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Abstract—Recent cyber-attacks in critical infrastructures have
highlighted the importance of investigating how to improve
Smart-Grids (SG) resiliency. In the future, it is envisioned that
grid connected micro-grids would have the ability of operating
in ‘islanded mode’ in the event of a grid-level failure. In this
work, we propose a method for unfolding aging and rejuvenation
models into their sequential counterparts to enable the compu-
tation of transient state probabilities in the proposed models.
We have applied our methodology to one specific security attack
scenario and four large campus micro-grids case studies. We
have shown how to convert the software aging and rejuvenation,
with cycles, to its unfolded counterpart. We then used the
unfolded counterpart to support the survivability computation.
We were able to analytically evaluate the transient failure
probability and the associated Instantaneous Expected Energy
Not Supplied metric, for each of the four case studies, from one
specific attack. We envision several practical applications of the
proposed methodology. First, because the micro-grid model is
solved analytically, the approach can be used to support micro-
grid engineering optimizations accounting for security intrusions.
Second, micro-grid engineers could use the approach to detect
security attacks by monitoring for unexpected deviations of the
Energy Not Supplied metric.

Index Terms—Cyber-security, survivability, aging and rejuve-
nation, Markovian processes.

I. INTRODUCTION

Over the years, attacks to Smart-Grid power control com-
ponents, such as, the Stuxnet worm [1], Black Energy 3 [2],
Crashoverride [3], and Trisis [4], were able to significantly
damage Industrial Control Systems (ICS) [5]. In the first
quarter of 2021 the US’ East Coast oil supply chain, provided
by Colonial Pipeline, was the target of a serious attack. This
ransomware attack caused service interruptions in several US
states with significant impact to oil prices. To mitigate these
problems, an alternative approach is to isolate ICT and power
networks, and to design micro-grids [6], [7], which would
retain the connection to the conventional power grid, but could
also operate in islanded mode, when faulty conditions are
detected. The expected benefit from using this architecture
is the use of distributed micro-sources that can effectively
sustain Demand Response (DR) mechanisms according to load
demands. Managers segment these so-called “grid-connected
micro-grids” into smaller independent units. One of the objec-
tives of this segmentation is to mitigate the impact of single
points of failure [8], [9].

We model Load Changing Attacks (LCA) in micro-grids
using software aging and rejuvenation techniques [10]. We
analyze the survivability of the grid-connected micro-grid in
islanded mode. Survivability-related metrics capture the ability
of a system to retain its operating features under duress,
i.e., during failures or disturbances [11]–[13]1. Here, we are
interested in analyzing the effects of LCA and its mitigation
to avoid the impact of cascading failures.

Our main contributions in this paper are as follows:
1. Aging and rejuvenation model for micro-grid attacks:
we show that classic aging and rejuvenation models can be
used to capture LCA attacks and to model its mitigation
(Sections III and IV).
2. Bridging aging, rejuvenation with survivability models
through unfolding: we unfold the considered aging and
rejuvenation model, whose Markov chain contains cycles,
into a survivability model, captured by a Directed Acyclic
Graph (DAG). In the realm of micro-grids, this corresponds
to allowing up to a finite fixed number of attack events before
ultimately reaching the stable state (Section V).
3. Implementation of unfolding at PRISM: we show that a
model implementation to evaluate the proposed Markov chain
unfolding can be used to replicate elements over time, e.g.,
multiple attack trials towards a micro-grid and cyber-attack
scenarios (Section VI and Appendix).

II. RELATED WORK

The US micro-grid initiative [14] document discussed grid
modernization and listed ongoing projects in the US. The
National Electric Sector Cybersecurity Organization Resource
(NESCOR) conducted cyber-security assessment and grid fail-
ure scenarios for increase SG resilience [15] and Jauhar et al.
(2015) proposed model-based techniques [16] for its study.
One could use reported vulnerability incidents and detailed
cyber-attack vectors using MITRE’s ATT&CK framework2,
combining with databases provided by NVD3 or CVE4.

Dabrowski et al. (2017) [17] commented on “Grid-shock”,
i.e., the problem of synchronizing attacks to destabilize the

1As termed by the ANSI T1A1.2 committee.
2Adversarial Tactics, Techniques, and Common Knowledge framework:

https://attack.mitre.org/
3National Vulnerability Database: https://nvd.nist.gov/.
4Common Vulnerabilities Exposures Database: https://cve.mitre.org/.

https://nvd.nist.gov/
https://cve.mitre.org/
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power grid. Soltan et al. (2018) [18] discussed BlackIoT where
a swarm of malicious infected IoT could imbalance the power
provision. The same authors have discussed attacks known as
Manipulation of Demand (MAD) in smart infrastructure and
their potential to harm the Smart Grid [19]. In contrast to that
result, Huang et al. (2019) [20] have discussed that the grid is
resilient enough to withstand a large magnitude power surge
or drop due to the security contingencies that offers customers.

Micro-grids offer higher flexibility for power managers.
However, since the same level of protections are not present,
it makes the solution highly susceptible for cyber-attacks.
Let us suppose, for instance, that even a small number of
malicious software are present in high-wattage devices. Adver-
saries could remotely command those compromised devices to
impair the micro-grid operation, imbalance the frequency out
of nominal levels, and promote black-outs that could impact
both the critical infrastructure, and the power utility customers.

Frequency control services are crucial for power managers
to deliver reliable power [21]. Mana et al. (2020) [22] simu-
lated a micro-grid and studied resiliency employing telecom-
munication over diesel generators and batteries. Czekster et
al. (2021) [23] have surveyed power simulation to extract
features for modelling the Smart-Grid whereas Arnaboldi et al.
(2020) [24] applied Continuous Time Markov Chains (CTMC)
to model LCA by analyzing the balance between Supply-
Demand under normal and attack situations.

In our previous research [25]–[28], we have introduced
Markov models with rewards to support survivability metrics.
We have shown that these models could be efficiently applied
for the optimization a Smart-Grid. To address the complexity
of its distribution networks, the analytical model applied three
key modelling principles: state space factorization, state aggre-
gation, and initial state conditioning. We extend the approach
introduced in [25]–[28] to model LCA in micro-grids.

III. PROBLEM

A grid-connected micro-grid operates in two modes: i)
connected; and ii) islanded. On the one hand, in connected
mode, it powers the infrastructure and enjoys power quality
(frequency and voltage regulation) provided by the grid. An-
other feature of this mode is to offer a series of security con-
tingencies to customers, where secondary and tertiary power
reserves are present to stabilize frequency as required (or
load-shedding mechanisms that disconnect power in selected
regions), according to Supply-Demand needs. Even if an
elevated number of customers was to turn on or off their
devices simultaneously, due to these protections in place, the
grid would withstand these peak demands or the lack of power
and adjust its mode accordingly.

Fig. 1 shows an overview of the main components under
consideration. It encompasses generic elements, i.e., they
could be a healthcare facility, or a power supplier. The
“Households” element is abstracted and may represent a
small neighborhood with particular energy profiles. It is worth
noticing that power elements do not necessarily overlap with
telecommunications.
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Fig. 1: High-level grid-connected micro-grid system overview.

On the other hand, in the islanded mode, it operates dis-
connected from the power grid. However, this mode is highly
susceptible to cyber-attacks. Adversaries may install malware
in the grid components such as Smart Meters or any other IoT
device connected to high-wattage appliances to direct attacks.
As stated earlier, in LCA, malicious actors synchronize turning
on or off a large number of compromised high-wattage devices
to imbalance frequency regulation. As the frequency ramps up
or down very quickly, it may cause the micro-grid to black-out
(or brown-out), since it is not prepared for such occurrence. In
the micro-grid, the buses could prioritize powering-up critical
infrastructure (e.g., a hospital), choosing to disconnect (load-
shedding) a less important bus as deemed necessary.

Fig. 2 details the balancing conditions as performed by the
Load Frequency Control (LFC) mechanism, showing the cases
where Supply-Demand equilibrium conditions are not met.

An example of this modelling set-up is illustrated in Fig. 3
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Fig. 2: Supply-Demand imbalances may lead to failure requir-
ing timely repair to resume operations to nominal levels.

showing the LCA problem with transitions that return to the
‘Nominal levels’ state (original model with cycles). Specif-
ically, measurement apparatuses scattered across the infras-
tructure can measure instantaneous frequency and respond to
changes to implement frequency control within the required
nominal values. Some measures that can be implemented are:
(1) disconnections; or (2) turning on power assist on the
balance, since it is easier to shut down than to power up due
to inertia or other considerations set by energy operators.

Fig. 4 demonstrates the proposed approach, where we have
unfolded the Markov chain removing self-loops and cycles into
new states named ‘Fixed’. Our assumption is that attackers
will choose a given strategy and persist on it until the system
eventually collapses (‘Fail’ state) or gets patched for security
(‘Fixed’ state).

Our goal is to develop an approach to bridge between aging
and rejuvenation models and survivability models. We apply
our approach to a known cyber-security attack.

IV. MICRO-GRID CASE STUDIES

Table I summarizes the power assessments and resiliency
features of the micro-grids described in this section. In the
following, we describe the micro-grid features found in a few
selected case studies.
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Fig. 3: Aging model (LFC perspective) – original model.

TABLE I: Selected micro-grid assessments (in the US).

Micro-grid Supply % Resiliency
(MW) Demand Features

Princeton 20.5 100% Optimized
UCSD 42 85% 60 MW Diesel
IIT 9 90% 50% DR
NYU 13.4 100% Optimized

A. Princeton University5

The distributed energy resources supply side consists of a
solar array, a gas turbine, and a steam turbine. These are used
to supplement purchases of grid power and natural gas.

In addition, heating and cooling operations are managed by
the co-generation plant, which consists of chilled water for
cooling and steam for heating. Cooling electricity operations
is based on off-peak cost, during the night, and stored as
chilled water to be used for daytime air conditioning. Steam
is produced in the co-generated plant and is used for campus-
wide heating using a network of underground pipes. Therefore,
the co-generation plant is used to centralize heating and
cooling operations, which allows for fuel cost optimization.
The co-generations plan has a supply capacity of 15 MW

5https://tiger-energy.appspot.com/home

https://tiger-energy.appspot.com/home
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Fig. 4: Aging model (LFC perspective) – unfolded model.
Each level is associated with contingencies in place to avoid
load-shedding such as starting spinning reserves or aggre-
gate/disconnect power to meet frequency balance.

and can operate in island mode to supply 100% of Princeton
micro-grid demand. It consists of steam boilers, water chillers,
electric generators and an energy storage tank. Energy De-
mand in the Princeton University’s campus can be categorized
into laboratories, housing building, academic buildings, other
buildings, and sports facilities.

B. The University of California, San Diego6

The distributed energy resources supply side consists of two
13.5 MW gas turbines, one 3 MW steam turbine, 1.2 MW
generated using solar panels, and a 2 MW fuel cell power that
is powered by methane produced in a wastewater treatment
facility, and other distributed generation facilities for a total
supply of 42 MW. These can be used in island mode or
integrated into the power grid.

6https://the-atlas.com/projects/uc-san-diego-microgrid

UCSD micro-grid uses a co-generation facility composed of
two 13 MW natural gas turbines. In addition, turbine exhaust
heat is used for water chilling, which is stored in very large
water tanks with 3.8 million gallon capacity. In addition, solar
power is integrated with battery storage to provide a 3 MW
solar network. A 60 MW emergency backup power, supplied
by diesel generators, can be activated for emergency recovery.

C. Illinois Institute of Technology7

The Illinois Institute of Technology has implemented a
smart micro-grid distribution system with the objective of
demonstrating advanced Smart Grid features. Among them,
(1) automated loop with system breakers and switches to
support automated fault detection, isolation, and recovery;
(2) a software controller to support distributed generation;
(3) sensing distribution to support active and reactive power
management; (4) advanced smart-metering to support demand
response; (5) large scale batteries to support daily peaks, load
shedding, and intermittent integration with wind, solar, and
EV charging; and (6) advanced ZigBee wireless technology.

Campus power demand is 10 MW and distributed generation
using two 4 MW gas-powered generators supplemented by
wind, solar PV, and one 500 kWh battery. The total distributed
generation of 9 MW allowing the micro-grid to operate in
islanded mode.

D. New York University8

The NYU micro-grid uses similar architecture features as
Princeton’s. Specifically, natural gas-powered turbines with hot
waste recovery is used to produce both electricity and steam.
Hot water and chilled water are stored for later use in heating
and cooling devices.

The NYU micro-grid incorporates a Combined Heat and
Power supply power generator with a total generation capacity
of 13.4 MW. It contains two 5.5 MW gas powered generators
with heat recovery of steam coupled to a 2.4 MW steam
turbine, which allows the NYU micro-grid to operate in
islanded mode.

The application of the proposed methodology to the de-
scribed Micro-grids is presented in Section VI and illustrated
in Table III.

V. AGING, REJUVENATION AND SURVIVABILITY

Aging and rejuvenation models typically account for failures
and recovery in an integrated fashion. Survivability modelling,
in contrast, aims at characterizing the system from a prone to
failure state up to recovery.

7https://microgrid-symposiums.org/microgrid-examples-and-
demonstrations/illinois-institute-of-technology-microgrid

8https://microgrid-symposiums.org/microgrid-examples-
and-demonstrations/new-york-university-microgrid,
https://www.nyu.edu/about/news-publications/news/2011/january/nyu-
switches-on-green-cogen-plant-and-powers-up-for-the-sustainable-future.html

https://the-atlas.com/projects/uc-san-diego-microgrid
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Fig. 5: Software aging and rejuvenation: (a) classical aging and rejuvenation Markov chain [29]; (b) micro-grid power generator
states extracted from [24]; (c) extending micro-grid controller states to account for a rejuvenation state wherein next-generation
strategies, such as demand response, can be used to defer demand; (d) two level unfolding, extending previous model in (c).
In (d), it also shows possible subsequent levels as levels progresses (state P” onward).

A. Unfolding an aging and rejuvenation model yields a sur-
vivability model

In this research, we extend the survivability models pre-
sented in [25]–[28] to account for LCA in grid-connected
micro-grid systems shown in Figure 1, and to evaluate the
survivability metrics of interest. In order to bridge aging and
rejuvenation models, and survivability models, we propose to
unfold aging and rejuvenation models, starting from the prone
to failure state and accounting for up to a given number of
tentative attacks, each of which may lead to a failure, before
either ultimately reaching the failure state or, alternatively, the
recovery state. Fig. 5 illustrates our methodology where we
produce from the baseline model (which may involve cycles
among states) a DAG corresponding to the states visited by
the system after it reaches the prone to failure state.

In Fig. 5a we consider a classical micro-grid controller, and
in Fig. 5b, we explicitly account for the rejuvenation time
due to demand-response to react against load changes. Fig. 5c
explicitly indicates that the attacker competes against rejuve-
nation. Whichever event occurs first, attack or rejuvenation,
will determine whether the system will ultimately fail before
reaching its stable state. In Fig. 5c we account for a single
competitive round, i.e., we assume the attacker will try an LCA
only once, whereas in Fig. 5d, we assume that the attacker will
modulate its attack and try twice to adapt to grid responses. In
that case, the system will move to the final stable state before
failure if rejuvenation occurs twice before failure.

Table II shows the parameters employed in previous aging
and rejuvenation research [29] used to calibrate our models.

We used PRISM Probabilistic Model Checker [30] to create
our aging and rejuvenation model that leverages a modular
approach as shown in Appendix.

TABLE II: Parameters as defined in Huang et al. (1995) [29]
(Illustrative example A) – Fig. 5b.

Transition Rate Description

P to F? λ = 1
1×30×24

Mean time between two consecutive
failures (MTBF), i.e., one month.

F to 0?? r1 = 2
Time to recover from an unexpected
failure, i.e., 30 min.

0 to P r2 = 1
7×24

Base longevity interval, i.e., 7 days.

R to 0 r3 = 3
Mean repair time after rejuvenation,
i.e., 20 min.

P to R r4 = 1
(14−7)×24

Rate of rejuvenation after the
application goes into failure state.
Set here once every two weeks.

?Only one occurrence of P to F transition per model, on the last level.
??This transition is only used for Fig. 5a and Fig. 5b.

B. Numerical evaluation

First, we consider how the probability of failure varies after
the system reaches the prone to failure state. Fig. 6 illus-
trates numerical results obtained using the proposed analytical
model. It shows the probability of failure by a given time t,
accounting for various values of maximum number of attack
trials. The transient failure probability shown in the figure
illustrates that after a certain time t, as a potential adversary
keeps trying malicious attempts, eventually the attack will
succeed, reaching the failure state.
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Then, we consider how the maximum number of attack trials
impacts the probability of failure by 8,000 hours after the
system reaches the prone to failure state. Fig. 7 shows the
obtained results. It indicates that as the maximum number of
attack trials increases, the probability of failure also increases.
Note, however, that this is subject to light-weight counter-
measures, e.g., which do not decrease the probability of an
attack being successful as the number of attempts increases.
We further discuss countermeasures as follows.

C. Countermeasures

Our model relates aging and rejuvenation to security inci-
dents. While it captures how adversaries try to invade systems
or deplete resources (causing degradation), it is instrumental to
cyber-security analysts deploying mitigation and containment
mechanisms to thwart attacks (rejuvenation).

The attack vector in LCA consists of a synchronized in-
crease in power demand, which triggers one or more circuit
breakers. Possible countermeasures to address LCA involve
the use of the following SG features:

• FDIR fault detection isolation, recovery (back-up power).
• DR use of demand response feature to provide varying lo-

cal load limit per smart-meter that is based on estimation
of total load level in the micro-grid.

• Segmentation - fine grain feeder segmentation to increase
the effectiveness of FDIR and DR features.

We present next several versions of the survivability model
accounting for the LCA phases (aging) and the corresponding
countermeasures (rejuvenation).

Fig. 6: Probability of failure by time t, after reaching prone
to failure state, for the baseline model, and 1 to 4 trials.

Fig. 7: Probability of failure by 8,000 hours (around 333
days), after reaching prone to failure state, as a function of
the number of trials (a trial represents a model unfolding).

VI. CYBER-ATTACK SCENARIOS

We conducted a series of scenarios and representations of
different micro-grids to showcase our approach. Fig. 8 shows
three experiments varying λ, r2, and r4 parameters in the
model for number of attack trials varying among values 3,
6, 9, 12 and we measure our time in hours.

Fig. 8a shows that as time progresses, the probability of
reaching the failed increases with the increase in the number
of trials. Fig. 8b shows the impact of varying the residence
time in state Z, where it represents the rejuvenation states,
and P the prone to failure states.

Fig. 8c shows the impact of varying the residence time in
state P. The failure probability increases with the increase
in the residence time in state P as the number of trials in-
creases. The number of trials needed to effectively conduct an
attack is an indication of the necessary adversarial capabilities
required to circumvent protections, at the same time where
cyber-security defences are enacted to thwart and contain
malicious incursions. The plots show that as the number of
trials increases, the probability of reaching the ‘fail’ state tends
to 100%. In our modelling approach reaching the fail state
represents a successful attack.

Our approach can be used by micro-grid engineers to
support the computation of metrics affecting the power utility
income. For example, the Instantaneous Expected Energy Not
Supplied (IEENS) by time t, can be computed from the fail
state probability. Table III shows an analysis for the IEENS
metric computed at instant 1.2 hours by varying the number
of maximum attack trials. We compute the value of IEENS by
multiplying state failure probability by the energy supplied.

In the event of failures, quick responding to cyber-attacks
has substantial effects on IEENS. If security officers manage
to detect and then thwart attacks as fast as they are identified,
they could protect critical resources from harmful incursions.
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(b) Varying residence time in state Z, transition Z → P (r2).

(c) Varying residence time in state P , transition P → R (r4).

Fig. 8: Experiments on PRISM varying selected parameters.

TABLE III: IEENS analysis for P to R (t=1.2h), Fig. 8c.

Micro-grid
Energy IEENS (MW) at t = 1.2h

Supplied Maximum Attack Trials
(MW) 3 6 9 12

Princeton 20.5 2.3 4.4 6.2 7.9
UCSD 42 4.8 9.0 12.8 16.1
IIT 9 1.0 1.9 2.7 3.5
NYU 13.4 1.5 2.9 4.1 5.1

VII. CONCLUSIONS

Cyber-attacks have devastating consequences to a non-
negligible number of stakeholders in critical infrastructures.
In Smart-Grids, energy spikes, brown-outs, and black-outs
may cascade and impact large portions of the power network,
causing significant damage and financial losses. It is thus
crucial to investigate means to improve resiliency and address
those shortcomings in a timely, safe, and secure fashion.

This work has shown a modelling proposition of combining
classical aging and rejuvenation models into unfolded coun-
terparts that may be used to compute survivability metrics. We
applied our novel technique to a cyber-security attack known
as LCA, where malicious actors synchronize compromised
resources to artificially imbalance the power system frequency
aiming to disrupt the infrastructure until it collapses. We have
shown how to convert the software aging and rejuvenation
model, with cycles, to its unfolded counterpart that can be
used to support the survivability computation.

We envision several practical applications of the proposed
methodology. First, because we solved the micro-grid model
analytically, the approach can be valuable when supporting
micro-grid engineering optimizations accounting for security
intrusions. Second, they could use the approach to detect
security attacks by monitoring for unexpected deviations of
the Energy Not Supplied metric.

As future work we aim to refine our model by including
other types of security attacks, and extending the unfolded
Markov chain to include rewards for energy not supplied and
other factors impacting the utility company’s income.
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APPENDIX

Next, we introduce the PRISM model representing the
behavior described in Fig. 5d.

ctmc

// TRIALS: undefined constant (experiment)
const int TRIALS;
// MAX: set the number of local states
const int MAX = (TRIALS=0 ? 3 : TRIALS*3);

const double r_PF = 1/(30*24); // lambda
const double r_ZP = 1/(7*24); // rate r2
const double r_RZ = 3; // rate r3
const double r_PR = 1/(7*24); // rate r4
const int SF = 0; // fail state

module M1
x : [0..MAX] init 1;
[] (mod((x-1),3)=0) -> r_PR:(x’=x+1);
[] (mod((x-2),3)=0) -> r_RZ:(x’=x+1);
[] (mod((x-3),3)=0 & x!=0 & x!=MAX)

-> r_ZP:(x’=x+1);
// only used when TRIALS=0
[] (mod((x-3),3)=0 & x!=0 & TRIALS=0)

-> r_ZP:(x’=1);
// P-->F
[] (mod((x-1),3)=0) -> r_PF:(x’=SF);

endmodule

The maximum number of attack trials is set according to
our experimental goals, e.g., varying among values 3, 6, 9 and
12. The rates between states are determined through the four
constants set at the beginning of the code.

The implementation of the model is modular where each
module contains a set of states. We use the modulo (mod)
operator (integer remainder of division) to compute state
indices within the module.

To produce Figure 7, for instance, we verified the following
property: P=? [ F=8000 x=0 ] (‘what is the probability
of reaching the fail state (SF=0) in 8,000 hours (333 days)?).
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