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Abstract 

One of the major challenges in measuring efficiency in terms of resources and outcomes is 

the assessment of the evolution of units over time. Although Data Envelopment Analysis 

(DEA) has been applied for time series datasets, DEA models, by construction, form the 

reference set for inefficient units (lambda values) based on their distance from the efficient 

frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the 

proximity in time between units should also be taken into account, since it reflects the 

structural resemblance among time periods of a unit that evolves. In this paper, we 

propose a two-stage spatiotemporal DEA approach, which captures both the spatial and 

temporal dimension through a multi-objective programming model. In the first stage, DEA 

is solved iteratively extracting for each unit only previous DMUs as peers in its reference 

set. In the second stage, the lambda values derived from the first stage are fed to a 

Multiobjective Mixed Integer Linear Programming model, which filters peers in the 

reference set based on weights assigned to the spatial and temporal dimension. The 

approach is demonstrated on a real-world example drawn from software development. 

Keywords: Data Envelopment Analysis, Efficiency, OR in software, Multiobjective 

Programming, Linear Programming 
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1. Introduction 

The units of most economic, business, and technological environments are by nature 

evolving systems that change continuously over time. The analysis of such systems calls 

for an evaluation of their efficiency in terms of outputs and inputs treating each snapshot 

in time as a separate unit to be assessed. As an example, the efficiency of any company, 

assessed over several successive months, quarters or years will yield different values that 

constitute the evolution of its qualities. In the world of software systems, products also 

evolve over numerous releases with additional features which should be assessed, when 

the development team is interested in evaluating software quality evolution. 

In the context of evolution analysis, when identifying deficiencies in terms of resources 

and outcomes, it is valuable to determine earlier and efficient versions which can serve as 

benchmarks. The examination of these benchmarks can provide insight into possibilities 

for improvements and set goals for inputs and outputs of the inefficient units. The most 

widely acknowledged approach, that enables benchmarking of different units in terms of 

efficiency, is Data Envelopment Analysis (DEA) (Charnes et al. 1978). One of the main 

properties of DEA is the ability to extract a reference set for each inefficient Decision 

Making Unit (DMU) which contains the efficient units that operate close to the inefficient 

one (Coelli et al. 2005). 

By definition, the efficient frontier provided by DEA considers only the spatial distance 

among units since DEA constructs an efficient frontier which is a surface enveloping all 

sampled units, whereas inefficiencies are calculated in relation to that surface. However, 

when benchmarking is applied on a time series dataset, the temporal dimension should 

also be considered in conjunction with the spatial dimension when extracting the 

efficiency score, the reference set, and the projected values on the efficient frontier. 

Moreover, in various contexts it is desirable to have a single peer as a benchmark to 

facilitate the process of comparing an inefficient unit to an efficient one in order to 

identify opportunities for improvement. 

Let us consider a company which is evaluated for a number of 10 consecutive time 

periods. We assume that the DMU corresponding to the 10th period is inefficient and has 

in its reference set two previous DMUs, namely the 2nd with a lambda value of 0.6 and the 

8th with a lambda value of 0.4. In case the analysis aims at identifying a single peer to be 

used as a benchmark for the 10th DMU, according to the conventional application of DEA 

one would select the 2nd DMU which has the largest resemblance. However, such a choice 

would neglect the time dimension, as the 8th DMU, which is still similar in terms of 
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lambda value, has a significantly larger proximity to the DMU of interest. Such a 

similarity in time is of vital importance in many cases, as the analyst is interested in 

structural similarities which might vanish for units that are distant in terms of time. 

In this paper, we propose a two-stage DEA approach which captures both the spatial and 

temporal dimension through a multi-objective programming model. In the first stage, DEA 

is solved iteratively extracting for each unit only previous DMUs as peers in its reference 

set. In the second stage, the lambda values derived from the first stage are filtered through 

the selection of weights assigned to the spatial and temporal dimension. The model is 

formulated so as to select a single out of multiple past peers in the reference set that can 

serve as a benchmark for comparison. 

The rest of the paper is organized as follows: Section 2 provides an overview of previous 

work on the application of DEA on time series datasets. The need to assess the evolution 

of efficiency over time and to consider both the temporal and spatial dimension is 

discussed in Section 3, along with an example in software systems. The problem is 

demonstrated through an illustrative example in Section 4. The mathematical formulation 

of the problem and the associated proofs are provided in Section 5. The approach is 

applied on the illustrative example and the results are discussed in Section 6. A real-world 

example in a software development context is presented in Section 7. Finally, we conclude 

in Section 8. 

2. Related work 

DEA has been employed in several cases where time series data are treated as DMUs. 

Time series data constitute a significant format in which data variability is reflected (Cook 

and Seiford 2009). In many applications of the DEA methodology, data for the same entity 

are available at different points in time. These points are then treated as different DMUs. 

With regard to the methodological approach that should be adopted when DEA is used 

with time series data, two noteworthy approaches are the following: (i) “window 

analysis”, proposed by Charnes et al. (1984), where the basic idea is to regard a DMU in 

each period of time as if it were a different DMU and compare the efficiency of the DMU 

with its efficiency in other time periods and with other DMUs in the same time period 

(Inuiguchi and Mizoshita 2012; Chen and Johnson 2010; Bergendahl 1998) and (ii) DEA-

based Malmquist index, proposed by Färe et al. (1994), which is an index with two 

components, one measuring the change in the technology frontier and the other the change 

in technical efficiency (Cook and Seiford 2009; Emrouznejad and Thanassoulis 2010; 
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Emrouznejad and Thanassoulis 2005; Lozano and Villa 2010; Grifell-Tatjé and Lovell 

1997). 

With regard to the domains that DEA has been applied, when time series data are used, 

some indicative applications are mentioned below. Hashimoto and Kodama (1997) 

evaluated livability in Japan for the period 1956-1990 regarding each year as a separate 

DMU. It is one of the studies which are considered as non-standard DEA applications 

since positive and negative social indicators were used as inputs and outputs. In another 

study, DEA was the tool for performance measurement and target setting of manufacturing 

systems (Jain et al. 2011). The DEA methodology was applied to two different contexts, 

i.e. (i) a traditional assembly line and (ii) an advanced wafer manufacturing unit. The 

performance of both manufacturing systems was evaluated on a weekly basis, so that each 

week was regarded as a distinct DMU. Lynde and Richmond (1999) analyzed quarterly 

data of the manufacturing sector from 1966 to 1990 in the context of explaining 

productivity growth in UK. Through the analysis of a set of time series data, it was made 

possible to define the role of technical progress, technical efficiency, and input slack 

concerning the growth of total factor productivity. In another application with time series 

data, DEA was used to evaluate the performance of local exchange carriers from 1997 to 

2007 (Moreno et al. 2013). The main feature of this approach is that a global assessment 

of the performance of a company along the whole time period was attained. The 

productivity and performance of OECD countries were evaluated based on a dynamic 

DEA model (Emrouznejad 2003). Movahedi et al. (2007) assessed the efficiency of 

Iranian Railway for a time series dataset from 1971 to 2004. The efficiency of each year 

was calculated and compared to the other years. After identifying the efficient years, the 

super efficiency DEA (Andersen and Petersen 1993) model was employed for an 

analytical ranking (Charnes et al. 1984). The DEA methodology was also applied to the 

context of a specific hospital (Rutledge et al. 1995). More specifically, it was employed to 

determine the efficiency of a non-profit hospital in the southeast United States for a time 

period of 22 consecutive months. DEA results contributed to managers’ decisions as to 

which months required further attention. Finally, the efficiency scores for the 7 largest 

Canadian Schedule I banks, over a 10-year period from 1998 to 2007, were obtained using 

DEA window analysis. Following that, the Malmquist productivity index was used to 

calculate the productivity changes (Cao and Yang 2009; Chen and Yu 2014). Despite the 

fact that all the previous works employ time series data sets, there has not been any effort 
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to assess evolving units in terms of temporal and spatial distance of DMUs, which is the 

purpose of this paper. 

3. The need for assessing the evolution of quality over time 

For most economic, physical, technological, and other systems, efficiency, in whatever 

manner it is measured, changes over time as a result of modifications to the underlying 

system. As an example, the efficiency of any company, assessed over several successive 

months, quarters or years will yield different values that constitute the evolution of its 

qualities. In the same way that DEA can be applied for benchmarking different DMUs, it 

can be applied for benchmarking successive snapshots in time of the same unit, providing 

an overview for the evolution of its efficiency. This is consistent with the need for 

continuous learning in contemporary organizations so that managers can sense and 

respond rapidly and flexibly to change, as claimed in (Avkiran 2009a). 

When DMUs refer to multiple instances of the same context at the same time period (e.g. 

several enterprises/companies assessed in a given year), DMUs have full similarity to be 

potential peers. In other words, the external conditions are the same for all DMUs. 

However, when a time series of the same entity is analyzed, then, by definition, the DMU 

evolves over time. Consequently, the external conditions may differ as it is, for example, 

the case when assessing the same enterprise/company over successive time snapshots, 

which may span for several years. It is this particular context in which the proposed S-T 

DEA approach is applicable. 

As an example, let us consider a software system that evolves over time and is distributed 

as a number of successive releases. If one release is inefficient, previous releases which 

would be suitable for comparison are efficient releases in near time instances. These 

software versions have functionality which is comparable, have been developed by more 

or less the same personnel and rely on similar technologies, assumptions which do not 

hold for releases which are too distant in time. 

In an economic context, one could draw an example from a national economy which is 

gradually transforming from a merely agricultural one to a more industrial and then to a 

more technological one. If this kind of parameter is not taken as an input of the DMUs 

under study (i.e. economies over successive years), then it constitutes an external 

condition. It is exactly those changes in the external conditions which render the 

consideration of the time dimension in a DEA approach significant. 
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When treating each version in time of a company, project or process as a distinct DMU, 

the application of DEA will yield for each time instance an efficiency score, as well as the 

corresponding reference set. Let us assume that DEA is applied on DMU(t), DMU(t+1), 

…, DMU(t+i), where the parentheses indicate the time instance of each examined version. 

Once the reference set for each DMU is obtained, the goal of the analysts is to locate the 

most appropriate peer in the reference set, in order to compare an inefficient DMU to an 

efficient one and identify opportunities for improvement. 

Although, one could consider all DMUs in the reference set, this might often be 

prohibitive in terms of required effort, as the involved systems can be extremely large and 

complex. To identify the single, most appropriate peer from the ones listed in the reference 

set of the DMU under study, the following should be taken into account: 

 It would not make much sense to identify as reference unit a future DMU, as the 

comparison to that version would be infeasible. In other words, for DMU(t), we 

could not select DMU(t+k) as a reference project, since at the time of DMU(t) 

development or assessment, DMU(t+k) does not exist. In other words, future 

DMUs should be excluded as candidate reference projects. 

 It appears to be wise to consider past DMUs that are closer in time to the DMU of 

interest. As the underlying system evolves over time, a distant DMU in terms of 

time might have significantly different properties rendering the comparison less 

valuable. 

 Finally, as in the conventional application of DEA, DMUs that have a higher 

degree of resemblance to the examined one (i.e. have a larger lambda value in the 

reference set) should be preferred, as they correspond to systems, that are more 

similar in terms of inputs and outputs. 

 

Consequently, the selection of a single project from the reference set of a DMU, in case 

DMUs represent time snapshots of the same system, involves the resolution of a trade-off 

between similarity captured by lambdas and proximity in time. The straightforward 

approach to consider two dimensions (time and space) would be to employ a geometrical 

average of the two distances. In other words, one could consider the distance in time and 

space as two vectors, which are orthogonal if equal weights are assigned to both 

dimensions. Then, it would be possible to obtain the resultant of the two vectors for each 

peer of a DMU under study, and the peer with the minimum length would be the one that 

should be selected. However, such a geometrical approach would not be able to extract the 
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efficiency of the unit under study, as well as the associated slacks (with regard to those 

two dimensions). The reasons, for which time series analysis is important to be applied in 

a software context, are discussed next. 

Contemporary software products are extremely complex systems, often consisting of 

thousands of components which host numerous functions and pieces of data. The 

partitioning of a software system into components, the allocation of functionality and state 

to these components, and the specification of interconnections among them constitute the 

software’s architecture or design. The quality of the architecture can be assessed 

employing certain metrics, such as coupling and cohesion, which quantify corresponding 

qualitative attributes. The underlying architecture of a software system reflects upon 

software’s external qualities, such as maintainability, reusability, and comprehensibility. 

During the initial construction of a software system, its design quality is in general of a 

high level. However, software systems suffer from the so called "ageing" symptom 

(Parnas 1994), meaning that as software evolves (i.e. when new versions are released to 

deliver additional functionality or to fix bugs), its architecture gradually deteriorates. 

Thus, it becomes crucial for software developers and maintainers to assess the evolution of 

quality over successive software versions. Each version constitutes a DMU and the role of 

DEA would be to assess the efficiency of each unit and to propose, for the inefficient 

software versions, a single past version in the reference set that can serve as a benchmark 

for comparison. 

4. Problem definition 

The need to consider both the spatial and temporal dimensions in the selection of efficient 

peers, when assessing DMUs that represent different snapshots in time for a given entity, 

can be better explained through an illustrative example. Let us consider an entity having 

two outputs and a single unitized input that is being evaluated for nine successive periods. 

The corresponding (fictional) data are shown in Table 1. 

Table 1. Data for the illustrative example 

DMU Input Output1 Output2 

DMU(1) 1 6 4 

DMU(2) 1 13 7 

DMU(3) 1 3 9 

DMU(4) 1 4 11 

DMU(5) 1 11 12 

DMU(6) 1 15 4 



9 

 

DMU(7) 1 6 12 

DMU(8) 1 16 9 

DMU(9) 1 10 8 

 

The application of a DEA output-oriented model yields a reference set which for each 

inefficient unit contains the efficient snapshots that operate closer in terms of outputs to 

the examined DMU (results are shown in Table 2). In other words, only the spatial 

dimension (i.e. the similarity as calculated by the lambda values) is taken into 

consideration. The temporal dimension is related to the proximity in time between two 

units. As already mentioned in Section 3, it would be valuable to propose only past units 

as efficient peers in the reference set, select a single one to be employed as a benchmark, 

and moreover allow the user to assign weights to the spatial and temporal dimensions. 

As it can be observed from Table 2, the DMU that corresponds to the 9th time period, has 

two non-zero lambdas representing the efficient peers in its reference set. The trade-off in 

the selection of a single peer is vividly revealed since DMU(9) is closer in terms of space 

to DMU(5) (λ5>λ8), while it is closer in terms of distance in time to DMU(8) (t9-t8<t9-t5). 

 

Table 2. Reference set of illustrative example 

DMU φ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 

1 2.447 0 0 0 0 0.263 0 0 0.737 0 

2 1.231 0 0 0 0 0 0 0 1 0 

3 1.333 0 0 0 0 1 0 0 0 0 

4 1.091 0 0 0 0 1 0 0 0 0 

5 1 0 0 0 0 1 0 0 0 0 

6 1.067 0 0 0 0 0 0 0 1 0 

7 1 0 0 0 0 1 0 0 0 0 

8 1 0 0 0 0 0 0 0 1 0 

9 1.329 0 0 0 0 0.543 0 0 0.457 0 

 

Consequently, our goal is to enhance the classical DEA output-oriented approach applied 

to time series data, in order to extract for an inefficient DMU a single past efficient peer 

from its reference set considering both the objectives of minimizing the distance in time 

and maximizing the similarity in space. Moreover, once a single peer is selected, the 

efficiency score, and the projected values and slacks for each output should be 

recalculated. 
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5. Mathematical formulation of S-T DEA 

5.1 Notation 

Indices/Sets 

i I : DMUs 

D I   : DMUs (   max ,  3n m n m      ) 

r R :Output 

l I : Reference set 

j : Iterations 

Parameters 

j
spw : Weight of spatial criterion at iteration j 

j
tw : Weight of temporal criterion at iteration j 

riy : Output r of DMU i 

*
i : Optimal solutions of lambdas for DMU i 

 ORD  : Function that attributes the order of set   

A : Matrix for storing the reference set of each DMU  

Δ : Matrix for storing the difference between the current DMU and its temporally closest 

MAX
i : Maximum lambda from the reference set of i 

MIN
i : Minimum temporal distance between DMU i and all of its peers 

Continuous variables 

i : Lambda of each DMU 

 : Efficiency 

̂ : SpatioTemporal Efficiency (decision variable) 

ˆ
rs : Slack variable for each output (S-T DEA approach) (decision variable) 

ˆ
riy : Projected output r of DMU i (S-T DEA output oriented model) (decision variable) 

Binary variable 

l : 1 if lambda l is selected, 0 otherwise (decision variable) 
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5.2 Calculating efficiency scores and reference sets 

In this section, the mathematical formulation of the proposed S-T DEA is presented. The 

main scope of this new approach is the selection of the reference set, under the criteria of 

space and time, maximizing the efficiency that r outputs produce given a single unitized 

input. The proposed model can be generalized for the case when multiple inputs are 

present; however, we illustrate the case of no inputs since in various domains (such as 

software systems discussed in Section 6) evaluation can be performed solely using 

outputs. 

The proposed model can place emphasis towards either a spatial or a temporal objective 

through a multi-objective programming formulation using a Weighted Sum Model (WSM) 

approach to handle the two objectives. The approach has two stages: a) in the first stage, 

the initial Linear Programming (LP) model for the output-oriented DEA is solved 

iteratively in order to extract the initial lambda values that capture the similarity of each 

DMU to its peers, and b) these values are then fed to the second stage that seeks to satisfy 

both aforementioned objectives. It should be noted that the DEA model applied in the first 

stage can assume either variable returns to scale (VRS) or constant returns to scale (CRS). 

Multi-stage models employing DEA have also been proposed, such as the three-stage 

DEA/SFA (Stochastic Frontier Analysis) approach by Avkiran and Rowlands (2008) in 

order to account for measurement errors or environment noise, and the four-stage 

approach by Avkiran (2009b), where DEA is employed in the first and fourth stage to 

eliminate the impact of exogenous factors on managerial efficiency. 

To prohibit the selection of future units as peers in the initial reference set for each DMU, 

we apply the DEA output-oriented model iteratively, considering in each iteration only 

units that precede the DMU under examination (e.g. when assessing DMU(5), only 

DMU(1)…DMU(5) are being fed to the model). However, an empirical rule dictates that 

the number of DMUs should be equal or greater than   max ,  3n m n m     , where n 

and m is the number of inputs and outputs, respectively (Cooper et al. 2007). Therefore, 

the iterations start from this lower bound and continue up to the number of DMUs. This 

can be formulated as follows: 
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For ,..., I    

  max   (1) 

     s.t.  

    

1i

i 




  
(2) 

    

,  ri i r

i

y y r


 


     
(3) 

    
0,  i i    (4) 

End For  

Assuming that there are ten DMUs under examination and each DMU produces two 

outputs, then an analytical expansion of the aforementioned formulation for two 

consecutive iterations is shown in Table 3. The values of the virtual problem are: 10I   

(ten DMUs), 9,  10   implying that solutions can be obtained for DMU(9) and DMU(10) 

and 2r   (two outputs). 

 

Table 3.Two consecutive iterations of DEA so as to include only past units for each DMU 

1st Iteration 2nd Iteration  

1 1 1 1
1 2 3 9

1 1 1
1,1 1 1,2 2 1,9 9 1,9

1 1 1
2,1 1 2,2 2 2,9 9 2,9

1 1 1
1 2 9

max  

    . .

   1

   

   

  , , , 0

s t

y y y y

y y y y



   

   

   

  

    

       

       



 

2 2 2 2
1 2 3 10

2 2 2
1,1 1 1,2 2 1,10 10 1,10

2 2 2
2,1 1 2,2 2 2,10 10 2,10

2 2 2
1 2 10

max  

    . .

   1

   

   

  , , , 0

s t

y y y y

y y y y



   

   

   

  

    

       

       



 

 

 

As it can be seen from the output of the two LP models presented in Table 3, only the 

reference set and the efficiencies for DMU(9) and DMU(10) are derived. Therefore, the 

reference set of each DMU will include only previous DMUs. In Table 3, the superscript 

of the   variable corresponds to the iteration of the problem, whereas the subscript 

indicates the corresponding peer of the DMU under investigation. 

From the analysis of the aforementioned iterative DEA model, a DMU(τ) corresponding to 

a particular time point can have at maximum τ peers as reference set and thus τ lambda 

values, denoted as *
i , i  . Let A  be a matrix with dimensions I I , where I is the 
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number of all DMUs. In each row τ of the matrix the lambda values *
i corresponding to 

each DMU(τ) are stored. For instance, in the 6th row of matrix A  in Figure 1, the two non-

zero lambdas imply that DMU(6) has in its reference set DMU(2) and DMU(3). The 

elements of matrix A  are denoted as la . 

In order to enable normalization, the maximum value of each row will be required. Let 

MAX
 be an 1I   vector containing the maximum values of *

  according to (5): 

 ,  max
MAX

l
l

a    (5) 

Matrix A  is used in order to model the spatial dimension in the proposed S-T DEA 

approach. 

In order to capture the temporal dimension, the distance in time between the DMU under 

examination and each efficient peer in its reference set should be computed. Let Δ  be a 

matrix with the same dimensions as A  containing the time distance (difference in their 

order) between DMU(τ) from its peers. There is no point to compute these differences 

between a DMU and a peer in its reference set when the corresponding 
*  equals to zero. 

For instance, in the 6th row of matrix Δ  in Figure 1, DMU(6) has a time distance of 4 with 

DMU(2), and a distance of 3 with DMU(3). The other four distances are set to M, where 

M is a very large positive number ( 0M  ) in order to exclude the corresponding 

elements from the formulation of the objective function. The elements l
  of matrix Δ  are 

obtained as follows: 

( ) ( ),  0

, 0

l

l

l

ORD ORD l a

M a









  
 



 (6) 

In order to enable normalization, the maximum value of each row will be required. Let 

MIN
 be an 1I   vector containing the maximum values of distances in time, which are 

stored in l
  according to (7). 

 max ,  MIN
l l

l
M 

       (7) 

Matrix Δ  is used in order to model the temporal dimension in the proposed S-T DEA 

approach. 

The aforementioned process is shown in Figure 1. 
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Figure 1. Construction of Tables A and Δ 

In the objective function of the proposed S-T DEA model, the spatial and the temporal 

criterion are integrated in a single function, using a Weighted Sum Model (Freed and 

Glover 1981). This approach allows the handling of multiple objectives, as the final 

objective function consists of the weighted sum of the sub-objectives. The aim of this 

approach is to maximize the spatial component while minimizing the temporal component. 

The S-T DEA model is presented below: 

For ,..., I    

   For 1,...,j J   

       

1 1
max w wj j

sp l l t l lMAX MIN
l l

a 

 

  
 
        (8) 

          s.t.  

          

ˆ,  rl l r

l

y y r


 


     
(9) 

          
ˆ 1         (10) 

          

1l

l 




  
(11) 

          
w w 1,  j j

sp t j    (12) 

          
 0,1

I

l   (13) 

    End For  

End For  
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The outer loop iterates over the DMUs under investigation, for   , so as to obtain only 

previous peers for each DMU(τ). The inner iterations represent incremental changes 

applied to the weight assigned to the spatial or temporal objective, such 

that  w , w 0,1sp t  . In this way, all possible weight combinations for both dimensions are 

examined (results in the following section are provided for a step equal to 0.01). As 

already mentioned, the goal of the proposed approach is to extract a unique efficient peer, 

based on the weights assigned to the time and space dimension. Therefore, in the above 

formulation of S-T DEA, in constraint (9) which is a reformulation of constraint (3), with 

the exception of the use of index l instead of i, lambdas have been replaced by binary 

variables l  which take a value of 1 if lambda value l  is selected and 0 otherwise. 

Constraint (10) has been introduced since the projected values for the outputs of the DMU 

under examination cannot be worse than the original ones. This constraint implies that 

ˆ 1  . Constraint (11) is introduced so as to guarantee that only one peer will be selected 

for the reference set of the examined DMU and constraint (12) implies that the weights 

assigned to the objective function are complementary. The resulting S-T DEA 

formulation, due to the presence of binary variables, is a Mixed Integer Linear 

Programming model (MILP). 

The extracted solutions pertain to the selected peer (past DMU) and the calculated 

efficiency score (̂ ) based on the efficient frontier formed by the single selected peer. Out 

of these extracted solutions (depending on the selected weights) one should select the peer 

that maximizes the efficiency score, since this implies that the DMU under study has to 

cover the least required distance to become efficient. 

The resulting efficient frontier considering a single past peer is illustrated in Figure 2(a), 

where DMU(t) has in its reference set DMU(tA) and DMU(tB) (other DMUs are excluded 

for clarity). In case DMU(tA) is selected as a peer, the ̂  value of DMU(t) will be higher 

than unity ( ˆ ' 1OA OA   ), indicating the extent by which its outputs should be 

improved to move onto the efficient frontier. Since ˆ 1   the solution will be considered 

as valid. 

In case the extracted efficiency score ( ̂ ) for a certain combination of weights is less than 

unity, as shown in Figure 2(b) where DMU(tB) is selected as a peer and thus 

ˆ ' 1OB OB   ,  the corresponding solution should be considered as invalid due to the 
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constraint (10). In case constraint (10) was omitted, such a solution would imply that the 

DMU under study would be beyond the efficient frontier formed by the selected peer. 
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(a)                                                                (b) 

Figure 2. Efficient frontier formed by a single selected peer (illustrative example) (a) valid solution, ˆ 1  , 

(b) invalid solution, ˆ 1   

5.3 Introducing slacks 

The aforementioned S-T DEA approach can be extended so as to provide more 

information about the projected values of each output, based on the spatial and temporal 

dimensions. A prerequisite for the calculation of the projected values is the estimation of 

slack values. As known, apart from the efficiency score of a DMU, the notion of slacks is 

necessary to determine whether a DMU is ‘fully efficient’ or not (Charnes et al. 1981). 

Slacks are input excesses or output shortages meaning that a DMU on the efficient frontier 

can still have room for improvement. 

To this end, in the objective function (8) of the previous formulation, slacks are introduced 

in (14) and the goal is to minimize their values (in the weighted sum product ε represents a 

very small positive number, such that ε ~ 0, whereas ˆ
rs  represents the slack value 

assigned to output r . A recommended range for   is 
5 310 10  . Based on the 

calculated slacks, the projected outputs for each inefficient DMU are calculated in (18) 

using variable ( ˆ
ry ) depending on the corresponding weights in the objective function. 



17 

 

 

For ,..., I    

    For 1,...,j J   

      

1 1
ˆmax w wj j

sp l l t l l rMAX MIN
l l r

a s 

 

   
 

           (14) 

          s.t.  

          

ˆˆ ,  rl l r r

l

y s y r


 



      (15) 

          
ˆ 1   (16) 

         

1l

l 




  
(17) 

        
ˆˆ ˆ ,  r r ry y s r      (18) 

        
w w 1,  j j

sp t j    (19) 

       
 0,1

I

l   (20) 

       
ˆ 0,  ry r   (21) 

       
ˆ 0,  rs r    (22) 

    End For  

End For  
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5.4 Proofs 

The proposed approach guarantees that there will always be a feasible solution (proofs of 

the following propositions are given in Appendices A and B). A feasible solution of a 

mathematical programming model is a solution that satisfies all the constraints of the 

problem. The next two propositions guarantee that the proposed model does not yield 

infeasible solutions for any given parameter set. 

 

Proposition 1: For any DMU τ and for any λ resulting from S-T DEA, and y (output), it 

stands that ˆ   

where: 

  is the maximum efficiency derived from the LP model (1) – (4) and̂  the maximum 

efficiency from the S-T DEA model (8) – (13). 

 

Proposition 2: For any given parameter set (inputs – outputs), S-T DEA always provides a 

feasible solution. 

 

5.5 Handling of multiple optima 

As pointed out in the literature, the problem of non-uniqueness of results in the presence 

of alternative optima might be encountered in the application of DEA (Banker et al. 2011). 

This problem, which manifests itself as alternate sets of optimal lambda values, has been 

extensively studied in the context of the estimation of Returns to Scale (RTS) (Seiford and 

Zhu 1998). 

In analogy to the work of Anderson and Inman (Anderson and Inman 2011), we employ 

the following heuristic in order to select a unique set of lambda values in the case of 

alternate optima. The approach is graphically depicted in Figure 3. 

Let us assume that a given DEA formulation yields multiple optima for a DMU under 

study, which appears at time point τ. 

Let us denote as *
i the lambda value of an efficient peer in the reference set appearing at 

time point t, which is part of a set of solutions i F . Then, the optimum set of solutions 

is chosen by the combination of peers which maximizes: 

 

*
i

i F t






  
  (23) 
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In the following example, we assume that for DMU(9) two sets of solutions can be 

extracted. It is assumed that two sets of efficient solutions are derived; the first group 

consists of DMUs 5 and 8, while the second group comprises DMUs 6 and 7. 

 

DMU(9)

(under study)

Successive 

versions in time (t)
9 (τ)8765

Δ(τ-t)=1

Δ(τ-t)=4

Δ(τ-t)=2

Δ(τ-t)=3

DMU(8)DMU(7)DMU(6)DMU(5)

} Similarity in space

(lambda values)

} Similarity in time

(version differences)

Set of solutions #1

Set of solutions #2

λ5 λ8Set of solutions #1

λ6 λ7Set of solutions #2

* *

* *

 
Figure 3. An approach of handling multiple optima 

The optimum set of solution can be obtained by calculating which of the two solutions 

maximizes the corresponding sum: 

5 8#1:
5 8

solution
 

 


 
 

6 7#2 :
6 7

solution
 

 


 
 

The intuitive interpretation of this formula is that a distant lambda value, even it is high, 

will be counterweighted by the large Δt. On the other hand, a low lambda value that is 

close to the DMU under study will be amplified by the low Δt. 

In the context of the proposed S-T DEA, checking whether multiple solutions exist should 

be performed at the end of the first stage. 

 

6. Illustrative example 

In this section, the results of the proposed S-T DEA model are analytically described when 

applied on the illustrative example, the data of which are provided in Table 1. Through the 

analysis, the ability of the proposed model to select the most suitable peer for an examined 

DMU is demonstrated. 
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As it can be seen in Table 2, the peers for DMU(9), which is inefficient, according to the 

conventional application of DEA, are DMU(5) and DMU(8). In this case, applying the S-T 

DEA model, DMU(5) is the only peer selected for DMU(9) when 0.83 1spw   because 

the lambda corresponding to DMU(5) is larger in value ( 5 80.543 0.457    ). On the 

contrary, when 10.17 tw  , DMU(8) is chosen because it is the temporally closest to 

DMU(9). The selected peers, depending on the applied weights, are illustrated in Figure 4. 

wsp

w
t

0

1

1

0.17

0.83

DMU(8)

DMU(5)

 

Figure 4. Selected peer according to 
spw  and 

tw  of DMU(9) in the illustrative example 

The proposed S-T DEA model, based on constraint (9) is capable of calculating a modified 

efficiency score for each DMU, which now reflects its relative position in the 

spatiotemporal context. This efficiency score depends on the weights assigned to the 

temporal and spatial dimension and thus obtains values which differ based on the selected 

peer. Consequently, it becomes possible to select the peer that maximizes this efficiency 

score providing a measure of resemblance between an examined DMU and a selected peer 

in the spatiotemporal context. 

For the illustrative example, the extracted efficiency scores ̂  for DMU(9) are shown in 

Table 4. Based on Proposition 1, ̂  is now smaller in value than the original   (for 

example,   for DMU(9) was originally 1.329). Among the two potential peers, the 

selection of DMU(5) yields a greater efficiency score meaning that this is the closest peer 

to which the DMU under study should be compared. 
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Τhe projected values for each of the outputs of DMU(9) based on (14) – (20) are also 

presented in Table 4. When the time dimension is weighted in the range 0.17,1 , S-T DEA 

model selects DMU(8), yielding for the first projected output a value of 16 and for the 

second a value of 9. These changes in the projected values are attributed to equation (18). 

When the space dimension is weighted in the range  0,0.83 , S-T DEA model selects 

DMU(5), yielding for the first projected output a value of 11 and for the second a value of 

12. 

 

Table 4. Calculated efficiency scores and projected values for DMU(9) in the spatiotemporal context based 

on the applied weights 

Weight of the 

temporal 

dimension 

Selected 

Peer 
̂  

Technical 

Efficiency Score  

ˆ1/  

Projections 

0 0 17tw  .  DMU(5) 1.100 0.909 
output1: 1011 

output2: 812 

0 17 1tw .  DMU(8) 1.125 0.888 
output1: 1016 

output2: 89 

 

The illustrative example and the case study in Section 7 have been solved using GAMS 

optimization (Rosenthal 1988) and the CPLEX solver (Brooke et al. 2003). 

 

7. Real world-application: A software example 

The Eclipse Integrated Development Environment (Eclipse IDE) is one of the most 

popular programming platforms and Eclipse Java Development Tools (Eclipse JDT) Core 

is the component at the heart of the IDE. The COMETS repository (Couto et al. 2013) 

provides access to various metric values that characterize the evolution of Eclipse JDT 

Core quality over a period of 8 years (07/01/2001 – 06/14/2008). In this example, we 

analyze 19 versions of Eclipse JDT, taken approximately every 5 months of development. 

The selected versions constitute the DMUs that we wish to investigate. The metrics by 

which we assess the design quality of each version are coupling, cohesion, and depth of 

inheritance tree. Coupling quantifies the degree of inter-dependence among software 

modules and should be kept as low as possible; cohesion refers to the degree to which the 

elements of a module belong together and the goal is to maximize its value; and depth of 

inheritance tree expresses the average distance of a software module to the root module of 
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the corresponding inheritance hierarchy (software is organized in inheritance hierarchies 

and it is preferable to have a low average depth). These three metrics determine the 

changeability of a software system (Samoladas et al. 2008), which is one of the sub-

characteristics defined in the ISO/IEC 9126 quality model for software. Changeability 

refers to those attributes that reflect the effort required for software modification. These 

three metrics are the outputs of the corresponding DMUs. In the field of software 

engineering, the design quality of a software artifact is assessed by examining its metric 

values in isolation, rather than by contrasting them to the development effort that has been 

spent. In other words, the quality assurance teams or individuals in a software project 

would pay attention to the evolution of quality attributes (such as the ones reflected by the 

selected metrics) without investigating whether any improvement or deterioration should 

be attributed to increased or reduced development effort. Such a correlation could 

obviously be performed but this would be of interest to the field of software economics 

rather than software quality. In this example, we also focus on software quality assessment 

and thus we do not consider any inputs. 

The overall goal is to assess the evolution of quality captured by the selected outputs and 

reflected in the efficiency of each version. Moreover, employing the extracted reference 

sets for each version, DEA enables the identification for each inefficient software version 

(i.e. versions for which there is room for improvement) of those past versions that can 

serve as reference projects. Designers can compare the current version of a given project 

to these reference versions, identify which aspects of the design have deteriorated and for 

which reason, and propose modifications for restoring the design quality. 

The employed dataset for the examined versions of project Eclipse JDT Core is shown in 

Table 5. It should be mentioned that all listed outputs are undesirable, in the sense that the 

goal of the design is to minimize their values. Therefore, the actual data that have been fed 

to DEA are the inverse values. By taking the inverse values for all outputs, implying that 

the goal is to increase them, we essentially treat all outputs as desirable ones. The reason 

for selecting these particular outputs is that they constitute standard and widely 

acknowledged metrics, measurable by software engineering tools. 
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Table 5. Software example data (Eclipse JDT Core) 

DMU Coupling (CBO) Lack of 

Cohesion 

(LCOM) 

Depth of 

Inheritance Tree 

(DIT) 

E01 12.27 132.17 3.11 

E02 12.43 127.53 3.03 

E03 13.29 124.07 3.21 

E04 13.26 156.51 3.21 

E05 13.62 166.10 3.19 

E06 13.79 162.41 3.19 

E07 13.91 187.72 3.08 

E08 13.95 196.55 3.17 

E09 14.61 237.36 3.19 

E10 14.93 251.64 3.18 

E11 15.11 250.86 3.13 

E12 15.17 251.92 3.12 

E13 15.58 249.49 2.60 

E14 15.65 249.40 2.61 

E15 15.68 228.47 2.60 

E16 15.62 233.74 2.60 

E17 15.71 240.43 2.60 

E18 15.85 241.07 2.59 

E19 15.86 235.36 2.62 

 

The results of conventional DEA (VRS, output-oriented model), and more specifically the 

calculated efficiency scores and reference sets for each DMU of the dataset, are presented 

in Table 6. As it can be observed, the evolution of quality for this system does not exhibit 

any particular monotonous trend during the examined period. Efficient versions have only 

themselves in their reference set. Some of the inefficient versions (such as E04 to E12) 

have one past version (E02) in their reference set, and one future version (E16), which, as 

already explained, cannot be exploited, since the designers at the time of construction for 

each software version cannot take advantage of a future version for pinpointing areas that 

can be further improved. 

The proposed S-TDEA approach is useful for cases, such as the last examined version, 

E19. This version has an efficiency score less than one, while its reference set contains 

three past versions, namely E15, E16, and E18. As already mentioned, it would be 

valuable to direct the designers of E19 to a single past project that can act as benchmark. 

However, the project of interest (E19) has a higher resemblance to the project that is 

further away in terms of time (E15), whereas the closest project in time (i.e. the preceding 

one, E18) has the lowest lambda value. In other words, the designers of E19 have to take a 

decision considering both the degree of similarity to the projects in the reference set (since 
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a similar version is more appropriate for locating deficiencies), as well as the proximity in 

time (since a recent project will have properties that are akin to those of the examined 

version). A similar trade-off should be considered when assessing the reference project of 

choice in the case of version E17. 

Table 6. Software example DEA results 

DMU Score Reference set (lambda) 

E01 1.0000 E01 (1) 

E02 

 

1.0000 E02 (1) 

E03 

c5 

1.0000 E03 (1) 

 
E04 

 

0.9406 E02 (0.985), E16 (1.51E-02) 

E05 0.9324 E02 (0.895), E16 (0.104) 

E06 0.9273 E02 (0.864), E16 (0.135) 

E07 0.9421 E02 (0.747), E16 (0.252) 

E08 0.9263 E02 (0.816), E16 (0.183) 

E09 0.9047 E02 (0.708), E16 (0.291) 

E10 0.8979 E02 (0.645), E16 (0.354) 

E11 0.9021 E02 (0.568), E16 (0.431) 

E12 0.9032 E02 (0.545), E16 (0.454) 

E13 0.9994 E02 (1.35E-02), E16 (0.986) 

E14 0.9970 E02 (3.94E-03), E16 (0.996) 

E15 1.0000 E15 (1) 

E16 1.0000 E16 (1) 

E17 0.9987 E16 (0.699), E18 (0.301) 

E18 1.0000 E18 (1) 

E19 0.9896 E15 (0.425), E16 (0.362), E18 (0.213) 

 

The application of the proposed S-T DEA approach yields for E19 the results which are 

graphically depicted in Figure 5. When the weight assigned to the time dimension ( tw ) is 

larger than or equal to 0.37 (and correspondingly 
spw < 0.63), the only DMU in the 

reference set of E19, which is suggested as a benchmark, is E16. When the weight of the 

space dimension is larger than or equal to 0.63, the version which is closer in terms of 

lambda values, namely E15, is selected. It should be noted, that although E18 appeared in 

the reference set of E19 in the conventional application of DEA (as shown in Table 6), in 

the proposed S-T DEA approach it is not extracted as a solution because it would yield 

ˆ 1  , violating constraint (10). 
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Figure 5. Selected peer according to
spw and tw of DMU E19 of software example 

As already shown, the proposed S-T DEA approach is also capable of providing the 

efficiency scores and the projected values based on the selected weights. For example, for 

version E19 the efficiency scores are shown in Table 7, in relation to the DMU which is 

selected in the reference set. According to these results, E15 should be selected as a 

benchmark for comparison since its selection yields the largest efficiency for E19, even 

though the differences are small. The projected values indicate the extent by which the 

outputs should be improved when the corresponding software version is selected as a peer. 

Table 7. Calculated efficiency scores and projected values for E19 in the spatiotemporal context based on 

the applied weights (software example) 

 
Weight of the 

temporal 

dimension 

Selected 

Peer 
̂  

Technical 

Efficiency 

Score 

ˆ1/  

Projections* 

S
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d
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U
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r
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 s

et
 

0 0 37tw  .  E15  1.010 0.990 

CBO: 15.8615.68 

LCOM: 235.36228.31 

DIT: 2.622.60 

0 37 1tw .  E16 1.007 0.993 

CBO: 15.8615.62 

LCOM: 235.36233.64 

DIT: 2.622.60 

*Actual outputs have been inversed since the goal is to minimize the original metrics 

 

8. Conclusions 

Data Envelopment Analysis is one of the most powerful tools for measuring the relative 

efficiency of a set of units that enables benchmarking based on the corresponding 

reference set. However, the reference set is based only on the spatial distance of inefficient 
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DMUs from the efficient frontier. This property imposes a limitation when dealing with 

time series datasets, since it ignores, by construction, the temporal proximity among units. 

In this paper, we have proposed a novel two-stage DEA approach, which considers both 

the spatial and temporal dimension for the construction of the reference set when DMUs 

represent different snapshots in time of the same entity. The additional value of the 

proposed model lies in the ability to provide a single out of multiple DMUs as a 

benchmark in a unit’s reference set and the recalculation of efficiency scores under this 

condition. The approach ensures that the obtained peer is: a) a single one, facilitating the 

process of comparison, b) a past version in the course of evolution, making the 

comparison feasible, and c) has the highest resemblance in terms of both space and time. 

The proposed S-T DEA model can be applied in any context as it has been shown through 

the demonstration on a software development context. As an example, if different 

resources and outputs are available for successive time periods in the evolution of a 

company, the approach will yield for each inefficient period, a single past period that can 

be used for identifying opportunities for improvement. Since the proposed approach 

implies the presence of a spatiotemporal frontier, future research could investigate its 

relationship to the original frontier and interpret the projections of inefficient units onto 

the spatiotemporal one. 
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Appendix A – Proof of Proposition 1 

Let us assume that a DMU(3) is inefficient and 1 , 2 are two non-zero lambdas of its 

reference set corresponding to DMU(1) and DMU(2) respectively, and assume that 

21  , such that: 

1 2 1    (A.1) 



27 

 

1 20 , 1    (A.2) 

According to the temporal dimension, DMU(3) is closer to DMU(2), while according to 

the spatial dimension DMU(3) has a higher resemblance to DMU(1). 

The corresponding efficiency from (3) will be  1 1 2 2

3

1
y y

y
        (where 3y  is the 

output of the DMU under study) and due to (A.1), the above inequality will be 

reformulated as follows: 

 

 

 

1 1 2 2

3

1 1 1 2

3

2 1 2 1

3

1

1
1

1

y y
y

y y
y

y y y
y

  

  

 

     

        

      

 

(A.3) 

The efficiency provided by the S-T DEA model will be the following: 

1

3

ˆ
y

y
  , if 

t spw w  (A.4) 

2

3

ˆ
y

y
  , if 

t spw w  (A.5) 

Therefore, the efficiency ̂  is calculated from (9) by selecting the combination of 1y , 2y  

that maximizes the value of ̂  satisfying the constraint. In the right hand side of 

inequalities (A.4) and (A.5), lambda values are omitted due to the constraints (9) and (11) 

of the S-T DEA model. 

In order to prove that ˆ  y  the relative position of   and ̂  by means of order 

relationships should be investigated. For this reason, two scenarios about the arrangement 

of 1y  and 2y are examined: 

 

 1 2y y  

In this case,  2 1 2 1 2y y y y     as  1 2 1 0y y     (for the sake of simplicity 

denominator 3y is dropped from the analysis since it is equal to all instances). To 

investigate the order relation of  2 1 2 1y y y    with 1y , we reformulate the right hand 

side of inequality (A.3) with respect to 1y  as follows: 

 1 2 1 2y y y     (A.6) 
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From (A.6), it can be seen that as  2 1 2 0y y    , then  1 2 1 2 1y y y y    . Therefore, 

the following order relationship is formulated: 

   1 1 2 1 2 2 1 2 1 2y y y y y y y y           (A.7) 

The initial assumption 1 2y y  is reformulated as 2 1y y k  , where k  is a real 

nonnegative number. By substitution in (A.3) the following is derived: 

 

 

 

1 1 2 1

3

1 2 1 2

3

1 2

3

1

1

1

y y k
y

y k
y

y k
y

  

   

 

        

        

   

 

(A.8) 

Comparing the right hand sides of inequalities (A.4) and (A.8), it is obvious that 

1 2 1y k y   , consequently, ˆ  . 

 1 2y y  

In this case  1 2 1 2 1y y y y     as  2 1 2 0y y    . To investigate the order 

relationship with 2y , we reformulate (22) with respect to 2y  as follows: 

 2 1 2 1y y y     (A.9) 

From (A.7), it can be seen that as  2 1 2 0y y    , then  2 1 2 1 2y y y y    . Therefore, 

the following order relationship is formulated: 

   2 2 1 2 1 1 2 1 2 1y y y y y y y y           (A.10) 

The initial assumption 1 2y y  is reformulated as 1 2y y m  , where m  is a real 

nonnegative number. By substitution in (A.3) the following is derived: 

 

 

 

1 1 2 2

3

1 2 2 1

3

2 1

3

1

1

1

y m y
y

y m
y

y m
y

  

   

 

        

        

   

 (A.11) 

Comparing the right hand sides of inequalities (A.5) and (A.11), it is obvious that 

2 1 2y m y   , consequently, ˆ  . 
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Appendix B – Proof of Proposition 2 

Let DEA
i

DEAF  be the optimal lambdas of DEA output model described by (1) – (4), 

 S T DEA
i
  S T DEAF  be the optimal lambdas of S-T DEA model, described by (9) – (13) 

and 
F  be the efficiency set of model . By construction of tables A and Δ, a lambda that 

appears in 
DEAF  will also appear in 

 S T DEAF . From the S-T DEA model, only one weight 

dependent solution will be selected among the lambdas provided by the initial DEA model 

(1) – (4) and thus the feasibility of the model is guaranteed and furthermore it stands 

that:
 S T DEA DEA F F . 
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