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Dissociation of a ligand isoniazid from a protein catalase was investigated using all-atom Molecular
Dynamics (MD) simulations. Random Acceleration MD (τ -RAMD) was used where a random
artificial force applied to the ligand facilitates its dissociation. We have suggested an approach to
extrapolate such obtained dissociation times to the zero-force limit that was never attempted before,
thus allowing direct comparison with experimentally measured values. We have found that our
calculated dissociation time was equal to 36.1 seconds with statistically significant values distributed
in the interval 0.2-72.0 s, that quantitatively matches the experimental value of 50±8 seconds despite
the extrapolation over nine orders of magnitude in time.

The binding affinity of a compound, quantified by the17

dissociation constant KD, is the key property of the com-18

pound’s molecule for drug design. KD is defined as the19

ratio of the rate constants for dissociation and association20

processes in the protein-ligand system, KD = koff

kon
, where21

koff(on) is the dissociation (association) rate constant and22

τoff(on) = 1/koff(on) is the dissociation (association) time.23

Calculating on- and off-rates using molecular simula-24

tions is an active area of research (see [1, 2] for recent25

reviews). Moreover, the kinetic properties, rather than26

KD, are shown to correlate better with experimental drug27

efficacy [2, 3].28

All-atom Molecular Dynamics (MD) simulations can29

not in most cases calculate the kinetics of protein-ligand30

association and dissociation directly because experimen-31

tal values are in the range of seconds, many orders of32

magnitude larger than currently accessible for straight-33

forward MD. This is especially true for the dissociation34

time as it is much larger than the association time for35

drug candidates (which makes them good candidates).36

Therefore, a number of techniques for estimating the dis-37

sociation rates and elucidating the mechanisms of dissoci-38

ation using nano- and microsecond long MD simulations39

are employed. Despite recent success, the calculated dis-40

sociation rates reproduce experimental values “within a41

factor of 2-20” [4] or with “up to 4 orders of magnitude”42

error [5].43

In this work, we use a method Random Acceleration44

MD (RAMD) in its variant called τ -RAMD [6, 7] for45

obtaining dissociation times of a ligand isoniazid dissoci-46

ating from a protein catalase. Isoniazid is the main drug47

for treating tuberculosis which targets catalase, a vital48

protein for functioning of mycobacteria tuberculosis [8].49

The method’s idea consists of applying a small force to50

the ligand keeping the force constant in magnitude but51

changing periodically its direction. The simulation stops52

when the ligand reaches a predefined distance from the53

active site at which point it is considered dissociated and54

the time of dissociation is recorded. As a result, τ -RAMD55

provides a set of dissociation times as a function of the56

magnitude of the applied force.57

We here focus on the physical insight provided by such58

application of the random force to the system. Using re-59

cent results from the stochastic theory of reaction rates,60

we show that the simulated data can be used for esti-61

mating dissociation times that quantitatively match the62

experimental value of τexpoff = 50 seconds.63

RESULTS64

Theory The computer experiment, realised65

through τ -RAMD, generates data in the form of the num-66

ber of ligands that remain associated with protein at time67
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t, N(t). Normalised to 1 at zero time this gives the sur-68

vival probability N(t)
N(0) of finding the ligand associated69

with the protein at time t. Therefore, the first ques-70

tion for the theory is ‘how to define the dissociation time71

τoff based on the survival probability N(t)
N(0) for meaning-72

ful comparison with experimentally measured τexpoff ’. As73

this value of τoff obtained in simulation depends on the74

artificial applied force f , the second question is ‘how to75

extrapolate the simulated dissociation times to zero force76

for comparison with real experiment’. As our data shows,77

answering both questions requires non-trivial physical78

approaches.79

Definition of τoff The origin of the stochastic the-80

ory of reaction rates including dissociation processes is81

dated back to the seminal work by H.A. Kramers [9] who82

considered the microscopic origin of macroscopic pro-83

cesses of chemical kinetics as random motion of thermally84

activated particles crossing a potential barrier. Further85

development of this theory can be found in comprehen-86

sive reviews [10–13].87

In the simplest case of classical Kramers’ kinetics,88

the probability density for spatiotemporal distribution of89

random particles satisfies the Fokker-Plank equation. In-90

tegrating its solution in the limits of the barrier gives the91

desirable time evolution of the survival probability N(t)
N(0)92

relaxing as an exponential function; respectively, τoff is93

defined as the inverse of the exponential coefficient.94

However, there is also a possibility of the pres-95

ence of anomalous kinetics that lead to the fractional96

Fokker-Plank equation with non-exponential relaxation97

behaviour [14]. It should be pointed out that such non-98

exponential, so-called “non-spectral”, modes can exhibit99

themselves even in the case of the classical Fokker-Plank100

equation when initial conditions are taken from broad,101

highly non-stationary initial probability densities [15]. In102

this case a two-stage process of relaxation can be revealed103

when the leading power-law mode changes to the conven-104

tional spectral (exponential) relaxation mode during the105

time evolution of the system’s dynamics [16].106

Summarising, the dynamics of the ligand’s probability107

to be dissociated from the protein can have two regimes:108

(I) a non-exponential one at small times caused by109

non-equilibrium initial conditions originated from com-110

plex intermolecular interactions in the system under the111

influence of the applied τ -RAMD external forces,112

(II) a classical exponential relaxation at longer times113

when the above initial conditions are equilibrated.114

The initial non-exponential regime is short-lived and,115

thus, undetectable by the experiment. We, therefore,116

assume that τoff is defined by the second, much longer,117

regime and it is equal to the inverse of its exponential118

coefficient. In the following, for brevity, we use τoff and119

τ as synonyms.120

Dependence of dissociation time τ on the ap-121

plied force Several works on lowering the potential122

barrier of dissociation under either the influence of ad-123

ditional applied forces or by velocity activating the par-124

ticles within the context of dissociation or first passage125

time from a potential well exist [17–20]. However, these126

models are quite abstract and they deal with artificial127

numerical simulations, rather than with real biophysical128

systems.129

To the best of our knowledge, the first attempt to take130

into account the influence of the external force f on the131

receptor-ligand coupling was proposed by G.I. Bell [21],132

who considered the characteristic lifetime of associated133

state τ in the simplest form134

τ = ν0 exp [(E0 − γf) /kBT ] , (1)

where ν0 is a function of natural frequency of oscillations135

of the system in the bound state that corresponds to136

the standard Kramers’ theory. Respectively, when f →137

0, the value τ(f = 0) reduces to the inverse Kramers’138

dissociation constant for the unperturbed system. E0 is139

the bond energy, γ is some phenomenological parameter,140

and kB and T are Boltzmann’s constant and the system’s141

temperature.142

Note that Eq. (1) can be formally considered as a so-143

lution of the ordinary differential equation144

dτ

df
= −

γ

kBT
τ. (2)

From the simplest point of view of dimensional analy-145

sis, the parameter γ has a meaning of some characteristic146

length, which a particle should overcome under forcing147

which can be considered as work diminishing the initial148

free energy of the barrier/bond. Clearly, this work and,149

thus, γ depends on the force f . We here suggest a model150

by assuming that this characteristic “length” decreases151

with force in the same Boltzmann-like manner:152

γ = γ0 exp [(−γ′f) /kBT ] . (3)

Substituting Eq. (3) into Eq. (2), we obtain the differ-153

ential equation154

dτ

df
= −

γ0
kBT

e
−

γ′f
kBT τ, (4)

which can be easily solved by the method of separation155

of variables:156

τ = τ0e

γ0
γ′

(

e
−

γ′f
kBT

−1

)

, (5)

where τ0 = ν0 exp [−E0/kBT ] is the dissociation time157

for the unperturbed system. It is easy to see that τ0 is158

equal to the solution (5) with f = 0. Towards the large159

forces, the solution (5) tends asymptotically to τ∞ =160

τ0 exp (−γ0/γ
′). It has a finite value that is agreed with161

the stochastic character of the model since even if the162
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applied force destroys the barrier completely, a particle163

needs some time to leave the vicinity of its initial position164

via a random walk. At the same time, τ∞ << τ0 in165

multiple orders of magnitude, i.e. γ′ << γ0. Note also166

that for weak perturbation forces, γ′f/kBT << 1, the167

solution (5) reduces to the Bell’s expression (1) with γ =168

γ0.169

Eq. (5) can be linearised as170

ln

(

ln

(

τ

τ0
e

γ0
γ′

))

= ln

(

γ0
γ′

)

−
γ′

kT
f. (6)

This expression contains true dimensionless and strictly171

positive arguments of logarithms but they contain un-172

known parameters not accessible in direct measurements173

or simulations. Whence, Eq. (6) plays a role of a quali-174

tative argument, which demonstrates a possible origin of175

the functional dependence in the form of doubly logarith-176

mic dependence of the escape time on the applied force.177

Since Eq. (6) contains a combination of phenomenological178

parameters, it is more convenient to apply some rescal-179

ing intended to get a simpler expression for the further180

analysis of simulated data.181

Rescaling the escape time τ by the constant eγ0/γ′

τ0
,182

τ̃ = τ eγ0/γ′

τ0
we obtain τ̃0 = τ0

eγ0/γ′

τ0
= eγ0/γ

′

from which183

γ0/γ
′ = ln(τ̃0), ln

(

γ0

γ′

)

= ln (ln (τ̃0)) and Eq. (6) be-184

comes185

ln (ln (τ̃)) = ln (ln (τ̃0))−
γ′

kT
f, (7)

providing a linear dependence between the double loga-186

rithm of the rescaled dissociation time and the applied187

force. Clearly, for f = 0 the dissociation time τ is equal188

to τ0 for non-scaled dissociation times.189

Molecular model and simulation details Cata-190

lase from Mycobacterium Tuberculosis (MtKatG) is the191

target for isoniazid. However, no experimental atomistic192

data is available for setting the initial structure of the193

complex for MD. Fortunately, Mycobacterium Tubercu-194

losis catalase (MtKatG) and Burkholderia Pseudoma-195

llei catalase (BpKatG) have very similar atomic struc-196

tures and activity against isoniazid [22]. As no exper-197

imental structure of isoniazid-bound MtKatG is avail-198

able in the Protein Data Bank [23], atomic coordinates199

were obtained by superimposing the crystal structures200

of MtKatG (PDB: 1sj2) and the complex BpKatG-INH201

(PDB: 5syi) using UCSF Chimera [24].202

Molecular Dynamics simulation details are provided in203

Supplementary Information.204

Multiple τRAMD calculations were carried out by ap-205

plying different forces to the ligand: 550, 500, 450, 400,206

350, 300 and 250 kJ
mol · nm . The force was applied each 50207

MD steps. If the distance between the centers of mass208

of the ligand and the protein changed by 0.025 nm, the209

direction of the force was randomly altered. The maxi-210

mum COMs distance at which the ligand was guaranteed211

to leave the protein surface was set to 5 nm. At each212

force value, a number of runs, N(0) (up to 200), was per-213

formed using identical initial coordinates and velocities214

with the only different parameter being the random seed215

for random force generation. Since isoniazid is a small lig-216

and and its conformation and position in the active site217

hardly change over time, sampling of the bound state (i.e.218

obtaining several starting structures) was not necessary219

and did not affect the final result (the dissociation time).220

Data processing For each force value, the set of221

dissociation times was recalculated to the dependency of222

the survival probability on the simulation time. For a223

time moment t the count N(t) was calculated as a total224

number of complexes that have not dissociated at this225

time. It equals to the number of τ -RAMD runs in the226

set (for the given value of f) having duration longer than227

t. To obtain survival probability, N(t) was then divided228

by the total number of runs N(0) in the set. t ranged229

from zero to the duration of the longest run in the set,230

and N(t)/N(0) changed from unity at t = 0 to zero at231

the last t value, Fig. 1.232

Obtaining dissociation times Clearly, the sur-233

vival probability data points N(t)/N(0) for each force234

demonstrate two regimes, Fig. 1. During the first stage,235

the decay follows a bell-shaped curve, which can be accu-236

rately fitted as ln [− ln(N(t)/N(0))] = p ln(t) + p ln(t0),237

where p is the power index and t0 is some character-238

istic time that results in the revealed time dependence239

N(t) = N0 exp(−(t/t0)
p) shown as the black dashed240

curve in Fig. 1. For these two examples p are equal to241

1.4 and 1.6.242

However, after some time τfrac the survival probabil-243

ity exhibits drastic change in the dynamics starting to244

follow a linear dependence of ln(N(t)/N0) vs. t that cor-245

responds to the usual relaxation process dN(t)
dt = −λN(t)246

with the decay rate λ determining the dissociation time247

τ . By the end of the exponential decay, the remained248

long-lasting complexes form ”shelves” with constant N249

values, which distorts the slope of the fitted line. These250

“shelves” were formed by a very small number of non-251

dissociating complexes with step-wise changes that are252

far from the continuous dependence of the model for fit-253

ting the data. To define the threshold of statistically254

significant data and to obtain reliable fit, the values at255

the end were cut off one by one until the slope stops256

changing (see Fig. S1 in Supplementary Information for257

a representative example). In some cases (as in Fig. 1258

(a)) all the values were retained for fitting as cutting off259

the end points did not change the slope.260

The dissociation times reciprocal to the rate, τ = 1
λ ,261

for all forces are listed in Table I as well as the times262

of the crossover between the two regimes. Note that the263

values of τ and τfrac are close to each other that sup-264

ports the interpretation of the initial regime as signifi-265

cantly non-equilibrium transient processes taking place266

at times shorter than the characteristic relaxation time267
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of the system. Thus, it was excluded from the further268

analysis. The fitted curves for all values of the force f269

are included in Supplementary Information.270

(a) F = 350 kJ/(nm ·mol)

(b) F = 500 kJ/(nm ·mol)

Figure 1. Fitting the probability of the ligand to remain as-
sociated with the protein using models for two regimes (see
text); the results for the external force strength equal to 350
kJ/(nm ·mol) (a) and 500 kJ/(nm ·mol) (b) are shown; black
dashed line – non-exponential model, blue line – exponential
model, red dash-dot line – the moment of switching between
the models; the fitted values of the parameters are in Table I.

Extrapolation to zero force The dependence of271

the obtained values of the dissociation time τ on the ap-272

plied force f per mole was reduced to the linearised form273

by sequential twice logarithmic transformation as shown274

in Fig. 2. The apparent linearity in the dependence on f275

confirms the theoretical model (7). The linear fit of these276

values277

ln (ln(τ̃)) = ln (ln(τ̃0))− κf (8)

was carried out using the standard Curve Fitting Toolbox278

of MATLAB, which uses the QR factorization algorithm.279

Note that we used dimensional times (ps) obtained from280

the data processing procedure for the fitting to avoid un-281

necessary complications with multiple parameters intro-282

duced when we considered a possible theoretical model,283

which leads to such double logarithmic functional form.284

Since we are interested in the value of τ0 only, this kind of285

fitting directly gives the desired parameter as the original286

τ0 coincides with the scaled τ̃0.287

Figure 2. The sequence of dissociation times determined from
MD simulations linearised by a coordinate transformation as
a function of the applied forces per mole (circles) and their
linear fitting (solid line). The dashed curves denote the pre-
diction bounds with a confidence level equal to the standard
deviation. The asterisk marks the experimental value.

DISCUSSION288

Fitting data from Table I using Eq. (8) results in R2 =289

0.978 and RMSE = 0.073 for the chosen scaled units.290

This procedure of fitting gives the average value of the291

slope equal to κ = 0.0041 with the confidence intervals292

from 0.0038 to 0.0044 at the level of standard deviation.293

The second fitting parameter of the fitted straight line294

(8) has the average value ln (ln(τ0)) = 3.441 with the295

confidence interval from 3.315 to 3.563 at the level of296

standard deviation. The numerical values correspond to297

picoseconds as the dimensionality of time.298

The calculated ln (ln(τ0)) assumes normal distribution299

around the found average value. However, exponentiat-300

ing it twice to obtain τ0 significantly changes the type of301

the probability distribution and requires more sophisti-302

cated procedure for determining τ0 and its uncertainty.303

We evaluated them using the NIST Uncertainty Machine304

[25] with Monte-Carlo algorithm simulating an ensemble305

of 106 realisations. After the transformation the proba-306

bility distribution becomes highly long-tailed and skewed307

with a power law tail, which can lead to divergent statis-308

tical moments (see Fig. S3 in Supplementary Information309

for the distribution plots).310
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Table I. Dissociation times τ and moments of crossover from
fractional exponential to classical relaxation regime τfrac

f, kJ/(nm ·mol) τ, ps τfrac, ps

250 78397 70000

300 11044 10000

350 1319 1300

400 259 300

450 98 106

500 87 150

550 22 24

For this type of distributions the robust statistical311

measure of the most probable value is the median, which312

in our case was equal to M(τ0) = 36.1 seconds. Statisti-313

cally significant deviations from this value are quantified314

by the median of the absolute value of the deviations315

M(|τ0 − M(τ0)|), equal to 35.9 seconds in our case and316

making the statistically significant values distributed be-317

tween 36.1-35.9=0.2 and 36.1+35.9=72.0 seconds.318

Summarising, the found extrapolated value of τ0 is 36.1319

seconds, with statistically significant boundaries 0.2 and320

72.0 s, that matches the experiential value of 50 ± 8 s321

quantitatively within the uncertainties of extrapolation322

and experiment.323

In conclusion, we have applied the τ -RAMD methodol-324

ogy to obtain the probabilities of the ligand to dissociate325

from the protein. We have also suggested a theory for326

these probabilities that describe their time evolution ac-327

cording to two regimes, a non-exponential for small times328

and standard exponential for longer times. We have iden-329

tified these two regimes in the data generated by the sim-330

ulations. Finally, we suggested a model that allows to331

extrapolate the obtained dissociation times to the zero-332

force value that quantitatively match the experimentally333

measured value of 50 seconds. This is in contrast to the334

original τ -RAMD approach where no such extrapolation335

was attempted. Importantly, the extrapolation has been336

done through nine orders of magnitude in the value of τ ,337

from nanoseconds to seconds. Nevertheless, the extrap-338

olated value quantitatively reproduces the experiential339

one, in contrast to the majority of current methods de-340

scribed in literature.341
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