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ARTICLE INFO ABSTRACT
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This paper proposes a novel joint resource allocation technique for flexible-grid systems by utilizing
non-dominant sort genetic algorithm (NSGA-II) in a multi-objective optimization framework. It
pioneers the implementation of an evolutionary mechanism to optimize resources as means of
mitigation of physical layer impairments.

This investigation initially introduces a proposal in

which bandwidth reduction, maximization of the minimum signal-to-noise ratio (SNR) margin, and
minimization/maximization of the sum of SNR margins are studied under dual-objective Pareto
analysis in the link-level scenario. Later, the technique extends existing provisioning strategies for
network planning by targeting the reduction of blocking and spectral utilization of optical connections.

1. Introduction

The dynamism of today’s data traffic demands has
motivated the development of more flexible and faster
telecommunication systems to cope with the heterogeneity
of services and escalating requirements of user’s
consumption habits. In these systems, the necessity of
physical-layer-aware methods to improve quality of
transmission (QoT) becomes critical in order to integrate
the underlying transmission aspects into the network
planning [1, 2] and provide more reliable resource
allocation. In this regard, the emergence of channel models
[3] that can accurately estimate physical layer impairments,
especially nonlinear interference (NLI), has offered a
framework where provisioning strategies can rapidly assess
the QoT and provide more efficient decisions.

NLI in optical transmission is a theme that has been
around in the field of optical communications since the
early 90s [4]. Nevertheless, it was a while back when a
reasonably accurate and low complexity model, named
Gaussian noise (GN) [3], was proposed and later applied on
several works [5, 6, 7] that combine it to diverse
transmission scenarios. In a general sense, this model
proposes treating the noise generated during the
propagation of light as the sum of a contribution derived
from the linear regime, originated in optical amplifiers
(e.g., Erbium doped fiber amplifier (EDFA)), and a portion
that arises from the nonlinear physical interaction between
fiber and light. The latter is subdivided into two types of
effects: self-channel interference (SCI), which comprises
the noise that the optical channel triggers on itself, and
cross-channel interference (XCI), that considers the mutual

ORCID(S):

interaction of neighboring channels. To deal with these
impairments, the design of physical-layer-aware resource
allocation techniques has become of key importance in the
scope of Optical Networks.

A brief survey in the literature shows that the term
"Resource Allocation" is predominantly observed in the
process of assigning network assets (e.g., spectrum, route)
to support strategic goals, i.e., maximize the signal-to-noise
ratio (SNR) margin, minimize the total allocated
bandwidth, etc. Numerous techniques have been
extensively employed in optical communications to
optimize resource allocation in network traffic, such as
linear/nonlinear programming [6, 7] and metaheuristics.
The latter is based on stochastic optimization inspired from
miscellaneous fields (e.g., Game Theory [8], Swarm
Intelligence [9, 10], Evolutionary Algorithms [11]) and has
given evidence of aptness in providing a derivative-free
method that yields sufficiently good results with incomplete
datasets or limited computation capacity.

The method derived in this manuscript proposes the
usage of an evolutionary metaheuristic — the
non-dominated sorting genetic algorithm II (NSGA-II [12])
— to optimize resource allocation for offline planning when
applied to point-to-point and meshed networks. This paper
compares its numerical results with the benchmark
provided by [6], given that analogous scenarios are
assumed. Three Pareto analyses for the link-level approach
are described. The first analysis focuses on the conflicting
relationship between the minimization of total bandwidth
vs. maximization of the minimum SNR margin. The
second maintains the minimization of the total bandwidth,
but it maximizes the sum of SNR margins. The third
investigation is proposed to minimize the sum of SNR
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Figure 1: Optical link and channel configuration, where EON
stands for Elastic Optical Network.

margins while maximizing the minimum SNR margin. The
latter is a reformulation of what is proposed in [6], in which
one of the main goals is to maximize the SNR margins of
all channels, condition that may lead to over-provisioning
of resources. As a result of this reformulation, spectrum
resource savings can be obtained for specific transmission
intervals. At last, the evolutionary algorithm provides a
more substantial whole-network planning strategy, where
the provisioning is adapted to optimize the blocking and
total spectral usage for various meshed network topologies.

The remainder of the paper is structured as followed.
Sec. 2 presents the optimization problem and the elements
of nonlinear channel model theory needed for this work. In
Sec. 3, the results for the link-level optimization are
introduced, while Sec. 4 extends the algorithm to be
applied in meshed networks. Finally, Sec. 5 draws the
conclusions.

2. Optimization Process

2.1. Problem Statement

In the following analysis, we considered the same
network topology of [6], which is portrayed by Fig. 1. In
this point-to-point, there are three types of channels.
Channels of type A (in blue) propagate from nodes 1 to 3.
Channels of type B (in orange) are available for only half of
the total network length, i.e., from node 1 to 2. At last,
channels of type B*t (the symmetric representation of B,
also in orange) go from node 2 to 3. Channel A demands a
bit rate of 200 Gbps, whereas B and B* of 250 Gbps. As
degrees of freedom, it is possible to change the launch
power and bandwidth (via adaptive modulation as
described in Sec. 2.3.4) of each channel. Given that the
purpose of this manipulation is to guarantee sufficient QoT
to all carriers, it is necessary that the following inequality
be obeyed:

SNR,(c,f,G) > SNR,;,.(c,) )

Here, SNR;(c,f, G) is the SNR calculated for the i-th
channel as a function of the possible modulation formats (¢
= (cq,..-cn), c: spectral efficiency (bits/s/Hz)), central
frequencies (f = (f}...../n)), and power spectral density (G
= (Gy,....Gy)). Thereby, in a complementary way, some
targets in the optimization description need to be included,
and these are:

e minimize the total bandwidth occupied by channels,

N
min Z R;/2¢; (@)
c
i=1

where R; is the data rate of the i-th channel and N is the
total number of channels,

e maximize SNR margin of the most penalized channel,
Iga(l}x ASNR,,;, 3)
where ASNR, ;. corresponds to the minimum SNR margin,

e maximize the sum of the SNR margins of all channels.

N
ASNR; 4
max l; ; )

where ASNR; corresponds to the i-th channel SNR margin.
In this work, we consider a null guardband between
consecutive channels, such that f is a function of ¢ and
f1 = 193.55 THz. For that reason, we omit f in the
following formulations.

The multi-objective treatment of these variables (¢ and
G) is described in [6] and all formerly mentioned
optimization targets are addressed. @ However, this is
achieved via the aid of adjustment coefficients within a
single cost function, which wunveils a weighted
single-objective optimization method. Given that the aim is
to optimize a single cost function and promote no trade-off
analysis, this assumption does not correspond to
multi-objective premises. Furthermore, the choice of the
optimization coefficients is empirical and it creates an
environment where the solutions are optimal regarding the
corresponding set of values. At last, another drawback
found in [6] is the dependence on a MINLP tool [13],
which increases the degree of implementation complexity.
On the contrary, the technique derived within this work was
implemented in a few lines of code and included as an
additional feature to the SIMTON simulation tool [14].

2.2. Channel Model

As this work also focuses on the nonlinear impact of
light propagation, the computation of the power spectral
density originated from the nonlinearity of the i-th channel
after N spans (Gypy;) is mathematically given by the
so-called incoherent Gaussian noise (IGN) model,
summarized in equations 41-43 in [3], where equation 42
indirectly defines the XCI contribution, whilst 43 the SCI.
With the computation of these nonlinear parcels, it is
possible to estimate one of the fundamental variables
discussed in this paper, the SNR margin (ASNR), which
has a direct relation with the propagation reach. Margin
dependence on the number of spans plays an important role
to evaluate how far channels can propagate before crossing
the SNR threshold (SNR,,,) because of the additive
incoherent accumulation of the nonlinear and ASE
(amplified stimulated emission) noise. The SNR margin,
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Physical parameters considered in this work
Parameter Value
a 0.22 dB x km™!
b, 21352 x m™!
Y 1.3 W x km™!
5dB
22 dB
NS,'—Z’ N.s,2—3 6
N 12
Table 1

Summary of the physical parameters considered in this work.
a: fiber attenuation coefficient, g,: fiber chromatic dispersion
coefficient, y: fiber nonlinear coefficient, Ny, 5, N, 3, N, 5
number of spans from node 1 to 2, 2 to 3 and 1 to 3.

corresponding to the i-th channel after N spans, in linear
units, is given by:

Gch,i
(GuseinN, + ONL1i)SNRy,,

ASNR; y = 5)

G 4sE,i,N, is approximately given by: N F,(I', — 1) f,p;h,
where F, is the n-th amplifier noise figure, I',, is the n-th
amplifier gain, f,,; is the center frequency of the i-th
channel and h is Planck’s constant. Additionally, the
considered SNR threshold values (SNRy;,. ) are referenced

in [15] (for a pre-FEC BER of 4 x 1073) and differ
according to the modulation format assumed by the
channel. In this work we also considered that the amplifier
gain is set such to compensate for the fiber attenuation loss.
Table 1 summarizes the network physical parameters
utilized in this work.

In network planning, the SNR is more often used as
metric for QoT investigations, since with it, one can simply
estimate the SNR Margin (Eq. 5). Maintaining the SNR
margin above zero is an indication that after the FEC
(forward error correction) decoding an error-free
transmission can be obtained. Therefore, this supports the
reason why we consider the SNR margin as an appropriate
metric to be analyzed in the following studies.

2.3. Similarities with Genetic Features

A parallel between the optical spectrum and a
chromosome will be drawn hereafter as means to justify the
implementation of the NSGA-II. The corresponding
illustration that correlates these two worlds is depicted in
Fig. 2.

2.3.1. Genes

Genes represent the basic and functional unit of
heredity and are composed of a sequence of nucleobases
that, according to the arrangement, determine different
features of an individual. Similarly, optical channels are the
fundamental physical units of transmission packages
designated by different arrangements of design parameters.
For instance, an optical channel can support different
orders of modulation format (e.g., 4QAM, 8QAM,
16QAM), launch powers (e.g., 0 dBm, -5 dBm),

crossover point e ——
P offspring 1

parent 1 v \Ita

- A 1 I l.a
MR am e
|

“‘. Al

parent2 : '

offspring 1M

ANEnNam
“@i@A
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/b
offspring 2

-
power level
modulation format f

Figure 2: Parallel between genetic features and the optical
framework.

frequencies, and the combination of each feature value
identifies a specific carrier (gene).

2.3.2. Chromosome

It is a linear sequence of concatenated genes. When
translating to the optical context, it is the portion of the
spectrum occupied by the transmitted optical channels. It
will be referenced by the term "individual" in the next
subsections.

2.3.3. Crossover

This genetic operator can be described as the physical
combination of sequences of genes from two different
chromosomes to generate the offspring. In this particular
process, the exchanged sequences of genes are determined
by the crossover point (stochastically determined).
Mirroring this mechanism to the optical context, the
generated offspring can be understood via operations l.a
and Lb in Fig. 2, where a set of channels from a sequence
whose name is parent 1 (parent 2) is swapped with the
complementary sequence of channels from parent 2 (parent
1).  This operation generates the individuals named
offspring 1 and offspring 2.

2.3.4. Mutation

It is a random alteration of gene features. It can be
illustrated by the operations Il.a and IL.b in Fig. 2. The
square blocks, with a white background enclosing the
optical channels, represent the mutated channels. In this
work, a mutation probability Pr,, (per gene) determines
the occurrence of this event. This means that each channel
in offspring 1 and 2 has a Pr,; chance of having one of the
features (i.e., modulation format, launch power) changed.
The value of Pr,, is optimized and discussed in Sec. 3.1.

After this brief parallel between genes and optical
channels, besides the operations (crossover and mutation)
that rule the genetic evolution, it is clear that the algorithm
should provide means of yielding new individuals more
prone to environmental requirements (objective functions).
It means the goal is that the iteration process results in
multiple sets of optical channels (with numerous
modulation formats and launch power values) that address
the targets described in Sec. 2.1.
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2.4. NSGA-II

The genetic algorithm applied in this study was the
NSGA-II (non-dominated sorting genetic algorithm II) [12]
and its foundations are based on the concept of
non-dominance. NSGA-II also carries the core of
multi-objective premises for the analysis here reported. In
this approach, a notion widely used in Economics, Pareto’s
front [16], is applied. This concept is built upon the
argument that a state of distribution of resources
(objectives) is designed where it is impossible to relocate
an individual to a better position (in terms of one of the
resources) without worsening at least one of the others.

NSGA-II adds two other tasks after the Mutation and
Crossover, which are: 1) Fast Non-dominated Sorting and
2) Crowding Distance. The former is responsible for
determining the individuals on the Pareto’s front. These
individuals compose a set of solutions that are
non-dominated, which means that no objective can be
improved without sacrificing at least one of the other
objectives. The latter task (Crowding Distance) is in charge
of capping the number of possible solutions and avoids that
the algorithm selects individuals in densely populated
areas. This is an instrumental way to grant the diversity of
solutions with multiplicity of features. In this task, every
channel is associated with a metric called
Hypervolume [17].

The Hypervolume is a metric inherent to every
individual and is defined by the product of the absolute
distances (in terms of objectives) between the previous and
posterior individuals (i — 1, i + 1) regarding the i-th
solution. Given that a P-dimensional space can be used, an
expression for the i-th individual Hypervolume (V;) reads
as follows:

P
Vi = [T 1708, + 1) = fon;, (i = D ©)
n=1

where f, " is the function that quantifies the n-th objective
in the optimization problem.

2.5. Algorithms

To address the targets previously discussed in Sec. 2.1,
namely, minimization of the total bandwidth occupied by
channels (foy, Zl]il R;/2¢;), maximization of the
margin of SNR of the most penalized channel
(fobj, = ASNR,,;,) and, finally, maximization of the sum
of the SNR margins (fovj; = Zf\il ASNR;), this paper
proposes to treat the conflicting relations in a
multi-objective optimization. Then, it is clear that the
conflicting relations are between f,; Vs. fop;, and foy;,
vs. fop i At last, another conflict is added in this paper,
which is when the maximization of the margin of SNR of
the most penalized channel (fp;,) is contrasted with the
minimization of the sum of the SNR margins (Fbj}).

In total, each individual is built on 16 types of channels,
ie., 6 A, 5 B, and 5 B*. Given that channels B and B™ are
symmetrical, the analysis is made for 11 channels (N .j,,.neis)

and not for 16. All individual’s channels are initialized with
a random modulation format, i.e., PM-4QAM, PM-8QAM,
PM-16QAM, or PM-32QAM), respectively represented in
Algorithm 1 line 4 by ¢y, ¢, c3, ¢4, and a constant power level
(=20 d Bm, Algorithm 1 line 5).

Algorithm 1 Initialization
: Given N; and N,

individuals channels

: while individual, < N

1
2 individuals 40
3. while channel; < N p 4015 dO
4: modulation; = Ulcy, ¢y, ¢3,¢4]
5 power ; = —20 dBm

6:  end while
7

: end while

After the initialization, individuals start interacting in an
evolutionary process as described in Algorithm 2. The total
number of iterations (N;,,,4rions) Was set to a maximum of
2000.

In Algorithm 2, the crossover mechanism is described
from lines 3 to 7. In this process, it is necessary to group all
individuals in pairs (pair; = [parent; , parent,;,], line 3)
and permit the exchange of optical channels (lines 5). At
the end of the process, the total number of individuals is
2Nindividuals (parents + offspring).

The mutation process is described from lines 9 to 21.
The channels in all individuals (parents + of fspring, in
total 2N;, yiviauals)» at the end of the previous step, are
exposed to a possibility of mutation (Pr,,, line! 10) and if
that occurs (lines 11 to 20), an alteration probability
(Prgjp» line 11) will define what type of change takes
place. A probability of occurrence of 1/3 is given to all
three types of alteration, i.e., power mutation (lines>) 12
and 13.), only modulation format (lines® 14 and 15) and the
joint modification of power and modulation (lines 16-18).

The Fast Non-dominated Sorting step is carried out in
lines 23 and 24. At this moment, the algorithm has
generated a total of individuals of 4N;, ;i /a5, Which
corresponds to the original parents, offspring generated in
the crossover process, mutated parents, and mutated
offspring. The process of checking dominance consists of
searching for solutions (designated by index i) that permit
no individual (designated by index j) to perform the
following:

fowj,(individual;) > fop; (individual ;)N

@)

fOqu(indiUiduali) < fOqu(individualj)

To illustrate this operation with a more familiar scenario,
suppose the case to be analyzed is fo;, VS. fop;,. in other
words, minimization of the total bandwidth vs.

'U(0, 1) represents a random variable uniformly distributed between 0
and 1.

Zpower increment/decrement +0,, (the sign =+ is randomly set each time
this operation occurs, line 13

3u [y, ¢y, c3,c4] Tepresents a random variable uniformly distributed
over the four possible values of spectral efficiency ¢, ¢,, c3 and ¢;.
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Algorithm 2 Evolution

1. Given: Ny qions> Pra and o,
2: while iteration; < Nj;pruions 4O
3 group individuals in pairs
4 while pair; < Nugiiguars/2 do
5: exchange channels between pair; | and pair; ,
6 generate of fspring; y and of fspring;
7:  end while
8:  while individual; <2N,,4iviquals 40
9: while channel;, < N_.j4pne1s 40
10: if U(0,1) < Pry, then
11: Pryy =U(QO,1)
12: if Pry ) <1/3 then
13: power. = power +o,
14: elseif Pr,,, > 1/3 and Pr,, <2/3 then
15: modulation;, = Ulcy, ¢y, c3,¢4]
16: else
17: power;. = powery + o,
18: modulation;, = Ulcy, ¢y, c3,¢4]
19: end if
20: end if
21: end while

22:  end while

23 while individual; <4N;,q,pi44a 4O
24: check dominance of the individual ;
25:  end while

26:  while individuals; < N .4 dO

27: calculate H ypervolume;

28:  end while

29:  choose N;

individuals With highest Hypervolume values
30: end while

maximization of worst-case SNR margin. Any individual i
that satisfies these conditions for both objectives over the
entire population is considered non-dominated, i.e., there is
no j such that satisfies the dominance criterion. After all
non-dominated individuals are selected, they are collected
in a set of N;,,,; candidate solutions.

In the last task (Crowding Distance), the algorithm
calculates the Hypervolumes for all N,,., candidates
(lines 26 and 27) and selects only N,,zividuas SOlutions
with the highest Hypervolume values (line 29). The new
N,pgividuals 1ndividuals are be used as input to the next
iteration of the algorithm (line 2). A flowchart (Fig. 3) of
the joint operation of Algorithm 1 and Algorithm 2 is
added to facilitate the comprehension of the logic
employed for the NSGA-II.

3. Numerical results

3.1. Hyperparameter Optimization

The selection of some of the algorithm’s most
important parameters (6,, Ngividuaiss Erm) 1S a
Hyperparameter Tuning (HT) problem [18]. To solve it, we
carried out a grid-search assuming:
N; € {25,50,100}, Pry, € {2.5%,10%,40%} and

individual s

Initialization
(Alg. 1)
Crossover
(Alg. 2, lines 3-7)
Mutation
(Alg. 2, lines 9-21)

Fast Non-dominated
Sorting
(Alg. 2, lines 23-24)

Crowding Distance
(Alg. 2, lines 26-29)

Reached
stopping
criterion?
(Alg. 2, line2)

Figure 3: Flowchart of the NSGA-II. Alg.: Algorithm.

o, € {—20,-10,0,10} dBm to minimize the required
number of iterations in a pre-computed channel
configuration scenario where the solution is known a
priori.  After this optimization was executed, the set
[Nindividuais = 50, Pry = 10%, ¢, = -10 dBm] was found
to achieve the expected solution with the least amount of

iterations.

3.2. Algorithm’s Complexity

The complexity of the NSGA-II basically depends on
three important variables: the number of iterations
(Niterations)» the number of individuals (N}, ividuars) and
the size of the individuals (n). Therefore, the complexity is
on the order of O(Njrations NVindividuais™)-  Another
important factor is the complexity of the fitness function,
which in this work corresponds to the calculation of the
total bandwidth (in f,,; ) and the calculation of the SNR
for all optical channels (in f,,;, and f,,; ). However, the
aforementioned fitness evaluations are negligible in
comparison to the complexity imposed by the crossover
and mutation processes. In the results presented over the
next three subsections (3.3, 3.4, 3.5), we considered
Niterations 2000, Niugiviquas = 50 and n = 22
(corresponding to the power levels and modulation formats
of all eleven channels A/A* and B/B*). The optimizations
were run on a 16 GB RAM memory computer and the 2000
iterations lasted approximately 1.5 hours.

3.3. Total bandwidth vs. Minimum SNR Margin
In this section, the algorithm was applied to obtain
solutions that analyze the Pareto’s relation between
minimizing the total bandwidth and maximizing the lowest
SNR margin. This approach meets the necessary conflict
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Figure 4: Pareto’s front for the multi-objective optimization.
Minimum SNR margin vs. Total Bandwidth.

requirements in a Pareto analysis because the reduction of
bandwidth forces the algorithm to use more efficient
modulation formats, which consequently lowers the overall
SNR margin performance. For the results presented in this
and in the following sections, we assumed that the physical
parameters were the same as used in [6] and summarized in
Table 1.

As it can be explained by observing Fig. 4, the Pareto’s
front determines the border of feasible solutions. All black
markers represent a sample of individuals that have been at
some point dominated by more recent generations. It is also
possible to analyze two opposing solutions that lie on the
extreme sides of the curve, i.e., the one that prioritizes the
bandwidth (leftmost and depicted by Fig. 5.a) and the one
that prioritizes SNR margin (rightmost and depicted by
Fig. 5.b).

As expected, to reduce the bandwidth, the algorithm
delivers an individual with higher spectral efficiency (SE)
modulation formats (Fig. 5.a), in this case PM-32QAM!.
To prioritize the maximization of the lowest SNR margin,
the spectrum is composed uniquely by PM-4QAM channels
(Fig. 5.b) given that the SNR threshold is lower, thus
permitting resourceful solutions in terms of margin. At last,
a hybrid solution (Fig. 5.c) has been shown to exemplify
how the algorithm distributes different modulation formats
over the channels to address a specific bandwidth + margin
requirement when neither the bandwidth nor the lowest
SNR margin is prioritized. Besides, it also accounts for the
fact that the channel A propagates over a longer distance
and therefore ~more robust modulation formats
(PM-8QAM) are required when compared to channels
B/B* (PM-16QAM). The values of the objectives for the
three individuals (Fig. 5.a-c) are summarized in Table 2.

I'Note that PM-32QAM was the considered modulation format with the
highest SE in the results shown in subsections 3.3-5.

Relation between individual and objective function
Individual SNR  Margin || Total BW
represented by || (dB) (GHz)
Fig. 5.a 1 250
Fig. 5.b 9.5 612.5
Fig. 5.c 6.2 350

Table 2

Quantitative comparison between the individuals (Fig. 5.a-
c) and their respective values of objective functions. BW:
bandwidth.

Relation between individual and objective function
Individual Sum of || Total BW
represented by || SNR  Margin || (GHz)

(linear)
Fig. 6.a 25 250
Fig. 6.b 185 612.5

Table 3

Quantitative comparison between the individuals (Fig. 6.a,
b) and their respective values of objective functions. BW:
bandwidth.

3.4. Total bandwidth vs. Sum of SNR Margins

The second conflicting relation analyzed in this paper
considers the minimization of the total bandwidth and the
maximization of the sum of SNR margins. Regarding the
previous approach, this maximization reveals a concern
with the overall performance of channels and not only with
the most penalized. Nevertheless, this can lead to a
sub-optimal distribution of margins throughout the utilized
spectrum. To illustrate this last sentence, the reader might
think of an individual in which one of the channels has a
considerably high margin whereas the others present a
lower value. Due to the considerably high one-channel
margin, this individual might be considered by the
algorithm as a candidate solution, when, for practical
reasons, this solution is not interesting because some
carriers might be at the imminent risk of becoming out of
service.

In a similar way to the previous section, two opposing
solutions are analyzed in Fig. 6. The solution that
prioritizes the bandwidth Fig. 6 is also fully composed by
PM-32QAM channels. = However, an irregular power
spectrum distribution is found. The same happens to
Fig. 6.b, but now filled out with PM-4QAM channels. This
uneven power spectrum density is a direct cause of the
margin distribution inequality problem as discussed in the
last paragraph.

The major advantage of deriving a Pareto analysis for
the so far cited optimization problems is the generation of
multiple close-to-optimal solutions rather than one single
exact solution (achieved via strict mathematical
programming). As the reader could notice, all solutions on
the Pareto’s curve (Fig. 4) may represent a specific network
requirement that is not only bandwidth or margin-greedy.
Table 3 summarizes the values of the objectives for the two
individuals (Fig. 6.a,b).
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Relation between individual and objective function
Individual Sum of || SNR Margin
represented by || SNR  Margin || (dB)

(linear)
Fig. 8 18.5 0.14

Table 4
Quantitative comparison between the individuals (Fig. 8) and
their respective values of objective functions. BW: bandwidth.

3.5. Sum of SNR Margin vs. Minimum SNR
Margin

The third and last optimization approach discussed in
this paper leads to interesting results in terms of a key
requirement in current network scenarios, i.e., provisioning
of close-to-zero margin solutions. Therefore, this section
will analyze what happens when the minimization of the
sum of SNR margins is regarded in a Pareto analysis with
the maximization of the lowest SNR margin.

This assumption is clearly conflicting given that when
the minimization of the sum of SNR margins is imposed, it
consequently lowers the margin of the worst channel, which
is the contrary goal of the second objective. Additionally,
the minimization of the sum of SNR margins is a subtle
way of incorporating the low bandwidth requirement into
this analysis (by using high modulation formats it decreases
the total margin and reduces bandwidth). Therefore, these
solutions are expected to meet more realistic network
demands than the one introduced in [6].

In Fig. 7 it can be observed the Pareto’s front for the
configuration so far discussed. When the solution that
prioritizes the minimization of the sum of SNR margins is
analyzed (Fig. 8) it is more notorious the diversity of
modulation formats that can be utilized. This is due to the
fact that the conflicting objective is the maximization of the
minimum SNR margin, which strongly imposes the
algorithm to also include channels with lower SE (i.e.,
PM-4QAM and PM-8QAM). Table 4 summarizes the
values of the objectives for the individual represented by
(Fig. 8).

To check the validity of this optimization approach, a
scaling of the network length is proposed and bandwidth
reduction is directly contrasted with the results presented
in [6].

3.6. Scaling point-to-point

In this scaled analysis, each source-destination pair has
six channels and the impact of link length is evaluated for
the case when a transmission of 200/400 Gbps per channel
is performed. Since the focus is to analyze the bandwidth
reduction, the solution that prioritizes the minimization of
the sum of SNR margins is the one evaluated, given that
these two objectives are closely related, as explained
before.

A comparison was carried out to contrast the bandwidth
usage as the number of spans increases. As Fig. 9 depicts,
the algorithm proposed in this work shows a more subtle

bandwidth growth rate. Although for a number of spans
lower than 20 (200 Gbps/ch case), and 19 (400 Gbps/ch
case) the performance of the algorithm is predominantly
worse (generally requiring more bandwidth), this changes
when the network size is greater than or equal to 21 (200
Gbps/ch case), and 20 spans (400 Gbps/ch case). The
reason for a worse performance is because the NSGA-II
forces diverse solutions via the mutation process. That
being said, the proposed technique still provides a few
high-bandwidth channels for short spans (<19), what could
be understood as residual features, although causing higher
spectral consumption. Nevertheless, this diversity
exploration becomes important at a high number of spans,
because it permits that high-order modulations be allocated
to provide bandwidth savings when the network size is
greater or equal to 21 (200 Gbps/ch case) and 20 spans
(400 Gbps/ch case). In proportional terms, the average
bandwidth reduction within the better performance interval
caused by the utilization of this algorithm is of 60.6% (200
Gbps/ch case) and 61.0% (400 Gbps/ch case).

4. Meshed network approach

In this section, the studied technique is adapted to be
used in meshed network applications. First, a traditional
RSA (routing and spectrum assignment) strategy was
upgraded to consider the physical layer. After that, the
NSGA-II was implemented to optimize the best set of
modulation formats and launch power for all requests in the
network, aiming to minimize the number of blocked
channels and bandwidth usage. The proposed technique
was assessed in ring networks and 15 different meshed
topologies leading to significant improvement in bandwidth
usage without blocking any additional requests.

Under physical impairment awareness, a key parameter
to be satisfied is the minimum required signal-to-noise ratio
(SNR,;,) [5], which has been widely discussed in the
previous sections. Signals with SNR above its SNR,;,.
satisfy the SLA (service level agreement) after
Hard-Decision Forward Error Correction (HD-FEC).
Therefore, this means that a channel must be blocked if its
SNR is below the SNR,,,,. for a given modulation format.

The traditional RSA paradigm aims at finding the most
appropriate routes in terms of minimizing request blocking
(percentage of unestablished connections) at the network
layer. There may exist more than one shortest-path route
(referred to this paper as candidate route — R.) for each
source-destination pair (SDP) in the network. In this
manuscript, we employed the heuristic Shortest Path with
Maximum Spectrum Reuse (SPSR) [19]. Here, the steps to
choose a solution for each source and destination pair are
described as follows. 1) Assign cost 1 for all links and run
Dijkstra [20] algorithm for all SDPs to find the possible
routes. 2) In case more than one possible route exists, one
is randomly chosen. 3) All SDPs in the network are ordered
in a descending order with respect to the amount of links
assigned to the SDP. 4) Following that order, the number of
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slots requested for each SDP is allocated using the First-Fit
(FF) algorithm. It is also important to highlight that all
continuity and contiguity constrains are considered in this
process.

All RSA algorithms originally assume that the number of
required slots is given beforehand for each SDPs. However,
in reality, what is given is the bit rate. The modulation format
is chosen by the operator and the proposed aim of this work is
to guide the choice of parameters, such as modulation format
and channel launch power, to further increase the signal SNR
and reduce the total bandwidth.

Algorithm 3 Modulation Format Definition Strategy

Input: Bit Rate, Launch Power, and SNR Margin of all
requests;

Output: Modulation format and set of required number of
slots (T') per request.

1: Block < 0
2T <0
3: ASNR « SNR Margin
4: N < total number of requests
5: fori=1to N do
6:  Mod « the highest modulation format available (64
in the case of PM-64QAM)
7. ok <0
8:  while ok = 0do
9: SNR <« Calculate SNR considering only ASE and
SCI
10 if SNR — ASNR > SNR,;,, (M od) then
11: M; « Mod
BitRate
12: t; « By dogo0,
13: T «Tut,
14: ok <1
15: else
16: if Mod = the lowest modulation format
available (4 in the case of using PM-QPSK)
then
17: Block < Block + 1
18: ok <1
19: else
20: Mod <« Mod/2; next modulation format
available is assigned to be tested
21: end if
22: end if
23:  end while
24: end for

If just ASE and SCI are considered, since they depend
on the signal proprieties and the sequence of links used for
transmitting it, their effects on the chosen route can be
estimated, the modulation format can be defined, and
consequently, the number of slots can be previously
computed. However, under the influence of XCI, the
relative position of the neighboring connections and their
modulation formats directly affect the XCI intensity of the
i-th request that is under investigation. This makes the
choice of the modulation format (and consequently the

Algorithm 4 Final calculation of total blocked channels in
the network
Input: Central frequency of all requests, launch powers, set
of routes and bandwidth per request (S P)s and set of
modulation formats (M;) for each i-th request;
Output: Total number of blocked requests in the network;
1: N « Total number of requests;
2: fori=1to N do
3:  SNR; < SNR of the ith request is calculated.

4:  if SNR; < SNR;;,.(M;) then

5 Block < Block + 1;

6: Request i is deleted of the set S P;
7 end if

8: end for

number of slots) of the i-th request dependent on the
routing, spectrum positioning and assigned modulation
format (RMSA) of other (interfering) connections in the
network, which consequently depend on the previous
RMSA choices. All this complicates the RMSA problem.

To overcome this issue, we propose an adapted SPSR.
In the proposed heuristic, a modulation format is selected
such that SNR threshold (SNR,,,.) is not violated by
considering ASE and SCI effects on each connection.
Additionally, an SNR margin (ASNR) to each request is
assumed to (indirectly) account for the XCI generated by
neighboring channels. A more detailed description is given
in the following paragraph.

In Algorithm 3, all requests (V) are initialized (line 4)
with PM-64QAM as modulation format (line 6). After that,
an iterative process to define the assignment of the final
modulation format starts (line 8). The connection is
sequentially tested if its SNR is higher than
SNR,;, + ASNR (line 10). In case it succeeds, the tested
candidate modulation format is assigned (line 11) and the
algorithm proceeds to check the next request (setting the
flag ok = 1 in line 14). When the margin condition is not
achieved (line 15), the immediately inferior (i.e., less
spectrally efficient) modulation format is assigned (line 19)
and re-checked (in line 10). In case the least spectrally
efficient modulation format is reached (line 16), blocking
occurs.

This interactive process is performed along the RSA
process, searching for the most spectral efficient
modulation format that fulfills the above conditions to
calculate the required number of slots of each connection.
With the definition of routes and the required number of
slots per request, a second phase starts to establish the
requests in the network spectrum and account for the XCI
effect. The first-fit spectrum assignment algorithm is used
to establish the demands in the network and all central
frequencies per request. After that, the real XCI effect on
the connections is then quantified by the Algorithm 4. If
the SNR,;,, of a connection is not satisfied (line 4), it is
referenced in this manuscript as a blocked channel and it
will not be considered in the calculation of the spectrum
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Algorithm 5 SPSR with the same Launch Power and SNR
margin

Input: All Sorce-Destination requests, Bit rate, Launch
Power, SNR margin;

Output: Network Spectrum usage, set of route and
bandwidth per requests (S P,,,) , number of blocked
requests in the network and routes per request;

L: Bbesr « 05

2 Upegy < 005

3 SP best < ﬂ;

4: for Power = -5 to 5 dBm, with steps of 0.5 dB do

5:  for SNR margin = 0 to 5 dB,with steps of 0.5 dB do

6: SP <« @;

7: M; < modulation format of request i

8: Dijkstra’s algorithm is used to define the shortest
route (P) for each source-destination request in the
network;

9: Algorithm 3 is used to determine, for each request,
the modulation format with the highest SE that
satisfies QoT criteria. The set T that recorders all
demanded number of slots( #;) for each i request is
created.

10: SP << P,T > for all requests not blocked;

11: The FF algorithm is used to allocate the requests in
the network;

12: Algorithm 4 measures the number of blocked

channels on the network (Block) by including XCI,
and defines the final set S P.

13: Network Spectrum usage (u) is defined for the final
set .S P as the number of slots used in the spectrum
on the network.

14: if (Block < By,;) and (u < u,,,) then
15: B,,,; < Block;

16: Upost < U;

17: SPy < SP;

18: end if

19:  end for

20: end for

21: The S Py, is the final solution used;

usage (line 6).

The next step in our proposed method is to better select
the parameters (predicted SNR margin and power level) of
the requests, for that an optimization scheme must be
devised. Since a grid-search approach is costly in terms of
computational effort and time due to the high number of
possibilities to be tested, this paper utilizes the NSGA-II
approach, already introduced in the previous sections, to set
the launch power and SNR margin (ASNR) for each SDP in
the network, aiming at reducing the total number of
blocked channels and total bandwidth usage.

4.1. Evolutionary RMLSA approach (E-RMLSA)
The method introduced in this section is a strategy to

optimize the choice of connection SNR margins and power

level, which impacts the provisioning performance. We

have named this novel approach as Evolutionary RMLSA
(E-RMLSA). In order to highlight the importance of the
power allocation and SNR margin distribution in network
planning, this work uses as baseline the case where both
referred parameters (power level and SNR margin) are
constant. This baseline scenario is further described by the
Algorithm 5.

Algorithm 6 Objective Function for the individual (I, J) -
E-RMLSA

Input: Population O, Network Topology, Bit rate requested

Output: Network Spectrum usage, set of routes and
bandwidth per requests (S P, ), number of blocked
requests in the network and routes / modulation format
per request;

1: fora=1to4N do

1, < Set of Launch Powers of the individual a

J, < Set of SNR margin of the individual a

Block < 0;

u < 0;

k <« number of source-destination requests in the

topology;

7. Dijkstra’s algorithm is used to define the shortest
route (P) for each source-destination request in the
network;

8:  for Request = 1to k do

: Pot(Request) < I,(Request) ;

10: SN R.M argin(Request) < J,(Request) ;

11:  end for

12:  Algorithm 3 is used to determine, for each request,
the modulation format with the highest SE that
satisfies QOT criteria. The set T that recorders all
demanded number of slots( ¢;) for each i request is
created.

13:  SP << P,T > for all requests not blocked;

14:  The FF algorithm is used to allocate the requests in
the network;

15:  Algorithm 4 measures the number of blocked
channels in the network (Block) by including XCI,
and defines the final set S P.

16:  Network Spectrum usage (u) is defined for the final
set S'P as the number of slots used in the spectrum
on the network.

17: B, < Block;

18 u, < u;

19: end for

SANS AR R

In Algorithm 5, all connections are initialized with the
same power level (line 4), which can be a discrete value in
the set {-5,...,5} dBm with a fixed step of 0.5 dB. With
respect to the SNR margin, the same strategy is also
applied, where each connection can assume a discrete value
in the set {0,...,5} dB, with steps of 0.5 dB. After Dijkstra’s
algorithm is applied to compute the shortest path,
Algorithm 3 is called to determine the modulation formats
to be used (Algorithm 5 line 9). In sequence, the FF
algorithm emulates the allocation of connections (line 11)

Sena et al.: Preprint submitted to Elsevier

Page 9 of 12



INUVCH LvuiuLiviialy 1oiatiiiig 1SUHiygus vl 1 ITAIVIT IO 11aliSiiissiviln 1 wpLical 1NcLvwuins

and finally the number of blocked channels is assessed via
Algorithm 4 (line 12). The final blocking (blocking) and
spectrum utilization () are saved only if these are the best
values for all combinations tested in the grid-search so far
(line 14). This exhaustive method is used in the
optimization process.

In Sec. 2, NSGA-II was introduced as a method to
optimize some of the parameters (modulation format,
launch power) in the physical layer. Now it is brought to a
network layer perspective. The same stages: initialization,
mutation, and crossover have been reprocessed. The
adaption made for the network is that now each individual
on the NSGA-II is a set of all SDP of the network with
different features per SDP defined as launch power and
SNR margin. This means that each NSGA-II individual is
one feasible solution for the full planning of our network,
i.e., it takes into account all network requests. Since the
planning is based on a static traffic (all requests are known
a priori) each possible request (source-destination pair) is
treated as a gene with two features, namely, (1) launch
power and (2) SNR margin.

Therefore, in the objective function, each individual is
evaluated based on the total spectrum occupied by all
network requests and the number of blocked channels (for a
full simulation run). The E-RMLSA objective function is
introduced in Algorithm 6. Finally, the evolutionary
algorithm comes to play the role of finding the best
distribution of those features to reduce both the number of
channels blocked and the bandwidth usage in the network.
This means that in this multi-optimization scenario,
blocking and spectral usage are jointly minimized using the
Pareto concept described in the Sec. 2.

Moreover, it is important to highlight that, for all
simulations exposed in this section, the network spectrum
on fiber links was assumed with a spectrum resolution of
3.125 GHz, for comparative reasons with the work in [7].
Likewise, we have assumed that there is a traffic demand
between each source—destination pair, for which the data
rate is 100 Gbps. In addition, in our simulator, each link
consists of two fiber spans and just one traffic demand as
in [7]. All network system parameters are the same of
Sec. 3. In the next subsection, the results for ring and
meshed networks are presented.

4.1.1. Ring Networks

In [7], it was presented a joint resource allocation in
flexible-grid networks based on a nonlinear physical layer
impairment model. Nevertheless, the method is limited to
investigations in ring topology. In this work, the proposed
approach is also contrasted with the technique introduced
in [7] using the same topology. In Fig. 10, it can be seen
that the proposed algorithm can provide further
improvements by not imposing guardband adaptation
(which consumes more spectral resources), unlike [7]. Still,
the algorithm is capable of optimizing the margins (which
indirectly decides the choice of the modulation format) and
power levels to mitigate the nonlinear impairments. The

Table 5
Real-world reference networks [21, 22]
Network 1D Name N L (6) Channels

1 BREN [21, 22] 10112.20 90
2 LEARN [21, 23] 10112.20 90
3 ABILENE [24] 1114255 110
4 COMPUSERVE [25] 11 14 2.55 110
5 VBNS [21, 26] 1217283 132
6 CESNET [21, 22] 12193.17 132
7 BRAZILIAN [24] 12203.33 132
8 ITALY [21, 27] 14294.14 182
9 PACIFIC BELL [28] 17232.71 272
10 SPAIN [21,22] 17283.29 272
11 CANARIE [21, 22] 19262.74 342
12 EON [24] 19384.00 342

13 SWEDEN [21, 22] 2024240 380
14 ARPANET [21,29] 2032320 380
15 PIONIER [21, 22] 21504.76 420

relative bandwidth reductions are on average (from O to 8
nodes) around 14%.

4.1.2. Mesh Networks

Now the Algorithm 5 is applied to meshed networks.
For the sake of generality, the tests were carried out in 15
different network topologies. Table 5 reports the important
information (number of nodes, number of links, nodal
degree, number of connections, and references) for all
networks considered in this paper. The result is
summarized in Fig. 11 and it shows the achieved spectrum
saving in GHz (red bars) with respect to the grid-search
approach (Algorithm 5). We have achieved gains in the
range of 100 GHz to 1100 GHz. As can be seen in Fig. 11,
the gain does not depend only on the size of the network
but also on how the network is interconnected. To evaluate
the interconnectivity of all networks, we have calculated
the nodal degree ({6)) and their values are likewise
represented in Table 5. Two major conclusions can be
drawn from the outcomes shown in Fig. 11.

First, for networks with the same number of nodes, the
performance increases with the nodal degree. This effect is
particularly clear in EON and Canarie networks, where
both of them have 19 nodes, but since the EON has a higher
nodal degree, the gain compared with the Canarie was
approximately twice higher. The reason for this is that
higher nodal degree means more connected links per node,
which will provide more variety of possibilities for the
NSGA-II to identify better launch power and SNR margin
for each SDP.

Second, the performance grows with the number of
nodes and it is directly related to the number of channels in
the network up to a certain point when we observe a
decrease of the gain, as presented by the green dashed line
in Fig. 11. The reason for it lies in our approach that
guesses the probable contribution of XCI to the SNR
margin. With the increase of the number of channels, XCI
becomes stronger with impact on the effectiveness of the
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strategy that calculates ASE and SCI but only guesses XCI
with the evolutionary method.

5. Conclusion

In this paper, we presented a novel resource allocation
technique as a means to optimize the usage of spectrum
resources and power allocation in flexible-grid link-level
and meshed networks under nonlinear physical impairment
regime. The similarity between optical spectrum and
genetic features helps the implementation of an
evolutionary-based optimization technique that permits a
trade-off analysis in multi-objective scenarios. Due to the
demanding network requirements to reduce SNR-margin, a
reformulation of a key optimization premise, i.e.,
minimization of the sum of SNR margins, leads to
solutions in which the bandwidth can be saved, on average,
by 61%, at the cost of excluding the guardband between
channels. Additionally, when the algorithm is adapted to
ring networks, it overperforms the baseline by reducing the
spectrum usage in 14%. At last, the algorithm is shown to
be fit for the planning of networks with static traffic when
various meshed topologies are tested demonstrating
significant gain in spectral utilization.

Finally, the authors believe that future follow-up
approaches for the implementation presented in this
manuscript include the incorporation into the NSGA-II of
"a priori" knowledge to speed up evolutionary learning. To
illustrate, we showed in this research that the majority of
links with fewer spans can support lower SNR margins
(e.g., using modulation formats with lower SE) than those
links with a high number of spans. This "a priori"
conditioning could be embedded in the initialization
process, where each individual receives its initial features
according to the link characteristics.
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Figure 5: Samples of solutions from the Total bandwidth
vs. Minimum SNR Margin Pareto analysis. (a) Individual
that prioritizes bandwidth reduction over maximizing minimum
SNR; (b) Individual that prioritizes maximizing minimum SNR
over bandwidth reduction; (c) Individuals with intermediate
profile. PSD: Power spectrum density.
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Sum of SNR Margin multi-optimization. (a) Individual that
prioritizes bandwidth reduction over maximizing sum of SNR
margin; (b) Individual that prioritizes maximizing the sum of
SNR margins over bandwidth reduction. PSD: Power spectrum
density.
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Figure 11: Spectral usage reduction and nodal degree as function of the meshed network topologies. The dashed green curve
visualizes the average response of the spectrum usage.
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