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Abstract  

Maintenance of epithelial polarity depends on the correct localization and levels of polarity 

determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size 

and identity of the apical membrane, yet little is known about the molecular mechanisms 

controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical 

membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 

2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the 

binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing 

endocytosis by mutations in AP-2 causes expansion of the Crumbs-positive plasma membrane 

and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, 

knocking-down both AP-2 and Stardust retains Crumbs on the membrane. This study provides 

evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface 

levels of Crumbs, which are essential for maintaining epithelial polarity.  

 

Introduction   

Epithelial tissues line cavities and surfaces of most animals to compartmentalize the body and 

separate the interior from the external environment. Epithelial cells are highly polarized, with the 

apical membrane facing the outside or a lumen and the basolateral membrane contacting 

neighboring cells and the basement membrane. Apical and basolateral membrane domains 

perform distinct functions, which are ensured by their specific protein and lipid composition. 

Adherens junctions (AJs) and tight junctions (TJs) mark the boundary between apical and basal 

and guarantee the integrity of epithelial tissues [reviewed in (Knust and Bossinger, 2002; 

Rodriguez-Boulan and Macara, 2014; St Johnston and Ahringer, 2010; Tepass et al., 2001)]. An 

epithelial polarity program (EPP), consisting of a network of evolutionarily conserved proteins, 

ensures establishment and maintenance of epithelial polarity during tissue morphogenesis and 

homeostasis (Rodriguez-Boulan and Macara, 2014). One important player of the EPP is Crumbs 

(Crb), originally identified in Drosophila. Loss of function of Drosophila crb causes loss of 

apico-basal polarity and tissue integrity of many embryonic epithelia (Grawe et al., 1996; Jürgens 

et al., 1984; Tepass, 1996; Tepass and Knust, 1990). Comparable phenotypes are observed in 

mouse embryos lacking either Crb2 or Crb3, two of the three mammalian Crb genes (Whiteman 

et al., 2014; Xiao et al., 2011). These results highlight the functional conservation from flies to 

mammals.  
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Drosophila Crb is a type I transmembrane protein, whose extracellular domain is composed of an 

array of EGF (epidermal growth factor)-like repeats, intermingled with repeats with similarity to 

the globular domain of laminin A. The short, highly conserved intracellular domain of Crb 

contains two functional motifs, a PDZ (PSD-95/Discs large/ZO-1) domain-binding motif (PBM) 

and a FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif (FBM). The FBM 

participates in regulating Hippo-mediated growth of wing imaginal discs (Chen et al., 2010; Ling 

et al., 2010; Ribeiro et al., 2014; Robinson et al., 2010) and is required for dorsal closure during 

embryogenesis (Klose et al., 2013). The PBM recruits the scaffolding protein Stardust (Sdt), 

which stabilizes Crb on the apical surface (Klose et al., 2013). Hence, loss of sdt mimics the crb 

mutant phenotype (Bachmann et al., 2001; Hong et al., 2001). Sdt associates with DPATJ and 

DLin-7 to form the core of the Crb complex [reviewed in (Bulgakova and Knust, 2009)], while 

other proteins can transiently be recruited into the Crb complex, such as atypical protein kinase C 

(aPKC) or DmPar-6, members of the Par module (Kempkens et al., 2006; Nam and Choi, 2003).  

Loss- and gain-of-function studies have shown that proper Crb levels on the apical plasma 

membrane are important for polarity. Lack of Crb can result in loss of the apical surface and 

impairment of AJ stability of embryonic epithelia (Grawe et al., 1996; Tepass, 1996; Tepass et 

al., 1990). In contrast, Crb overexpression can induce the expansion of the apical surface, which 

eventually results in the disruption of the monolayered epithelial organization and/or tissue 

overproliferation (de Vreede et al., 2014; Fletcher et al., 2012; Klebes and Knust, 2000; Laprise 

et al., 2006; Lu and Bilder, 2005; Moberg et al., 2005; Pellikka et al., 2002; Tanentzapf et al., 

2000; Wodarz et al., 1995). Crb overexpression in developing photoreceptor cells can generate a 

second apical pole (Muschalik and Knust, 2011). Therefore, it is not surprising that multiple 

mechanisms are put in place to regulate Crb levels on the apical surface, including stabilization at 

and trafficking to and from the membrane. A positive feedback loop through homophilic 

interactions between extracellular domains of Crb in cis has been suggested to keep Crb on the 

apical membrane of follicle cells and thus ensures polarity (Fletcher et al., 2012). In addition 

homophilic interactions in trans between the extracellular domains of Crb molecules on 

neighboring cells have been proposed to contribute to Crb stabilization on the apical membrane, 

both in Drosophila  (Letizia et al., 2013; Roper, 2012) and in zebrafish (Zou et al., 2012).  

Beside stabilization at the membrane, various steps on the trafficking pathway participate in fine-

tuning the amount of Crb on the cell surface. Expression of dominant-negative forms of Cdc42 or 

Rab11 results in depletion of Crb from the membrane and loss of apico-basal polarity in cells of 

the embryonic neuroectoderm (Harris and Tepass, 2008; Roeth et al., 2009). Similarly, blocking 
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Vps35, a subunit of the retromer, which is involved in retrieval of transmembrane proteins from 

endosomes to the trans-Golgi network (TGN), causes loss of Crb from the apical membrane and 

disruption of epithelial polarity (Pocha et al., 2011; Zhou et al., 2011). Comparable phenotypes 

are observed in Drosophila epithelia mutant for α­Adaptin (α­Ada, encoded by AP-2α), a 

constituent of the adaptor protein 2 (AP-2) complex (de Vreede et al., 2014) and in epithelia 

lacking Shrub/Vps32, an ESCRT III component involved in endocytic sorting of membrane-

bound proteins to lysosomal degradation (Dong et al., 2014). These data underscore the 

importance of regulating Crb levels on the apical surface to ensure polarity and tissue 

homeostasis.  

To unravel in more detail the molecular mechanisms by which endocytosis regulates Crb levels, 

we analyzed the molecular and functional interaction between Crb and AP-2, a complex involved 

in clathrin-mediated endocytosis [(Matsui and Kirchhausen, 1990); reviewed in (Boehm and 

Bonifacino, 2001; Godlee and Kaksonen, 2013; Maldonado-Baez and Wendland, 2006; Reider 

and Wendland, 2011; Traub, 2009). The AP-2 complex is constituted of the large α­ and β

2­subunits, the medium μ2­subunit and the small σ2­subunit. Using antibody uptake assays in 

garland cells we show that AP-2α controls Crb endocytosis. Liposome recruitment assays reveal 

a direct interaction between the cytoplasmic domain of Crb and the AP-2 complex via the PBM 

of Crb, hence the same motif that binds to Sdt. Strikingly, while loss of Sdt results in loss of Crb 

from the apical membrane, simultaneous reduction of both Sdt and α­Ada prevents surface 

depletion of Crb in wing disc epithelia. These results show that the Crb-Sdt interaction prevents 

internalization of Crb by the AP-2 complex.  

 

Results 

α-Ada associates with Crb  

Given the observation that endocytic regulation of Crb is involved in regulating apical Crb levels, 

we asked whether Crb is a cargo for the AP-2 complex, an adaptor involved in internalization of 

transmembrane proteins. For this, we used the recently described proteo-liposome recruitment 

assay (Pocha et al., 2011). Since the amino acid sequence of the intracellular tails of all Crb 

proteins are highly conserved from Drosophila to mammals (Fig. 1A), we incubated mouse Crb 2 

(mCrb2) tail-coupled liposomes with an adaptor mixture, isolated from pig brain (Baust et al., 

2006; Crottet et al., 2002). This mixture was highly enriched in constituents of the AP-2 complex 

(Suppl. Fig. S1A, B). As positive control we used the amyloid precursor protein intracellular 
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domain (AICD), which contains a classical YXXF motif, and is internalized via clathrin-coated 

pits (Müller and Wild, 2013). This assay showed that mCrb2 tails interact with the AP-2 complex 

(Fig. 1B).  

Next, we investigated the subcellular localization of α-Ada and Crb in Drosophila follicular 

cells, which form a monolayered epithelium around the germ line. α-Ada was enriched apically, 

but could also be detected throughout the basolateral domain in the follicle cells (Fig. 1C, D). At 

this level of resolution, we observed that some, but not all, apical α-Ada positive punctae co-

localized with Crb (Fig. 1E, arrowhead and arrow, respectively). To confirm that the apical 

staining of α-Ada is due to expression in follicle cells rather than in germline cells (oocyte and 

nurse cells), which are in close contact with the apical surface of follicle cells and also express α-

Ada, we generated homozygous AP-2α3 clones in both follicle and/or germ line cells. AP-2α3 is a 

null allele induced by imprecise excision of a P-element, resulting in the deletion of 5’ non-

coding and coding regions, including sequences encoding the N-terminal portion of the protein 

(González-Gaitán and Jäckle, 1997). α-Ada staining was still visible at the apical pole of wild-

type follicle cells that face mutant germ line cells. In contrast, when either just follicle cells or 

follicle and germ line cells were mutant, α-Ada staining was not detected (Suppl. Fig. S1C, D). 

This result shows that both α-Ada and Crb are localized apically in cells of the follicular 

epithelium.  

 

The AP-2 complex regulates Crb localization and levels  

To address the functional relationship between α-Ada and Crb, we analyzed the phenotypes of 

clones homozygous for the loss of function allele AP-2α3. Follicular clones for AP-2α3 showed 

variable phenotypes, which were classified into four groups according to their severity. Crb 

expanded laterally in type I follicle cell clones, which did, however, not affect the monolayered 

organization of the epithelium (Fig. 2A). Cells in type II and III follicular clones were round and 

formed multi-layered epithelia. Crb was distributed on the whole plasma membranes in type II 

clones (Fig. 2B), and was partially or completely lost from the plasma membrane in type III 

clones (Fig. 2C). Cells of type IV follicular clones showed scattered Crb distribution and 

complete disruption of epithelial polarity and integrity, and often invaded the nurse cells (Fig. 

2D). To confirm that these phenotypes are not allele-specific, we generated clones homozygous 

mutant for other AP-2α alleles. Follicular clones mutant for AP-2α40-31, an allele that carries a 
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stop codon at the end of the head domain (Fig. 2F), showed punctate staining of Crb surrounding 

the cell outline and occasional complete loss of Crb, even in cells of the same egg chamber (Fig. 

2E). In contrast, AP-2αear26 and AP-2αear4 did not show any mutant phenotypes when homozygous 

mutant in follicle cells (Suppl. Fig. S2B, C). These alleles carry a deletion and a nonsense 

mutation in the ear domain of α-Ada, respectively (Suppl. Fig. S2A). The lack of a mutant 

phenotype may be due to functional redundancy provided by the ear domain of the AP-2β subunit 

(Owen et al., 1999; Owen et al., 2000; Slepnev and De Camilli, 2000). We also analyzed the 

phenotypes achieved upon loss of the AP-2σ subunit. Clones mutant for AP-2σKG02457, an allele 

caused by a P-element insertion in the coding region of the AP-2σ subunit (Bellen et al., 2004; 

Windler and Bilder, 2010) also showed multi-layering and Crb mis-localization (Suppl. Fig. 

S2D).  

To analyze whether AP-2 mutants specifically affect Crb localization, we examined the 

localization of other polarity proteins in follicle cells. Apical Sdt, DPATJ and Par6 were mis-

localized as well, and their distributions followed that of Crb in AP-2α3 clones (Suppl. Fig. 

S2E,F,G). Other apically localized proteins, such as the Notch receptor, were also mis-localized 

and followed the ectopically localized Crb complex (Suppl. Fig. S2H) (Windler and Bilder, 

2010). Concomitant with the expansion of the apical membrane, the Dlg-positive lateral 

membrane domain was reduced (Suppl. Fig. S2I). In addition, Armadillo (Arm), the Drosophila 

homologue of vertebrate β­catenin and a marker for the adherens junctions, no longer delineated 

the adhesion belt, but rather appeared in random spots in regions with epithelial multi-layering 

(Suppl. Fig. S2J). These results indicate that disruption of AP-2 function leads to polarity defects.  

Strikingly, some of the phenotypes observed upon loss of AP-2 are similar to those obtained upon 

Crb overexpression in follicle cells (Fletcher et al., 2012; Tanentzapf et al., 2000). Therefore we 

assumed that some of the polarity defects in AP-2 mutant cells are a consequence of increased 

and/or mis-localized Crb. If this assumption is correct, removing one copy of crb in an AP-2 

homozygous background should reduce the severity of the mutant phenotype. To address this 

question, we generated homozygous AP-2α40-31 follicular clones that carry only one functional 

copy of crb and investigated the percentage of mono- and multi-layered follicular epithelia as 

indicators of epithelial polarity. Wild-type cells and cells with a single functional copy of crb 

(crb11A22/+) formed normal mono-layered epithelia in 100% of all egg chambers analyzed. In 

contrast, only 25.2% of AP-2α40-31 homozygous mutant clones formed mono-layered epithelia. 

Reducing one copy of crb in AP-2α40-31 homozygous mutant cells (AP-2α40-31; crb11A22/+) 
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increased the number of clones forming mono-layered epithelia to 49.6% (Fig. 2G). The data are 

compatible with the conclusions that at least some aspects of the polarity phenotypes induced by 

loss of α-Ada are due to mis-localization and/or over-activity of Crb and that in wild-type cells 

α-Ada down-regulates Crb activity.  

We cannot rule out that some defects in Crb distribution observed in AP-2 mutants might be a 

secondary consequence due to Crb-independent loss of polarity. To further examine a link 

between Crb and AP-2, we continued the analysis in imaginal discs, since Crb is not required for 

the maintenance of apico-basal polarity and tissue integrity in these epithelia (Chen et al., 2010; 

Genevet et al., 2009; Hamaratoglu et al., 2009; Herranz et al., 2006), and the AJ marker E-

cadherin is still properly localized in crb mutant cells (Hafezi et al., 2012; Ribeiro et al., 2014). 

Unfortunately, most clones mutant for the loss of function alleles AP-2α3 and AP-2α40-31 were 

eliminated from the wing pouch. Cell elimination could be the result of accumulation of JNK-

mediated apoptotic signals, or cell competition due to overexpression of Crb (Hafezi et al., 2012). 

So far, we cannot give a final explanation. We showed that one phenotype, i. e. expansion of the 

Crb-positive membrane, is induced by loss of AP-2. To overcome this problem, we used a 

transhetero-allelic combination of AP-2α40-31 and the temperature-sensitive allele AP-2α4. The 

latter behaves like wild-type when raised at the permissive temperature (18°C), but at restrictive 

temperatures, i.e. at 25°C and 29°C, its function is partially or fully abolished, respectively 

(González-Gaitán and Jäckle, 1999). Crb was properly localized at the apical plasma membrane 

at 18°C, similar as the apical transmembrane protein Stranded at second (Sas) (Fig. 3A, D). At 

25°C, no obvious defects were observed, suggesting that a small amount of α-Ada is sufficient 

for Crb regulation. At 29°C, however, Crb staining appeared in apical punctae and extended to 

more lateral regions of the cell (Fig. 3C, F, yellow arrowhead). Interestingly, Sas was still 

properly localized at the apical membrane under this condition (Fig. 3F), and preliminary results 

suggest that localization of FasIII on the lateral membrane is not affected. These results suggest 

that the expansion of the Crb-positive plasma membrane is the result of reduced α-Ada activity, 

and not due to a general loss of apico-basal polarity. In addition, 69B-Gal4 driven α-Ada 

knockdown in wing discs showed Crb mis-localization and Crb levels were increased (Fig. 3G, 

H, I). Unlike in wing imaginal discs, large clones homozygous for AP-2α40-31 could be obtained in 

the eye discs. As previously shown, these discs showed strong morphological defects due to 

overproliferation and severely disrupted localization of actin and Notch (Windler and Bilder, 

2010). In these clones, Crb levels were increased about two-fold (Fig. 4B-D). These results 

suggest that in wild-type cells AP-2 regulates Crb levels. 
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Internalization of Crb depends on the AP-2 complex 

Our results led us to conclude that the AP-2 complex controls Crb levels at the plasma membrane 

by regulating its internalization. To further substantiate this conclusion, we performed antibody 

uptake assays in living tissues. However, due to the variable phenotypes developed by AP-2 

mutant follicle cells, consistent conclusions from these results were not possible. As mentioned 

above, mutant cell clones could not be obtained in wing discs. Moreover, the endocytosis rate of 

Crb in wild-type imaginal discs was far lower in comparison to Notch (Suppl. Fig. 3A-F) (Lu and 

Bilder, 2005). Therefore, we turned to the so-called “garland” or “wreath” cells of third instar 

larvae. These are nephrocytes forming a garland of cells, which are involved in the segregation 

and storage of waste products from the hemolymph. They are ideally suited to answer our 

question: they are big cells (20-30 µm in diameter), highly active in endocytosis (Chang et al., 

2002; Kosaka and Ikeda, 1983; Soukup et al., 2009; Wigglesworth, 1942) and show endogenous 

Crb expression on the surface and in cytoplasmic punctate (Suppl. Fig. S3G, H) (Tepass and 

Knust, 1990). The anatomical structure and physiological function of Garland cells are similar to 

vertebrate podocytes. The plasma membrane of Garland cells is compartmentalized, as indicated 

by the restricted localization of proteins forming the filtration barrier, e.g. Sticks and Stones (Sns) 

and Dumbfounded (Duf), the orthologs of the vertebrate nephrins NPHS1 and NEPH1, 

respectively (Weavers et al., 2009). When wild-type garland cells were incubated with anti-Crb 

antibodies, strong surface binding was observed (Fig. 5A), while only very faint surface signals 

were detected upon incubation with an unrelated antibody (data not shown). To monitor Crb 

internalization in the presence or absence of α-Ada, we performed antibody uptake assays in 

garland cells from wild-type or AP-2α3/AP-2α4 larvae raised at 29°C, and examined Crb 

internalization by measuring the fluorescence intensity of Crb from the cell surface to the center 

of the cell. To quantify the data, we subdivided the distance from the cell surface to the center 

into three regions [as defined by (Kosaka and Ikeda, 1983)]: i) surface region (invagination of 

plasma membrane and labyrinthine channels, 0-2 µm), ii) cortical region (2-4 µm), and iii) cell 

interior (4-7 µm). At time point 0, Crb was detected on the cell surface within 1 µm, both in wild-

type and AP-2α3/AP-2α4 mutants (Fig. 5A,B,C, 0 min). The rather broad label can be explained 

by the fact that the plasma membrane of garland cells is highly involuted (Kosaka and Ikeda, 

1983; Weavers et al., 2009). After 5 min chase, the majority of Crb was internalized in wild-type 

garland cells, and present in vesicles that spread throughout the cell cortex (around 2-3 µm). In 

contrast, most Crb remained associated with the cell surface (around 0-2 µm) in AP-2α3/AP-2α4 

mutant cells (Fig. 5A,B,C, 5 min). After 10 min chase, the intensity on the surface was reduced in 
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wild-type cells and Crb-positive vesicles were apparent in the cytoplasm. In AP-2α3/AP-2α4 

mutant cells, some Crb proteins still associated with the surface and only few vesicles were 

detected in the cortical region (Fig. 5A,B,C, 10 min). After 30 min chase, most staining was gone 

in wild-type cells, probably due to degradation of Crb. The small amount of Crb proteins 

observed in some cases on the cell surface may represent recycled proteins (Fig. 5A, 30 min, 

lower right). In AP-2α3/AP-2α4 mutant cells, Crb-positive punctae were still present in the cell 

cortex (Fig. 5A,B,C, 30 min). Residual endocytosis in mutant cells could be explained by the fact 

that the experimental conditions used (25°C) only resulted in a reduction, but not a complete 

blockage of AP-2 activity. Taken together, these data clearly demonstrate that α-Ada is required 

for Crb internalization in garland cells. 

 

The PDZ-binding motif of Crb acts as a sorting signal  

Results presented above show that the AP-2 complex is required for Crb internalization, 

suggesting that Crb is a direct cargo for the AP-2 complex. To verify this assumption, we aimed 

to identify the sorting signal by which Crb is recognized by the AP-2 complex. Several 

recognition signals in the cytoplasmic tails of transmembrane proteins have been identified. One 

of them is the di-leucine motif [D/E]XXXL[L/I] (X can be any residue), with L at position 0 and 

L or I at position +1. The di-leucine motif is typically bordered by polar and/or charged amino 

acids [reviewed in (Pandey, 2009; Traub, 2009)]. The acidic residue at position -4 (D/E) is only 

required for targeting to late endosomes or lysosomes, not for internalization (Bonifacino and 

Traub, 2003). The C-terminal amino acids of the cytoplasmic tail of Drosophila Crb (-

PPEERLI), which is highly conserved in Crb proteins of Drosophila, mouse and human (Fig. 

1A), fits the di-leucine motif. Strikingly, this motif overlaps with the PDZ domain-binding motif, 

which mediates binding of Sdt or its vertebrate orthologous Pals1/MPP5 (Bachmann et al., 2001; 

Hong et al., 2001; Roh et al., 2003). To test whether this motif is required for binding to the AP-2 

complex, we generated several mutant versions of the wild-type mCrb2 cytoplasmic tail, fused 

with 6xHis-TEV-MBP tag (described in Materials and Methods). The mutations either changed 

or removed the –LI motif, or modified the acidic amino acids EE (Fig. 6A). We confirmed that 

all mutant versions lacking the C-terminal –LI failed to bind recombinant Pals1, while mutations 

in the acidic amino acids had no effect on binding (Fig. 6B). The interactions between the 

different Crb versions and AP-2 were tested in liposome recruitment assays described above. The 

coupling efficiency of the different mutant proteins to the liposome is documented in Suppl. Fig. 

S4. In contrast to the wild-type cytoplasmic domain, all mutant versions tested showed strongly 

decreased binding to α-Ada (Fig. 6C). This result demonstrates that the PDZ domain-binding 
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motif of Crb is involved in mediating interactions with the AP-2 complex. The results further 

indicate that the same motif in the cytoplasmic tail of Crb is required for the interaction with AP-

2 and Sdt.  

 

Sdt and AP-2 antagonize to control the surface level of Crb 
It is known that Drosophila Sdt stabilizes Crb on the apical surface of most epithelia by direct 

interaction of its PDZ-domain with the C-terminus of Crb (Bachmann et al., 2001; Hong et al., 

2001; Kempkens et al., 2006). Similarly, vertebrate Pals1/MPP5 stabilizes Crb1/Crb3 on the 

plasma membrane of photoreceptor cells and Madin-Darbine canine kidney (MDCK) epithelial 

cells in culture (Makarova et al., 2003; Park et al., 2011; Roh et al., 2003; van Rossum et al., 

2006). Here we showed that both Pals1 and the AP-2 complex require the same region of mCrb2 

for interaction (Fig. 6B, C). We therefore asked whether this has any biological significance in-

vivo. Given the high degree of conservation between mCrb2/Pals1 and Drosophila Crb/Sdt, we 

studied Crb expression in the Drosophila wing discs upon knock-down of sdt alone or sdt 

together with AP-2α. Knock-down was achieved by RNAi expression in the posterior 

compartment of the larval wing discs using engrailed-Gal4. Both Crb and Sdt were localized 

apically in the anterior and posterior compartment of the wing pouch in control discs when 

engrailed-Gal4 was expressed alone (Fig. 7A). Overexpression of AP-2α RNAi was performed 

under conditions that only mildly reduced AP-2α in order to get a sensitized background. Under 

these conditions, neither Crb nor Sdt levels differ from that of wild-type control discs (compare 

Fig. 7A and Fig. 7B), probably due to the fact that a small amount of α-Ada is sufficient. As 

expected, knocking-down Sdt resulted in a reduction of Crb at the apical surface (Fig. 7C, E, F). 

Strikingly, when both sdt and AP-2α were knocked-down simultaneously, cells showed wild-type 

levels of Crb on the surface (Fig. 7D, F, F). These data suggest that the presence of Sdt prevents 

AP-2α-dependent Crb internalization and degradation in the wing disc epithelium.  

 

 

Discussion  

Data presented here, obtained using genetic and biochemical assays, let us to conclude that a 

delicate balance of stabilization and internalization controls proper Crb levels at the surface. This 

balance is mediated by binding of a conserved amino acid sequence of Crb to either Sdt or AP-2, 

suggesting a competitive binding between Sdt and AP-2. Such a mechanism, based on 
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stabilization by PDZ-ligand interaction and AP-2-mediated endocytosis, has so far only be 

described for a few proteins, such as the NR2B subunit of the neuronal NMDA receptor 

(Prybylowski et al., 2005) and the glutamate transporter excitatory amino acid carrier 1 (EAAC1) 

in MDCK cells. In the latter case, AP-2 and the PDZ-domain of PDZK1 antagonistically regulate 

surface levels of EEAC1 by binding to two closely adjacent binding sites in EEAC1 (D'Amico et 

al., 2010).  

Currently, we can only speculate about the mechanisms that may determine which of the binding 

partners – AP-2 or Sdt - binds to Crb. One possibility is that different binding affinities between 

Crb and its partners modulate the binding preference. Several arguments suggest that binding of 

AP-2 to Crb seems to be weaker than the Sdt-Crb interaction. First, AP-2 - Crb interactions could 

only be shown by liposome recruitment assays, but not by standard pull-down experiments (data 

not shown), suggesting that the presence of membranes strengthen the interaction between the 

adaptor and its cargo. In fact, interaction of AP-2 with PtdIns4,5P2-containing membranes 

induces a conformational change of the AP-2 complex, thus facilitating binding to its cargo 

(Jackson et al., 2010; Kelly et al., 2008). Second, binding of Sdt only depends on the C-terminal 

leucine and isoleucine residues of Crb. This is in agreement with recently published structural 

data using crystallography and fluorescence polarization, which show that the four C-terminal 

amino acids of human Crb1 interact with the PDZ domain of Pals1 by van der Waals contacts and 

charged interactions (Ivanova et al., 2015). In contrast, AP-2 binding to Crb requires the 

glutamine and arginine residues of Crb besides the leucine and isoleucine residues, at least under 

the in vitro conditions used here. The importance of more than one motif for strong binding of 

AP-2 is not unprecedented. Binding of the human immunodeficiency (HIV)-1 protein Nef to the 

α-σ2-hemicomplex of AP-2 requires both a di-leucine- and a di-acidic-motif (Craig et al., 1998; 

Lindwasser et al., 2008). Posttranslational modification of the ligand Crb itself could also 

contribute to a preferred binding to either Sdt/Pals1 or AP-2. It was recently documented that 

aPKC-mediated phosphorylation of threonine residues near the FBM of Crb abolishes the Crb-

Moesin interaction, but not the Crb/Pals1 interaction (Wei et al., 2015). In the case of Drosophila 

Gliotactin, a transmembrane protein at the tricellular junction, phosphorylation of tyrosine 

residues is necessary for its endocytosis and ultimately lysosomal degradation, thus preventing 

overexpression, which would result in delamination, migration and finally apoptosis of cells 

(Padash-Barmchi et al., 2010). Alternatively, the accessibility of the PDZ domain of Sdt/Pals1 to 

Crb could be modulated. In fact, a ∼100-fold stronger binding of the PDZ domain of Pals1 to the 

Crb tail is achieved upon intra- or intermolecular interactions between the Src homology 3 
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(SH3)- and the guanylate kinase (GUK)-domain of Pals1 (Kantardzhieva et al., 2005; Li et al., 

2014). Similarly, the affinity of the PDZ domain of the postsynaptic density protein PSD-95 to its 

ligand is reduced upon phosphorylation of a tyrosine residue in a linker region between the third 

PDZ-domain and the subsequent SH3-domain, thereby weakening the intramolecular interaction 

between the PDZ- and the SH3 domain (Murciano-Calles et al., 2014; Zhang et al., 2011). 

A striking observation was the high degree of phenotypic variability upon knock-down/knock-out 

of AP-2 in different epithelial tissues, and sometimes even in the same epithelium. This 

prevented us to study the different aspects of the AP-2/Crb relation in just one epithelium. In the 

follicle epithelium, the phenotypes ranged from minor expansion of the apical surface to 

complete loss of polarity and overgrowth. Complete loss of AP-2α in wing discs leads to cell 

lethality, whereas mutant clones survived in eye discs. This variability might be due to the time 

point of induction of mitotic recombination, which could occur before or after establishment of 

epithelial polarity, or at time points of high or low Crb expression (Sherrard and Fehon, 2015). 

Alternatively, additional AP-2-independent polarity regulators could act redundantly and in a 

tissue- and/or time-specific manner, thus modulating the severity of the phenotype, e.g. in the 

developing eye.    

The results described here are compatible with the assumption that several phenotypes obtained 

by loss/reduction of AP-2 are a consequence of increased Crb levels on the plasma membrane, 

since similar phenotypes can be obtained upon overexpression of Crb (Fletcher et al., 2012; 

Kempkens et al., 2006; Klebes and Knust, 2000; Laprise et al., 2006; Lu and Bilder, 2005; 

Pellikka et al., 2002; Tanentzapf et al., 2000; Wodarz et al., 1995). i) The Crb-positive plasma 

membrane in AP-2α mutants cells is expanded both in the imaginal discs and the follicle 

epithelium, often at the expense of the lateral membrane. ii) Without functional AP-2α, the 

monolayered epithelium is often disrupted and becomes multilayered. iii) Surviving AP-2α3 

clones in eye imaginal discs show strong Crb enrichment, similar as HEK293 cells, in which AP-

2α is knocked-down by RNAi (data not shown). iv) Assuming that a similar increase in Crb also 

occurs in AP-2α3 mutant cells induced in wing discs, their elimination could be a consequence of 

cell competition when next to wild-type cells as recently described (Hafezi et al., 2012). Finally, 

the multi-layering phenotype of follicle epithelia lacking AP-2α can be partially suppressed by 

removing one copy of crb. 

A more direct insight into the relationship between Crb and AP-2 comes from our analysis of the 

garland cells, the functional equivalent of vertebrate podocytes. Podocytes are highly specialized 
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epithelial cells in the kidney of vertebrates, which form long “foot-processes” connected by slit 

diaphragms to form a filtration barrier in the renal glomerula. Interestingly, Crb2 is expressed in 

the kidney of both rats and zebrafish, where it localizes at the slit diaphragm of podocytes. crb2b 

mutant zebrafish show defects in the formation of the slit diaphragm as well as in arborization of 

the foot-processes. Furthermore, mutations in human Crb2 are linked to Steroid-resistant 

nephrotic syndrome (Ebarasi et al., 2015), a disease causing kidney failure due to defects in 

differentiation and function of podocytes. Here we show that AP-2α mutant garland cells are 

clearly impaired in Crb endocytosis. Whether loss of crb in garland cells affects their excretory 

function has to be determined.    

A complex machinery is required to ensure proper Crb surface levels, which is key for the 

maintenance of apico-basal epithelial cell polarity. Crb levels can be regulated at multiple levels, 

including stabilization at the membrane via homophilic interactions of the extracellular domains 

in cis or trans, interactions of the cytoplasmic tail with scaffolding proteins, endocytosis, 

degradation and recycling by the retromer. The trafficking pathway offers multiple steps for 

regulation, and results presented here provide further mechanistic insight how binding of two 

counteracting PDZ motif-binding proteins, Sdt and AP-2, regulate proper Crb levels. Given the 

finding that the balance between Crb stabilization and internalization/degradation is crucial for 

surface expression of Crb and hence polarity, future work will aim to identify the mechanisms 

that control this balance by regulating the rate of endocytosis, degradation and recycling by the 

retromer. Finding these regulators is challenging, but will give us important insights into the 

mechanisms coordinating endocytosis and polarity, which is important to prevent tumorigenesis 

not only in Drosophila, but also in vertebrates.   

 

 

Materials and Methods 

Genetics 
All flies were raised at 25°C unless otherwise indicated. Clones in the follicular epithelium were 

generated by heat shock promoter driven Flippase to induce mitotic recombination (Xu and 

Rubin, 1993). Clones were marked either positively (MARCM) or negatively (lacking GFP), 

using yw-hsFLP tub-Gal4 UAS-nls-GFP; FRT40A tub-Gal80 (gift from T. Klein; (Kaspar et al., 

2008) or yw-hsFLP; FRT40A ubi-GFP (gift from C. Dahmann). Heat shock was performed at 

third instar larvae at 37°C for 1.5 or 2 hours on consecutive two days. FRT40A AP-2α3, AP-2αear4 
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and AP-2α ear26 were gifts from J. Knoblich (Berdnik et al., 2002). FRT40A AP-2α 40-31 was a gift 

from D. Bilder (Windler and Bilder, 2010). FRT82B AP2σ KG02457 was a gift from B. Lu (Song 

and Lu, 2012). AP-2α 4 was a gift from M. González-Gaitán (González-Gaitán and Jäckle, 1999). 

engrailed105-Gal4 and 69B-Gal4 were gifts from S. Eaton (Eugster et al., 2007). UAS Ada RNAi 

(VDRC #15565 and #15566) and UAS Sdt RNAi (Bloomington #37510) were purchased from 

Vienna Drosophila RNAi center (VDRC) and Bloomington stock center, respectively. To obtain 

AP-2α trans-heterozygous mutant in wing discs, crosses were raised at 18°C to overcome 

embryonic lethality and temperature shifts were performed at the second larval instar. Discs were 

dissected two days later after temperature shift. Large clones of AP-2α mutants in eye disc were 

obtained by crossing males mutant for AP-2α40-31 to virgins carrying a cell lethal mutation on an 

FRT chromosome (Bloomington stock #5622).  

 

Antibodies 

The following primary antibodies were used in this study at the concentration indicated (WB: for 

western blot, IF: for immunofluorescence staining): rabbit anti-α-Ada (1:50, IF, a gift from M. 

González-Gaitán), mouse anti-Arm (1:1000, IF, DSHB), rat anti-Crb 2.8 (1:1000, IF, 1:2000, 

WB, (Tepass and Knust, 1990), rat anti-Crb exon 3 (1:1000, IF, unpublished), mouse anti-Crb 

Cq4 [1:200, WB;  (Tepass and Knust, 1993)], mouse anti-Dlg 4F3 (1:1000, IF, DSHB), rabbit 

anti-DPATJ [1:1000, IF, 1:4000, WB, (Richard et al., 2006)], mouse anti-Notch C458.2H 

(1:1000, IF, DSHB), guinea pig anti-Par6 (1:1000, IF, kindly provided by A. Wodarz), mouse 

anti-Patched (1:200, IF, DSHB), rabbit anti-Sdt [1:1000, IF, 1:5000, WB, (Berger et al., 2007)], 

rabbit anti-Sas (1:1000, IF, a gift from D. Cavener), mouse anti-α-Ada (1:1000, WB, Santa 

Cruz), rabbit anti-γ-adaptin 1 (1:500, WB, Santa Cruz), rat anti-tubulin (1:5000, WB, AbD 

Serotec), rabbit anti-GFP (1:2000, IF, Invitrogen), and normal rabbit IgG (Santa Cruz). 

Fluorescence-conjugated secondary antibodies were purchased from Invitrogen (1:1000, IF). 

HRP-labeled secondary antibodies were: anti-rat (1:3000, WB, Dianova), anti-rabbit and anti-

mouse (1:3000, WB, Sigma). Rat polyclonal anti-α-Ada serum (1:2000, WB) was generated as 

previously described (González-Gaitán and Jäckle, 1997). Briefly, rats were immunized and 

boosted with His-tagged Drosophila α-Ada C-terminal region (amino acid 580-940) in 

combination with complete/incomplete Freund’s adjuvants (Charles River). Serum from the final 

bleed was clarified by centrifugation.   
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Protein extraction and western blot (WB) 

Imaginal discs were lysed in 2x SDS loading buffer (0.02% bromophenol blue, 2% SDS, 125 

mM Tris-HCl pH 6.8, 3.3% glycerol, 6% β-mercaptoethanol, 200 mM dithiothreitol) and 

homogenized. Samples were boiled at 95°C for 5 min, clarified by centrifugation at 20000 g for 

10 min. Proteins were separated by SDS-PAGE, transferred to Nitrocellulose filters (GE 

Healthcare) and blocked in 1% BSA/TBST (0.2% Triton). Antibodies were used as described 

above.  

 

Immunofluorescence staining and confocal microscopy 

Drosophila ovaries, imaginal discs and garland cells were fixed in 4% PFA for 20 min. For α-

Ada staining of follicle cells, ovaries were fixed in 4% PFA in PBST (0.15% Triton) for 20 min. 

Ovaries were further fixed in 100% ethanol at -20°C overnight and then permeabilized with 

PBST (0.5% Triton X-100), followed by blocking in 5% BSA. Imaginal discs and garland cells 

were washed with PBST (0.1% Triton X-100) and blocked in 0.1% BSA. Drosophila tissues 

were incubated with primary antibodies at 4°C overnight. After washing, fluorescence-

conjugated secondary antibodies were added for 2 hours at room temperature and mounted in 

ProlongGold antifade reagent (Invitrogen). For surface staining of garland cells, all procedures 

were the same except that detergents were omitted. All images were acquired by using Zeiss 

LSM700 (Zeiss Plan-Neofluar 25x NA 0.8 or Zeiss LCI Plan-Neofluar 63x NA 1.3 objective, 

immersion media: 50% glycerol) and processed by Fiji and Adobe Photoshop.  

 

DNA constructs and site-directed mutagenesis  

The mCrb2 tail construct (pET28-6X His-MBP-TEV-mCrb2) was made as previously published 

(Pocha et al., 2011). To make mCrb2 tail mutants, the QuikChange site-directed mutagenesis kit 

(Stratagene) was used with the wild-type construct as a template. Human Pals1 was cloned into 

pGEX4T-2 (GE Healthcare) using BamHI and NotI restriction sites.  

 

Antibody uptake assay  
Uptake assays in garland cells were performed and modified as described previously (Kim et al., 

2010; Weavers et al., 2009). Garland cells of third instar larvae were dissected in cold PBS and 

pulsed with purified mouse monoclonal anti-Crb exon 3 antibodies (200 µg/ml) at 4°C for 15 

min. After washing off unbound antibodies, garland cells were chased for the indicated time 

periods at room temperature in PBS. Samples were fixed in 4% PFA for 20 min, washed in PBS, 

and incubated with rabbit anti-HRP (1:500, IF, Jackson ImmunoResearch Laboratories) for 2 
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hours to mark the plasma membrane (Soukup et al., 2009). Samples were washed in PBST 

(0.05% Triton X-100), blocked with 0.1% BSA, incubated with fluorescence conjugated 

secondary antibodies for 2 hours, and mounted in ProlongGold antifade reagent (Invitrogen). 

Garland cells were identified by the presence of two nuclei (Kosaka and Ikeda, 1983) and HRP-

positive staining. Antibody uptake assay in wing discs were performed and modified as 

previously described (Le Borgne et al., 2005; Lu and Bilder, 2005). Briefly, wing discs were 

dissected in Grace’s insect medium (Sigma #G8142) and were cut between the hinge region and 

the wing pouch to facilitate antibody diffusion. Wing discs were pulsed with mouse anti-Notch 

C458.2H (10 µg/ml) or mouse anti-Crb exon 3 antibodies (200 µg/ml) at 4°C for 2 hours, and 

then cultured in Grace’s insect medium supplement with 1% fetal bovine serum for the indicated 

time. Wing discs were fixed and permeabilized followed by secondary antibody staining.  

 

Image analysis and quantification 

The line-plot density profile for antibody uptake assay was performed as previously described 

(Kim et al., 2010). Briefly, a line intensity profile (100 px, 5 µm) was measured from the cell 

surface to the cell center by Fiji. For establishing the intensity profile in wing discs, the 

fluorescence intensity was quantified within the same size of the box along the A/P axis. For 

determination of the P/A intensity ratio, the average of fluorescence intensity in the posterior 

compartment within the box divided by the average in the anterior compartment was calculated. 

All charts were made with Graphpad Prism 6. Statistical analysis was achieved with Graphpad 

Prism 6. Western blots were analyzed by Fiji. 

 

Protein expression and purification 

6x His-MBP-TEV-mCrb2 tail and GST-Pals1 were expressed in E. coli strain BL21 pLysS (DE3) 

and purified using Ni-NTA (Qiagen) and Glutathione sepharose (GE Healthcare), respectively, 

according to the manufacturer’s instruction. mCrb2 tail proteins were eluted with 250 mM 

imidazole and dialyzed for further assay (20 mM HEPES pH 7.2, 125 mM potassium acetate, 1 

mM EDTA). GST fusion proteins were eluted with 10 mM reduced glutathione and dialyzed (10 

mM Tris pH 8.0, 150 mM NaCl).  

 

Purification of mixed adaptors and proteo-liposome recruitment assay 

Mixed adaptors were purified from clathrin coated vesicles, isolated from pig brain, essentially as 

described (Keen, 1987). Mixed adaptors were isolated from a Tris-HCl extract of clathrin-coated 

vesicles by gel filtration, using Sephacryl S-500. The adaptor containing fractions were 
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concentrated using saturated ammonium sulphate precipitation, dialyzed into, and stored in 1 M 

Tris buffer (0.05 M Tris base, 0.95 M Tris-HCl, 1 mM EDTA, 0.1% β-mercaptoethanol, 0.02% 

sodium azide). Proteo-liposome recruitment assays were performed essentially as described 

previously (Pocha et al., 2011) with the following modifications. The liposomes used in this 

study were made up of phosphatidylcholine (Sigma Aldrich), phosphatidylethanolamine (Sigma 

Aldrich), phosphatidylserine (Sigma Aldrich), cholesterol (Sigma Aldrich) and 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide] (sodium 

salt) (Avanti Polar Lipids) (molar ratio: 40:30:10:10:10). Dialyzed mCrb2 tail proteins were 

digested by TEV protease and coupled to the liposomes. mCrb2 tail-conjugated liposomes were 

incubated in 25 µg of purified mixed adaptors for 30 minutes at 37˚C, and then isolated by 

centrifugation using a sucrose cushion composed of 3 ml 60% sucrose, followed by 8 ml of 5 % 

sucrose in recruitment buffer (20  mM HEPES pH 7.2, 125 mM Potassium acetate, 2.5 mM 

Magnesium acetate). Liposomes were harvested from the interface between the two sucrose 

amounts, and pelleted by ultracentrifugation (100000 g). The pelleted liposomes were re-

suspended and subjected to analysis by SDS-PAGE and WB. 

 

Pull-down assay 

Recombinant GST-Pals1 and His-MBP-mCrb2 tails were incubated in the binding buffer (20 mM 

HEPES, pH 7.2, 150 mM NaCl, 1 mM MgCl2, 0.1% Triton X-100) at 4°C rotating for 1.5 hours 

and added Glutathione sepharose (GE Healthcare) for further 2 hours. The beads were washed 

and boiled at 95°C in SDS-loading buffer for 5 min. Samples were analyzed by SDS-PAGE and 

WB. 
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Figure legends 
 

Fig. 1. α-Ada interacts with Crb  

(A) Amino acid sequences of the cytoplasmic tails of Drosophila melanogaster Crb (Dm), human 

(h) and mouse (m) Crb1 and Crb2. (B) Western blot of a proteo-liposome recruitment assay. 

mCrb2 tail coupled with liposomes was incubated with different amounts of adaptor mixture 

purified from pig brain. AICD is a positive control. (C) Wild-type follicle cells stained for α-Ada. 

Scale bar represents 20 µm. (D-E) Wild-type follicle cells (stage 4) stained for α-Ada (D, E, 

green) and Crb (D, E’, magenta).  Scale bar represents 10 µm.  

 

Fig. 2. The AP2 complex is required for the maintenance of epithelial polarity 

(A-D) Follicle cells harboring AP-2α3 clones (lacking GFP), classified into four groups, Type I 

(A), II (B), III (C) and IV (D), were stained for DAPI (blue) and Crb (magenta). (E) Follicle cells 

harboring AP-2α40-31 clones (labeled with nuclear GFP) stained for DAPI (blue) and Crb 

(magenta). The asterisk highlights Crb punctae around cell outline. Scale bars represent 10 µm. 

White boxes show higher magnifications and scale bars represent 5 µm. (F) Schematic drawing 

of the molecular characterization of AP-2α40-31 allele. (G) Quantification of the percentage of 

mutant phenotypes (stage 2 to stage 8) from three independent experiments. Bar shows mean ± 

s.d., n> 100 in every experiment, P*< 0.05, P**<0.01, ordinary one-way ANOVA. 

 

Fig. 3. Crb extends laterally and accumulates upon reduction of α-Ada in wing imaginal 

discs 
 (A-F)  Wing discs of AP-2α40-31/AP-2α4, raised at 18°C  (A,  D),  25°C  (B, E)  and  29°C  (C, F) 

stained  for  Crb  and  Sas.  Scale bar represents 10  µm.  (D-F)  Single X-Z sections of wing 

discs are shown, yellow arrowheads in (F) highlight expansion of the Crb-positive area. Crb and 

Sas appear to be localized at almost the same level of the apical region in most sections analysed, 

but, depending on level of the section, this pattern may occasionally diverge. Scale bar represents 

5 µm.  (G-H)  RNAi was expressed using 69B-Gal4 drivers.  Wing discs were stained for Crb. 

Scale bar represents 50 µm. (I) Western blot from of extracts prepared form third instar wing 

imaginal discs of 69B-Gal4 (control) and α-Ada RNAi. Tubulin was used as internal control. 

Note that α-Ada is reduced, but not completely absent. 
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Fig. 4. Crb accumulates in the absence of α-Ada in eye imaginal discs  

 (A,B) Control and AP-2α40-31 eye imaginal discs were stained for Crb. Scale bar represents 5 µm. 

(C) Western blot of extracts prepared from AP-2α40-31 eye imaginal discs. (D) Quantification of 

western blot results from three independent experiments, P**< 0.01, unpaired t test, one tailed. 

 

Fig. 5. AP-2α  mutant garland cells are defective in Crb endocytosis  

(A) Antibody uptake assays in garland cells of 3rd instar larvae. Wild-type or AP-2α3/ AP-2α4 

garland cells were pulsed with anti-Crb antibodies and chased for the indicated time periods at 

25°C. After fixation, garland cells were stained with anti-mouse secondary antibodies to label 

Crb (magenta), DAPI (blue) and the membrane marker, HRP (blue). Scale bars represent 10 µm. 

(B) Line-depth intensity plots of anti-Crb antibody staining from the cell surface to cell center in 

wild-type (black) and AP-2α3/ AP-2α4 garland cells (red). Data represent mean ± s.e.m., n≥ 14 in 

every genotype. (C) The intensity plot of anti-Crb antibodies, indexed by the distance from cell 

surface. Bars show mean ± s.d., n≥ 14 in every genotype. P*< 0.05, P***< 0.001, unpaired t test 

with Welch’s correction.  

 

Fig. 6. The cytoplasmic tails of Crb directly interact with the AP-2 complex.   
(A) Amino acid sequences of the cytoplasmic tails of mCrb2 variants used in this study. Altered 

amino acids are indicated in red.  (B) Western blot of a GST pull-down assays using different 

forms of 6xHis-TEV-MBP-mCrb2 (molecular weight is around 55 kDa) and GST-Pals1. P: pellet 

fraction, S: unbound fraction. (C) Western blot of proteins eluted from mCrb2 liposome 

recruitment assays, probed for α-Ada.  

 

Fig. 7. Sdt stabilizes Crb on the plasma membrane via antagonizing with the AP-2 complex.  
(A-D) RNAi was expressed in the posterior compartment using engrailed105-Gal4. Third instar 

wing imaginal discs were stained for Patched (Ptc), to label the anterior-posterior compartment 

boundary, Sdt and Crb. The x-y views show apical confocal projections corresponding to 2.6 µm. 

Scale bars represent 10 µm. (E) Quantification of Sdt and Crb intensity, plotted along the A/P 

axis. The orange line marks the AP boundary. Data show mean, n= 5. (F) Box plot of relative 

intensity of P/A on Sdt and Crb. The top to bottom of the box represents the third and the first 

quartile, and the top to bottom of the bar is within 1.5IQR of the third quartile, medium and 

within 1.5IQR of the first quartile. n= 5, P**< 0.01, P****< 0.0001, ordinary one-way ANOVA. 

 

























Supplementary Figure legends 

 

Fig. S1. (A) Coomassie blue-stained gel of mixed adaptors purified from pig brain. (B) Western 

blot of mixed adaptors, probed for α-Ada (represents AP-2) or γ-adaptin (represents AP-1). AP-2 

is predominant in the mixed adaptors. (C-D’) Follicles containing AP-2α3 clones (lacking GFP) 

in the germ line and part of the follicle epithelium (C-C’’) and in the germ line only (D, D’), 

stained for DAPI (blue) and α-Ada (C”, D’, white). Egg chambers were at stage 7 (D) and stage 4 

(E). α-Ada is localized at the apical membrane in wild-type follicle cells facing mutant germ line 

cells. Scale bars represent 10 µm.  

 

Fig. S2. (A) The scheme depicts the molecular defects of AP-2α mutants. Follicles mutant for 

AP-2αear26 (B) and AP-2αear4 (C) (lacking GFP) do not show any polarity defects in the follicle 

epithelium.  (D) AP-2σKG02457 follicle cell clones (labeled with GFP) are round and develop multi-

layered tissues. Punctate staining of Crb around the cell outline is observed in some clones. In 

AP-2α3 mutant follicle cells (lacking GFP), Sdt (E) and DPATJ (F) are mis-localized and 

redistributed together with Crb. Par6 (G) and Notch (H) are mis-localized in AP-2α3 mutant 

follicle cells. (I) Dlg retracts when Crb expands to the lateral membrane (yellow arrow). (J) Arm 

is redistributed in AP-2α3 mutant follicle cells. Scale bars represent 10 µm. 

 

Fig. S3. (A-F) Antibody uptake assay in wing discs. Wing discs were pulsed with anti-Crb (A-C) 

or anti-Notch antibodies (D-F), and then chased for the indicated time periods. After 60 min 

chase, Notch appeared mostly in punctae, while Crb was still associated with the plasma 

membrane. After 300 min, Notch punctae were almost gone, while most Crb protein remained at 

the plasma membrane. Scale bar represents 5 µm. (G-H) Garland cells of 3rd instar larvae were 

fixed and stained for Crb (magenta) and membrane marker, HRP (blue) in the presence (w/) or 

absence (w/o) of Triton. (G) Upon permeabilization, Crb is detected at the plasma membrane and 

intracellularly. (H) Surface staining of Crb in garland cell. Scale bars represent 10 µm. 

 

Fig. S4. Coomassie blue-stained gel of purified mCrb2 tail (input), after cleavage of the tag (TEV 

digest), and after coupling to liposomes and high-speed centrifugation (supernatant, pellet). The 

mCrb2 tail displays modified migration behavior before (arrow) and after (arrowhead) coupling, 

probably caused by the covalently attached lipid. The purity and coupling efficiency is shown for 

the wild-type and the different mutant variants.!


	Lin&Knust
	Fig1
	Fig2
	Fig3
	Fig4
	Fig5
	Fig6
	Fig7
	SupplMaterial

