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Abstract 

 

Many important problems in communication 

networks, transportation networks, and logistics 

networks are solved by the minimization of cost 

functions. In general, these can be complex 

optimization problems involving many variables. 

However, physicists noted that in a network, a node 

variable (such as the amount of resources of the 

nodes) is connected to a set of link variables (such as 

the flow connecting the node), and similarly each link 

variable is connected to a number of (usually two) 

node variables. This enables one to break the problem 

into local components, often arriving at distributive 

algorithms to solve the problems. Compared with 

centralized algorithms, distributed algorithms have 

the advantages of lower computational complexity, 

and lower communication overhead. Since they have 

a faster response to local changes of the environment, 

they are especially useful for networks with evolving 

conditions. This review will cover message-passing 

algorithms in applications such as resource allocation, 

transportation networks, facility location, traffic 

routing, and stability of power grids. 

 

1. Introduction 

 

Optimization of network flows is one of the most 

important problems in science with many areas of 

application [13]. It has found wide application in 

circuits transporting electric currents, transportation 

networks, communications networks, hydraulic 

networks, mammalian circulatory systems and 

vascular systems in plants [1,7,14,27,30]. A unified 

approach to these problems is facilitated by the 

minimization of cost functions. For example, the cost 

functions may represent the dissipation energy (via 

Thomson’s principle for electric currents) [13] or 

time delays in communications networks. There is a 

close relation between the flow patterns and the cost 

functions.  

Traditionally, network resource allocation and 

routing problems have been solved using global 

optimization techniques, such as linear or quadratic 

programming [4]. However, with the increasing sizes 

of fixed networks and the evolving configuration of 

wireless networks, centralized control becomes 

increasingly costly and infeasible. Distributed control 

in networks involves a group of independent 

controllers which make locally optimal decisions. 

Compared with the traditional centralized approach, 

this has the advantage of less computational load and 

communication overhead, and robustness against 

network breakdown. The Dynamic Alternative 

Routing of British Telecom was an early successful 

example [19]. Also, in computer science, many 

algorithmic solutions have been proposed to 

distribute computational load among computers 

connected in a network, but they are usually more 

heuristic. Some of them may tend to optimize the 

benefit to an individual node or task, without 

considering the impact it makes to the rest of the 

network [5]. 

Message-passing algorithms originated from two 

threads. In the physics literature, the microscopic 

description of disordered systems is derived from the 

Thouless-Anderson-Palmer (TAP) equations [31], 

which were subsequently generalized to become the 

cavity method [22], and resulted in many 

computationally efficient schemes. These approaches 

have laid the foundation for the study of complex 

systems. Applications can be found in associative 

memories, perceptron learning, error-correcting 

codes, image restoration, CDMA multiuser 

demodulation [26], data compression [23] and 

compressed sensing [21]. In complex optimization, 

the theory has been applied to problems with discrete 

variables, such as graph partitioning [26], travelling 

salesman [22], number partitioning [26], K-

satisfiability [20], graph coloring [25], and coloring 

diversity [8]. 

Parallel to the development in the physics 

community, the informatics community applied 

graphical models to probabilistic information 

processing [15]. By mapping the probabilistic 

relations between the parameters to links in graphs, 

the problems become factorized and can be solved by 

iterating the message-passing equations that relate the 

conditional probabilities on neighboring nodes. This 

technique has been fruitfully applied to pattern 

classification, image restoration, error-correcting 

codes and data compression. For example, the 

famous belief propagation (BP) algorithm has been 

successfully applied to error-correcting codes. 
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In this review, we consider the application of 

message-passing algorithms to resource and flow 

allocation problems in transportation and logistics 

networks. Our contributions have been presented in 

several previous publications [32,33,36,37,35,38,18, 

39,16,17]. 

 

2. The Resource Allocation Problem 

 

We start with a typical model of resource allocation 

on networks [32,33]. Consider a network of N nodes, 

labeled i = 1, …, N. The set of neighbors of node i is 

given by i. Let i be the capacity of node i. Positive 

i represents the provision of resources, and negative 

i their consumption. The objective of optimization 

is to transport the resources along the links so that the 

total transportation cost is minimized, while the final 

quantity of resources of each node becomes non-

negative. 

Let yij  yji be the flow on the link from j to i, 

and an even function (yij) the transportation cost 

along link (ij). Depending on the context, (y) can be 

a convex or concave function of yij. If (y) is convex, 

for example, (y)  y

 for  > 1, it tends to 

homogenize the flow. This is useful when traffic is 

heavy and one aims to avoid congestion. On the other 

hand, if (y) is concave, for example, (y)  y

 for  

< 1, it tends to concentrate the flows in a few links. 

This is useful when traffic is light or one aims at 

consolidating the resources to utilize fewer links [34]. 

Hence the optimization problem becomes the 

minimization of E = (ij)(yij) subject to 
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Introducing Lagrange multipliers, the function to be 

minimized becomes 

 

   














)(

)(

ij i

i

ij

ijiij
yyL   and .0 i

i
  (2) 

 

The non-positivity of i arises from the minimization 

of L. Optimizing L with respect to yij, one obtains 
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where i is referred to as the chemical potential of 

node i, and ’ is the derivative of  with respect to its 

argument. This can be interpreted as the current being 

driven by the potential difference. 

The chemical potentials can be obtained by 

solving Eq. (1) together with the non-positivity of i. 

In particular, for the quadratic cost (y) = y
2
/2, 
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Alternatively, we introduce the cavity method. 

This method is known to be exact in sparse networks. 

Since the probability of finding loops of finite lengths 

is vanishing in large sparse networks, the structure of 

a sparse network can be approximated by a tree 

locally, and the correlations among the branches of a 

tree are neglected. In each branch, nodes are arranged 

in generations. A node is connected to an ancestor 

node of the previous generation, and node i is 

connected to |i|  1 descendant nodes of the next 

generation. 

Suppose the ancestor of node j is node i, and its 

descendants are labeled by k  j\i. Then the total 

energy Eji(yij) of the tree terminated at node j can be 

expressed as the energies Ekj(yjk) of its descendants 

that branch out from node j 
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In the framework of the cavity method, these energies 

are cavity energies, since the effects of the ancestor 

nodes are not accounted for. The local nature of their 

recursion relation points to the possibility that the 

network optimization can be solved by message-

passing approaches. However, in contrast to other 

message-passing algorithms that pass conditional 

probability estimates of discrete values to 

neighboring nodes, the messages in the present 

context are more complex, since they are functions 

Eji(yij) of the current yij. 

We simplify the messages to two parameters, 

namely, the first and second derivatives of the vertex 

energies. Let 
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be the message passed from node j to i. Based on the 

messages received from the descendants k  i, the 

vertex energy from j to i can be obtained by 

minimizing the energy in the space of the current 

adjustments jk drawn from the descendants. The 

optimal solution is given by 
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The first and second derivatives of the optimal 

solution lead to the forward message 
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To calculate the flow yij on a link, we can consider 

the link as the bridge between two trees, one with 

vertex i and the other j, with flows y and y from the 

vertices respectively. Taking into account the double-

counting of the transportation cost on the bridge, the 

current is given by 
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The average transportation cost per link can also be 

calculated from 

 

 
.)(

)'()'()'(minarglink
'}{

yyEyEy
ijjiy

yE







           (9) 

 

The message-passing algorithm achieves global 

optimization by randomly selecting links and passing 

messages to neighbors to calculate the optimal flows. 

It can be verified that the message-passing 

algorithm, in the two-parameter approximation, yield 

solutions identical to the chemical potential algorithm, 

which is exact even when loops are present, as long 

as the algorithms converge [33].  

 

 

3. Networks with Finite Bandwidths 

 

The message-passing algorithm can be extended to 

consider the effects of bandwidths of the 

transportation links [36,37]. In communication 

networks, connections usually have assigned 

bandwidths. Bandwidths limit the flows in the links. 

However, in these networks, nodes with resource 

demand can still experience shortage even though 

their neighbors have adequate supply of resources, 

since the provision of resources can be limited by the 

bandwidths of the links. Hence the cost function is 

generalized to include the cost of shortage of 

resources, and the problem becomes the minimization 

of the cost function 
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subject to constraints 
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For quadratic costs (y) = y
2
/2 and () = 2

/2, the 

flow is related to the potential difference by yij = Y(j 

 i), where 
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The message-passing algorithm can also be worked 

out. Here we describe some interesting results due to 

the bandwidth constraints. 

Links of three types can be identified. Those 

links with |yij| = W are referred to as saturated links. 

Those with 0 < |yij| < W and |yij| = 0 are referred to as 

unsaturated and idle links respectively. From figure 1, 

we note that as the bandwidth decreases, the fraction 

of saturated links increases since for a link to 

transport the same flow, it is easier to saturate a link 

with low bandwidth than one with higher bandwidth. 

To provide sufficient resources to the consumer 

nodes, one would anticipate a decreasing fraction of 

idle links as the bandwidth decreases, since more 

links should participate in the task of resource 

allocation. Surprisingly, we notice an increasing 

fraction of idle links as the bandwidth decreases, in 

contrast with our anticipation. 
 

 
 

Figure 1. The fraction of idle, unsaturated and saturated links as a 

function of bandwidth for  = 0 [36]. 

 

This is a consequence of the bottleneck effect, as 

illustrated in figure 2. When the bandwidth decreases, 

resources transferred from the secondary neighbors 

may become redundant since resources from nearest 

neighbors already saturate the link to the unsatisfied 

node, which can therefore be considered as a 



bottleneck in transportation. The existence of 

bottlenecks is common in many real networks. 

Among the most common examples are bottlenecks 

occurring in traffic congestion. 

 
Figure 2. An example of a bottleneck effect [36]. 

 

Next, we consider the high connectivity limit. In 

this limit, the transportation is so efficient that no 

nodes suffer from shortage for positive . For 

negative , all resources from the providers can be 

distributed to the consumers. For the quadratic cost 

() = 2
/2,  = , and the chemical potential is 

equal to the final resource (or the minus of the 

shortage). In the high connectivity limit, the chemical 

potential  of a node becomes a well-defined 

function of the initial resource . 

For quadratic costs (y) = y
2
/2 and () = 2

/2, 

and a Gaussian distribution of  with variance 1, this 

function is monotonic as long as ,/2/ cW   

where c is the connectivity. However, when W  

,/2/ c turning points exist as shown in figure 3(a). 

This creates a thermodynamically unstable scenario, 

since in the region with negative slope, nodes with 

lower capacities have higher chemical potentials than 

their neighbors with higher capacities. This implies 

that resource flow from poorer nodes to richer ones. 

Nevertheless, there exists another stable solution in 

which the unstable region is replaced by a range of 

constant  as shown in figure 3(b), analogous to 

Maxwell’s construction in thermodynamics. The 

position of this construction can be determined by the 

conservation of resources, which implies that the 

areas A and B in figure 7(b), weighted by the 

distribution of , should be equal. 

Nodes with uniform chemical potentials 

represent clusters of nodes interconnected by an 

extensive fraction of unsaturated links, which 

provides the freedom to fine-tune their flows so that 

the shortages among the nodes are uniform. They are 

referred to as balanced nodes. Their quantity is a 

measure of the efficiency of resource allocation. 

 

 
Figure 3. Maxwell’s construction on () [36]. 

 
Figure 4. The simulation results for () for N = 10,000, c = 15, R 

= 0.1,  = 1 and W = 3/c with 70,000 data points, compared 

with the theoretical prediction. Inset: the corresponding results for 
W = 1.2/c [36]. 

 

As shown in figure 4, the simulation results 

agree with the analytical results. The presence of the 

balanced nodes at high bandwidth, and the absence at 

low bandwidth, are evident.  

It is well known that communication networks 

have scale-free structures [2]. Their connectivity 

distribution obeys a power law, and is characterized 

by the presence of hubs, which can modify the 

network behavior significantly. Figure 5 shows the 

simulation results for nodes with connectivity 3 and 

10 in a scale-free network. The data points are 

consistent with the analytical results for both sets of 

nodes. This implies that the previous argument of 

increasing efficiency by increasing connectivity also 

holds for scale-free networks, as a smaller gradient is 

found for nodes with higher connectivity. 

More important, nodes with low connectivity 

benefit from the presence of hubs in the networks. To 

see these benefits, the simulation results for nodes in 

scale-free networks are compared with nodes in 

regular networks of the same connectivity. As shown 

in figure 5(b), the data points from regular networks 

are more scattered away from the Maxwell’s 

construction, when compared with those from scale-

free networks. This shows that the presence of hubs 

increases the efficiency of the entire network, 

especially for nodes with low connectivity. This 

provides support for scale-free networks being better 

candidates for resource allocation than regular 

networks.  

W = 3/c W = 1.2/c 



 
Figure 5. Simulation results for (, ) for N = 2  105, R = 0.1, Wij 

= 3/max(ci, cj) and  = 1 as compared with theoretical results, 

for (a) nodes with ci = 10 in scale-free networks with P(ci) ~ ci
3, (b) 

nodes i with ci = 3 in scale-free networks and nodes in regular 

networks with c = 3. Each data set contains 2,500 data points [36]. 

 

 

4. Optimal Source Location 

 

So far we have considered the issue of 

optimizing transportation costs by adjusting the flow 

of resources. A further issue in network design and 

optimization involves selecting additional locations 

to install source nodes. The optimal source location 

problem has wide applications [35,38]. For example, 

to determine the optimal locations of access points in 

wireless networks, one needs to balance the 

installation cost of the access points and the power 

transmission cost of the channels linking the 

subscribers. 

With network applications in mind, we consider 

the case in which a fraction s of nodes are surplus 

nodes with i = A (>> 1), and a fraction of d  1  s 

of nodes are deficient nodes with i = 1. Formally, 

we introduce the state variables si = 1.  For a surplus 

node i, si is fixed at +1, whereas for a deficient node i, 

si = 1 when it is converted to a source node with i 

= A, and si = +1 when it remains a consumer node. 

The cost function is then 
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/2 is the 

installation cost of converting an initially deficient 

node to a source node. 

The optimal flow is given by yij = jsj  isi and  
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optimal {si} can be found by an approach similar to 

the GSAT algorithm [28]. 

As shown in figure 6 for networks with regular 

connectivity c = 3, two phases can be identified: (1) 

the all-source phase for 3
1



u , in which all nodes 

are assigned as source nodes; (2) the partial-source 

phase for 30
1



u , in which only some nodes 

are assigned as source nodes. The fraction of source 

nodes is a discontinuous function of u
1

, showing 

abrupt jumps at threshold values of u
1

. The step size 

of the curve decreases as u
1

 decreases, and gradually 

becomes unresolvable in the numerical experiments. 

This resembles the Devil’s staircase observed in the 

circle map and other dynamical systems [11]. These 

thresholds mark the positions at which certain 

configurations of the source and consumer nodes 

become energetically stable. The regime 2/3 <  u
1

 

< 3  with isolated consumer nodes is the singlet 

regime, and 2/325/21
1



u  is the doublet 

regime. 

 
Figure 6. Simulation results of average energy per node and the 

fraction of network nodes acting as source nodes. Parameters: c = 3, 

N = 100, and 90% of the nodes are deficient. New clusters formed 
on increasing u-1 are sketched on top, with filled and unfilled 

circles representing consumer and source nodes respectively [38]. 

 

Using the cavity method, we can show that in the 

singlet regime, only 3 cavity states are relevant. They 

form a closed set under recursion: source (S), 

consumer (C), and bistable (B). The recursion 

relations reduce to 

 

,// CBSBS            (14a) 

,// BCBSBS           (14b) 

.nscombinatioother  all S         (14c) 

 

In equations (14a) and (14b), the states of c  1 and c 

 2 descendants are either S or B respectively. 

Similarly, the full states of a node are denoted as C, B 

and S, representing respectively the consuming, 

bistable and source states. They are obtained via 

 

,// CBSBS            (15a) 

,// BCBSBS           (15b) 

.nscombinatioother  all S         (15c) 



 

However, discrepancy exists between the 

simulated and predicted results of the average energy 

when the fraction of initially deficient nodes is high. 

We thus examine the stability of the assumption that 

the optimal state is unique (the so-called replica 

symmetric (RS) ansatz). We define 1
 ij

s
  if the 

cavity state of node j excluding i is uniquely S (that is, 

the probability of the cavity state to be S is exactly 1), 

and 0 otherwise. Similarly, 1
 ij

c
  if the cavity 

state is uniquely C, and 0 otherwise. We further 

introduce .1
ij

c

ij

s

ij

g


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ij

g


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the occurrence of glassy behavior. 

As shown in figure 7, the picture of a unique 

optimal solution breaks down when the fraction of 

initially deficient nodes is greater than 0.75 for c = 3. 

Similar to the point where the RS solution in 

disordered systems becomes unstable, this transition 

is called the Almeida-Thouless (AT) transition [10]. 
 

 
Figure 7. The site averages of the variables ij

s


 , ij

s


  and ij

s


  

as a function of d, the fraction of initially deficient nodes for c = 3. 
The symbols represent the simulated fraction of non-converging 

messages. AT

d
  locates the AT transition [38]. 

 

To improve the analysis, entropic effects have to 

be considered since bistable states exist [18]. 

Recursion relations similar to the minimal vertex 

problem were introduced [40]. The message passed 

from node j to node i consists of two cavity variables: 

the probability of node j being in the S state (when 

node i is excluded), and the entropy change when 

node j and its adjacent links are added, except (ij). 

Extending the analysis to the picture that multiple 

clusters of optimal solutions exist (the so-called one-

step replica symmetry-breaking solution), the 

predicted fraction of source nodes is consistent with 

the asymptotic limit obtained by extremal 

optimization [6]. 

Accompanying entropic effects is the appearance 

of frozen nodes, which are those initially deficient 

nodes taking the same state (source or consumer) in 

all optimal solutions. In networks where the positions 

of the initially deficient nodes are randomly 

distributed, it is sufficient to consider freezing on the 

2-core subgraph, that is, the graph that remains after 

recursively removing the initially deficient nodes of 

connectivity one or lower. If the thermodynamics of 

the 2-core is simple, so is the entire graph, since the 

initially deficient nodes outside the 2-core are in tree-

like structures and their states can be determined 

accordingly. 

We classify the deficient nodes in the network 

into 2-core nodes and peripheral nodes (those that are 

not on 2-core). Figure 8(a) and (d) show that the 

fraction deviates from the RS prediction when s is 

small, whereas the fraction of frozen peripheral nodes 

is almost consistent with the RS prediction in the 

entire range of s. Among the 2-core nodes for c = 3, 

we further classify the nodes into hubs (those 

connected to 3 other 2-core nodes) and chain nodes 

(non-hubs connected to only 2 other 2-core nodes). 

Comparing figures 10(b) and (c), we conclude that 

the deviation from the RS prediction is primarily due 

to the hubs rather than other substructures.  

 

Figure 8. The dependence of the fraction of frozen nodes on the 

fraction of surplus nodes s. (a) All frozen 2-core nodes considered. 

(b) Frozen hubs. (c) Frozen chain nodes. (d) Frozen peripheral 
nodes. Lines: replica symmetric prediction. Symbols: Asymptotic 

results of the extremal optimization algorithm [18]. 
 

5. Facility Location Problem 

 

So far we have considered the optimization of 

transportation costs on networks, but there are many 

communication and logistics networks in which the 

coverage of a geographical region is equally crucial. 

Examples include networks of fire sensors, 

surveillance video cameras, local weather monitors, 

locations of supermarket branches, teller machines, 

chain store outlets, and public facilities such as such 

as schools and clinics. 

As an example illustrating the need to balance 

coverage and transportation cost, consider a 



population of sensors, each with simple structure, 

used to collect local information in a region. The 

sensors form a network sending the collected 

information to a central base station [6,9]. Due to the 

limited power available to each sensor, the active 

lifetime of the network may be short. To prolong the 

lifetime of the network, an alternative is to render 

some sensors inactive. If the transportation cost is to 

be minimized, then only those sensors in the 

neighborhood of the base station will be activated. 

However, to reduce the amount of information loss, 

the active sensors should be spread out. 

Hence we consider a transportation network and 

introduce Si = 1, 1 when node i is active or idle, 

respectively [23]. The cost function is given by 
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Compared with previous models, there are two extra 

terms. The second term represents the loss in value 

due to idling a node, and U is the turn-off cost. The 

last term tends to spread the active nodes and hence 

increase the coverage, and J is the redundancy cost. 

In the following example, (x) = x
2
, the flow 

originating from each node is (1 + Si)/2, and all flows 

terminate at the base station. 

As shown in figure 9(a), a typical configuration 

consists of an active core around the center, 

surrounded by an area of alternating active and idle 

nodes, and an outer inactive band. 

Figure 10 shows the phase diagram in the space 

of U and J. The examples in figure 9 belong to the 

mixed phase at the center of the diagram. When U 

increases, the active core expands until it covers the 

entire lattice, and results in the all-active phase. 

When J increases, the active-idle band expands until 

it covers the entire lattice, resulting in the active-idle 

phase. When U or J decreases, we have an active-idle 

core or an all-active core surrounded by an all-idle 

region. 

With the extensive regions of the all-active and 

active-idle states in the phase diagram, it may be 

misleading to conclude that optimal solutions in the 

mixed phase which have more complex 

configurations do not result in significant gains over 

all-active or active-idle state. However, figure 11 

shows that the energy of the optimal state is 

significantly lower than the all-active and active-idle 

states when the fraction of active nodes lie between 

0.5 and 1. 

 

 

 
 

 

 
 

 

 
 

 
Figure 9. Three examples of optimized node configuration on a 

square lattice of N = 121 at different values of U and J. The blue 
frames in (a) correspond to the active core (innermost), the active-

idle band (in-between) and the inactive band (outermost) [39]. 

(b) 

(c) 

(a) 



 
Figure 10. Phase diagram and the fraction of active nodes as a 

function of J and U on a square lattice with N = 121.The optimal 
configurations obtained at points A, B and C are shown in figures 

9(a) – 9(c) respectively. fa is the fraction of active nodes. fAN is the 

fraction of active nodes with at least one active neighbor. fON is the 

fraction of nodes where all neighbors are in the opposite state. fa-i is 

the fraction of links which connect an active and an idle node [39]. 

 
Figure 11. The dependence of energy on U of the all-active, the 

active-idle, and the optimal states of a square lattice with N = 121 

and J/N ln N = 0.0083 [39]. 

 

 

6. Traffic Routing 

 

In the family of network optimization problems, 

multipath optimization is among those with the 

broadest applications, ranging from public transport 

to Internet traffic, sensor networks, military convoy 

movements and journey planners. However, the 

difficulty lies in the requirement to simultaneously 

assigning the individual paths that affect each other 

while optimizing the global cost. This is similar to 

minimizing the energy of interacting polymers, and 

was recently used to derive a message-passing 

algorithm for routing [34]. The same result can also 

be derived from the cavity method. 

Consider the routing of M passengers, each 

labeled with given source and destination on the 

network, and the cost function is E = i(i), where i 

is the fraction of passengers passing through node i.  

Let the cavity energies be 

ij
A


 when passenger 

 routes from node j to i, 

ij
B


 when she routes from 

node i to j, and 

ij
N


 when she does not route 

between i and j. As schematically shown in figure 12, 

the recursion relations can be written as 
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To determine the route of passenger , it suffices to 

provide the values of the cavity energies relative to 

.


ij
N


 Hence the two messages to be passed from 

node j to i for passenger  are 
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Figure 12. The recursion relations for ,



ij
A


 



ij
B


 and .



ij
N


 

 

We apply the algorithm on the London under-

ground network based on real passenger source-

destination data obtained from the Oyster card system. 

The cost function is ,
2


i i

E   considered to be a 

measure of congestion, since it is proportional to the 

average crowd size a passenger will meet along her 

journey. Comparing with the commonly used 

Dijkstra algorithm [12], the cost is reduced by 20%, 

with only a slight increase in the average path length 

by 5.8%. Comparing with the state-of-the-art 
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congestion-aware algorithm, the cost is reduced by 

0.7%, with an increase in the average path length by 

0.7% [29]. 

 

7. Power Grids 

 

The stability and robustness of power grids received 

renewed interest with the advent of renewable energy 

such as wind and solar power. These energy sources 

are much more intermittent and volatile, and the 

power grid needs to cope with fluctuations in 

supplies and demand. If these fluctuations lead to 

node or link failures, they can cascade throughout a 

large area of the network [24,3].  

In a typical situation, the power distributor needs 

to consider the pattern of distribution in the next 15 

to 60 minutes. Hence distribution algorithms need to 

make decisions based on probabilistic predictions of 

future supply and demand. Recently, a message-

passing approach was proposed to deal with the 

probabilistic nature of the problem [17]. This can be 

done by considering equation (5), but noting that j is 

a fluctuating quantity. Averaging over j, we have 
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For j obeying a Gaussian distribution with mean 

j and 2

j
 , analytical expressions can be obtained, 

albeit a bit tedious to be presented in this review. 

Nevertheless, the method can efficiently allocate 

extra resources to cope with fluctuating demands. 

Ongoing research work will continue to address more 

issues in this family of problems. 

 

8. Conclusion 

 

We have considered how message-passing algorithms 

can be applied to different useful problems in 

transportation and logistics networks. Starting from 

the fundamental and typical problem of optimizing 

transportation costs during the allocation of resources 

from source nodes to consumer nodes, the algorithm 

can be extended to various applications. In dealing 

with bandwidth constraints, we found interesting 

effects such as the bottleneck effect and the 

appearance of clusters of balance nodes. The problem 

can also be combined with the decision of optimal 

source locations, arriving at a problem involving both 

continuous and discrete variables. This leads to 

pictures of complex energy landscapes that involve 

multiple optimal solutions, corresponding to the so-

called replica symmetry-breaking solutions. To deal 

with the facility location problem, one can also 

include redundancy costs that take into account the 

need to increase coverage. Generalizing from 

unlabeled traffic to multi-class labeled traffic (that is, 

traffic with individual components specifying source 

and consumer nodes), the algorithm can be applied to 

multi-passenger routing. By including uncertainties 

in supply and demand, it can be used in pre-emptive 

control in power grids. 

These studies show that the message-passing 

technique has the advantages of being decentralized, 

having lower computational complexity, lower 

communication overhead, and faster response to local 

changes. Although it is derived by assuming a sparse 

network structure, it yields exact results when the 

algorithm converges. The cavity method also enables 

us to introduce interesting analysis. 

Another distributed approach that we have 

introduced is the chemical potential algorithm. 

Chemical potentials arise from the Lagrange 

multipliers of the conservation of resources. Since 

they can be interpreted as storage prices of resources 

at the nodes [19], they have the potential to be 

applied to soft control of traffic and logistics through 

pricing policies. 

The above decentralized approaches are expected 

to be applicable to many problems that can be 

formulated in terms of network structures. Besides 

transportation and logistics networks, they can also 

be useful in areas such as engineering, biology, 

economics and social science. 
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