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ABSTRACT

Ineffective traffic signal control is one of the major causes of conges-
tion in urban road networks. Dynamically changing traffic conditions
and live traffic state estimation are fundamental challenges that limit
the ability of the existing signal infrastructure in rendering individual-
ized signal control in real-time. We use deep reinforcement learning
(DRL) to address these challenges. Due to economic and safety
constraints associated with training such agents in the real world, a
practical approach is to do so in simulation before deployment. Do-
main randomisation is an effective technique for bridging the reality
gap and ensuring effective transfer of simulation-trained agents to
the real world. In this paper, we develop a fully-autonomous, vision-
based DRL agent that achieves adaptive signal control in the face of
complex, imprecise, and dynamic traffic environments. Our agent
uses live visual data (i.e. a stream of real-time RGB footage) from
an intersection to extensively perceive and subsequently act upon the
traffic environment. Employing domain randomisation, we examine
our agent’s generalisation capabilities under varying traffic condi-
tions in both the simulation and the real-world environments. In a
diverse validation set independent of training data, our traffic control
agent reliably adapted to novel traffic situations and demonstrated
a positive transfer to previously unseen real intersections despite
being trained entirely in simulation.
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1 INTRODUCTION

Road traffic congestion remains a major problem around the world,
resulting in significant economic and environmental repercussions.
One of the most effective ways to mitigate traffic congestion is by in-
telligently managing the signal infrastructure. Current signal control
systems operate either on fixed time frames (Webster method [1]) or
use in-road sensors (inductive loops [2]) to extend or shorten green

Proc. of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.),
May 9-13, 2022, online. © 2022 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Maria Chli
Aston University
Birmingham, United Kingdom
m.chli@aston.ac.uk

George Vogiatzis
Aston University
Birmingham, United Kingdom
g.vogiatzis@aston.ac.uk

signals when needed. Widely-used adaptive signal control meth-
ods (such as SCOOT [3] and SCAT [4]) largely rely on manually-
designed signal phase plans. These plans are designed to be dynam-
ically selected according to the volume of the traffic detected by
inductive loops. The loop sensors are commonly placed close to
the intersection and are not activated until vehicles pass through
them, providing only partial information on the traffic conditions.
Consequently, the signals are unable to perceive and react to chang-
ing traffic patterns in real time. Transportation operators often have
to manually override signal phase decisions to keep up with the
evolving traffic conditions. Currently, no tool exists that achieves
autonomous signal control optimised for a junction’s specific geo-
metrical layout and dynamically changing traffic distribution.

Deep Reinforcement Learning (DRL) is one of the most promi-
nent subfields in Al, holding the promise of enabling agents to learn
sophisticated behaviors automatically while making decisions in real
time. One of the most enticing possibilities that DRL (a mechanism
combining reinforcement and deep learning) presents is the ability
to train the agents to perform tasks solely from raw sensory inputs,
while the traditional RL methods relied on predetermined environ-
ment features for decision making. DRL has enabled agents to learn
sensory perception and control in an ‘end-to-end’ fashion (i.e. di-
rectly mapping from sensory inputs to action outputs) eliminating
the need for hand engineering of task-specific features by domain
experts [5]. DRL involving learning visual features and a control
policy jointly (end-to-end) has been successfully applied to several
domains ranging from sophisticated video games [6, 7] to robotics
[8, 9] and transportation infrastructure optimization [10-12]. While
DRL agents can learn complex control policies from raw sensory
data, they suffer from poor generalizability. Devising agents that
can generalize well to a wide range of environmental variations and
bridge the gap between simulated and real-world environments, is a
significant challenge.

In this paper, we develop end-to-end trainable signal control
agents that respond to the actual traffic conditions in real time. In
essence, our signal control agents generate and execute signal phases
based on the prevailing traffic state. They learn to adjust their sig-
nal control strategy based on the feedback they get from the traffic
environment. Domain randomization [13] is employed to enhance
the generalization capabilities and subsequently achieve a robust
distributional shift of the signal control agents we create. The idea is
to expose the agent to as many possible variations of a traffic setting
in order to make it invariant to factors such as junction layout, traffic
distribution, background, illumination and camera viewpoint. We
show that this domain randomization approach leads to a significant
performance boost as the agent’s vision-based perception becomes
invariant not only to particular conditions but also to the training
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Figure 1: Examples of visual domain randomisation in our signal control experiments. (a) A clear sky scene. (b) A night scene. (c) A
rainy scene. (d) A snowy scene, all generated in Traffic3D (www.traffic3d.org), our simulator.

domain. Our results (Fig. 6) demonstrate that signal control poli-
cies learned entirely in simulation, transfer effectively to previously
unseen real-world intersections. This marks the significance of re-
alistic simulation environments in training real-world-deployable
DRL agents, alleviating the requirement for tedious data collection
in the physical world, as well as of risky and costly on-site training.

2 RELATED WORK

Over the years, traffic signals have evolved from being pre-timed
(fixed time given to all green phases based on historical traffic de-
mand without considering potential fluctuations in traffic flow pat-
terns) [14, 15] to adaptive - using loop sensors (real-time traffic
demand is used to configure green phase duration) [3, 16]. Induc-
tive loops detect the presence of passing vehicles, prompting the
signals to allow the queuing vehicles to pass through. Adopting
adaptive signal control has helped in reducing bottlenecks around
intersections during peak times. However, this method heavily re-
lies on hand-crafted rules which fail to address the dynamic traffic
flows effectively enough. Conventionally-used inductive loops have
a narrow operational range as they only gather traffic data (vehicle
density) in their immediate area. Alternatively, we use cameras to
have a wider coverage of traffic and enhance the quality of traffic
detection. Roadside surveillance cameras have already emerged as
powerful tools in effectively enforcing speed limits and reducing
road fatalities. Furthermore, unlike inductive loops which can only
detect traffic volume, cameras can effectively detect a large array
of different objects (including cars, motorcycles, buses, vans and
pedestrians) to extensively perceive the traffic environment.
Real-world traffic phenomena are characterised by highly-stochastic

dynamics. To increase signal efficiency, signals must be constantly
monitored and frequently adjusted to regulate the dynamic traffic
flows. RL enables greater real-time responsiveness and constant op-
timization of actual traffic flows. RL agents are inherently adaptive
and are capable of responding to changes in the environment. The
majority of research on RL-based adaptive signal control ([17-20])
is conducted using relatively simplified traffic state information,
based on hand-engineered traffic features (i.e. a vector specifying
the presence of vehicles at the intersection and their respective speed
information). However, real-world traffic evolution is influenced by
many factors (such as different road users - pedestrians and cyclists,
accidents, weather and road conditions). These features, while be-
ing crucial, are not considered in state-of-the-art signal control. In
contrast, our signal control methodology is based on live camera

feed rendering an extensive representation of the prevailing traffic
state (including key traffic information such as flows, types of vehi-
cles, weather and lighting conditions, etc.). Close to vision-based
signal control, [21, 22] used simple 2D-visual representations of
the traffic environment, ignoring the visual complexities of urban
traffic and did not show the effectiveness of their technique on real
data. Our signal control agent is exposed to a rich traffic simulation
environment [23, 24] (illustrated in Fig. 1) and achieves remarkable
performance on previously unseen real-life images (see Fig. 6).

3 METHOD AND NOTATION

3.1 Reinforcement Learning

In a basic RL setting [25], an agent learns to achieve a goal by dy-
namically interacting with an uncertain environment. A standard RL
framework is mathematically modelled as a Markov Decision Pro-
cess (MDP), which is defined as a tuple < S, A, T, R, y >, where S and
A are the state and action spaces respectively. y € (0, 1) denotes the
discount factor, which models the relevance of immediate rewards
over the future rewards. After observing a state, an agent working
under the policy; 7 : S — A produces an action. Given current state
s and action a;, the transition function T : S X A X S +— R™* deter-
mines the distribution of the next state s;+1. The reward function R
is determined by R : S X A — R. An episode 7 ~ M with horizon
H is a sequence of state, action, reward (sg, g, 10, - - - » SE, GH> TH)
at every time-step t. The discounted episodic return of 7 is deter-
mined by R; = Zi 0 y'rs. Given the agent’s policy x, the expected
episodic return is defined by E, [R;]. The expected episodic return
is maximized by optimal policy 7*

7" = arg maxE,. pq - [Re]. ¢))
T
A deep neural network (1rg) with parameters 0 in high-dimensional
RL settings represents policy 7*. The agent aims to learn 6* that
achieves highest expected episodic return,

0" = arg maxE,. o [Rr]. 2)
0

3.2 Policy-based Reinforcement Learning

Neural Network-based function approximation [26], for mapping
input traffic state to a traffic signal control action, is essential for
RL to be effective in high-dimensional large state spaces. Instead
of implementing a dominant value function-based off-policy RL
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(Q-learning [27]), we explore an alternative on-policy RL (Policy
Gradient) [28] for our signal control task.

The value function-based methods approximate the state-value
function or state-action value function (i.e. how rewarding each state
is or state-action pair is) and the policy is implicitly derived from
the learned value function [29]. In contrast, policy-based methods
directly update the policy parameters (i.e. a vector of probabili-
ties to conduct actions under a specific state) along the direction
to maximize a predefined objection (for e.g. average expected re-
ward) [28]. One of the main advantages of policy-based methods
over value-based methods is that they can learn stochastic policies
(i.e. they keep exploring potentially more rewarding actions), while
value-based algorithms are inclined towards learning deterministic
policies. In real-world environments such as traffic settings that are
characterised by uncertainty, an effective policy must be stochas-
tic [28]. Prior work on autonomous signal control demonstrated
policy-based RL’s superior performance over value-based RL [30].

In this work, we directly estimate a stochastic policy using an
independent function approximator (DNN), whose input is some
representation of the current state of the environment (s;), it gener-
ates as output action selection probabilities (from which an action
a; is sampled) and whose weights are the policy parameters. The
objective stated in Eq. 2 can be achieved using policy gradient RL
by stepping in the direction of E[R;Vlogn(7)]. This gradient can be
converted into a surrogate loss function (Lpg);

LPG = E[Rflogﬂ'(’[)] =E

H

R ) log n(atm)] 3)
=0

such that the gradient of Lpg is equal to policy gradient.

4 OUR AUTONOMOUS TRAFFIC SIGNAL
CONTROL METHODOLOGY

In this section, we describe our signal control agent’s implementa-
tion, including the MDP settings; state, action, reward specifications.

4.1 Problem Definition

Our goal is for our agent to learn a real-world-deployable signal
control policy by leveraging diverse traffic data gathered in a visually
realistic traffic simulator. In this paper, we develop a fully-actuated
agent that learns to control traffic signals in real time based solely on
live footage of the traffic situation of the area the signals affect. To
ensure reliable transfer to real-world traffic settings, we progressively
train our signal control agent on diverse traffic conditions (such as
adverse weather and lighting conditions) in simulation.

4.2 Traffic Model Simulation

DRL agents require millions of samples (i.e. interactions with the
environment) to learn meaningful policies. Although data gathered
in the real world will provide precise signals about the dynamics of
the traffic environment, it may suffer from lack of visual diversity
as it is costly to gather comprehensive data (i.e. traffic distribution
on clear sky, snow, rain, evening and dimly-lit nights, various junc-
tion configurations) in the real world. In consequence, simulation
is deemed as a safe, cost-effective and controlled tool to train DRL
agents. In this work, we train our signal control agent in a variety of
complex traffic conditions created using an open-source multi-agent

road transportation-based simulation environment with a visual ele-
ment; Traffic3D (https://traffic3d.org/) [23, 24]. Traffic3D is capable
of creating realistic traffic scenarios including extreme traffic and
ambient conditions. Situations such as crashes and obstacles do oc-
cur and form part of the agent’s training. The signal control agent,
therefore, learns to deal with them.

4.3 Traffic Movement Simulation

Traffic movement is defined as the vehicles navigating across an
intersection (from an entrance lane to an exit lane). In this paper, we
trained an agent on four-legged standard intersections. We define a
set of admissible vehicle movements, eight standard signal phases
and safety rules (e.g. the minimum prescribed time before signal
phase changes) as per the Traffic Signs Manual by the Department
for Transport (UK) [31]. In the simulation environment utilised,
Traffic3D, vehicles follow the fundamental rules of motion (based
on their mass, friction and other forces such as gravity) and react
appropriately to their input parameters to navigate through the net-
work. To mimic real-world traffic trends, simulations are initialised
to reproduce real traffic data obtained at different times of day.

S LEARNING ENVIRONMENT SETUP: MDP
SETTINGS

Our simulated traffic environment is illustrated in Fig. 1. At each
MDP time-step, the signal control agent interacts with the traffic
environment every T seconds (i.e the agent senses the prevailing
traffic state using the /ive camera-feed, based on which it decides a
certain signal phase configuration and implements it for T seconds).
The smaller the T, the more often the agent will be asked to make
a signal control decision (i.e. configuration of signal phases). Fol-
lowing are the MDP settings for our signal control agent; including
state, action spaces and reward design.

5.1 State Space

Our agent directly maps RGB images (depicting the prevailing traffic
state) to actions (controlling the traffic signals), demonstrating end-
to-end learning without any pre-specification of traffic environment
features (such as vehicle density, type, etc). For faster computation,
we downsize the input images to a compact resolution of 100 x
100, having experimentally verified that this does not impair our
agent’s decision making. Furthermore, the smaller resolution of the
images helps the agent to generalize better to new settings; images
containing fewer details of the traffic environment prevent overfitting.
Our results in Sec. 7 verify this.

5.2 Action Space

While policy-based DRL can handle both continuous and discrete
action spaces, a few prior control optimization research works have
shown that discrete action spaces work much better [32, 33]. This
is because discretization of actions makes learning a good control
policy potentially simpler. Therefore, for our signal control task, we
define a set of discrete actions A such that each computed action
corresponds to each phase. For instance, an action a; corresponds to
a phase p; (i.e. < a; — p1 >). At each MDP time-step, our signal
control agent selects one of the available phases to be implemented
for a duration of T seconds (e.g. 5s). This implies that at each MDP
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Figure 2: Our Signal Control Agent’s Network Architecture.

step, a green signal is implemented for a minimum time duration
of T seconds. After T seconds elapse, based on the state perceived,
the agent may decide to have the same signal phase or change
it. Minimum/maximum signal time durations dictated by traffic
regulations are conveniently accommodated by our decision making.

5.3 Reward Design

Both delay and throughput are often-used metrics to evaluate/optimize
the overall state of the traffic. Throughput and delay are inversely
proportional to each other and optimizing one also optimizes the
other. In this paper, we focus on optimizing the traffic throughput
across the intersections and subsequently, reducing the intersection
traversal time and delay for vehicles; a task for which we define
two reward functions: (1) a positive success reward (e.g. +1) for
every civil vehicle passing safely through the intersection; and (2)
a penalty (e.g. -1) for every civil vehicle waiting at the start of the
intersection. Besides civil vehicles, we also include emergency ve-
hicles (such as ambulances, police cars and fire-trucks) and public
transport vehicles (such as buses) in our experiments. We associate a
higher reward of (e.g. +5) for their passing through the intersection
and a higher penalty of (e.g. -5) for their waiting at the intersection.

5.4 Learning Protocol

To learn an effective policy my(als) via DRL that maximizes re-
ward over all policies, our signal control agent is supported by a
deep convolutional neural network (DCNN) as a non-linear function
approximator, where action a at time ¢ can be drawn by:

ar ~ m(st|0)

@

where, 0 denotes the model parameters and s; is the 100x100x3 RGB
image representing the current observation of the traffic environment.
Based on the implemented actions and predefined reward function,
the rewards are observed and gradients are computed, as per Eq. 5,

N , T T
Va0~ 3 3 X Vologmolatis) )Yt )) )
i=1 ‘=1 t=1

where J(0) denotes the loss function.

where T = 100, N = 10. A local maximum in J(6) is searched by
ascending the gradient of the policy with respect to parameters 6.
Vo J(0) is the policy gradient and « is a step-size parameter. The
policy is updated in the direction of the gradient (Eq. 6) to encourage
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Figure 3: Quantitative results demonstrating our autonomous
traffic signal control agent’s performance during training
against the baselines; fixed-time [1], adaptive [1] and RL-based
[21] signal control.

actions leading to good outcomes and discourage less desirable ones.

0 — 0+avVyJ(0) (6)

5.5 Network Architecture

In the current work, we employ a deep neural network with a small
number of hidden layers. Additionally, we use batch normalization
to prevent overfitting. Batch Normalization is a widely used regular-
ization technique that enables more stable and faster training with
improved convergence and generalization of deep neural networks
(DNNSs) [34]. In this work, we use a convolutional neural network
(CNN) as CNNs exploit the advantage of spatial coherence in visual
data. Our deep learning network comprises three convolutional lay-
ers and one fully-connected layer. This network architecture yields
positive signal control in varied traffic conditions.

5.6 Domain Randomisation

Domain randomization has been previously used to successfully
transfer simulation-trained RL agents to the real world [13, 35, 36].
In this work, to reduce the reality gap between the simulated and
real-world environments, we modify the basic version of our traffic
simulation environment to the distribution of many simulations in
order to foster effective skill transfer. The wider the simulation
settings variation, the more likely the agent is to capture the real-
world dynamics. Fig. 1 depicts some examples of these altered
environments. Different aspects of the traffic environment such as
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Figure 4: Graphs depicting our signal control agent’s performance based on average junction travel time (y-axis) over the total number
of vehicles observed during the training (x-axis). We compare our DRL approach for traffic optimization; with (red line) and without
(blue line) transfer learning. Our learning curves showing vehicles’ junction travel time include experiments; (a) In the presence of
emergency vehicles. (b) On a dimly-lit night. (c) On a rainy evening. (d) On a snowy day. (¢) On a random junction with different

(never seen before) geometry.

lighting or weather conditions are modified to force the agent to
learn the essential features i.e. objects of interest. The intuition
behind applying domain randomization to our signal control task
is that by altering various aspects of our simulated environment
(e.g. different weather and lighting conditions), we produce a signal
control policy that is less likely to overfit to a certain simulated
environment and more likely to successfully transfer to the real-
world traffic settings. Our results are aligned with this intuition,
reflecting the emergence of an effective real-world (as shown on
physical CCTV images) transferable signal control policy trained
using only simulator-generated data (Fig.6).

5.7 Domain Randomization Protocol

As effective generalization is essential to RL agents’ real-world
deployment, in this work, we focus on solving the problem of gen-
eralization between traffic scenes that visually differ from each
other via domain randomization. Domain randomization methods
use data from a source domain to improve the performance of the
learned model on a target domain. To ensure our vision-based agent’s
generalizability to dynamically changing traffic conditions both in
simulated and real-world settings, we define (a) a source domain and
(b) a target domain. To achieve domain randomization, we train our
agent to act in the source domain (based on the learning protocol
outlined in Sec. 5.4) and reuse its acquired knowledge from the
source domain to learn to effectively operate in the target domain.
We initialize our agent’s convolutional neural network (CNN) in the
target domain with our agent’s pre-trained CNN parameters from
the source domain. The agent is then tuned to operate in the target
domain, based on Eq. 7,

1 N Txi o Txi o
V010~ 5 33 3, Votoomo e Dtk )) -

where T = 10 and N = 10 and the policy is updated in the direction
of the gradient based on Eq. 6.

5.8 Network (Signal Policy) Visualization

Saliency maps are amongst the most popular techniques used to
interpret the decisions made by neural networks. Our visualization

methodology is based on Grad-CAM (Gradient-weighted Class Ac-
tivation Mapping) [37]. Our method takes as inputs - a pre-trained
network (i.e. pre-trained signal control agent) and an image (depict-
ing the traffic environment). The output is produced in the form of an
attention map (i.e. a heatmap). Our Grad-CAM based visualization
method makes use of the gradient information flowing into the last
convolutional layer of the pre-trained CNN to determine the impor-
tance of each neuron for making a certain signal control decision. To
obtain a localization map for a particular signal control phase regime
decision p, the Grad-CAM method first computes the gradient of the
score y? (before softmax) with respect to the feature maps Ak
ayP

dAk

where k is the channel index. Then, the gradients are averaged as the
neural importance weight a‘z in each channel;

=133

J

gp(AF) = 8)
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where (i, j) and Z are the spatial index and spatial resolution of the
feature map respectively. Finally Grad-CAM is a weighted sum of
feature maps (followed by a ReLU operator);

= ReLU(Z ab aF) (10)
k

P
HGrad—CAM
This gives a Grad-CAM implementation, in which the heatmap
produced is of the same size as feature maps.

6 EXPERIMENTS AND RESULTS

The goal of this paper is to optimize the performance of existing traf-
fic signal infrastructure using DRL. However, when applying DRL
for signal control, ascertaining a priori the empirical settings that
will yield a successful/sustainable signal control policy, is virtually
impossible. Hence, we conducted a set of sensitivity analysis experi-
ments to assess the robustness of our signal control agent to variation
in pertinent empirical settings such as the RL algorithm (actor-only
[28] or actor-critic [38]), reward signal and camera orientation (used
to capture visual input data). Our sensitivity analysis research find-
ings reflected that to effectively optimize the traffic flows through
intersections, a combination of visual traffic data captured with a
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Figure 5: Real-World Deployment Schema at Scotch Corner,
London (using existing TfL. camera infrastructure).

front-camera view, policy-based RL algorithm and positive-negative
rewards worked effectively in a wide range of traffic situations. For
brevity, we omit our sensitivity analysis results in the current paper.
We use this combination of empirical settings in all our simulation-
based experiments. While we have no control over camera location
or angle for experiments carried out on real-life footage, this does
not appear to have adverse effects on the performance of our agent.
We categorize our experiments as (1) DRL-based autonomous
signal control. (2) Domain Randomization to ensure the agent’s gen-
eralizability to environment variations. All our experiments are based
on the network architecture described in Sec. 5.5 and illustrated in
Fig. 2. Traffic environment specifications, including traffic model
and flow details are outlined in Sec. 4.2 and Sec. 4.3, respectively.

6.1 DRL Autonomous Traffic Signal Control

This experiment is conducted on a clear day setting (illustrated in
Fig. 1(a)). We select the following performance metric to evaluate
our autonomous signal control strategy;
Junction Travel Time: is defined as the time interval between vehi-
cles arriving at the junction stop-line and vehicles reaching at the
end of the junction. The longer a vehicle is forced to wait at the start
of the junction, the higher its junction travel-time will be. We take
the moving average of 100 vehicles’ junction travel-time to capture
their long-range trend. Lower journey travel-time indicates better
signal control.

We compare our research findings against the following conven-
tional and RL-based baselines:
Standard (non-adaptive) signal control [1]: follows the signal con-
trol policy that uses predefined signal phase regimes (widely used
for steady traffic conditions).
Induction loop-based (adaptive) signal control [1]: a loop detects
approaching vehicles along each incoming lane and an electronic
impulse is sent to the signal circuit - to switch the red signal to green.
Deep policy gradient-based (adaptive) signal control [21]: a policy
gradient algorithm for vision-based traffic signal control (close to
our work). The state and action specifications are similar to our
proposed method (outlined in Sec. 5). While depending on visual
input, the signal control agent is being trained on simplistic/non-
realistic camera footage following a less diversified and rigorous
approach, hindering its deployability to real settings. The reward

signal is based on total cumulative delay (for further details, see
[21]). Another vision-based signal control [22] is a value-based
approach while our sensitivity analysis experiments demonstrated
more-effective signal control using policy-based methods.

Our signal control agent’s training graph, including the average
junction travel time of the total number of vehicles observed during
the simulation is shown in Fig. 3. Our signal control agent signifi-
cantly outperforms both conventional (fixed-time and adaptive) and
RL-based signal control methods; intelligently adjusting signals to
different traffic situations. Also, as compared to the other DRL-based
approach [21] which demonstrates high variance in learning, our
method demonstrates faster and more stable (with sustainable policy)
learning. We believe that the use of cumulative delay in the baseline
[21] leads to inferior performance, as this metric is ambiguous and it
does not inform the agent about delays faced by individual vehicles.
Fixed-time and loop-induced signal control methods perform the
worst. These methods fail to timely modify agents’ traffic optimiza-
tion decisions as per the dynamically changing traffic flow patterns,
as there is no learning involved. However, even a learning-based
DRL agent relying on vehicle count as the traffic state information
performs comparably to loop-induced signal control. We note that
using visual traffic data to optimize signals has several benefits in-
cluding detection of vehicles’ type, precise position of vehicles and
estimation of speed of vehicles based on their position in consecutive
frames.

6.2 Domain Randomization Experiments

The main objective of applying domain randomization is to provide
enough variability in the simulation environment at training time so
that the agent is able to generalize to real-world settings at testing
time. Following is the set of our domain randomization experiments;

6.2.1 Different vehicle types/models. Here, our agent learns to
prioritize the traversal of emergency vehicles (such as police cars,
fire engines and ambulances) through the intersection. We associate
a higher positive reward (+5) for every emergency vehicle’s traversal
through the intersection and a higher negative reward (-5) for every
emergency vehicle waiting at the intersection. We conduct two ex-
periments in this setup: (1) With knowledge transfer from the source
domain (signal control on a clear day, outlined in Sec. 6.1); in the
target domain experiment, we train our agent to effectively recog-
nise and respond to the presence of emergency vehicles by reusing
previously-learned knowledge from the source task. The source ex-
periment only included the civil vehicles. (2) Without knowledge
transfer; we initialize our agent with random neural network param-
eters to prioritize navigation of emergency vehicles. In both transfer
and non-transfer experiments, we use a mixture of civil and emer-
gency vehicles in the ratio 10:1. As seen in Fig. 4 (a) (red), the agent
equipped with an overall understanding of the traffic environment
(from the source task the agent learns to optimize traffic flows on a
clear sky day after approx. 22000 time-steps into training) quickly
learns (after approx. 5000 time-steps into fine-tuning) to prioritize
emergency vehicles’ swift movement through the intersection via
transfer learning. In contrast, training our agent with random param-
eters to prioritize navigation of emergency vehicles demonstrated
relatively slow learning (blue).
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Figure 6: Images demonstrating attention visualization real-world intersections in London city on clear, smoggy, rainy, night and
distorted scenes (Marble Arch, Piccadilly Circus, Gunnersbury Lane, Scotch Corner and Oxford Circus obtained from live TfL
cameras). There is clear attention on emergency and public transport vehicles and the lane with higher traffic density (in the absence of
public transport vehicles); obstructions (e.g. raindrops on camera), adverse lighting and smog do not affect the network’s performance.

6.2.2 Dimly-lit night. Since our signal control agent perceives its
environment using vision, we believe it is important to validate its
agility when subjected to dim lighting (illustrated in Fig. 1 (b)). Our
experiments in this set-up include; (1) With transfer from the source
domain (signal control including emergency vehicles, outlined in
Sec. 6.2.1); in the target domain experiment, we reuse a previously-
learned policy from the source domain. (2) Without transfer; we train
our agent from scratch with random neural network initializations
on a dimly-lit night. As seen in Fig. 4 (b), the agent relying on
previously-acquired skill-set (red) learns to minimize the junction
travel time for individual vehicles almost instantaneously. In contrast,
the agent with the random neural network initializations (blue) takes
longer to learn. The target experiment agent’s basic understanding of
the traffic scene and its ability to learn a clearly structured topology
in the regular lattice of pixels from the visual input data (from source
task the agent learns to optimize traffic flows after approx.27000
time-steps into training and fine-tuning), allows it to quickly adapt
to the changing lighting conditions.

6.2.3 Rainy evening. Here, our agent learns to optimize traffic
flows in the presence of rain (illustrated in Fig. 1 (c)). For these
experiments, we simulate in Traffic3D rain of 10mm/h. In this setup,
we conduct two experiments: (1) With transfer from the source do-
main (signal control including emergency vehicles and dim-lighting,
outlined in Sec. 6.2.2); in the target domain experiment, we reuse
a previously-learned policy from the source domain. (2) Without
transfer; we initialize our agent with random neural network param-
eters to optimize the flow of traffic on a rainy evening. As seen in
the graph of Fig. 4 (c), the agent making use of learned policy (red)
learns to reduce junction travel time for individual vehicles almost
instantaneously. A heavy rain of 10mm/h has little/no effect on our
agent’s ability to interpret the fundamental traffic scene (from source
task the agent learns to optimize traffic flows after approx.27K time-
steps into training). In contrast, the agent initialized with random

neural network parameters (blue) does not have any pre-existing
knowledge to build on, in consequence, it learns relatively slowly.

6.2.4 Snowy day. Here, our agent learns to optimize traffic flows
in the presence of snow (illustrated in Fig. 1 (d)). In this setup,
we conduct two experiments; (1) With transfer from the source
domain (signal control including emergency vehicles, as well as
dim lighting and rain, outlined in Sec. 6.2.3); in the target domain
experiment, we reuse a previously-learned policy from the source
domain. (2) Without transfer; we initialize our agent with random
neural network parameters to optimize the traffic flows on a snowy
day. The results shown in Fig. 4 (d) indicate initial negative transfer
as agent learning via transfer learning (red) performs worse than
the agent using the random initializations (blue). We attribute this
performance to the fact that snow, being opaque in nature, causes
visibility degradation and occlusion; significantly modifying the
agent’s visual input. This affects the agent’s prior understanding of
the traffic scene and its object localization potential; leaving fewer
points of visual reference from formerly-possessed knowledge. In
contrast, the agent with random initializations begins learning in the
presence of snow and gradually learns to optimize the flow of traffic.
This type of experiment informs us as per the need to pre-train agents
for snowy scenes prior to deployment.

6.2.5 Different Junction Layout. Here, we establish the ease
of deployment of our signal control agent to new junctions with
varied topologies/structures. Our experiments in this set-up include:
(1) With transfer from the source domain (signal control including
emergency vehicles, as well as dim-lighting and rain, outlined in
Sec. 6.2.4); in the target domain experiment, the agent reuses the
previously-learned policy from the source domain. (2) Without trans-
fer; the agent is trained with random neural network initializations
to optimize traffic flows through a new (visually different) junction.
The difference between the junction layouts in the source (4-legged



Figure 7: Images demonstrating attention visualization on unrelated (non-traffic) scenes, after the network has been trained on a
cross-junction scene. Areas of significant attention, visualised in red, appear in random places in these images.

junction) and target (2-legged junction) domains is that the 4-legged
junction has four traffic lights and the 2-legged junction has two
traffic lights. The results of these experiments are shown in Fig. 4
(e). Initially, the agent equipped with a learned policy starts worse
than the agent with random initializations, but it learns an effective
policy to optimize traffic flows much faster. Owing to the pre-trained
agent’s understanding of the basic traffic entities such as vehicles,
lane-markings, it adapts its behavior to the varied junction layout. In
contrast, the agent using the random initializations devotes consider-
able time to exploring the traffic environment from the beginning,
slowly learns its intrinsic feature representation, before it subse-
quently optimizes the traffic flows through the intersection. This is
an indication that it is not only feasible, but also desirable to re-use
a previously trained agent on a new intersection layout.

7 DEPLOYMENT AND EVALUATION IN THE
REAL-WORLD

Our vision-based signal control system is real-world deployable
without the need for expensive infrastructure upgrades. For example,
Transport for London publishes real-time footage from its network
of traffic cameras in the city of London (www.tfljamcams.net). Il-
lustrated in Fig. 5, is the proposed execution of DRL-based signal
control on a real-world intersection (in this case Scotch Corner, Lon-
don). Our signal control agent will sense the environment in real
time using raw camera footage. It will then process this informa-
tion and determine a signal optimization policy to move the traffic
through the intersection as efficiently as possible. Lastly, via soft-
ware integration/API, the agent will send commands to the controller
to implement the optimized signal phase plan. At settings monitored
by multiple cameras, it is possible to combine all streams to obtain
an extensive state of the intersection and apply our signal control
DRL algorithm on the combined input space.

Aiming to evaluate the deployment readiness of our vision-based
signal control method, we demonstrate the attention visualization
of our signal control policy (trained entirely on simulated footage
of a four-legged intersection on Traffic3D) on TfL CCTV images
of intersections in London; Piccadilly Circus, Gunnersbury Lane,
Scotch Corner, Marble Arch and Oxford Circus (illustrated in Fig. 6),
which have significantly different layouts. While no actions are
taken in this experiment, the attention visualisation demonstrates
that our policy is able to accurately recognise different vehicles on
real intersections (i.e. public transport and emergency vehicles to
give them priority access of the intersection). Additionally, Figs. 6(e)-
(h) demonstrate the successful attention visualization of our signal

control policy on real-world intersections, on the scenes affected by
heavy rain, night-time lighting and distorted camera output. In the
absence of public transport and emergency vehicles, attention can
be seen on the lane with higher traffic density (around the vehicles
closer to the intersection), in line with the training the agent has
experienced. Testing our signal control policy on varied real-world
traffic data provides us with a close proxy of our DRL-based agent’s
performance in real-world traffic settings. While even the smallest
of perturbations to an agent’s input state representation can lead to
undesirable outcomes, the use of domain randomization counters this
issue by exposing the agent to a variety of settings during training.
Fig. 6 demonstrates our agent’s ability to transfer from simulation
to real-world settings comprising visual traffic data captured with
camera angles we have no control over, different weather conditions
(clear and rain), lighting (day and night) and types of intersection
layouts to which the agent has never been exposed to during its
training phase. This strongly indicates that our agent does not overfit
to the training data and is robust to distributional shift.

To further validate the efficacy of our DRL-based signal control
agent, we applied attention visualisation in the same way to a set
of unrelated (non-traffic) scenes (www.gettyimages.co.uk). This is
common practice in attention visualisation-based system verifica-
tion; it confirms that the trained policy is only acting upon relevant
features [39, 40]. Our signal control policy trained on traffic scenes
shows attention at random places on the unrelated scenes ( Fig. 7).
This strongly emphasizes that our agent learns to recognise and act
upon features that are relevant to the traffic optimization task.

8 CONCLUSION

We presented a vision-based, end-to-end trainable autonomous traf-
fic signal control agent. Our agent optimizes traffic based solely on
live visual traffic data, without hand-crafted traffic state features. Our
agent, which has been trained with domain randomisation, achieves
individualized signal control that autonomously adapts to varying
junction types, traffic distribution, weather and lighting conditions,
both in simulation and the real world. Using attention visualiza-
tion, we advance towards explainable Al and translate our agent’s
signal control decisions into a human-understandable form. This
further helps us gain insight into our end-to-end (jointly learning
perception and control) signal control approach. We further highlight
the importance of using simulations to train autonomous agents by
demonstrating that the agent trained entirely on simulated scenes em-
ploying domain randomization produces a signal control policy that
can be successfully transferred to the real world with no pre-training.


www.tfljamcams.net
www.gettyimages.co.uk

In the future, we intend to deploy multi-agent RL to control networks
of intersections, exploring formal logic and probabilistic verification
of our signal control agent and the underlying simulation.
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