table 4 represents the confusion matrix and evaluation metrics of Bi-LSTM model.  The correct 708 

classes are shown in bold for a more detailed evaluation of the classification performance at the 709 

end of the 100th epoch. Generally, the evaluation metrics of Bi-LSTM model achieved higher 710 

performance than LSTM model. With regards to precision metric, Bi-LSTM model achieved 711 

performance rates between 92.09% and 99.61%. Like LSTM model, the highest instance of Bi-712 

LSTM for correct classified awkward working posture was overhead working, representing 713 

97.83%. It was reported that overhead working posture had the most positive impact on the 714 

performance of Bi-LSTM, followed by one-legged kneeling (97.80%), squatting (96.37%), semi-715 

squatting (93.02%), and stooping (87.50%) (Table 4). The specificity and F1-score metrics of 716 

different types of awkward working postures range from 96.03% to 99.88% and 91.70% to 98.75%, 717 

respectively. According to the confusion matrix in Table 4, it can be observed that overhead 718 

working posture is the most recognized class with 675 positive instances. In addition, it was found 719 

that the top two most misclassified classes are stooping and overhead working postures (Table 4). 720 

 721 
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Table 4. Confusion matrix and evaluation metrics for bidirectional LSTM (Bi-LSTM) 722 

  Predicted class  

 

 

 

 

True class 

Overhead 

working 
675 0 8 5 2 

Squatting 8 425 0 8 0 

Stooping 25 2 210 3 0 

Semi-

squatting 
18 0 0 240 0 

One-legged 

kneeling 
7 0 0 4 512 

 
Overhead 

working 
Squatting Stooping 

Semi-

squatting 

One-legged 

kneeling 

Accuracy      98.33% 

Precision  92.09% 99.53% 96.33% 92.31% 99.61% 

Recall  97.83% 96.37% 87.50% 93.02% 97.80% 

Specificity  96.03% 99.88% 99.58% 98.94% 99.88% 

F1-score  94.87% 97.93% 91.70% 92.66% 98.75% 

 723 

The confusion matrix and evaluation metrics of GRU model are presented in Table 5 with correct 724 

classes shown in bold for a more detailed evaluation of the classification performance at the end 725 

of the 100th epoch. The evaluation metrics of GRU model achieved the highest performance 726 

compared to either LSTM or Bi-LSTM model. Regarding precision metric, GRU model achieved 727 

classification performance values between 94.41% and 99.80%. The highest instance of correct 728 

classified awkward working posture was overhead working, representing 99.30%. This recall 729 

result concurs with classification accuracy, thus, indicating that GRU model outperforms other 730 

RNN-based deep learning models. It was found that stooping posture had the lowest correct 731 

classified posture (i.e., 89.00%) among the different types of awkward working postures. The 732 

specificity and F1-score metrics of different types of awkward working postures range from 97.08% 733 

to 99.94% and 93.19% to 99.39%, respectively. Taken together, these results show that GRU 734 

model outperformed either LSTM or Bi-LSTM model based on plantar pressure data for 735 

classifying different types of awkward working postures. Like LSTM and Bi-LSTM models, it can 736 

be observed from the confusion matrix in Table 5 that overhead working posture is the most 737 
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recognized class with 710 positive instances. Moreover, it was reported that stooping and overhead 738 

working postures are the top two most misclassified classes (Table 5).  739 

 740 

Table 5. Confusion matrix and evaluation metrics for gated recurrent units (GRU) 741 

  Predicted class  

 

 

 

 

True class 

Overhead 

working 
710 0 4 1 0 

Squatting 5 412 0 3 0 

Stooping 21 1 178 0 0 

Semi-

squatting 
12 0 0 310 1 

One-legged 

kneeling 
4 0 0 1 489 

 
Overhead 

working 
Squatting Stooping 

Semi-

squatting 

One-legged 

kneeling 

Accuracy       99.01% 

Precision  94.41% 99.76% 97.80% 98.41% 99.80% 

Recall  99.30% 98.10% 89.00% 95.98% 98.99% 

Specificity  97.08% 99.94% 99.80% 99.73% 99.94% 

F1-score  96.80% 98.92% 93.19% 97.18% 99.39% 

 742 

Fig. 8 and 9 show the accuracies and losses over iterations curves with the tuned hyperparameters 743 

of the GRU model. As shown in both figures, GRU model performance shows an increase in 744 

accuracy and decrease in loss in both training and validation, respectively. In other words, the 745 

training and validation curves for GRU model converge at higher accuracy whilst their 746 

corresponding loss curves converge at a lower loss value. It was found that both the accuracies and 747 

losses were converged at the 90th epoch. Thus, the difference between either training accuracy and 748 

validation accuracy or training loss and validation loss was insignificant, indicating that the GRU 749 

model was effectively trained without overfitting plantar pressure data.  750 
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 751 
Fig. 8. Accuracies over iterations curves with the tuned hyperparameters of the GRU model 752 

 753 

 754 
Fig. 9. Losses over iterations curves with the tuned hyperparameters of the GRU model 755 

 756 
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6. Discussion 757 

6.1. Wearable sensing data and deep learning-based networks 758 

Construction activities are associated with several work-related risk factors. Among them, 759 

awkward working postures are the major risk factor that causes WMSDs in construction. The 760 

objective of this research was to evaluate a novel approach of using deep learning-based networks 761 

and wearable insole sensor data to automatically recognize and classify different types of awkward 762 

working postures in construction. To do this, this study adopted three types of RNN-based deep 763 

learning models to train time-series plantar pressure data captured by a wearable insole system.  764 

 765 

By comparing the employed RNN-based deep learning models in this study, it was found that 766 

GRU model achieved the highest accuracy (i.e., 99.01%) with an average training duration of 54 767 

minutes. In addition, the results show that GRU model obtained precision, recall, specificity, and 768 

F1-score metrics of 94.41% to 99.80%, 89.00% to 99.30%, 97.08% to 99.94%, and 93.19% to 769 

99.39%, respectively in classifying different types of awkward working postures. Regarding the 770 

confusion matrix, it was revealed that the top two most misclassified classes are stooping and 771 

overhead working postures. Moreover, GRU model performance shows an increase in accuracy 772 

and a decrease in loss in both training and validation, respectively. These results support the 773 

hypothesis of this study that GRU model, which is an RNN-based deep learning network could 774 

provide a reliable and better performance accuracy for classifying different types of awkward 775 

working postures. This finding might be explained from the model perspective. GRU model is 776 

relatively simpler and can forget and choose memory with fewer parameters, while LSTM model 777 

needs more gating and parameters to complete similar tasks. In addition, GRU model can control 778 

the information flow from the previous activation when computing new candidate activation. In 779 
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summary, GRU model outperformed other RNN-based deep learning models in this study in terms 780 

of computational power (i.e., convergence of training time) and performance (i.e., parameter 781 

updates). Our results are comparable to other previous studies which found GRU model to 782 

outperform LSTM model (Yang et al., 2020; Zarzycki and Ławryńczuk, 2021). The findings of 783 

this study indicate that GRU architecture can leverage the advantages of both LSTM and Bi-LSTM 784 

layer architectures to enhance awkward posture recognition. Hence, the use of the GRU model is 785 

recommended for classifying awkward working postures based on wearable insole data.  786 

 787 

A previous study by Antwi-Afari et al. (2018f) utilized plantar pressure data to recognize different 788 

types of awkward working postures based on machine learning classifiers, finding an accuracy of 789 

99.70% with SVM classifier at 0.32s window size. However, this previous work was conducted in 790 

a controlled laboratory setting, by student participants, and static awkward working postures. 791 

These experimental conditions are not the case in a real-world construction environment. By 792 

utilizing WIMU-based systems, Lee et al. (2020) compared a deep learning network (i.e., CNN-793 

LSTM) to conventional machine learning classifiers for automated classification of squat postures. 794 

They obtained 75.4% and 91.7% classification performance for conventional machine learning 795 

and deep learning model, respectively. Although these results are comparable to the current study, 796 

Lee et al. (2020) used acceleration and angular velocity data while the present study used plantar 797 

pressure data captured by a wearable insole system.  798 

 799 

Notably, previous studies have also demonstrated similar deep learning networks (e.g., vanilla, 800 

unidirectional LSTM, Bi-LSTM, GRU) in wearable sensor-based human activity recognition 801 

studies in construction (Rashid and Louis, 2019; Kim and Cho, 2020; Lee et al., 2020; Yang et al., 802 
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2020; Zhao and Obonyo, 2021) and other disciplines (Li et al., 2019; Alawneh et al., 2021; 803 

Mekruksavanich and Jitpattanakul, 2021). Rashid and Louis (2019) evaluated a data-augmentation 804 

framework for identifying construction equipment activity by combining LSTM model and 805 

multiple WIMU-based systems. They found that LSTM model outperforms conventional machine 806 

learning classifier (i.e., artificial neural network). Kim and Cho (2020) proposed a construction 807 

worker's motion recognition model using the LSTM network based on an evaluation of the number 808 

and location of WIMUs to maximize motion recognition performance. They found that the 809 

proposed approach could improve a worker monitoring mechanism for safety and productive 810 

management. Yang et al. (2020) investigated the feasibility of identifying various physical loading 811 

conditions by analyzing a worker’s bodily movements collected by using WIMUs. Their findings 812 

contribute to automated work-related risk recognition and WMSDs prevention, thus, enhancing 813 

workers’ health and safety at construction workplace. Zhao and Obonyo (2020) investigated the 814 

feasibility of integrating convolutional neural networks (CNN) with LSTM layers for recognizing 815 

construction workers’ postures from motion captured by WIMUs-based systems. The results 816 

revealed that the proposed deep neural network approach has a high potential in addressing 817 

challenges for improving posture recognition performance than conventional machine learning 818 

models. Alawneh et al. (2021) compared the performance of data augmentation and RNN-based 819 

deep learning models on three open-source datasets, finding that GRU models and data 820 

augmentation significantly enhance activity recognition. Collectively, these studies found that 821 

deep learning models and wearable sensing data can be utilized for monitoring workers’ activities 822 

regarding their safety, fall risks, and productivity. However, direct comparison between existing 823 

studies’ findings and the current study may not be meaningful due to numerous differences in 824 

experimental design (e.g., participants’ physical characteristics) and data collection procedures.  825 
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6.2. Study implications, practical applications, and contributions 826 

The current study provides relevant findings and practical implications to both researchers and 827 

practitioners within the construction industry. First, a key practical implication is the feasibility of 828 

onsite experimental data collection for work-related risk factor recognition using a wearable insole 829 

pressure system. Collecting wearable sensing data in a real-world construction setting is very 830 

challenging due to multiple reasons such as the dynamic nature of the construction environment, 831 

huge resources, and several work-related risk factors. Different from previous studies on work-832 

related risk factor recognition that were conducted by student participants in a controlled 833 

laboratory setting (Chen et al., 2017; Antwi-Afari et al., 2018f; Umer et al., 2020), the current 834 

study investigated the use of wearable insole data while construction rebar workers performed 835 

awkward working postures during repetitive rebar tasks at construction site. Awkward working 836 

postures are also commonly performed by other workers such as masons, carpenters in the 837 

construction industry. Collectively, the proposed approach could not only be applied during 838 

repetitive rebar tasks (e.g., preparing and assembling rebars), but also other manual repetitive 839 

handling tasks (e.g., bricklaying) in construction. Second, the proposed approach provides an 840 

automated recognition and classification of awkward working postures in construction. The results 841 

from the current study revealed that awkward working postures, the most prevalent work-related 842 

risk factor among construction workers, could be recognized and classified by using wearable 843 

insole data and deep learning networks. Awkward posture recognition is the first step in proactive 844 

WMSD prevention. As such, this wearable sensor-based approach can serve as a proactive 845 

intervention tool for recognizing work-related risk factors, thus, mitigating WMSDs risks in 846 

construction. Besides automated WMSDs risk monitoring and recognition in construction, the 847 

achieved awkward posture recognition model can also facilitate “Prevention through Design” (PtD) 848 
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practices by identifying workers’ ergonomic risks under different workplace designs. These 849 

preventive strategies can also be adopted in other physically demanding and labor-intensive 850 

occupations such as manufacturing, automobile, and agriculture. Third, the proposed approach—851 

utilizing wearable insole data and deep learning-based networks—will contribute to real-time 852 

wearable sensor computing by deploying the performance of plantar pressure patterns and GRU 853 

model for awkward posture recognition. Construction practitioners (e.g., safety managers) can use 854 

this piece of information to enhance their safety program, thus, improving workers’ safety and 855 

health. With the performance accuracies of three RNN-based deep learning models in this study, 856 

the best RNN-based deep learning model (i.e., GRU) can learn workers’ movement patterns and 857 

provide reliable results for predicting posture-based WMSDs risk. However, it was found that 858 

stooping and overhead working postures were misclassified and could lead to recognition errors. 859 

Nevertheless, the findings of this study can be applied to other work-related risk factors (e.g., 860 

overexertion, loss of balance events) with specific physical load conditions and reasonable hyper-861 

parameter tuning through model training and testing, thus, mitigating the risk of developing 862 

WMSDs.  863 

 864 

6.3. Limitations and future research directions 865 

The proposed approach is successful for automated recognition and classification of awkward 866 

working postures in construction. However, there are few limitations and challenges. First, this 867 

study only investigated a small sample of experienced rebar workers and five types of awkward 868 

working postures in construction. With diverse construction workers and physically demanding 869 

construction activities, the small experimental dataset could limit the application of the proposed 870 

approach in the construction industry. Future studies should collect large samples of data from 871 
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several construction workers (e.g., bricklayers, carpenters) while conducting other types of 872 

awkward working postures (e.g., bending or twisting to lift an object) during a real-world 873 

construction environment. Such dataset with enough samples is crucial in training, testing, and 874 

developing a generalized model for different construction activities. Second, this study considered 875 

limited types of wearable sensor data—plantar pressure data—for automated recognition of 876 

awkward working posture. Notably, there are other types of body sensor networks or wearable 877 

biosensors for collecting heart rate, respiration, and body temperature data could be integrated to 878 

enhance automated monitoring and recognition applications. As such, future research should 879 

include other types of biosensor data. Third, the current study employed only three types of RNN-880 

based deep learning models for awkward posture recognition and classification. Although useful, 881 

RNN-based deep learning models are specifically designed to handle sequential data, but they 882 

suffer from the vanishing/exploding gradient problem. As a result, RNNs fail to deal with long 883 

sequences if tanh is applied as the activation function, whereas the model is unstable if a rectified 884 

linear unit (relu) is used (Dang et al., 2020). In addition, RNN layers cannot be stacked into a very 885 

deep model because the saturated activation functions cause the gradient to decay over layers. 886 

Consequently, future research could evaluate other types of deep learning networks (e.g., CNN) 887 

or integrate two or more deep learning networks (e.g., CNN-LSTM) for awkward posture 888 

recognition.  889 

 890 

7. Conclusions 891 

This research evaluates a novel approach of using deep learning-based networks and wearable 892 

insole sensor data to automatically recognize and classify different types of awkward working 893 

postures in construction, which may lead workers to develop WMSDs. Five different types of 894 
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awkward working postures (i.e., overhead working, squatting, stooping, semi-squatting, and one-895 

legged kneeling) were conducted, and plantar pressure data were captured by using a wearable 896 

insole pressure system. The classification performance of three RNN-based deep learning 897 

models—LSTM, Bi-LSTM, and GRU— was evaluated using metrics such as accuracy, precision, 898 

recall, specificity, and F1-score. The experimental results show that GRU model outperforms the 899 

other RNN-based deep learning models with a high accuracy of 99.01% and F1-score between 900 

93.19% and 99.39%. These results suggest that GRU model, widely applied for the classification 901 

of time-series and sequential data, can be employed to learn sequential plantar pressure patterns 902 

captured by a wearable insole system to recognize and classify different types of awkward working 903 

postures. The proposed approach will contribute to real-time wearable insole sensor computing by 904 

deploying the performance of GRU model for awkward working posture recognition on 905 

construction sites. In addition, it contributes to automated WMSDs risk recognition among 906 

construction workers by enabling safety managers to continuously monitor awkward working 907 

postures, thus improving workers’ safety and health conditions. To develop a detailed practical 908 

guideline for this application, future research could integrate other types of wearable biosensors 909 

(e.g., heart rate monitors) and deep learning networks (e.g., CNN) for vigorous recognition of 910 

awkward working postures.   911 
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