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Abstract. The problem of assessment of Decision Making Units (DMUs) by using Data Envelopment 

Analysis (DEA) may not be straightforward due to the data uncertainty. Several studies have been 

developed to incorporate uncertainty into input/output values in the DEA literature. On the other hand, 

while traditional DEA models focus more on crisp data, there exist many applications in which data is 

reported in form of intervals. This paper considers the box-uncertainty in data which means that each 

input/output value is selected from a symmetric box. This specific type of uncertainty has been addressed 

as Interval DEA approaches. Our proposed model deals with efficiency evaluation of DMUs with imprecise 

data in a robust optimization. We assume that inputs and outputs are reported in the form of intervals and 

propose the robust counterpart problem for the envelopment form of the DEA model. Further, we also 

develop two ranking methods which have more benefits compared to some existing approaches. An 

illustrative example is provided to show how the proposed approaches work. An application on hospital 

efficiency in East Virginia is used to show the usefulness of the proposed approaches. 

Keywords. Interval DEA, Box-Uncertainty, Robust optimization techniques, Ranking, Fuzzy DEA, Data 

Uncertainty.

1. Introduction

The conventional DEA model proposed by Charnes, Cooper and Rhods (1978) (CCR) is a linear 

programming model which deals with precisely known data where inputs and outputs values are 

deterministic and exactly known. However, in real-life applications, we may encounter imprecise data due 

to incomplete or non-attainable information, errors in measurements, unquantifiable variables, or any other 

source of reason. Imprecise data may lead to some challenges in applying the DEA technique, mostly 

resulting in a nonlinear DEA model.  
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The problem of the evaluation of units with imprecise data has attracted attentions of several scholars. 

For example, Cooper et al. (1999) developed Imprecise Data Envelopment Analysis (IDEA) method. Their 

method can be applied in the situation where there exist both imprecisely and exactly-known data in which 

the IDEA models are transformed into linear programming problems. Kim et al. (1999) proposed a 

procedure to incorporate partial data into DEA. Their original model was a complicated non-linear model 

that was transformed into a linear programming problem by applying a linear scale transformation and the 

variable change technique.

In summary, three different types of approaches can be adopted to model imprecise data in DEA 

including fuzzy approaches, stochastic methods, and robust optimization-based techniques. Several 

scholars have modelled imprecise data as fuzzy numbers and incorporated defuzzification methods into 

DEA. Emrouznejad et al (2014) provided a taxonomy and review of the Fuzzy DEA approaches.  Also 

input/output variables can be considered as random variables, which results in stochastic DEA models. See 

Olesen and Petersen (2016) for a review on stochastic DEA methods and Peykani et al (2020) for a review 

on robust DEA methods.

Robust Optimization (RO) is a technique to model optimization problems with uncertain data which 

aims to determine an optimal solution which is the best for all or the most possible realizations of the 

uncertain parameters. Ben-Tal and Nemirovski (1998, 1999, 2000) and Bertsimas and Sim (2004) 

investigated uncertainty in data and proposed different RO approaches to obtain the optimal solution. Wang 

and Wei (2010) applied Ben-Tal and Nemirovski’s approach (2000) in DEA to develop two robust 

formulations for the multiplier form of the CCR model in the presence of uncertain data. They considered 

the perturbations on inputs/outputs for the different uncertainty levels and computed the efficiency score of 

units and provided a ranking for them. 

Sadjadi and Omrani (2008) proposed the robust formulation of the multiplier form of CCR model 

based on the RO technique presented by Ben-Tal and Nemirovski (2000). Their proposed model is a non-

linear programming problem which shows the drawback of their approach of applying an inappropriate RO 

technique. They also presented the robust formulation of the multiplier form of the CCR model based on 

the RO technique proposed by Bertsimas et al. (2004). Unlike, the first model, the second is a linear 

programming model. Sadjadi and Omrani (2010) proposed a bootstrapped robust model for the multiplier 

form of the CCR model, based on the approach of Bertsimas et al. (2004), to solve the perturbation and 

sampling error problems. Sadjadi et al. (2011) proposed an interactive robust model based on Bertsimas et 

al.’s approach (2004) to find the targets of units according to the DM’s preferences. 

Omrani (2013) proposed a RO technique, based on the robust approach of Bertsimas et al. (2004), to 

find the common set of weights in DEA by using the goal programming technique. Their method can be 
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applied to evaluate the absolute efficiency score of units for different values of robustness levels in order 

to rank them. Ehrgott et al. (2018) used the framework of RO to propose a DEA model in case of data 

uncertainty. They provided a first-order algorithm to solve their model and showed that the optimal solution 

of it determined the maximum possible efficiency score of a unit.

Most of the existing methods in the literature apply the RO technique proposed by Ben-Tal and 

Nemirovski (2000) and Bertsimas et al. (2004) to evaluate DMUs and rank them in the presence of uncertain 

data. This paper considers the scenario where uncertainty in input/output variables are modelled in the form 

of intervals. Several Interval DEA approaches have been developed to perform efficiency analysis in DEA. 

Wang et al. (2005) considered the efficiency assessment of units in the presence of interval and/or fuzzy 

data. They proposed two linear CCR models to obtain the interval efficiency of DMUs and then applied the 

interval efficiencies of all units by a minimax regret-based approach to rank units. Wu et al. (2013) proposed 

a two-phase approach in which the first phase obtains the interval cross-efficiency score of DMUs and the 

second phase ranks units by applying an improved TOPSIS technique. Khezri et al. (2019) proposed a 

method for ranking units based on the distances of a unit from the efficiency and inefficiency frontiers and 

the lower and upper super efficiency scores of it applying a lexicographic order.

Since interval data can be considered as box-uncertainties, RO techniques can be adopted into 

Interval DEA. This study proposes a robust counterpart problem for the envelopment form of CCR model 

based on the Ben-Tal and Nemirovski (1999)’s approach. Additionally, the proposed model can be applied 

to provide two complete ranking of DMUs based on the secondary goal models presented by Wu et al 

(2015). Salahi et al. (2016) provided an optimistic RO approach to common set of weights in DEA, but 

their robust counterpart problem for the envelopment form of the CCR model is not formulated correctly. 

In this study, a robust counterpart problem is formulated, and the drawback of their formulation is 

addressed. 

The rest of this paper unfolds as follows. Section 2 provides the robust counterpart of the 

envelopment form of the model. Section 3 proposes two RO-based approaches to rank all DMUs based on 

the secondary goal models proposed by Wu et al. (2015). The results are illustrated by some numerical 

examples in Section 4. A real application in hospital efficiency is presented in Section 5. Finally, Section 6 

concludes the paper and provides direct for future research.

2. The robust formulation of CCR model 

This section first proposes the robust counterpart of the envelopment form of the CCR model. Next, 

the optimistic counterpart of the multiplier form of the CCR model is formulated and then the relationship
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 between the dual of the robust counterpart and the optimistic counterpart of the CCR model is established.

2.1.  The robust counterpart of envelopment form of CCR model

Consider a system of  DMUs, denoted by where each unit consumes  different 𝑛 𝐷𝑀𝑈𝑗, 𝑗 = 1,…,𝑛, 𝑚

inputs to generate  different outputs. The  input and  output for  are denoted by  and  𝑠 𝑖𝑡ℎ 𝑟𝑡ℎ DMUj 𝑥𝑖𝑗 𝑦𝑟𝑗,

respectively, for and  Also, suppose that input and output values are not deterministic 𝑖 = 1,…,𝑚 𝑟 = 1,…,𝑠.

for all units and  and , where the lower and upper bounds are positive and finite 𝑥𝑖𝑗 ∈ [𝑥𝐿
𝑖𝑗, 𝑥𝑈

𝑖𝑗] 𝑦𝑟𝑗 ∈ [𝑦𝐿
𝑟𝑗, 𝑦𝑈

𝑟𝑗]

values. Assume that  is the unit under evaluation.𝐷𝑀𝑈𝑜

The envelopment form of the CCR model with interval data can be written as follows:

min 𝜃
s.t.

𝜃𝑥𝑖𝑜 ―
𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑖𝑗 ≥ 0, 𝑖 = 1,…,𝑚, 𝑥𝐿
𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈

𝑖𝑗

𝑛

∑
𝑗 = 1

𝜆𝑗𝑦𝑟𝑗 ― 𝑦𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠, 𝑦𝐿
𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈

𝑟𝑗 (1)

𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛,
𝜃 𝑖𝑠 𝑓𝑟𝑒𝑒.

Next theorem provides the formulation of the robust counterpart of the envelopment form of CCR 

model.

Theorem 1. The robust counterpart of the envelopment form of the CCR model in the presence of interval 

data can be formulated as:

min 𝜃
s.t.

(𝜃 ― 𝜆𝑜)𝑥𝐿
𝑖𝑜 ―

𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑈
𝑖𝑗 ≥ 0, 𝑖 = 1,…,𝑚,

𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑦𝐿
𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑈

𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠, (2)

𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛,
𝜃 𝑖𝑠 𝑓𝑟𝑒𝑒.

Proof. Based on the robust counterpart model for linear programming problems, proposed by Ben-Tal and 

Nemirovski (1999), the robust counterpart of model (1) is as follows:
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min 𝜃
s.t.

min
𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗

{𝜃𝑥𝑖𝑜 ―
𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑖𝑗} ≥ 0, 𝑖 = 1,…,𝑚,

min
𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗

{
𝑛

∑
𝑗 = 1

𝜆𝑗𝑦𝑟𝑗 ― 𝑦𝑟𝑜 } ≥ 0, 𝑟 = 1,…,𝑠, (3)

𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛,
𝜃 is free.

Model (3) can be written as: 

min 𝜃
s.t.

min
𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗

{(𝜃 ― 𝜆𝑜)𝑥𝑖𝑜 ―
𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑖𝑗} ≥ 0, 𝑖 = 1,…,𝑚,

min
𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗

{
𝑛

∑
𝑗 = 1

𝜆𝑗𝑦𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑟𝑜 } ≥ 0, 𝑟 = 1,…,𝑠, (4)

𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛,
𝜃 is free.

First, we claim that  at the optimality of Model (4). Let’s consider the following two cases: 𝜆 ∗
𝑜 ―1 ≤ 0

1)  is an inefficient unit. Therefore   and so 𝐷𝑀𝑈𝑜 𝜆 ∗
𝑜 = 0 𝜆 ∗

𝑜 ―1 ≤ 0.

2) is an efficient unit. If  is an extreme efficient unit then   and so   𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑜 𝜆 ∗
𝑜 = 1 𝜆 ∗

𝑜 ―1 ≤ 0.

Otherwise  is not an extreme efficient unit and then  Therefore,  𝐷𝑀𝑈𝑜 𝜆 ∗
𝑜 < 1. 𝜆 ∗

𝑜 ―1 ≤ 0.

Also, we prove that  at the optimality of Model (4).  Since  and  we have:(𝜃 ∗
𝑜 ― 𝜆 ∗

𝑜 ) ≥ 0 𝜃 ∗
𝑜 ≤ 1 0 ≤ 𝜆 ∗

𝑜 ≤ 1,

1) If   then  is an inefficient unit. Therefore  and so 0 < 𝜃 ∗
𝑜 < 1, 𝐷𝑀𝑈𝑜 𝜆 ∗

𝑜 = 0 (𝜃 ∗
𝑂 ― 𝜆 ∗

𝑜 ) > 0.

2) If   then   is an efficient unit. Hence 𝜃 ∗
𝑜 = 1, 𝐷𝑀𝑈𝑜 (𝜃 ∗

𝑂 ― 𝜆 ∗
𝑜 ) ≥ 0.

Therfore, the following equations are held:

min
𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗

{(𝜃 ― 𝜆𝑜)𝑥𝑖𝑜 ―
𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑖𝑗} = min
𝑥𝐿

𝑖𝑜 ≤ 𝑥𝑖𝑜 ≤ 𝑥𝑈
𝑖𝑜

{(𝜃 ― 𝜆𝑜)𝑥𝑖𝑜} ― max
𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗

{
𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑖𝑗}

= (𝜃 ― 𝜆𝑜) 𝑥𝐿
𝑖𝑜 ―

𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑈
𝑖𝑗.
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min
𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗

{ 𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑦𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑟𝑜} = min
𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗

{
𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑦𝑟𝑗} + min
𝑦𝐿

𝑟𝑜 ≤ 𝑦𝑟𝑜 ≤ 𝑦𝑈
𝑟𝑜

{(𝜆𝑜 ― 1)𝑦𝑟𝑜}

=
𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑦𝐿
𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑈

𝑟𝑜.

Consequently, model (4) can be converted into the following model:

(R ― CCR) min 𝜃
s.t.

(𝜃 ― 𝜆𝑜)𝑥𝐿
𝑖𝑜 ―

𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑥𝑈
𝑖𝑗 ≥ 0, 𝑖 = 1,…,𝑚,

𝑛

∑
𝑗 = 1,𝑗 ≠ 𝑜

𝜆𝑗𝑦𝐿
𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑈

𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠, (5)

𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛.

Model (5) is the robust counterpart of the envelopment form of CCR model and is called (R - CCR) model.

Theorem 1 formulated the robust counterpart of the CCR model in its envelopment form. Salahi et 

al. (2016) also formulated the robust counterpart of the envelopment form of the CCR model in a different 

way as follows:

min 𝜃
s.t.

𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑈
𝑖𝑗 + 𝑥𝑈

𝑖𝑜ℎ𝑖 ― 𝑥𝐿
𝑖𝑜𝑘𝑖 ≤ 0, 𝑖 = 1,…,𝑚,

𝑛

∑
𝑗 = 1

𝜆𝑗𝑦𝐿
𝑟𝑗 ≥ 𝑦𝑈

𝑟𝑜, 𝑟 = 1,…,𝑠, (6)

― ℎ𝑖 + 𝑘𝑖 = 𝜃, 𝑖 = 1,…,𝑚,
𝜆𝑗 ≥ 0, 𝑗 = 1,…,𝑛,
ℎ𝑖, 𝑘𝑖 ≥ 0, 𝑖 = 1,…,𝑚.

In what follows, we show that their formulation was not correct:

Salahi et al. (2016) obtained their model (6) based on the following equations: 

min (𝜃𝑥𝑖𝑜 ―
𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑖𝑗) = min
𝑥𝐿

𝑖𝑜 ≤ 𝑥𝑖𝑜 ≤ 𝑥𝑈
𝑖𝑜

𝜃𝑥𝑖𝑜 ― max
𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗

𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑖𝑗 = 𝑥𝑈
𝑖𝑜ℎ𝑖 ― 𝑥𝐿

𝑖𝑜𝑘𝑖 ―
𝑛

∑
𝑗 = 1

𝜆𝑗𝑥𝑈
𝑖𝑗, (7)

where 

― ℎ𝑖 + 𝑘𝑖 = 𝜃, 𝑖 = 1,…,𝑚.



7

According to the additivity principle of linear programming (LP) theory, there should be no 

interaction between the decision variables in each constraint or the objective function of the LP 

model. Both terms in i.e.  and  include the same parameter  𝜃𝑥𝑖𝑜 ― ∑𝑛
𝑗 = 1𝜆𝑗𝑥𝑖𝑗, 𝜃𝑥𝑖𝑜 ∑𝑛

𝑗 = 1𝜆𝑗𝑥𝑖𝑗, 𝑥𝑖𝑜.

Given that the additivity principle in LP theory, we should not separately consider  and , 𝜃𝑥𝑖𝑜 𝜆𝑜𝑥𝑖𝑜

when we aim to find the minimum of   for  Ignoring this 𝜃𝑥𝑖𝑜 ― ∑𝑛
𝑗 = 1𝜆𝑗𝑥𝑖𝑗, 𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗, 𝑗 = 1,…,𝑛.

principle in Salahi et al.’s work has caused the parameter  to take two different values,  and 𝑥𝑖𝑜 𝑥𝐿
𝑖𝑜

  at the same time in one constraint, which is not correct. Therefore, equation (7) is not accurate, 𝑥𝑈
𝑖𝑜,

and so, model (6) was not formulated correctly in Salahi et al.’s approach. We provide a correct 

robust counterpart of the CCR model in its envelopment form.

In the following theorem, the optimistic counterpart of the multiplier form of CCR model is 

presented. Further, the relationship between this optimistic counterpart model and the dual of model (5) are 

established. 

Theorem 2. The optimistic counterpart of the multiplier form of the CCR model is identical to the dual of 

the R-CCR model in the presence of interval uncertainties.

Proof. The dual of the (R - CCR) model (5) can be written as follows:  

(DR ― CCR) max
𝑠

∑
𝑟 = 1

𝑞𝑟𝑦𝑈
𝑟𝑜

s.t.
𝑠

∑
𝑟 = 1

𝑞𝑟𝑦𝐿
𝑟𝑗 ―

𝑚

∑
𝑖 = 1

𝑝𝑖𝑥𝑈
𝑖𝑗 ≤ 0, 𝑗 ≠ 𝑜, (8)

𝑠

∑
𝑟 = 1

𝑞𝑟𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑝𝑖𝑥𝐿
𝑖𝑜 ≤ 0,

𝑚

∑
𝑖 = 1

𝑝𝑖𝑥𝐿
𝑖𝑜 = 1,

𝑞𝑟 ≥ 0 𝑟 = 1,…,𝑠,
𝑝𝑖 ≥ 0 𝑖 = 1,…,𝑚,

where and  are the dual variables corresponding to the constraints  𝑝𝑖 𝑞𝑟 (𝜃 ― 𝜆𝑜)𝑥𝐿
𝑖𝑜 ― ∑𝑛

𝑗 = 1,𝑗 ≠ 𝑜𝜆𝑗𝑥𝑈
𝑖𝑗 ≥ 0

and  for all  and  respectively. ∑𝑛
𝑗 = 1,𝑗 ≠ 𝑜𝜆𝑗𝑦𝐿

𝑟𝑗 + (𝜆𝑜 ― 1)𝑦𝑈
𝑟𝑜 ≥ 0 𝑖 = 1,…,𝑚 𝑟 = 1,…,𝑠,

Consider the multiplier form of the CCR model, proposed by Charnes et al. (1978), as follows:
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max
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑟𝑜

𝑠.𝑡.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑟𝑗 ―
𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑖𝑗 ≤ 0, 𝑗 ≠ 𝑜, (9)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑟𝑜 ―
𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑖𝑜 ≤ 0,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑖𝑜 = 1,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

The optimistic counterpart of the multiplier form of the CCR model, based on the optimistic counterpart 

formulation proposed by Beck and Ben-Tal (2009) is given below:

(O ― CCRm) 𝐸𝑜𝑝
𝑜 = max

𝑠

∑
𝑟 = 1

𝑢𝑟𝑦𝑈
𝑟𝑜

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑦𝐿
𝑟𝑗 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑥𝑈
𝑖𝑗 ≤ 0, 𝑗 ≠ 𝑜, (10)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑥𝐿
𝑖𝑜 ≤ 0,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑥𝐿
𝑖𝑜 = 1,

𝑢𝑟 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖 ≥ 0, 𝑖 = 1,…,𝑚.

As can be seen above, models (8) and (10) are identical. 

An efficiency analysis for DMUs with interval data can be performed by applying either (R - CCR) or (DR 

- CCR) models. But what we are interested in is to provide a complete ranking of units. To this end, the 

next section proposes a full-ranking algorithm. 

3.  Our proposed RO-based ranking methods

This section provides two approaches to rank all units under the different perspectives in the case of 

interval input/output parameters. For this purpose, the secondary goal models are integrated to RO 

techniques as described below.
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Regarding the existence of box-uncertainty on inputs/outputs, let’s determine the upper efficiency 

scores of units as a self-evaluation of them in the first step of the proposed methods. This means that, the 

optimistic counterpart of the multiplier form of the CCR model (10) is solved for each 𝐷𝑀𝑈𝑜, 𝑜 ∈ {1,…,𝑛}, 

and the optimal solution  is obtained. These optimal value objective functions are {𝑣 ∗
1𝑜,…,𝑣 ∗

𝑚𝑜, 𝑢 ∗
1𝑜, …,𝑢 ∗

𝑠𝑜}
denoted by .𝐸𝑜𝑝

𝑜

The cross-efficiency evaluation method proposed by Sexton et al. (1986) is one of the most popular 

methods in DEA for ranking decision making units. This method has several advantages so that many 

authors have applied it in various cases, see for instance, Doyle and Green (1995), Anderson et al. (2002), 

Boussofiane et al. (1991), Sun (2002), Ertay and Ruan (2005), Liang et al. (2008), Wu et al. (2015) and 

Lim et al. (2014). However, the main drawback of the cross- efficiency method that possibly reduces the 

utility of it is that there may be the non- unique optimal weights and so the cross-efficiency scores of units 

may not be unique. As a result, some studies have introduced secondary goal models in cross-efficiency 

evaluation, see Doyle and Green (1994), Liang et al. (2008a), Wang and Chin (2010). Wu et al. (2015) 

proposed several secondary goal models to determine both desirable and undesirable cross- efficiency 

scores of all units. Compared with the secondary goal models in the literature, the cross- efficiency scores 

obtained by their models are always reachable for all decision making units.

In the next step of  the proposed methods, two models (11a) and (11b) are suggested to determine 

the undesirable and desirable cross-efficiency scores of each unit by generalizing the models proposed by 

Wu et al. (2015) to the case of box-uncertainty for the data.  

Table 1. The undesirable and desirable cross- efficiency scores in the case of box-uncertainty

The undesirable cross- efficiency score The desirable cross- efficiency score

min (∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑟𝑗 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑖𝑗:𝑥𝐿
𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈

𝑖𝑗,𝑦𝐿
𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈

𝑟𝑗)
s.t.
(∑𝑠

𝑟 = 1𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑈
𝑖𝑘) ≤ 1,  𝑘 = 1,….,𝑛, 𝑘 ≠ 𝑜,

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑜 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑜) ≤ 1,         (11𝑎)

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑜 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑜) = 𝐸𝑜𝑝
𝑜 ,

𝑣𝑖𝑜 ≥ 0,                                              𝑖 = 1,…,𝑚,
𝑢𝑟𝑜 ≥ 0,                                             𝑟 = 1,…,𝑠.

max (∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑟𝑗 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑖𝑗:𝑥𝐿
𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈

𝑖𝑗,𝑦𝐿
𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈

𝑟𝑗) 
s.t.
(∑𝑠

𝑟 = 1𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑈
𝑖𝑘) ≤ 1,  𝑘 = 1,….,𝑛, 𝑘 ≠ 𝑜,

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑜 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑜) ≤ 1,        (11𝑏)

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑜 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑜) = 𝐸𝑜𝑝
𝑜 ,

𝑣𝑖𝑜 ≥ 0,                                             𝑖 = 1,…,𝑚
𝑢𝑟𝑜 ≥ 0,                                            𝑟 = 1,…,𝑠.

Table 1 reports the suggested models (11a) and (11b). The main goal of model (11a) is to select the 

weights for inputs and outputs of  that minimize the cross-efficiency score of  and keep the 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗

upper efficiency score of   at its optimistic efficiency score  Similarly, model (11b) aims to select 𝐷𝑀𝑈𝑜 𝐸𝑜𝑝
𝑜 .
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the weights for inputs and outputs of   that maximize the cross-efficiency score of   and keep 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗

the upper efficiency score of   at its optimistic efficiency score 𝐷𝑀𝑈𝑜 𝐸𝑜𝑝
𝑜 .

Models (11a) and (11b) are non-linear programming problems. These models can be converted to 

their equivalent LP models by applying the Charnes and Cooper (1962) transformation. The resulting LP 

models are reported in Table 2.

Table 2. The equivalent LP models with models (11a) and (11b).

The LP model equivalent to model (11a) The LP model equivalent to model (11b)

min (
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑟𝑗;𝑦𝐿
𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈

𝑟𝑗)

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑖𝑗 ≤ 1,          𝑥𝐿
𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈

𝑖𝑗, (12a)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

max (
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑟𝑗;𝑦𝐿
𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈

𝑟𝑗)

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑖𝑗 ≤ 1,        𝑥𝐿
𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈

𝑖𝑗, (12b)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

Model (12a) aims to select the input/output weights that generate the maximum possible efficiency 

score of  and minimize the cross-efficiency score of  for any realization of data, simultaneously. 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗

Similarly, the main goal of model (12b) is to find the input/output weights for obtaining the maximum 

possible efficiency score of  and maximize the cross-efficiency score of  for any realization of 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗

data, simultaneously. In other words, we select the optimal weights of model (10) evaluating  such 𝐷𝑀𝑈𝑜

that the cross- efficiency score of  is minimized or maximized for any realization of data. 𝐷𝑀𝑈𝑗

Note that models (12a and 12b) include uncertain parameters. According the robust counterpart 

model proposed by Ben-Tal and Nemirovski (1999), the robust counterpart of these can be used to find the 

desired weights for any realization of data. The corresponding models are reported as (13a) and (13b), 

respectively, in Table 3.
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Table 3. The robust counterpart of models (12a) and (12b).

The robust counterpart of model (12a) The robust counterpart of model (12b)

𝛼𝑜𝑗 = min
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ≤ 1, (13𝑎)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

        
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

𝛽𝑜𝑗 = max
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ≤ 1, (13𝑏)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

        
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

Model (13a) selects the optimal weight for inputs/outputs of  in a way that it keeps the 𝐷𝑀𝑈𝑜

efficiency score of  at its optimistic level and minimizes the cross-efficiency score of  for any 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗

realization of data. On the other hand, model (13b) selects the optimal weights for inputs/outputs of  𝐷𝑀𝑈𝑜

such that it keeps the efficiency score of  at its optimistic level and maximizes the cross-efficiency 𝐷𝑀𝑈𝑜

score of  for any realization of data. 𝐷𝑀𝑈𝑗

It should be noted that models (13a) and (13b) are only applied to select the input /output weights of 

 in order to minimize or maximize the cross-efficiency score of  In other word, these models 𝐷𝑀𝑈𝑜 𝐷𝑀𝑈𝑗.

do not provide the minimum and maximum possible cross-efficiency scores of units. 

Now, models (14a) and (14b) are presented to determine the minimum and maximum possible cross-

efficiency score of  applying the optimal weights for  obtained by models (13a) and (13b), 𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

respectively. 

Table 4. The minimum and maximum cross-efficiency score.

Minimum cross-efficiency score Maximum cross-efficiency score
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𝛼𝑚𝑖𝑛
𝑜𝑗 = min

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗 = 𝛼𝑜𝑗, (14𝑎)

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ≤ 1,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

𝛽𝑚𝑎𝑥
𝑜𝑗 = max

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗 = 𝛽𝑜𝑗, (14𝑏)

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ≤ 1,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ― 𝐸𝑜𝑝

𝑜

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 0,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

In Table 4, the values  and  appearing in the second constraints of models (14a) and (14b) are 𝛼𝑜𝑗 𝛽𝑜𝑗

the optimal values of models (13a) and (13b), respectively. Also is the optimal value of model (10) 𝐸𝑜𝑝
𝑜

evaluating .  𝐷𝑀𝑈𝑜

Model (14a) determines the minimum cross-efficiency score of  while keeping the efficiency 𝐷𝑀𝑈𝑗

score of  at its optimistic level. Therefore, is the ‘undesirable cross-efficiency score’ of  𝐷𝑀𝑈𝑜 𝛼𝑚𝑖𝑛
𝑜𝑗  𝐷𝑀𝑈𝑗

corresponding to  𝐷𝑀𝑈𝑜.

Model (14b) determines the maximum cross-efficiency score of  while keeping the efficiency 𝐷𝑀𝑈𝑗

score of  at its optimistic level. Therefore, is the ‘desirable cross-efficiency score’ of   𝐷𝑀𝑈𝑜  𝛽𝑚𝑎𝑥
𝑜𝑗  𝐷𝑀𝑈𝑗

corresponding to 𝐷𝑀𝑈𝑜.

Theorem 3 proves that the minimum cross- efficiency score of a unit obtained by model (14a) is 

lower than its maximum cross- efficiency score obtained by model (14b).

Theorem 3. Let and  be the undesirable and desirable cross-efficiency scores of    𝛼𝑚𝑖𝑛
𝑜𝑗   𝛽𝑚𝑎𝑥

𝑜𝑗 𝐷𝑀𝑈𝑗

respectively. Then 𝛼𝑚𝑖𝑛
𝑜𝑗 ≤ 𝛽𝑚𝑎𝑥

𝑜𝑗 .

Proof. Suppose that  is an optiaml solution for model (14b). It is clear that  is a feasible (𝑢 ∗ , 𝑣 ∗ ) (𝑢 ∗ , 𝑣 ∗ )

solution for model (13a), therefore, The two following cases may happen:𝛼𝑜𝑗 ≤ 𝛽𝑚𝑎𝑥
𝑜𝑗 . 
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Case (a):  In this case,  is a feasible solution for model (14a). Hence, 𝛼𝑜𝑗 = 𝛽𝑚𝑎𝑥
𝑜𝑗 . (𝑢 ∗ , 𝑣 ∗ ) 𝛼𝑚𝑖𝑛

𝑜𝑗 ≤

∑𝑠
𝑟 = 1𝑢 ∗

𝑟𝑜𝑦𝐿
𝑟𝑗 ≤ ∑𝑠

𝑟 = 1𝑢 ∗
𝑟𝑜𝑦𝑈

𝑟𝑗 = 𝛽𝑚𝑎𝑥
𝑜𝑗 .

Case (b):  Suppose that  In this case,  is a fessible solution for model 𝛼𝑜𝑗 < 𝛽𝑚𝑎𝑥
𝑜𝑗 . 𝛾 =

𝛽𝑚𝑎𝑥
𝑜𝑗

𝛼𝑜𝑗
> 1. (

1
𝛾𝑢 ∗ , 

1
𝛾𝑣 ∗ )

(14a), hence,  𝛼𝑚𝑖𝑛
𝑜𝑗 ≤

1
𝛾(∑𝑠

𝑟 = 1𝑢 ∗
𝑟𝑜𝑦𝐿

𝑟𝑗) ≤
1
𝛾(∑𝑠

𝑟 = 1𝑢 ∗
𝑟𝑜𝑦𝑈

𝑟𝑗) < 𝛽𝑚𝑎𝑥
𝑜𝑗 .

Therefore, in both cases, 𝛼𝑚𝑖𝑛
𝑜𝑗 ≤ 𝛽𝑚𝑎𝑥

𝑜𝑗 .

Theorem 4 proves that the maximum cross-efficiency score of a unit obtained by model (14b) is 

lower than its optimistic efficiency score obtained by model (10).

Theorem 4. Let  be the desirable cross-efficiency scores of  and be its optimistic efficiency  𝛽𝑚𝑎𝑥
𝑜𝑗 𝐷𝑀𝑈𝑗 𝐸𝑜𝑝

𝑜

score obtained by solving model (10). Then  𝛽𝑚𝑎𝑥
𝑜𝑗 ≤ 𝐸𝑜𝑝

𝑗 .

Proof. Assume that  is an optimal solution for model (14b) evaluating  Since  (𝑢 ∗
1𝑜,…,𝑢 ∗

𝑠𝑜, 𝑣 ∗
1𝑜, …,𝑣 ∗

𝑚𝑜) 𝐷𝑀𝑈𝑗.

  the following two cases may happen:∑𝑚
𝑖 = 1𝑣 ∗

𝑖𝑜𝑥𝑈
𝑖𝑗 ≤ 1,

1)  It is clear that, in this case,  is a feasible solution for model ∑𝑚
𝑖 = 1𝑣 ∗

𝑖𝑜𝑥𝐿
𝑖𝑗 = 1. (𝑢 ∗

1𝑜,…,𝑢 ∗
𝑠𝑜, 𝑣 ∗

1𝑜, …,𝑣 ∗
𝑚𝑜)

(10). Therefore, 𝐸𝑜𝑝
𝑗 ≥ 𝛽𝑚𝑎𝑥

𝑜𝑗 .

2)  In this case, is a feasible solution for model (10). 𝛼 = ∑𝑚
𝑖 = 1𝑣 ∗

𝑖𝑜𝑥𝐿
𝑖𝑗 < 1. (1

𝛼𝑢 ∗
1𝑜,…,

1
𝛼𝑢 ∗

𝑠𝑜,
1
𝛼𝑣 ∗

1𝑜,…,
1
𝛼𝑣 ∗

𝑠𝑜) 

Hence, 𝐸𝑜𝑝
𝑗 ≥ 𝛽𝑚𝑎𝑥

𝑜𝑗 .

Therefore, in both cases,  𝐸𝑜𝑝
𝑗 ≥ 𝛽𝑚𝑎𝑥

𝑜𝑗 .

Now, a cross-efficiency matrix for DMUs with interval data can be constructed based on the desirable and 

undesirable cross-efficiency scores, as follows:

Table 5. Cross-efficiency matrix

DMU 𝐷𝑀𝑈1 𝐷𝑀𝑈2 ⋯ 𝐷𝑀𝑈𝑛

𝐷𝑀𝑈1 [𝛼𝑚𝑖𝑛
11 ,𝛽𝑚𝑎𝑥

11 ] [𝛼𝑚𝑖𝑛
12 ,𝛽𝑚𝑎𝑥

12 ] ⋯ [𝛼𝑚𝑖𝑛
1𝑛 ,𝛽𝑚𝑎𝑥

1𝑛 ]



14

𝐷𝑀𝑈2 [𝛼𝑚𝑖𝑛
21 ,𝛽𝑚𝑎𝑥

21 ] [𝛼𝑚𝑖𝑛
22 ,𝛽𝑚𝑎𝑥

22 ] ⋯ [𝛼𝑚𝑖𝑛
2𝑛 ,𝛽𝑚𝑎𝑥

2𝑛 ]

⋮ ⋮ ⋮ ⋯ ⋮

𝐷𝑀𝑈𝑛 [𝛼𝑚𝑖𝑛
𝑛1 ,𝛽𝑚𝑎𝑥

𝑛1 ] [𝛼𝑚𝑖𝑛
𝑛2 ,𝛽𝑚𝑎𝑥

𝑛2 ] ⋯ [𝛼𝑚𝑖𝑛
𝑛𝑛 ,𝛽𝑚𝑎𝑥

𝑛𝑛 ]

This paper extended the idea of the weight selection models of Wu et al. (2015) to present two weight 

selection models under the different perspectives for units with interval data based on their desirable and 

undesirable cross-efficiency scores and Before presenting the proposed weight selection models, 𝛽𝑚𝑎𝑥
𝑜𝑗  𝛼𝑚𝑖𝑛

𝑜𝑗 . 

we explain how to construct their constraints. 

Regarding  is the maximum cross-efficiency score of  relative to  for any 𝛽𝑚𝑎𝑥
𝑜𝑗  𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

realization of data, the following inequality is held:

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑟𝑗 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑖𝑗) ≤  𝛽𝑚𝑎𝑥
𝑜𝑗  , 𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗, 𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗.

Hence,

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑗) ≤ 𝛽𝑚𝑎𝑥
𝑜𝑗 (15)

 Equation (16) is constructed by adding the slack variable to the constraint (15):

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑗) + 𝑟1
𝑗 =  𝛽𝑚𝑎𝑥

𝑜𝑗 . (16)

where,  is the deviation of    from  Therefore, if  is minimized then the deviation of all 𝑟1
𝑗

∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑈

𝑟𝑗

∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑗
𝛽𝑚𝑎𝑥

𝑜𝑗 . 𝑟1
𝑗

possible cross-efficiency scores of  from will be minimized. The equation (16) can be linearized 𝐷𝑀𝑈𝑗 𝛽𝑚𝑎𝑥
𝑜𝑗  

as follows: 

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗 ― 𝛽𝑚𝑎𝑥

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑗 + 𝑠1

𝑗 = 0,

where . 𝑠1
𝑗 =

𝑟1
𝑗

∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝐿

𝑖𝑗

          Similarly, since  is the minimum cross-efficiency score of  relative to  for any 𝛼𝑚𝑖𝑛
𝑜𝑗 𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

realization of data, the following inequality is held:
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(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝑟𝑗 ∑𝑚

𝑖 = 1𝑣𝑖𝑜𝑥𝑖𝑗) ≥  𝛼𝑚𝑖𝑛
𝑜𝑗  , 𝑥𝐿

𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑈
𝑖𝑗, 𝑦𝐿

𝑟𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝑦𝑈
𝑟𝑗.

Hence,

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝐿

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝑈

𝑖𝑗) ≥ 𝛼𝑚𝑖𝑛
𝑜𝑗 (17).

 The following equation (18) is built by adding the slack variable to the constraint (17):

(∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝐿

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝑈

𝑖𝑗) ― 𝑟2
𝑗 = 𝛼𝑚𝑖𝑛

𝑜𝑗 ,  (18)

where  is the deviation of   from  Therefore, if  is maximized then the deviation of all 𝑟2
𝑗

∑𝑠
𝑟 = 1𝑢𝑟𝑜𝑦𝐿

𝑟𝑗

∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝑈

𝑖𝑗
  𝛼𝑚𝑖𝑛

𝑜𝑗 . 𝑟2
𝑗

possible cross-efficiency scores of   from  will be maximized. Now, the equation (18) can be 𝐷𝑀𝑈𝑗 𝛼𝑚𝑖𝑛
𝑜𝑗

linearized as follows: 

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗 ― 𝛼𝑚𝑖𝑛

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ― 𝑠2

𝑗 = 0.

where  𝑠2
𝑗 =

𝑟2
𝑗

∑𝑚
𝑖 = 1𝑣𝑖𝑜𝑥𝑈

𝑖𝑗
.

          Based on the above theory, the following weight selection model is presented:

min ∑
j ≠ o

(s1
j ― s2

j )

𝑠.𝑡.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 = 𝐸𝑜𝑝

𝑜 ,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 1,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜, (19)
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𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗 ― 𝛽𝑚𝑎𝑥

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑗 + 𝑠1

𝑗 = 0, 𝑗 ≠ 𝑜,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗 ― 𝛼𝑚𝑖𝑛

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ― 𝑠2

𝑗 = 0, 𝑗 ≠ 𝑜,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

where  is the optimistic efficiency score of  determined by solving model (10), and are 𝐸𝑜𝑝
𝑜 𝐷𝑀𝑈𝑜 𝛼𝑚𝑖𝑛

𝑜𝑗  𝛽𝑚𝑎𝑥
𝑜𝑗  

the undesirable and desirable cross-efficiency scores of   for any realization of data, obtained by 𝐷𝑀𝑈𝑗

models (14a) and (14b), respectively, and   and  are the deviations of   from its desirable and 𝑠1
𝑗  𝑠2

𝑗 𝐷𝑀𝑈𝑗

undesirable cross-efficiency scores, respectively. The first and second constraints guarantee that the 

efficiency score of  is kept at its optimistic level. The last two constraints emphasize that the cross-𝐷𝑀𝑈𝑜

efficiency score of  corresponding to , for any realization of data, must be between its desirable 𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

cross-efficiency score, and undesirable cross-efficiency score, Model (19) aims to select the 𝛽𝑚𝑎𝑥
𝑜𝑗 , 𝛼𝑚𝑖𝑛

𝑜𝑗 . 

input/output weights for  such that the deviations of other units from their desirable cross-efficiency 𝐷𝑀𝑈𝑜

score are as small as possible for any realization of data and the deviations of them from their undesirable 

cross-efficiency score are as large as possible for any realization of data. In other words, model (19) aims 

to make the cross-efficiency score of units as close as possible to their desirable cross-efficiency scores for 

any realization of data and as far as possible from their undesirable cross-efficiency scores for any 

realization of data. 

           Model (19) is benevolent, because, in this model,  selects the optimal weights that maximize 𝐷𝑀𝑈𝑜

the cross-efficiency score of the other  units for any realization of data and keep its efficiency score (𝑛 ― 1)

at its optimistic level for any realization of data. 

          The benevolent cross-efficiency score for units with interval data is defined as follows:

Definition 1. Suppose that  is an optimal solution of model (19). The benevolent (𝑢 ∗
1𝑜,…,𝑢 ∗

𝑠𝑜, 𝑣 ∗
1𝑜,…,𝑣 ∗

𝑚𝑜)

cross-efficiency score of  corresponding to  is defined as follows:𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

𝐸𝑏𝑒𝑛
𝑜𝑗 = ∑𝑠

𝑟 = 1𝑢 ∗
𝑟𝑜𝑦𝑈

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣 ∗

𝑖𝑜𝑥𝐿
𝑖𝑗, 𝑜,𝑗 = 1,…,𝑛. (20)

Definition 2. The benevolent cross-efficiency score of  is defined as:𝐷𝑀𝑈𝑗
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𝐸𝑏𝑒𝑛
𝑗 =

1
𝑛

𝑛

∑
𝑜 = 1

𝐸𝑏𝑒𝑛
𝑜𝑗 .

          Model (19) can be transformed into an aggressive model as follows:

max ∑
j ≠ o

(s1
j ― s2

j )

s.t.
𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 = 𝐸𝑜𝑝

𝑜 ,

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 = 1,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑘 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑘 ≤ 0, 𝑘 ≠ 𝑜, (21)

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑜 ―

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑜 ≤ 0,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝑈
𝑟𝑗 ― 𝛽𝑚𝑎𝑥

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝐿
𝑖𝑗 + 𝑠1

𝑗 = 0, 𝑗 ≠ 𝑜,

𝑠

∑
𝑟 = 1

𝑢𝑟𝑜𝑦𝐿
𝑟𝑗 ― 𝛼𝑚𝑖𝑛

𝑜𝑗

𝑚

∑
𝑖 = 1

𝑣𝑖𝑜𝑥𝑈
𝑖𝑗 ― 𝑠2

𝑗 = 0, 𝑗 ≠ 𝑜,

𝑢𝑟𝑜 ≥ 0, 𝑟 = 1,…,𝑠,
𝑣𝑖𝑜 ≥ 0, 𝑖 = 1,…,𝑚.

          Model (21) selects the optimal weights for inputs/outputs for  that minimize the cross-𝐷𝑀𝑈𝑜

efficiency score of the other  units for any realization of data and keep the efficiency score of  (𝑛 ― 1) 𝐷𝑀𝑈𝑜

at its optimistic level for any realization of data. Hence it is an aggressive model.

          Similarly, the aggressive cross-efficiency score for units with interval data is defined as follows:

Definition 3. Suppose that  is an optimal solution of model (21). The aggressive (𝑢 ∗
1𝑜,…,𝑢 ∗

𝑠𝑜, 𝑣 ∗
1𝑜,…,𝑣 ∗

𝑚𝑜)

cross-efficiency score of  corresponding to  is defined as follows:𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

𝐸𝑎𝑔𝑔
𝑜𝑗 = ∑𝑠

𝑟 = 1𝑢 ∗
𝑟𝑜𝑦𝐿

𝑟𝑗 ∑𝑚
𝑖 = 1𝑣 ∗

𝑖𝑜𝑥𝑈
𝑖𝑗, 𝑜,𝑗 = 1,…,𝑛. (22)

Definition 4. The aggressive cross-efficiency score of  is defined as:𝐷𝑀𝑈𝑗

𝐸𝑎𝑔𝑔
𝑗 =

1
𝑛

𝑛

∑
𝑜 = 1

𝐸𝑎𝑔𝑔
𝑜𝑗 .



18

          In the following, the proposed approaches for ranking DMUs with box-uncertainty under both 

benevolent and aggressive perspectives is summarized in Algorithm 1:

Algorithm

Step 1: Solve model (10) and obtain  for all 𝐸𝑜𝑝
𝑜 𝑜 ∈ {1,…,𝑛}.

Step 2: Solve models (13a), (13b), (14a) and (14b) and obtain and  for all 𝛼𝑚𝑖𝑛
𝑜𝑗  𝛽𝑚𝑎𝑥

𝑜𝑗  𝑜,𝑗 ∈ {1,…,𝑛}.

Step 3: Solve model (19) and obtain  and  according to Definition 1 and Definition 2, for all 𝐸𝑏𝑒𝑛
𝑜𝑗 𝐸𝑏𝑒𝑛

𝑗 𝑜,𝑗 ∈

 and determine the rank of units under the benevolent perspective by computing the values {1,…,𝑛} 𝐸𝑏𝑒𝑛
𝑗

 , 𝑗 = 1,…,𝑛.

Step 4: Solve model (21) and obtain  and  according to Definition 3 and Definition 4, for all 𝐸𝑎𝑔𝑔
𝑜𝑗 𝐸𝑎𝑔𝑔

𝑗 𝑜,𝑗 ∈

 and determine the rank of units under the aggressive perspective by computing the values {1,…,𝑛} 𝐸𝑎𝑔𝑔
𝑗

 , 𝑗 = 1,…,𝑛.

The next section illustrates how Algorithm 1 provides a full ranking of DMUs with box-uncertainty from 

both benevolent and aggressive perspectives.

4. An Illustrative Example

          This section considers two numerical examples to show the discrimination power of the proposed 

ranking methods in case of interval data.

Table 6. The data of seven manufacturing industries.
DMU 𝐼𝐿

1 𝐼𝑈
1 𝐼𝐿

2 𝐼𝑈
2 𝑂𝐿

1 𝑂𝑈
1 𝐸𝑜𝑝

𝑜

1 564403 621755 674111 743281 806549 866063 1.000

2 614371 669665 685943 742345 917507 985424 1.000

3 762203 798427 762207 805677 1117142 1195562 1.000

4 862016 937044 779894 846496 1206179 1261031 1.000

5 1016898 1082662 799714 877137 1381315 1462543 1.000

6 1164350 1267970 807172 889416 1497679 1652787 1.000

7 1731916 1816008 818590 895746 1702249 1812655 1.000

Consider the data of seven manufacturing industries with two inputs (Capital  and Labor ) and (𝐼1) (𝐼2)

one outputs (the Gross output value  reported by Wang et al. (2005). The input/output values are (𝑂1))

reported in Table 6. 
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           The proposed algorithm is applied to rank seven manufacturing industries in this example. In steps 

1 and 2 of the algorithm, models (10), (13a), (13b), (14a) and (14b) are solved and the interval cross-

efficiency matrix is constructed and reported in Table 7. The  row of Table 7 shows the cross- efficiency 𝑗𝑡ℎ

interval  with respect to all units.𝐷𝑀𝑈𝑗

Table 7. The interval cross-efficiency matrix.
DMU 1 2 3 4 5 6 7

1 [0.845, 0.907] [0.771, 0.868] [0.716, 0.887] [0.708, 0.952] [0.607, 0.968] [0.530, 0.980] [0.490, 0.907]

2 [0.912, 1.000] [0.873, 1.000] [0.885, 0.955] [0.876, 1.000] [0.769, 1.000] [0.677, 1.000] [0.625, 1.000]

3 [0.892, 0.996] [0.854, 0.922] [0.804, 0.937] [0.796, 1.000] [0.690, 1.000] [0.604, 1.000] [0.558, 0.996]

4 [0.838, 1.000] [0.802, 0.971] [0.820, 0.929] [0.880, 0.922] [0.786, 0.936] [0.696, 0.948] [0.643, 1.000]

5 [0.831, 1.000] [0.795, 1.000] [0.812, 1.000] [0.872, 1.000] [0.863, 0.939] [0.769, 0.951] [0.711, 1.000]

6 [0.769, 1.000] [0.736, 1.000] [0.753, 1.000] [0.808, 1.000] [0.821, 1.000] [0.823, 1.000] [0.760, 1.000]

7 [0.610, 0.941] [0.584, 1.000] [0.597, 1.000] [0.641, 1.000] [0.652, 1.000] [0.660, 1.000] [0.857, 1.000]

          The cross- efficiency intervals of  is shown in Figure 1. The horizontal axis shows the units 𝐷𝑀𝑈1

and the vertical axis shows the cross- efficiency interval of  relative to all units. The narrowest cross- 𝐷𝑀𝑈1

efficiency interval is for  and the widest cross-efficiency interval is for 𝐷𝑀𝑈1 𝐷𝑀𝑈6.

Figure 1. The cross- efficiency intervals for 𝐷𝑀𝑈1.

           Next, models (19) and (21) should be solved to construct the benevolent and aggressive cross-

efficiency matrices reported in Table 8 and Table 9, respectively. The  row of Tables 8 and 9 show the 𝑗𝑡ℎ
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benevolent cross-efficiency scores and the aggressive cross- efficiency scores of  with respect to all 𝐷𝑀𝑈𝑗

units, respectively.

Table 8. The benevolent cross- efficiency matrix.

DMU 1 2 3 4 5 6 7

1 1.000 0.957 0.978 1.000 1.000 1.000 0.580

2 1.000 1.000 1.000 1.000 1.000 1.000 0.648

3 1.000 0.978 1.000 1.000 1.000 1.000 0.708

4 0.953 0.912 0.932 1.000 1.000 1.000 0.729

5 0.937 0.897 0.917 0.983 1.000 1.000 0.825

6 0.925 0.885 0.905 0.971 0.987 1.000 0.924

7 0.682 0.653 0.667 0.716 0.728 0.737 1.000

Table 9. The aggressive cross- efficiency matrix.

DMU 1 2 3 4 5 6 7

1 0.845 0.809 0.827 0.887 0.902 0.914 0.490

2 0.892 0.854 0.873 0.937 0.953 0.965 0.558

3 0.912 0.873 0.892 0.957 0.973 0.986 0.625

4 0.838 0.802 0.820 0.880 0.895 0.906 0.643

5 0.831 0.795 0.812 0.872 0.886 0.898 0.711

6 0.769 0.736 0.753 0.808 0.821 0.832 0.760

7 0.610 0.584 0.597 0.641 0.652 0.660 0.857

          

Figure 2 shows the benevolent cross-efficiency scores of all DMUs summarized in Table 8. The 

horizontal axis shows the units and the vertical axis shows the benevolent cross-efficiency scores of a unit 

relative to all DMUs. As can be seen, the maximum benevolent cross-efficiency score of each unit is 

achieved by the unit itself.
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Figure 2. The benevolent cross-efficiency scores of units.

          Figure 3 shows the aggressive cross-efficiency scores of all DMUs summarized in Table 9. The 

horizontal axis shows the units and the vertical axis shows the aggressive cross-efficiency scores of a unit 

relative to all DMUs.

Figure 3. The aggressive cross-efficiency scores of units.

Finally, the benevolent and aggressive cross-efficiency scores of units and the rank of DMUs are 

shown in Table 10. The last column of Table 10 shows that, in this example, the rank of units determined 

by Wang et al. (2005)’s method is completely identical to ours in the case of benevolent perspective and 

slightly different from ours in regarding the ranks of  and  in the case of aggressive perspective. 𝐷𝑀𝑈1 𝐷𝑀𝑈5

Consequently, at least for this example, the ranking results of Wang et al. (2005)’s method are the same as 

the proposed benevolent method. 
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Table 10. The benevolent and aggressive cross-efficiency scores of units.

The proposed method The method of Wang et al. (2005)

DMU 𝐸𝑏𝑒𝑛
𝑗 Rank 𝐸𝑎𝑔𝑔

𝑗 Rank Rank

1 0.959 3 0.810 5 3

2 0.997 2 0.862 2 2

3 1.000 1 0.888 1 1

4 0.939 4 0.826 4 4

5 0.937 5 0.829 3 5

6 0.942 6 0.783 6 6

7 0.740 7 0.657 7 7

5. An Appliction in Hospital Effiency

Hospitals, just like other organizations, use some resources to produce some services, which is 

an output for healthcare organizations. The hospital efficiency assessment is important for two main 

reasons: first, the efficiency evaluation of state-owned organizations, such as hospitals, can determine the 

sustainability of national progress. Second, one can evaluate the effect of a healthcare system reform in the 

planning phase by examining annual changes in the efficiency scores of hospitals. DEA has been widely 

used for evaluating the healthcare centers and hospitals. For example, Chang (1998) combined DEA and 

regression analysis to assess the efficiency of hospitals in Taiwan over five years, 1990 to 1994. Field and 

Emrouznejad (2003) evaluated both technical and scale efficiency of 22 neonatal care centers in Scotland 

by applying DEA models. Kirigia et al. (2008) considered the technical and scale efficiency of healthcare 

centers to evaluate changes in productivity. Gholami et al. (2015) considered the hospital efficiency and 

the hospital quality with Information Technology (IT). For more studies about hospital efficiency, see 

Sherman (1984), Hollingsworth et al. (1999), Kirigia et al. (2002), Hollingsworth (2003, 2008), Mulumba 

et al. (2017), Stefko et al. (2018). 

Most of the existing studies about hospital efficiency in the literature consider the situation that 

all inputs and outputs are crisp data. However, this assumption can be violated due to the existence of 

uncertainty in inputs, such as the clinic size (number of beds), number of doctors and nurses, or the existence 

of uncertainty in outputs, such as the total number of immunization, and patient days. For example, data 

may be reported as fuzzy, stochastic or interval form. Dotoli et al. (2015) proposed a novel cross-efficiency 

fuzzy DEA technique for evaluating the healthcare systems in a region of southern Italy. Sang et al. (2018) 
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proposed a model based on improved fuzzy DEA to evaluate the medical health resource. Hatefi and Haeri 

(2019) proposed an approach to assess the efficiency of hospitals based on fuzzy DEA. 

Table 11. The input/ output data.

Lower and upper bound of inputs Lower and upper bound of 
outputs

Efficiency

DMU 𝐼𝐿
1 𝐼𝑈

1 𝐼𝐿
2 𝐼𝑈

2 𝐼𝐿
3 𝐼𝑈

3 𝑂𝐿
1 𝑂𝑈

1 𝑂𝐿
2 𝑂𝑈

2 𝐸𝑜𝑝
𝑜

1 83 83 5,288,837 5,558,654 3,075,694 3,279,944 40,725 43,986 5,081 5,298 0.7501
2 78 78 6,503,675 6,743,308 3,967,271 4,179,354 47,143 50,292 5,008 5,330 0.6485
3 54 54 5,387,805 5,642,797 2,105,003 2,240,473 53,448 56,557 7,082 7,470 1.0000
4 80 80 6,175,255 6,501,080 3,426,207 3,520,057 48,581 50,570 6,863 7,276 0.9013
5 75 75 6,498,667 6,836,454 2,879,534 2,917,747 44,873 47,620 6,415 6,655 0.7968
6 87 87 5,461,342 5,584,902 2,520,584 2,583,701 57,635 59,995 7,254 7,753 1.0000
7 58 58 3,740,977 3,926,099 1,992,561 2,039,397 56,071 58,613 5,243 5,335 1.0000
8 71 71 6,757,767 7,318,406 3,020,256 3,060,040 66,571 72,741 6,024 6,317 0.8967
9 76 76 7,876,658 8,095,079 3,940,705 4,066,142 59,748 64,474 5,003 5,390 0.7038
10 80 80 7,173,052 7,604,272 4,514,404 4,820,706 52,014 55,158 3,454 3,503 0.6125
11 78 78 6,658,627 6,868,300 3,653,094 3,861,595 38,453 41,709 5,382 5,878 0.6853
12 60 60 4,229,814 4,378,809 2,072,924 2,166,649 54,298 58,580 5,541 5,736 1.0000
13 78 78 6,952,265 7,451,889 3,082,876 3,264,333 62,482 65,791 5,004 5,314 0.7519
14 69 69 7,416,026 7,985,144 3,339,871 3,445,613 47,125 50,777 4,313 4,477 0.6126
15 80 80 6,552,117 6,974,244 3,393,025 3,622,326 52,619 54,520 4,745 4,995 0.6496
16 81 81 8,638,436 9,046,345 3,379,677 3,606,001 44,958 46,861 6,027 6,255 0.5888
17 77 77 7,187,290 7,274,137 3,468,031 3,563,553 44,417 45,513 6,130 6,364 0.6957
18 87 87 7,406,576 7,945,651 4,509,126 4,712,227 51,525 52,968 3,705 3,932 0.5571
19 49 49 5,514,974 5,730,731 2,635,308 2,793,308 41,724 42,697 4,642 4,984 0.8104
20 64 64 6,460,942 6,801,063 2,714,061 2,863,140 36,871 39,354 6,354 6,664 0.8184
21 90 90 4,959,608 5,157,271 2,616,716 2,645,252 41,202 44,275 5,426 5,646 0.8525
22 84 84 8,229,498 8,659,573 3,897,136 4,234,667 40,254 42,545 6,388 6,848 0.6579
23 81 81 6,827,159 7,034,127 4,241,786 4,315,961 48,807 50,978 4,737 4,840 0.6015
24 81 81 7,013,154 7,588,652 3,747,310 4,100,940 46,375 47,541 5,439 5,740 0.6366
25 89 89 9,100,162 9,341,263 4,415,597 4,722,616 66,447 68,527 5,139 5,406 0.6329
26 79 79 6,744,912 7,007,023 3,290,348 3,602,468 57,530 63,105 5,373 5,692 0.7437
27 86 86 8,317,319 8,395,895 3,618,050 3,846,734 59,864 61,929 6,109 6,303 0.6676
28 70 70 7,260,109 7,644,993 2,759,217 2,919,987 45,796 49,614 6,645 6,916 0.7930
29 81 81 7,543,785 8,074,915 4,160,199 4,361,458 45,976 47,160 5,411 5,631 0.5896
30 80 80 6,262,916 6,462,320 3,312,351 3,607,501 62,987 66,193 6,482 6,812 0.8430
31 78 78 6,496,427 6,870,738 4,305,519 4,586,064 40,178 42,641 4,628 4,950 0.5894
32 86 86 7,486,293 7,713,333 4,420,897 4,752,162 47,095 51,605 6,229 6,427 0.6683
33 55 55 6,699,201 7,120,624 2,230,776 2,352,635 77,737 79,299 5,678 5,974 1.0000
34 80 80 5,815,931 6,140,362 3,441,760 3,583,859 35,275 36,572 4,378 4,677 0.6094
35 82 82 7,413,919 7,540,968 3,908,686 4,221,706 50,687 54,408 4,769 5,001 0.6075
36 79 79 7,717,127 7,924,568 3,272,733 3,353,132 46,877 49,684 4,588 4,676 0.5618
37 85 85 8,737,680 9,054,296 4,651,967 4,832,316 49,993 50,984 5,131 5,317 0.5465
38 85 85 7,019,200 7,328,694 3,927,289 4,280,962 54,124 57,401 5,005 5,057 0.6316

Jacobs (2001) compared the rank of hospitals from the cost indices with the rank of them obtained 

by DEA and stochastic frontier analysis (SFA). Mateus et al. (2015) proposed a method to obtain the 

efficiency levels of hospitals with cross-sectional and panel data using SFA and DEA. Li et al. (2019) 

proposed a method to assess the nonhomogeneous hospitals based on stochastic DEA. Mahdiyan et al. 
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(2018) proposed an approach based on stochastic DEA to assess the hospitals of Iran. Also, Rabbani et al. 

(2016) proposed a bootstrap interval DEA to measure the efficiency of hospitals in Iran.

This example considers 38 hospitals selected by Inspector General (OIG) – East Virginia 

Department of Health and Human Services (Hatami-Marbini et al. (2012)). The lower and upper bounds of 

input and output values for each hospital are presented in Tables 11. As shown in this table, number of beds 

 labor-related expenses  and patient care supplies and other expenses   are selected as the (𝐼1), (𝐼2) (𝐼3))

inputs to the DEA model. The number of outpatient department visit  and number of inpatient (𝑂1)

department admissions  selected as output variables in the DAE model. The definition of fields is given (𝑂2)

below:

- Labor-related Expenses: medical doctors’ compensation, nonmedical doctors’ salaries, fringe 

benefits, and non-payroll labor. 

- Patient care supplies and other expenses include: food and food service supplies, medical supplies, 

drugs, and other supplies and expenses.

- Inpatient care is for patients whose condition requires admission to a hospital and 

- Outpatient care is for patients who may need clinical services although do not necessarily need to 

be admitted to the hospital. 

The last column of Table 11 shows the optimistic efficiency score of units obtained by model (10). 

Next, models (13a), (13b), (14a) and (14b) are solved to determine  and  as the minimum and 𝛼𝑚𝑖𝑛
𝑜𝑗 𝛽𝑚𝑎𝑥

𝑜𝑗

maximum cross-efficiency scores of  relative to  and then, the cross-efficiency matrix is 𝐷𝑀𝑈𝑗 𝐷𝑀𝑈𝑜

constructed as explained in Table 5. 

         Finally, the weight selection models (19) and (21) should be solved to determine the benevolent and 

aggressive cross-efficiency scores of units. The results are summarized in Table 12.

According to the proposed benevolent method, the only efficient hospital is hospital 3 with the rank of 1. 

The proposed aggressive method does not assign an efficiency score of 1 to any hospital due to its 

pessimistic nature. Hospital 3 has also the rank of 1 in the aggressive method. The second place in the 

proposed ranking methods belongs to hospital 7. Hospital 12 has the third place in the aggressive and 

benevolent methods. Also, hospitals 33 and 6 have the fourth and fifth places, respectively, in both 

aggressive and benevolent methods. . The rank of other units in the proposed benevolent approach can be 

equal to, smaller/greater than the rank of the proposed aggressive approach. For example, hospital 1 has the 

rank of 16 in the benevolent method and the rank of 18 in the aggressive method We have the similar 

situation for the 8th place. Hospital 5 has 12th place in the benevolent method and 10th place in the aggressive 

method. 
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The proposed methods determine a full ranking of all units in this example which shows the discrimination 

power of the proposed methods.  

Table 12. The results of the proposed method 

The proposed method
Benevolent AggressiveDMU

𝐸𝑏𝑒𝑛
𝑗 Rank 𝐸𝑎𝑔𝑔

𝑗 Rank
1 0.6309 16 0.5790 18
2 0.5974 21 0.5476 22
3 1.0000 1 0.9593 1
4 0.7571 8 0.6971 8
5 0.7108 12 0.6613 10
6 0.8935 5 0.8313 5
7 0.9878 2 0.9588 2
8 0.8037 6 0.7213 7
9 0.6106 19 0.5565 20
10 0.4608 37 0.4286 37
11 0.5931 23 0.5323 24
12 0.9781 3 0.9092 3
13 0.6627 15 0.6009 15
14 0.5388 32 0.4893 33
15 0.5952 22 0.5477 21
16 0.5569 27 0.5185 26
17 0.6246 17 0.5985 16
18 0.4551 38 0.4186 38
19 0.7264 10 0.6708 9
20 0.7163 11 0.6564 12
21 0.6724 14 0.6269 13
22 0.5724 25 0.5167 27
23 0.5415 31 0.5162 28
24 0.5843 24 0.5317 25
25 0.5434 30 0.5109 29
26 0.6784 13 0.6129 14
27 0.6150 18 0.5884 17
28 0.7179 9 0.6574 11
29 0.5478 28 0.5078 30
30 0.7944 7 0.7372 6
31 0.5322 33 0.4817 34
32 0.6011 20 0.5576 19
33 0.9265 4 0.8600 4
34 0.5212 34 0.4773 35
35 0.5453 29 0.5065 31
36 0.5112 35 0.4853 32
37 0.4894 36 0.4646 36
38 0.5692 26 0.5352 23
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The correlation between the proposed methods (benevolent and aggressive) with Salahi et al (2016) 

can be investigated. For this purpose, we determine the Spearman’s rank order correlation coefficient 

between the proposed benevolent approach and the aggressive approach derived from the corresponding 

numerical efficiency scores. The correlation between the proposed benevolent method and the proposed 

aggressive method is 0.9923, the correlation between the proposed benevolent method and the method of 

Salahi et al. (2016) is 0.8929 and the correlation between the proposed aggressive method and the method 

of Salahi et al. (2016) is 0.9515. It can be seen that all three methods have a high correlation at least in this 

example. Regarding Table 12, the main advantage of the proposed method in two cases of benevolent and 

aggressive, is their high discrimination power for distinguishing between the decision-making units. The 

correlation between the proposed ranking methods shows that there is no significant difference between the 

obtained ranks by the proposed benevolent and aggressive methods and we can apply any of these 

approaches as the powerful ranking methods, to suit our point of view.

6.  Conclusion

           This paper considered box-uncertainty in DEA models where each input/output variable varies in an 

interval. A robust optimization framework was proposed for performance measurement and ranking of 

DMUs with interval data. A correct formulation was presented for the counterpart of the envelopment form 

of the CCR model with interval data based on the Ben-Tal and Nemirovski’s approach (1999). We proved 

the relationship between the dual of the robust counterpart of the envelopment of CCR model and the 

optimistic counterpart of the multiplier form of CCR model based on the approach of Beck and Ben-Tal 

(2009). Also, two new approaches were proposed for ranking DMUs with interval data in DEA applying 

the robust optimization techniques. The suggested methods extend the secondary goal models proposed by 

Wu et al. (2015) to the case of interval data with using the robust counterpart and the optimistic counterpart 

of LPs.

          Several RO-based approaches have been developed in DEA models but they mostly did not provide 

a full ranking of DMUs. The novelty of the proposed approaches is that we propose a correct counterpart 

for the envelopment form of the CCR model. Salahi et al. (2016) also attempted to propose the counterpart 

for the CCR model in its envelopment form.. Their formulation is not correct as we proved in this paper. 

Also, the proposed approaches fully ranks 38 hospitals in East Virginia. 
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