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a b s t r a c t 

Paediatric traumatic brain injury (pTBI) results in inconsistent changes to regional morphometry of the brain 

across studies. Structural-covariance networks represent the degree to which the morphology (typically cortical- 

thickness) of cortical-regions co-varies with other regions, driven by both biological and developmental factors. 

Understanding how heterogeneous regional changes may influence wider cortical network organization may 

more appropriately capture prognostic information in terms of long term outcome following a pTBI. The current 

study aimed to investigate the relationships between cortical organisation as measured by structural-covariance, 

and long-term cognitive impairment following pTBI. T1-weighted magnetic resonance imaging (MRI) from n = 83 

pTBI patients and 33 typically developing controls underwent 3D-tissue segmentation using Freesurfer to estimate 

cortical-thickness across 68 cortical ROIs. Structural-covariance between regions was estimated using Pearson’s 

correlations between cortical-thickness measures across 68 regions-of-interest (ROIs), generating a group-level 

68 × 68 adjacency matrix for patients and controls. We grouped a subset of patients who underwent executive 

function testing at 2-years post-injury using a neuropsychological impairment (NPI) rule, defining impaired- 

and non-impaired subgroups. Despite finding no significant reductions in regional cortical-thickness between the 

control and pTBI groups, we found specific reductions in graph-level strength of the structural covariance graph 

only between controls and the pTBI group with executive function (EF) impairment. Node-level differences in 

strength for this group were primarily found in frontal regions. We also investigated whether the top n nodes 

in terms of effect-size of cortical-thickness reductions were nodes that had significantly greater strength in the 

typically developing brain than n randomly selected regions. We found that acute cortical-thickness reductions 

post-pTBI are loaded onto regions typically high in structural covariance. This association was found in those 

patients with persistent EF impairment at 2-years post-injury, but not in those for whom these abilities were 

spared. This study posits that the topography of post-injury cortical-thickness reductions in regions that are 

central to the typical structural-covariance topology of the brain, can explain which patients have poor EF at 

follow-up. 
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. Introduction 

Traumatic brain injury (TBI) in childhood and adolescence is a lead-

ng cause of disability ( World Health Organization, 2006 ), and injuries

ccur in the individual-context of a still-developing brain ( Wilde et al.,

012 a). Paediatric TBI (pTBI) has a reported incidence between 1.10

nd 1.85 cases per hundred for the 0–15 age range ( McKinlay et al.,
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008 ) and has specific adverse effects on neurodevelopment. TBI can re-

ult in pathology at a micro and macroscopic level, leading to both tran-

ient and permanent impairments ( Bigler, 2007b , 2016 ; Maxwell, 2012 ).

amage may manifest as trauma-related, developmentally inappropri-

te atrophy ( Bigler, 2013 ; Urban et al., 2017 ; Wilde et al., 2005 ) which

an appear as relative changes in both brain volume ( Bigler, 2016 ) and

ortical-thickness ( Urban et al., 2017 ) on structural magnetic resonance
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domly selected regions. 
maging (sMRI). In pTBI, injury-related brain abnormalities occur dur-

ng a period of ongoing age- and development-dependent brain changes

 Bigler, 2016 ; Maxwell, 2012 ) 

Previous sMRI studies have shown that, from early to post-chronic

imepoints, the morphometry of the injured brain differs from that

f typically developing children (see King et al. (2019) ). These cross-

ectional differences are observed even up to 10 years post-injury

 Beauchamp et al., 2011 ; Serra-Grabulosa et al., 2005 ) suggesting that

lterations are non-transient, neither recovering nor being compensated

or over time. These cross-sectional differences are evidence of a long-

erm effect of TBI on the morphometry of the brain. 

Previous studies have suggested that, from the perspective of clin-

cal characteristics, two traumatic brain injuries can superficially ap-

ear similar but result in vastly different outcomes ( Bigler, 2007a ;

chneider et al., 2014 ). The location and extent of focal lesions to the

rain following a pTBI do not fully explain post-injury neuropsycho-

ogical deficits ( Bigler, 2001 ). There is also limited evidence of brain-

ehaviour relationships between brain morphometry differences and

unctional outcomes ( King et al., 2019 ). The paucity of reliable relation-

hips between brain structural measures and long-term outcomes of neu-

opsychological functions may be explained in part by the fact morpho-

etric changes can be highly distributed across the cortex even within a

ingle patient, and these changes vary across individuals ( Bigler, 2007a ;

igler et al., 2013 ; Bigler and Maxwell, 2011 ). This spatial heterogeneity

f damage and post-injury changes may limit the potential of univari-

te investigations of morphometry, which are therefore unable to tell us

bout the subtleties of the more diffuse effects of an injury. Therefore,

ooking more widely at the global effects of injury and how focal damage

an change the wider ‘system’ of the brain may explain greater variance

n functional outcomes post-injury. One way to explore this hypothesis

s to investigate changes to the global neural-network following injury

ue to pTBI, in keeping with recent characterizations of TBI as a disorder

f brain connectivity ( Hannawi and Stevens, 2016 ; Hayes et al., 2016 ),

tilising a graph-theory framework to quantitatively describe these net-

orks. This will better capture the multifaceted nature by which the

rain can experience pathological change post-injury. 

Patterns of grey matter morphometry across the cortex can be in-

erpreted as a biologically-meaningful brain network, capturing the

eso ‑scale organisation of brain structure across the cortex. This

tructural-covariance network models the degree to which the morphol-

gy (measured with cortical-thickness) of brain regions statistically co-

aries across all possible pairs of ROIs ( Alexander-Bloch et al., 2013 a,

013 b; Evans, 2013 ; Lerch et al., 2006 ; Mechelli et al., 2005 ). These

etworks are sensitive to neurodevelopmental and age-related change

 Alexander-Bloch et al., 2013 ; Fan et al., 2011 ; Khundrakpam et al.,

017 ; Khundrakpam et al., 2016 , 2013 ; Raznahan et al., 2011 ;

áš a et al., 2017 ), with regions showing similar/shared develop-

ental trajectories being more similar in morphometry ( Alexander-

loch et al., 2013 ), likely driven by the gene-controlled patterning of

ortical-thickness and structural-covariance across the cortex ( Romero-

arcia et al., 2018 ; Yee et al., 2017 ). 

Given this highly coordinated, genetically programmed developmen-

al ‘blueprint’ of brain maturation, neurological disruption to the struc-

ure of the brain during this period can have a significant impact on sub-

equent brain development, detectable as an abnormality in structural-

ovariance across the cortex. In other forms of paediatric brain insult, in-

luding malformations of cortical development in neonates, structural-

ovariance metrics change as a function of the specific gestational-

iming of disruption ( Hong et al., 2017 ). Therefore, the structural-

ovariance approach may be sensitive to the effects of pTBI on the de-

elopmental trajectory of the brain, respecting the complex organisation

f the GM across the whole cortex, which cannot be captured with tech-

iques that use univariate ROIs. 

Using the correlational structure of regional-level morphometry fol-

owing pTBI compared to controls, Spanos et al. (2007) investigated

olumetric correlations across cerebro-cerebellar regions and found a
2 
ignificant positive relationship between DLPFC/cerebellum in the typi-

ally developing, but not in the TBI group. Drijkoningen et al. (2017) es-

imated the correlational structure of ‘atrophy’ scores between regions,

nding moderate to very strong positive correlations. These regional

orphometric relationships lend support to the hypothesis of a diffuse

attern of pathology following TBI. The current study expands on these

revious findings by investigating these relationships across the whole

rain utilising structural-covariance which is novel to the field of TBI. 

The topology of brain networks ordinarily makes them inherently ro-

ust to insult ( Hillary and Grafman, 2017 ). However, targeted damage

o topologically central regions may have a disproportionate impact on

he network and is more likely to result in behavioural symptomatology

 Crossley et al., 2014 ; Hillary and Grafman, 2017 ). In the clinical setting,

eurological and psychiatric disorders emerging in childhood may also

e linked to abnormal development of these ‘hub’ regions ( Morgan et al.,

018 ). During development, there is early formation of hubs in the struc-

ural network, providing a stable scaffold to build upon during subse-

uent development. Later, maturational change is most prominent in

ub regions, with hub locations becoming more adult-like across child-

ood ( Csermely et al., 2013 ; Morgan et al., 2018 ; Oldham and For-

ito, 2019 ). The protracted development of structural-covariance hubs

ver childhood and adolescence, with those responsible for higher in-

egrative functions developing most slowly ( Khundrakpam et al., 2013 ;

hitaker et al., 2016 ), may put them at greatest risk to pathology which

ay result in delayed or disrupted development ( Morgan et al., 2018 ).

herefore, damage to regions central to the network during this period,

ay result in behaviourally relevant changes to the developmental tra-

ectory of the brain. 

Current research echoes this sentiment, suggesting that brain dam-

ge is specifically linked to network structure of the brain. Across mul-

iple neurological disorders, the probability of a region showing case-

ontrol differences in grey matter morphology is significantly related to

he nodal-degree (the summation of the number of connections) of the

egion ( Crossley et al., 2014 ). Similarly, voxels with significant case-

ontrol differences in grey matter volume/density, specifically reduc-

ions, belonged to regions with a greater median degree than ‘undam-

ged’ voxels ( Crossley et al., 2014 ). In adult TBI specifically, reductions

n ‘hubness’ of nodes (betweenness and eigenvector centrality) derived

rom a tractography network were related to greater cognitive impair-

ent, including executive functions ( Fagerholm et al., 2015 ). These re-

ults highlight the fact that the behavioural consequences of brain dam-

ge are highly dependent on the topological position of the damage

ithin, and the organization of, neural networks ( Aerts et al., 2016 ;

illary and Grafman, 2017 ). It is therefore reasonable to hypothesise

his may be the case in pTBI. 

.1. Aims and hypotheses 

The aims of the current study were twofold; (1) to capture global,

iffuse nature of the effects of TBI on the still-developing brain using

ultivariate-network methodologies, and (2) to investigate whether the

ortical topography of post-pTBI cortical-thickness reductions in rela-

ion to the typical topology of the brain is related to poor cognitive

unctioning at two-year follow-up. 

We examined three hypotheses: 

a) Patient groups (including those subgroups with good/poor EF out-

come) would show significant cortical-thickness reductions in com-

parison to heathy controls. 

b) Patient groups would show differences in structural-covariance com-

pared to controls. 

c) We predicted that for pTBI, cortical-thickness reductions would have

occurred in regions that have higher structural-covariance than ran-
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Table 1 

Demographics for patients and controls. 

Group pTBI Controls Comparison 

N 83 33 –

M/F 54/29 20/13 OR = 0.83, p = .67 a 

Age at Scanning (median, yrs.) 10.92 9.99 F(1114) = 0.262, p = .61 b 

(Range, yrs.) 6.09–14.82 6.53–15.47 –

Age at Injury (median, yrs.) 10.92 – –

(Range, yrs.) 5.92–14.67 – –

Injury-Scan Interval (median, days) 34 – –

a Fisher’s exact test (OR = odds-ratio). 
b One-Way ANOVA. 
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. Methods 

.1. Ethics statement 

Data from the TBI cohort in the current study was obtained under a

aterial transfer agreement between the Murdoch Children’s Research

nstitute and Aston University. This cohort were originally acquired for

 study that had previously received ethical approval via the Human Re-

earch and Ethics Committee of Royal Children’s Hospital, Melbourne,

ustralia. We also acquired additional control data through the public

utism Brain Imaging Data Exchange (ABIDE) database, as shared by

he Preprocessed Connectome Project (PCP). A favourable opinion was

ranted by Aston University ethics panel for the secondary analysis of

oth the TBI and ABIDE datasets. 

.2. Participants 

.2.1. TBI cohort 

The data used in the current experiment are a subset of an existing

ataset of children who have experienced a TBI between the ages of

ve and 16 years of age. 157 children (patients n = 114) were recruited

etween 2007 and 2010 into a study on ‘Prevention and Treatment of

ocial Problems Following TBI in Children and Adolescents’. Further

etails have recently been published elsewhere ( Anderson et al., 2013 ,

017 ; Catroppa et al., 2017 ). In brief, children with TBI were recruited

n presentation to the emergency department at the Royal Childrens’

ospital, Melbourne, Australia. Eligibility for the study was determined

f they: (i) were aged between five and 16 years at the time of injury, (ii)

ad recorded evidence of both a closed-head injury and also two post-

oncussive symptoms (such as headaches, dizziness, nausea, irritability,

oor concentration), (iii) had sufficient detail within medical records

Glasgow Coma Scale (GCS; Teasdale and Jennett (1974) ), neurological

nd radiological findings) with which to determine the severity of the

njury, (iv) had no prior history of neurological or neurodevelopmental

isorder, non-accidental injuries or previous TBI, and (v) were English-

peaking. TD controls were also recruited and were required to meet

riteria (i), (iv) and (v). 

Injury severities were defined clinically using a combination of imag-

ng findings, pathology and GCS score. These were defined as: (i) Mild

BI; those with GCS of 13–15, no neurological deficit and either no clini-

al CT/MRI scan was conducted or no evidence of mass lesion on clinical

T/MRI findings, (ii) Mild-complicated TBI; GCS of 13–15 but abnormal

linical CT/MRI findings indicating mass lesion, (iii) Moderate TBI; GCS

f 9–12 and/or evidence of mass-lesion or evidence of specific injury on

linical CT/MRI and/or neurological deficit and, (iv) Severe TBI; GCS

f 3–8 and/or evidence of mass-lesion or evidence of specific injury on

linical CT/MRI and/or neurological deficit. 

We applied a number of inclusion criteria to the dataset. We only

ncluded subjects who; (a) met strict quality control criteria of Freesurfer

utputs, and (b) had MRI data available and were scanned < 90 days

ost-injury. This resulted in a subset of n = 116 subjects (TBI patients

 n = 83); healthy controls ( n = 33)) who underwent MRI acutely after
3 
njury (range = 1–88 days). To note, one pTBI subject included had a

iagnosis of ADHD. Table 1 shows the group demographics, whilst Fig. 1

utlines how participant samples were derived. 

.2.2. MRI acquisition 

MRI images were acquired at 3T on a Siemens Trio scanner

Siemens Medical Systems, Erlangen, Germany) using a 32-channel ma-

rix head coil. The acquisition included a sagittal three-dimensional

3D) MPRAGE [TR = 1900 ms; TE = 2.15 ms; IR prep = 900 ms; par-

llel imaging factor (GRAPPA) 2; flip angle 9°; BW 200 Hz/Px; 176

lices; resolution 1 × 1 × 1 mm] and sagittal 3D T2-FLAIR non-selective

nversion preparation SPACE (Sampling Perfection with Application-

ptimised Contrast using different flip-angle Evolution) [TR = 6000 ms;

E = 405 ms; inversion time (TI) = 2100 ms; water excitation; GRAPPA

at2; 176 slices; 1 × 1 × 1 mm resolution matched in alignment to the

D T1-weighted sequence]. 

.2.3. ABIDE dataset 

To provide a second healthy reference group for validation of find-

ngs, we employed the open-access data from the Autism Brain Imaging

ata Exchange (ABIDE, Di Martino et al. (2014) ), specifically the pre-

rocessed version of the dataset made available by the Preprocessed

onnectome Project (PCP, Bellec et al. (2013) ; see http://preprocessed-

onnectomes-project.org/ ). The ABIDE dataset consists of a large sam-

le of 532 individuals with autism spectrum disorders and 573 typical

ontrols, composed of MRI (functional and structural) and phenotypic

nformation for each subject, accumulated across 17 independent sites.

he scan procedures and parameters are described in more detail else-

here ( http://fcon_1000.projects.nitrc.org/indi/abide/ ). 

We applied similar inclusion criteria to this dataset, only including

ubjects who; (a) passed a strict MRI quality control criteria of raw struc-

ural MRI (see supplementary materials), (b) were recorded as controls

ithin the ABIDE database, (c) at time of scan were aged < 17 years

nd (d) had pre-processed Freesurfer data available as part of the PCP re-

ease. This resulted in a final reference group of n = 327 (M/ F = 259/68,

edian age (years.) = 12.49, age range (years.) = 6.47 – 16.93). The list

f IDs for ABIDE subjects included in these analyses can be found in sup-

lementary materials, as per ABIDE’s recommendations. 

Both controls in the experimental cohort and the ABIDE cohort had

ualitatively similar mean IQ ( M = 105.4 and M = 109.8) as measured

cross multiple age-appropriate IQ tests (in the experimental cohort IQ

as assessed by WASI 2 scale IQ whereas the measures used by the

BIDE dataset were varied, see ABIDE documentation for details). 

.3. MRI processing 

3D tissue segmentation and estimation of cortical-thickness and es-

imated total intracranial volume (eTIV) from T 1 -weighted (T 1 w) MR

mages were conducted using an established pipeline (Freesurfer ver-

ion 6.0; see Fischl (2012) for review). The steps involved are docu-

ented elsewhere ( Fischl et al., 2004 ) but briefly, T 1 w images were

tripped of non-brain tissues ( Segonne et al., 2004 ), GM/WM boundaries

http://preprocessed-connectomes-project.org/
http://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 1. Flowchart indicating how samples were derived for this secondary analysis of data from the initial recruitment into the ‘Prevention and Treatment of Social 

Problems Following TBI in Children and Adolescents’ study. Adapted from Consort Diagram ( http://www.consort-statement.org/consort-statement/flow-diagram ). 
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ere tessellated and topology was automatically corrected ( Fischl et al.,

001 ; Segonne et al., 2007 ). Finally, deformation of this surface was

erformed, to optimally define the pial (Cerebro-spinal fluid/GM) and

hite (GM/WM) surfaces using intensity gradients to estimate where

ntensity maximally shifts to define boundaries of these tissue classes

 Dale et al., 1999 ; Dale and Sereno, 1993 ; Fischl and Dale, 2000 ).

ll patients and controls included in the analyses here ( n = 83 &

 = 33 respectively, including patients with and without lesions) had

LAIR images acquired which were used to supplement the Freesurfer

egmentation algorithm as per the standard Freesurfer pipeline (us-

ng the –FLAIRpial command). All cases without these T2 FLAIR MRI

ailed Freesurfer QA and were not included in the analyses presented

ere. 

In this study, Freesurfer was used to estimate the cortical vol-

me/thickness for 34 regions-of-interest per hemisphere, based upon

he cortical parcellation of the Desikan–Killiany atlas ( Desikan et al.,

006 ). This parcellation was chosen over a more fine-grained parcella-

ion scheme due to concerns over statistical power if a greater number

f ROIs were analysed. 

The quality of Freesurfer outputs was assessed using Qoala-T

 Klapwijk et al., 2019 ) as a decision support tool to guide the systematic

nd replicable selection of which cases required manual editing. Visual

nspection of surfaces after manual editing resulted in the exclusion of

 = 15 pTBI cases (including those without T2 FLAIR MRI as described

bove) due to continued poor quality of surface reconstruction. 

Multiple cases within the original TBI cohort also had frank

arenchymal lesions. For these cases, Freesurfer has limited applicabil-

ty with its standard processing pipeline and thus an adjusted pipeline

as utilised and is described in Supplementary Materials. Eight lesion

ases were retained for analysis using this pipeline. 

Processing using the Freesurfer pipeline had already been done for

he ABIDE dataset within the PCP, using the standard pipeline as de-

cribed above (however using an older version of Freesurfer (version

.1). Details of quality assurance of the anatomical processing using

s

4 
reesurfer for the ABIDE data, and steps to control for ABIDE site ef-

ects, can be found in Supplementary materials. 

.4. Executive functions (EF) 

EF was assessed for patients in the TBI cohort (patients and controls)

t 24-months post injury/recruitment using performance-based neu-

opsychological testing. Several standard, age-appropriate neuropsy-

hological tests were administered to participants to index EF skills,

nd these were from three typical, age-appropriate test batteries; (i)

ests of Everyday Attention – Children (TEA-Ch; ( Manly et al., 1999 )),

ii) Delis-Kaplan Executive Function System (D-KEFS, ( Delis et al.,

001 )), and (iii) Wechsler Intelligence Scale for Children (WISC-IV,

 Wechsler, 2003 )). These measures were selected from a wider battery

f administered neuropsychological tests as part of the wider study.

pecific subtests used in the current study were selected to represent

omponents of a three-factor EF model ( Miyake et al., 2000 ) and can

e found in Table 2 As per Diamond (2013) , we also included a mea-

ure of selective-attention in the domain of inhibition, given evidence

ighlighting the high correlation of this skill with other EF domain

 Downing, 2015 ; Santa-Cruz and Rosas, 2017 ). It is important to note,

hilst we have assigned these subtests to specific subdomains of EF

ased upon our theoretical model of EF, these assignments are not used

n the designation of the EF impairment/non-impairment groupings. 

An approach to define those individuals exhibiting clinically rel-

vant cognitive impairment was selected (a-priori) to group patients

n terms of executive (dys)function at 2 years post-injury. The current

tudy adopted the neuropsychological impairment (NPI) rule proposed

y Beauchamp et al. (2015) . This rule has previously been shown to

e sensitive to TBI with an increase in identification of impaired in-

ividuals ( Beauchamp et al., 2015 ), and has been used to detect be-

avioural impairment ( Donders and DeWit, 2017 ), and cognitive inef-

ciency ( Beauchamp et al., 2018 ) following paediatric TBI and concus-

ion respectively. 

http://www.consort-statement.org/consort-statement/flow-diagram
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Table 2 

Neuropsychological tests and subtests used to group patients on executive functioning out- 

come 2 years post-injury. 

EF Domain Battery Subtest Measure 

Set Shifting TEA-Ch Creature counting Accuracy (no. correct) 

TEA-Ch Creature counting Time taken 

Inhibition D-KEFS Colour-word interference – condition 3 Time Taken 

D-KEFS Colour-word interference – condition 4 Time Taken 

TEA-Ch Walk-don’t-walk Score 

TEA-Ch Skysearch Attention Score 

Working Memory WISC-IV Digit span backwards Score 

Table 3 

Demographics for patient subgroups. 

Group Control EF Good EF Poor Statistical comparison 

N 33 42 17 –

M/F 20/13 27/15 12/5 p = .78 a 

Age at Scanning (median, yrs.) 9.99 10.95 11.13 F(2,89) = 0.366, p = .70 b 

(Range, yrs.) 6.53–15.47 6.69–14.82 6.09–14.17 –

Age at Injury (median, yrs.) – 10.75 11.00 F(1,57) = 0.027, p = .87 b 

(Range, yrs.) – 6.58–14.67 5.92–14.00 –

Injury-Scan Interval (median, days) – 35.5 30.0 F(1,57) = 1.971, p = .17 b 

Injury Severity 

Mild – 23 10 p = .58 a 

Mild-Complicated – 4 3 

Moderate – 11 4 

Severe – 4 0 

Note. 
a Fisher’s exact test 
b One-Way ANOVA 
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Briefly, performance scores for the neuropsychological test batteries

ere converted to age-scaled scores ( M = 10, SD = 3). To identify those

ith a clinically relevant impairment in executive functioning a cut-off

f 1 SD outside ‘average’ functioning in the direction of worse perfor-

ance. To be assigned to the group who were experiencing clinically

elevant cognitive impairment (poor EF outcome (EF Poor )), participants

ad to have shown impaired functioning on two or more individual EF

easures, whereas those who were impaired less than two measures

ere assigned to the without cognitive impairment group (good EF out-

ome (EF Good )). A minimum of two cases of impairment identifies a pat-

ern of deficit, unlikely to be due to typical variability due to individual

ifferences or measurement error for instance. We only calculated the

PI rule for those cases that had the full battery of EF tests. The de-

ographics of these two subgroups (EF Poor and EF Good ) are shown in

able 3 . These groups did not differ on injury variables, such as injury

everity, as can be seen in Table 3 . 

It is important to note that of the control group, n = 4 ( ∼12%) had

F scores that satisfied the NPI rule. Given the NPI rule used a SD of

.5 below mean, standard distribution would suggest that the 4 (12%)

ontrols with poor EF is representative of expected normal variation.

hus, these controls were retained. 

.5. Statistical analysis 

The analysis plan of the current study was inspired by that of

annan et al. (2019) . All analyses were conducted with a series of pack-

ges in R ( R Core Team, 2016 ), with network analyses being specifically

onducted using ‘brainGraph’ version 2.2 ( Watson, 2016 ), which is an

xpansion of the iGraph package ( Csardi and Nepusz, 2006 ). All anal-

ses were conducted over three group-contrasts; (i) pTBI patients vs.

ontrols, (ii) pTBI EF intact vs. controls and iii) pTBI EF impaired vs.

ontrols. Only case-control comparisons were conducted, and thus did

ot include case-case contrasts (i.e. EF Impaired vs EF Intact). This is

ecause we specifically wanted to investigate pathological deviations to

he typical development of the brain. 
5 
.5.1. Differences in cortical-thickness between pTBI and controls 

Firstly, we investigated cross-sectional differences in cortical-

hickness between patients and our experimental controls. For each

OI ( n = 68) a general linear model (GLM) was generated to test

he effect of group (patient vs control) on cortical-thickness, whilst

ontrolling for the effects of age at scanning, sex, and eTIV. A t -test

as used to test the directional hypothesis of cortical-thickness re-

uctions in the patient group compared to controls. When calculat-

ng p-values, the false discovery rate was maintained at 𝛼fdr = 0.05

sing the Benjamini and Hochberg (1995) correction to control for

ultiple comparisons across all ROIs. The effect size was reported as

edges’ g ( Hedges and Olkin, 2014 ) corrected for unequal sample sizes

s per Rosnow et al. (2000) . This was repeated for the three pairwise

ontrasts. 

.5.2. Differences in structural-covariance between pTBI and controls 

Structural-covariance networks were generated using the Freesurfer-

erived structural parcellation as the nodes ( n = 68) and the edges of

he network the similarity of cortical-thickness between as pairs of ROIs.

s is common in the structural-covariance literature, cortical-thickness

as used as the dependant variable for general linear models run across

ll ROIs with covariates of age at scanning, sex, and estimated total in-

racranial volume. This is to control for the fact that cortical-thickness

as been shown to decrease with age ( Magnotta, 1999 ), and increase

ith total intracranial volume ( Im et al., 2008 ) and to differ across

enders ( Sowell et al., 2007 ). The studentised residuals were then re-

ained for analysis and used to generate graphs of structural covariance.

earson’s correlations between residuals of each ROI generated a single

8 × 68 adjacency matrix data. This will represent an undirected, un-

hresholded, weighted network, with ROIs as the nodes and correlation

oefficients as the edge-weights between nodes. This network represents

ge-invariant structural covariance ( Váš a et al., 2017 ) with age at scan-

ing controlled for in the model. 

For each graph/network, the ‘magnitude’ of structural covariance for

ach node was measured as node strength. For node i , this is the sum
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Table 4 

Mean graph strength and bootstrapped a 95% confidence intervals. 

Group Graph Strength CI Low CI High PermDiffb p fdr 
b 

Controls 17.1 11.8 22.6 NA NA 

pTBI 28.0 21.9 34.8 − 0.483 .062 

EF Good 28.0 19.5 37.5 .307 .062 

EF Poor 37.1 27.9 48.1 .947 .008 

a 5000 resamplings. 
b compared to experimental controls, greater permuted dif- 

ference representing greater structural-covariance in the patient 

group. 
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f the connectivity weights of all edges connected to node I ( Fornito

t al., 2016 ). We did not normalize these measures based on number of

dges as we utilised the fully-connected, unthresholded networks and

hus the number of edges connected to each node was equal across all

odes. To calculate an estimate of graph-level strength, we calculated

he average nodal strength over all nodes. To generate confidence in-

ervals for each group, these measures were bootstrapped over 5000

esamplings. In order to assess significant differences in structural co-

ariance, permutation testing (5000 permutations) generated a null dis-

ribution of differences (t-values) in graph metrics between two groups

ith a two-tailed 𝛼-level of 0.05. These comparisons were conducted

or each of the three pair-wise contrasts and were conducted at the

raph-level (mean graph strength) and at the nodal level. p -values for

odal-level comparisons were also FDR-corrected over the 68 nodes,

hilst the graph level comparisons were FDR-corrected over the three

omparisons. 

.5.3. Structural-covariance between regions with cortical-thickness 

eductions in pTBI 

To assess whether structural-covariance was significantly greater be-

ween regions with cortical-thickness reductions in pTBI compared to

andomly selected regions, we conducted permutation testing. Briefly,

or each contrast, ROIs were ranked in terms of the effect size of cortical-

hickness reductions in the patient group compared to controls. For the

op n-regions in terms of effect size, mean nodal strength was calculated

where n = 2,3,4…68) based on the structural-covariance graph calcu-

ated for the control group only. A null distribution of this mean nodal

trength was generated by calculating mean structural-covariance for

000 sets of randomly selected sets of n-nodes (without replacement).

or each value of n, a one-tailed p-value was calculated as the propor-

ion of permutation cases where the mean nodal strength of randomly

elected nodes exceeded that of the observed mean nodal strength. p -

alues were corrected across values of n using the FDR-correction. A

ignificant result suggests that structural-covariance of regions where

ortical-thickness reductions exist is significantly greater than expected

or randomly selected regions. We also repeated this analysis using the

arger ABIDE cohort with which to provide an estimate of age-invariant

tructural covariance across a larger, more representative dataset com-

ared to the experimental controls. 

. Results 

.1. Differences in cortical-thickness between pTBI and controls 

Analyses showed that 46/68 ROIs had a cross-sectional reduction

n cortical-thickness (adjusted for age at scanning, sex, and eTIV) in

he patient group compared to experimental controls, with a small

ean effect size ( ̄g ( min , max ) = 0 . 175 ( 0 . 022 − 0 . 455 ) ). However, no

OI showed significantly thinner cortex in patients compared to controls

fter FDR correction. When comparing the cognitively spared group

EF Good ) to experimental controls, similar results were found, 42/68 re-

ions showed a reduced cortical-thickness in patients compared to con-

rols ( ̄g ( min , max ) = 0 . 185 ( 0 . 009 − 0 . 482 ) ) yet no differences survived

DR correction. 

There appeared a greater amount and severity of a reduction in

ortical-thickness for the cognitively impaired group (EF Poor ) compared

o controls, 62/68 regions had an effect size in the direction of reduced

ortical-thickness for patients, with the mean effect size being bigger

han that of the other contrasts ( ̄g ( min , max ) = 0 . 448 ( 0 . 012 − 0 . 807 ) ).
The effect sizes of these contrasts can be seen in Fig. 2 , where positive

ffect size indicates a reduction in cortical-thickness in the patient group

elative to controls. However, it is important to remember that, across

ll contrasts, no regional cortical-thickness reductions in the TBI group

ere significant (after FDR correction). 
6 
.2. Differences in structural-covariance between pTBI and controls 

Mean graph strength for each of the groups and subgroups can be

ound in Table 4 . No significant difference (after FDR correction be-

ween the three contrasts) in mean graph strength was found between

atients and our experimental controls (permuted difference (PermD-

ff) = − 0.483, p fdr = 0.062). When investigating subgroups, signifi-

ant differences were found between experimental controls and EF poor 

PermDiff = 0.947, p fdr = 0.008) but not EF Good (PermDiff = − 0.307,

 fdr = 0.062, respectively). However, it is important to note that, whilst

he observed between-group difference between EF Poor and experimen-

al controls was significant in comparison to the permuted-distribution,

he confidence intervals of the differences all crossed zero. 

After FDR correction across ROIs ( n = 68), no nodal differences re-

ained significant between control and the whole pTBI group or EF Good 

ubgroups. However, when comparing the EF Poor group to controls, mul-

iple regions (44/68) showed significantly greater nodal strength in the

atient group. These regions can be seen in Fig. 2 . These regions were

idely distributed across the cortex, yet a high proportion of these sig-

ificant regions were found in the frontal lobe (41% frontal lobe, 25%

emporal lobe, 20% parietal lobe, 9% cingulate, 5% occipital lobe). 

.3. Structural-covariance between regions with cortical-thickness 

eductions in pTBI 

We conducted permutation testing to estimate whether, for either

he whole group or either of the two subgroups, regions which showed

ortical-thickness reductions compared to controls were those regions

hich, in the typically developing population (i.e. using the experimen-

al controls or ABIDE data controls), show higher levels of structural-

ovariance. When considering the whole group of pTBI patients, for no

alue of n number of regions with greatestcortical-thickness reductions

as the mean strength of regions in the experimental control group sig-

ificantly greater than that of n randomly selected regions (see Fig. 3 ).

his was also true of the EF Good subgroup. 

However, for the EF Poor group, the mean strength in the experimen-

al controls of the n nodes with greatest cortical-thickness reductions

as significantly greater than the mean strength of n randomly selected

egions for 59/67 values of n ( n = 8, 10 – 67, p fdr all < 0.05). 

We validated these results by repeating the analysis using the ABIDE

ataset to estimate mean strength of nodes in the typically developing

rain, as seen in Fig. 4 . The results using our experimental controls were

argely replicated; mean node strength was significantly greater than

hat of n randomly selected regions for multiple values of n in the EF Poor 

roup ( n = 19 – 65, 67, p fdr all < 0.05), but neither the whole pTBI

ample or the EF Good subgroup (as seen in Fig. 5 ). 

.4. Lesion cases 

To examine whether the results were driven by a bias towards cases

ith cortical grey matter lesions who were processed using our custom

reesurfer pipeline, we repeated all analyses excluding the lesion cases

 n = 8). The results can be seen in supplementary material but, briefly,
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Fig. 2. (A) Effect size (Hedge’s g) maps for three planned contrasts; (i) Patients < Controls, (ii) EF Good < Controls and (iii) EF Poor < Controls, each contrast representing 

thinner cortical-thickness in pTBI compared to controls. (B) Permuted difference in structural-covariance for three planned contrast (i) Patients vs Controls, (ii) EF Good 

vs Controls and (iii) EF Poor vs Controls with greater permuted difference representing greater structural-covariance in the patient group. 

Fig. 3. Observed mean strength in the experimental control group across n nodes ( n = 2–68) with greatestcortical-thickness reductions in the whole pTBI group and 

both the EF Good and EF Poor subgroups, grey region represents the mean nodal strength for 5000 permutations of n randomly selected nodes. 

t  

s  

t

4

 

m  

a  

p  

l  

c  

o  

t  

a  

r  

l  

w  

g

 

n  

t  

s  

t  

t  

t  

c  

a  

c  

i  

b  

l

hese were qualitatively the same as the results presented above, with

ignificant effects seen in the EF Poor group but not the whole group or

he EF Good group. 

. Discussion 

The findings presented here demonstrate a potential network-based

echanism for the association between (sub)acute cortical thinning

nd long-term executive dysfunction. For those patients who exhibited

oor, long-term EF outcomes, cortical-thickness reductions were more

ikely to be localised to regions that typically have higher structural-

ovariance than randomly selected regions in normal development. In

ther words, we found that, at the group-level, for cases where long

erm executive function outcome is poor, cortical damage (measured

s cortical-thickness reductions) is seemingly preferentially loaded onto

egions high in structural covariance in the typically developing popu-
7 
ation, but not when EF is spared. A key strength of this study was that

e were able to replicate these findings across two different control

roups. 

In traditional ROI-based analyses of cortical thickness, we found that

o regions showed significant thinning, regardless of chronic execu-

ive functioning. However, our findings of network-based loading of the

ubtle cortical differences in the executive dysfunction group, suggests

hat rather than the topography (the physical distribution across cor-

ex) of specific alterations being important to functional outcomes, it is

he topology (the connectivity of a node) of these regions in the wider

ortical network which is important. There is spatial inconsistency in

lterations to brain morphometry associated both between and within

linical manifestations of neurological disorders ( Cauda et al., 2019 ),

ncluding pTBI ( King et al., 2019 ), and the location and extent of focal

rain damage is seemingly insufficient to fully explain the neuropsycho-

ogical deficits that persist post-injury ( Bigler, 2001 ; King et al., 2019 ). 
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Fig. 4. (A) Nodal strength as estimated from 

the typically-developing controls from the 

ABIDE cohort across all ROIs in the Desikan- 

Killany atlas; (B) Distribution of nodal strength 

values across the ROIs. 

Fig. 5. Observed mean strength in the ABIDE control group across n nodes ( n = 2–68) with greatest cortical-thickness reductions in the whole pTBI group and both 

the EF Good and EF Poor subgroups, grey shaded region represents the mean nodal strength for 5000 permutations of n randomly selected nodes, with the grey line 

representing the mean nodal strength across all permutations. 
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Our findings suggest that, this may be because spatially-disparate

esions and/or morphometric changes may occupy similar topologi-

al positions in the network and in these cases result in a similar

europsychological profile. Damage to topologically central regions

ikely has a disproportionate impact on the broader network, espe-

ially as they are particularly relevant to the development of the

rain ( Csermely et al., 2013 ; Morgan et al., 2018 ; Oldham and For-

ito, 2019 ), and this in turn renders this ‘damage’ more likely to be
8 
ehaviourally symptomatic ( Crossley et al., 2014 ; Hillary and Grafman,

017 ). 

This was apparent in these results with damage loading preferen-

ially onto these regions seemingly more likely to result in EF im-

airment. The neuropsychological nature of executive functions are

lso more likely to amplify this effect, given that they are sup-

orted by widely distributed neural networks ( Beauchamp et al., 2011 ;

ollette et al., 2006 ; Nowrangi et al., 2014 ; Slomine et al., 2002 ) and are
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herefore particularly vulnerable to the distributed, multifocal mecha-

isms of TBI ( Treble-Barna et al., 2017 ). 

The findings here, if replicable, could have significant clinical im-

lications for pTBI. This association identified by these results, that

he topological positioning of (sub)acute cortical thinning being related

o long-term (2 years post-injury) cognitive sequelae suggests that the

tructural-basis of poorer outcomes is set in motion from the early dam-

ge caused by primary injury, specifically the topology of this dam-

ge. Whilst the effects of secondary injury are treatable and poten-

ially reversible with prompt and proper disease-modifying treatment

 Ghajar, 2000 ; McKee and Daneshvar, 2015 ), primary injury is consid-

red more permanent. 

Therefore, these results suggest that some variance in chronic poor

ognitive outcomes can be explained by the unchangeable (sub)acute,

rimary injury. This would therefore mean that there is potential for

redicting, at this early timepoint, those young people at greatest risk

f these long term outcomes potentially allowing for early identification

f these young people, and thus early neurorehabilitative treatment, en-

uring these young people can maximise their long-term outcomes. 

It is important to note the acute/sub-acute timing of the MRI in these

ases. MRI changes to both cortical thickness and volume have been re-

orted in both the acute and sub-acute stages of pTBI previous findings

t this acute time-point post injury ( King et al., 2019 ; McCauley et al.,

010 ; Urban et al., 2017 ; Wilde et al., 2012 ), however, we did not repli-

ate this in our current sample. Our findings also challenge previous

nalyses of post-injury cortical-thickness being specifically related to

xecutive functioning ( Wilde et al., 2012 ). Observed differences were

enerally in the expected direction, with patients having thinner cor-

ices, but effect sizes were very small across regions. 

Cortical thickness reductions, as measured in-vivo with MRI, aim to

ssess the potential atrophic effects of the cascade of mechanisms that

ccur post-injury ( Bigler, 2013 ). At this early stage post-injury, cortical

hinning could be due to primary injury mechanisms, such as impaired

erfusion ( van der Kleij et al., 2020 ; Xu et al., 2010 ) or trauma induced

ell loss ( Bigler, 2013 ; Cullen et al., 2011 ) for instance. Cortical thinning

s likely to be associated with loss of cortical neurons ( Maxwell et al.,

010 ), although this continues over months and years post-injury, likely

ue to the ongoing effects of secondary injury ( Bigler, 2013 ) and po-

entially explaining neuroimaging findings consistent with chronic neu-

odegeneration over time ( King et al., 2019 ). The lack of significant find-

ngs in terms of cortical thinning may suggest that, without the chronic

ffects of neurodegeneration, cortical thinning is relatively subtle and

ndetectable (especially in smaller samples). It may be the case that the

hanges seen this acutely post-injury are too subtle to detect at these

ample sizes, especially over multiple ROIs. However, the only two stud-

es to report cortical-thickness reductions in patients compared to con-

rols at a similarly acute time point post-injury conducted vertex-wise

nalyses ( McCauley et al., 2010 ; Urban et al., 2017 ). It may in fact be

hat cortical thickness reductions are local to the sites of primary injury

coup and contra-coup) and the process of parcellating and averaging

hese changes over a region for ROI-based analyses makes these harder

o detect. 

Despite the non-significance of these univariate tests, we hypothe-

ised that the cumulative effect of these subtle differences in cortical-

hickness still has a functionally meaningful effect on the developing

rain, post-injury. Hence, in a novel set of analyses, we investigated

he structural covariance network as a method to investigate the multi-

ariate relationships between cortical-thicknesses across the cortex. We

ound that differences in the mean graph strength, the average magni-

ude of structural-covariance across all nodes, was not different when

omparing pTBI patients to our experimental controls, however, when

tratifying based on EF outcome, significant differences from controls

ere found for the EF Poor but not the EF Good group. This suggests that

he structural covariance network is only ‘abnormal’ in the impaired

roup, with the non-impaired group showing a network structure sim-

lar to controls. This pattern was repeated for the nodal-level findings
9 
nd, somewhat unsurprisingly, the significant differences in the EF Poor 

roup were overly represented by nodes in the frontal and temporal

obes, regions commonly implicated in brain morphometry differences

ost-pTBI ( King et al., 2019 ), with frontal regions being key regions in

he widely distributed neural networks supporting executive functions

 Beauchamp et al., 2011 ; Collette et al., 2006 ; Nowrangi et al., 2014 ;

lomine et al., 2002 ). 

At both the nodal- and graph-level, the magnitude of structural-

ovariance was greater in the impaired patient group than our exper-

mental groups. This would suggest that, in these patients, the mor-

hometry of regions across the cortex was less differentiated. Whilst

t remains unclear how this may translate into changes to the underly-

ng neuroanatomy of the brain, this represents a marked change from

he gene-controlled patterning of structural-covariance across the cor-

ex ( Romero-Garcia et al., 2018 ; Yee et al., 2017 ). This group-level

nding aligns with our previous individual-level analysis of deviation

rom typical structural covariance network being related to EF abilities

 King et al., 2020 ). 

Given the acute timing of the MRI in this study, it is unclear how

he ongoing neuropathophysiology of brain injury may alter the ongo-

ng development of the morphometry of the brain after the injury. This

ill be of particular interest to the study of structural covariance af-

er pTBI, given the developmental drivers of this higher-order organi-

ation of brain morphometry ( Alexander-Bloch et al., 2013 ; Fan et al.,

011 ; Khundrakpam et al., 2017 , 2016 , 2013 ; Raznahan et al., 2011 ;

áš a et al., 2017 ), future longitudinal research would be well positioned

o answer this. 

Diffusion MRI (DWI) is the current standard for estimating struc-

ural connectivity of white matter fibre-bundles between brain regions

 Batalle et al., 2018 ). White-matter connectivity of the brain is specif-

cally susceptible to the effects of pTBI, due to diffuse axonal injury,

eflected in topological differences after injury, compared to controls

cutely after mild pTBI ( Yuan et al., 2015 ) but also across wider

njury severities chronically after injury ( Caeyenberghs et al., 2012 ;

onigs et al., 2017 ; Yuan et al., 2016 ). However, high quality DWI se-

uences have long acquisition lengths and thus may not be suitable for

aediatric populations ( Batalle et al., 2013 ). Thus, structural-covariance

ay be a more feasible alternative to studying the structural effects of

TBI, by investigating the meaningful meso ‑scale organisation of brain

tructure across the cortex. Previous research has also highlighted the

otential role of WM connectivity as a driver of structural covariance be-

ween regions ( Gong et al., 2012 ; Reid et al., 2016 ) as regions which are

imilar in cytoarchitectural organisation are more likely to be anatom-

cally connected ( Goulas et al., 2017 ; Wei et al., 2019 ). Therefore, the

tructural-covariance approach may in fact capture not only patholog-

cal grey-matter alterations, but also the effects of DAI. However, it is

ital to emphasise that DWI and associated tractography methods esti-

ate ‘actual’ connectivity, rather than the network-level organisation of

rain structure measured by structural covariance. These methods are

hus likely to provide overlapping and complementary information to

WI, and future studies should combine these methodologies in multi-

odal studies of the cortex post-injury to better understand how they

apture injury mechanisms. 

. Limitations and future considerations/directions 

It is important to note that in this cohort, there were a limited num-

er who met the criteria we set for executive dysfunction, compared to

hose with a favourable outcome at two years post-injury. This means

hat, the sub-analysis had much smaller sample sizes, especially the EF-

oor group, although we conducted a number of steps to best support

he findings reported here (i.e. validating in a second control cohort,

orrecting for unequal sample sizes etc.). Future research should firstly

alidate the claims made here before any work can be done to investi-

ate the clinical significance of this work. 



D.J. King, S. Seri, C. Catroppa et al. NeuroImage 244 (2021) 118612 

 

l  

s  

(  

a  

v  

c  

s  

l  

a  

p  

c  

t  

W  

s  

a  

w

 

d  

I  

e  

t  

b  

a  

i  

f  

d  

w  

f  

v  

p  

t  

o  

p  

t

 

w  

a  

t  

n  

F  

f  

s  

w  

a  

p  

t  

v  

c

 

p  

t  

f  

i  

o  

r

6

 

t  

t  

m  

s  

t  

d  

i  

r  

d  

c  

F  

n  

b

C

 

W  

p  

&  

v  

&

F

 

C  

s  

H  

N

S

 

t

R

A  

A  

 

A  

 

A  

 

A  

 

B  

 

B  

 

 

B  

 

 

B  

 

B  

 

 

B  

 

 

B  

 

B  

 

B  
Structural-covariance is limited to the application to population-

evel covariance in neuroanatomy ( Alexander-Bloch et al., 2013 ). We

pecifically investigate the age-invariant structural covariance network

 Váš a et al., 2017 ), since the analysis combines data across childhood

nd adolescence, modelling the common network structure across de-

elopment. The limited numbers in our experimental control group

ould result in limited accuracy of the estimation of this age-invariant

tructural-covariance network. Utilising the ABIDE reference group al-

owed us to replicate the results using a more reliable estimate of the

ge-invariant structural-covariance network due to the much larger sam-

le size. However, it is important to note that hubs of the structural-

ovariance network have distinct developmental trajectories over the

ime course of childhood and adolescence ( Khundrakpam et al., 2013 ;

hitaker et al., 2016 ). Therefore, future research should try to re-

olve the relationship between cortical-thickness reductions post-TBI

nd structural-covariance across age-matched structural-covariance net-

orks. 

It is important to consider the potential methodological reasons for

etecting differences in structural covariance but not cortical thickness.

t may in fact be the case that the SCN approach, due to the fact it consid-

rs higher order interactions and organisation of regional morphometry,

hese methods are more sensitive to the subtleties of injury. This may

e because (sub-significant) thinning to region X may not be detected in

 standard univariate analysis, but in the SCN approach, this thinning

mpacts on nodal metrics for all nodes – thus amplifying these subtle dif-

erences. This amplification and thus increased sensitivity to structural

ifferences may be beneficial in studies of mild traumatic brain injury,

here damage can be difficult to detect even when there is significant

unctional impairment caused by injury. Future work should further in-

estigate the role of SCN analyses in TBI, especially in more chronic

opulations where even univariate cortical thickness differences are de-

ectable, to identify the additional benefit of these methods. Method-

logically, greater consideration also needs to be given to the apparent

ower of SCN analyses to detect abnormalities in comparison to tradi-

ional univariate analyses. 

We focussed on nodes with high topological strength in the net-

ork, namely regions that have high summed structural covariance with

ll other regions of the brain. This metric is a relatively simplistic, al-

hough intuitive, measure of ‘hubness’ but may not capture the more

uanced aspects of the centrality of a node in a network ( Oldham and

ornito, 2019 ; van den Heuvel and Sporns, 2013 ). However, due to the

act that the structural-covariance networks do not adhere to typical as-

umptions of networks (edges representing definitive real connections)

e utilised strength as a simpler metric which makes fewer assumptions

bout the underlying neurophysiology of the network. Once a more com-

lete understanding of communication dynamics throughout the struc-

ural covariance network has been understood, future studies may in-

estigate other, more nuanced measures of nodal centrality, which may

apture greater information about their role in the wider network. 

We specifically try to elucidate effects specific to pTBI, and where

ossible have accounted for variables which may also impact upon cor-

ical development such as gender and age. However, other important

actors may have influenced both cortical development and/or post-

njury executive functioning such as pre-morbid IQ. Accurate estimates

f pre-morbid functioning where not collected in the current dataset and

eflects a common limitation of research in this field. 

. Conclusion 

There is strong theoretical support for future studies of brain insults

o focus on generating hypotheses about underlying pathophysiology to

he neural network biology ( Aerts et al., 2016 ). Here we provide a novel

ethodological advance in support of this goal, offering an analysis of

tructural-covariance post-TBI in which we specifically proposed that

he topology of nodes which were damaged would be important for un-

erstanding which children go on to experience functionally relevant
10 
mpairment post-injury. Given disparity in outcomes after a pTBI, these

esults are a key first step in utilising knowledge of topology in typical

evelopment for predicting which children go on to experience signifi-

ant impairment post-injury as opposed to those who will recover well.

uture research needs to expand these findings to investigate the causal

ature of these relationships, and to see whether these patterns expand

eyond the structural-covariance network of the brain (i.e. DTI). 
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