
UPDATE

Emerging roles for dynamic aquaporin-4 subcellular 

relocalization in CNS water homeostasis
Mootaz M. Salman,1,† Philip Kitchen,2,† Andrea Halsey,3 Marie Xun Wang,4 Susanna 

Tornroth-Horsefield,5 Alex C. Conner,3 Jerome Badaut,6 Jeffrey J. Iliff4,7,8 and Roslyn M. 

Bill2

†These authors contributed equally to this work. 

Abstract 

Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly 

expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the 

glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain 

barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte 

migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic 

function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated 

at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular 

disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors 

in developing neurodegeneration, and in animal models of each, impairment of glymphatic 

function is associated with changes in perivascular AQP4 localization. CNS oedema is caused 

by passive water influx through AQP4 in response to osmotic imbalances. We have 

demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS 

oedema, and accelerates functional recovery in rodent models. Given the difficulties in 

developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up 

new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and 

provides a framework to address fundamental questions about water homeostasis in health and 

disease. 
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Introduction 

The control of water homeostasis is crucial in maintaining normal CNS function. Dysregulation 

results in rapid and potentially life-threatening increases in intracranial or intraspinal 

pressure,1,2 or the accumulation of toxic waste products.3 Of the three aquaporins described in 

the CNS (AQP1, 4, and 9), AQP4 is the most abundant. It is found in astrocytes and is enriched 

at the blood-spinal cord and blood-brain barriers (BSCB/BBB), tripartite synapses, ventricle 

lining and the glia limitans beneath the meninges (Figure 1). Studies in transgenic mice have 

established that AQP4 is a major regulator of CNS water homeostasis,4,5 where it controls the 

exchange of CSF with brain interstitial fluid and facilitates the development (and may also 

facilitate the clearance) of CNS oedema.6 

Aquaporin channels facilitate the bidirectional flow of water and small uncharged solutes, 

whose membrane permeability is controlled by aquaporin abundance.7,8 The structural biology 

of aquaporin transmembrane domains is well-established9: six membrane-spanning -helices 

and two half-helices stack around the family’s signature Asn-Pro-Ala (NPA) motifs (located 

in the middle of the membrane) to form the water pore (Figure 1A, inset). Members of the 

aquaporin family can be selective for water (e.g. AQP4) or also permit the transport of small 

neutral solutes such as glycerol and urea (e.g. AQP9).10 The substrate traverses the pore in 

single file, charged species are excluded by the channel electrostatics, and protons are excluded 

by the orientation of water molecules within the pore preventing proton diffusion along the 

hydrogen bond network via the Grotthuss mechanism. Less is known about the structures of 

the intracellular amino- and carboxy-termini, which are not usually resolved in crystallography 
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studies,9 but where many key regulatory interactions are known to occur. Aquaporins are 

homotetramers, with each monomer containing an independent water pore. The functional 

relevance of the tetramer is unclear, although we have shown that AQP4 mutants that do not 

tetramerize are also unable to relocalize to the plasma membrane.11

AQP4 exists in two major isoforms, named AQP4-M1 and AQP4-M23 (indicating the position 

of the initiating methionine residue). The shorter AQP4-M23 isoform can be derived from an 

alternatively-spliced transcript,12 or by leaky-scanning of the M1 transcript whereby the 40S 

ribosome skips the first (M1) start codon and initiates translation at the second (M23).13 AQP4-

M23 forms square arrays in the astrocyte plasma membrane, known as orthogonal arrays of 

particles (OAPs).14 These OAPs can be observed directly by freeze fracture electron 

microscopy.15 OAP size depends upon the ratio between AQP4-M1 and AQP4-M23, with 

higher levels of AQP4-M1 composition reducing OAP size. Notably, OAP disintegration and 

changes in the ratio between AQP4-M1 and AQP4-M23 are observed early after stroke,16-18 

although the (patho)physiological consequences of these changes are yet to be defined. Recent 

work suggests that OAP stability can impact astrocyte process motility and local synaptic 

activity.19 A better understanding of OAPs may be possible in the future with the development 

of a novel mouse lacking the OAP-forming AQP4-M23 isoform.20,21 An AQP4 isoform 

(AQPex) has also been reported that has an extended carboxy-terminus containing a conserved 

perivascular localization signal generated by translational read-through.22,23 The consequences 

of this carboxy-terminal extension are yet to be established. 

The notable localization of AQP4 to perivascular astrocyte endfoot processes results from its 

association with the dystrophin-associated complex (DAC), which anchors AQP4 

intracellularly to the cytoskeleton and extracellularly to the cerebrovascular basal lamina. 

Deletion of the Dmd and Snta1 genes (which encode the DAC proteins, dystrophin and α-

syntrophin), or of Agrn (which encodes the basal lamina protein, agrin) in mice results in the 

loss of this perivascular AQP4 localization.24-27 A recent study also suggests a potential role 

for β-syntrophin in AQP4 anchoring.28 Changes in perivascular localization of AQP4 have 

been reported across myriad pathological conditions, including CNS tumours, neurovascular 

disorders such as ischaemic stroke and traumatic brain injury (TBI), and in the setting of 

neurodegenerative disease.29 Perivascular localization of AQP4 may also be regulated by 

differential regulation of AQP4-M1 versus AQP4-M23 expression, with AQP4-M23-enriched 

OAPs localizing to perivascular astroglial endfoot processes.20,30 The degree of enrichment of 

AQP4 to perivascular membranes differs between brain regions, although the molecular basis 
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and physiological consequences of these differences remains incompletely understood.31

While studies of AQP4 function have historically focused on this cell-level localization to 

perivascular processes, more recent work from our group suggests that dynamic subcellular 

relocalization of AQP4, from intracellular vesicles to the plasma membrane, may play a crucial 

role in the regulation of AQP4 function.7 The plasma membrane abundance of most 

mammalian aquaporins has been shown to respond to distinct cellular or environmental triggers 

such as hormones or changes in tonicity.32 This is best described for AQP2, for which 

trafficking in response to the pituitary hormone arginine vasopressin (AVP) involves regulated 

exocytosis of AQP2-containing storage vesicles in the kidney collecting duct principal cells.33 

Although the specific triggers will vary between isoforms and cell types, studies indicate that 

the dynamic subcellular relocalization of human aquaporins share several features: (1) a trigger 

causing a signalling cascade leading to site-specific aquaporin phosphorylation; (2) the 

subsequent movement of aquaporin-containing vesicles along the microtubule network and (3) 

vesicle fusion with the plasma membrane.34 Our recent work has shown that AQP4 plasma 

membrane abundance is tightly and dynamically regulated at the subcellular level by 

relocalization to and from intracellular vesicular pools in response to non-hormonal stimuli in 

astrocyte cultures.7,35,36 These include the changes in local oxygen tension and osmolality that 

are caused by traumatic injury and stroke. Targeting this regulatory mechanism is a viable anti-

oedema therapy in rodent models of spinal cord injury (SCI), TBI and stroke.7,37

Pore-blocking molecules for aquaporins remain difficult to develop. The small diameter of the 

aquaporin pore (water molecules traverse the pore in single file), the fact that interactions are 

limited to hydrogen bonding38 and a lack of in vitro assays suitable for screening and validating 

the pharmacological regulation of aquaporin function39 are all factors. This lack of tool 

compounds to modulate aquaporin function means that many fundamental questions about 

water homeostasis remain unanswered. Here we review the physiological and 

pathophysiological roles of AQP4 in the CNS, with a focus on novel insights into the 

mechanisms of glymphatic clearance in the maintenance of brain water homeostasis and new 

approaches to drug discovery that can be derived from the discovery of dynamic AQP4 

subcellular relocalization.

Physiological roles of AQP4: the glymphatic pathway

Since 2012,40 AQP4 has been implicated as a key determinant of glymphatic function (Figure 
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2). The glymphatic system (recently and comprehensively reviewed by Rasmussen and 

colleagues41) is a brain-wide network of perivascular pathways along which CSF enters the 

brain and interstitial solutes are cleared.42,43 Glymphatic exchange is driven by arterial 

pulsation44,45, is active primarily during sleep46-48, and contributes to the clearance of interstitial 

amyloid β,40,48 tau49,50 and other solutes such as lactate,51 and inflammatory cytokines.52 

Both glymphatic influx of CSF and interstitial solute clearance are dependent upon perivascular 

AQP4. In the initial description of the glymphatic system,40 Aqp4 gene deletion was observed 

to slow CSF tracer influx and interstitial tracer efflux in mice. Similarly, deletion of the Aqp4 

gene slowed the clearance of amyloid β from the brain,40 and promoted the formation of 

amyloid plaques.53 Although one study failed to reproduce this effect of Aqp4 gene deletion on 

CSF tracer distribution,54 a subsequent study reporting data from five independent laboratories 

using five different transgenic mouse lines confirmed the role of AQP4 in perivascular 

glymphatic exchange.55 In that study, Stna1 gene deletion was observed to impair glymphatic 

function, demonstrating that perivascular localization of AQP4 plays a critical role in AQP4-

dependent glymphatic exchange.

Under physiological conditions in mice, increasing perivascular AQP4 levels during rest and 

declining perivascular AQP4 levels during activity were associated with increased, and reduced 

glymphatic function, respectively.46 Pathologically, glymphatic function is impaired in ageing 

mice,56 following TBI,49 and in rodent models of cerebrovascular disease.57-59 In each case, 

impairment of perivascular exchange was associated with a reduction in the cell-level 

localization of AQP4 to perivascular processes.56,60,61 When this perivascular localization of 

AQP4 is disrupted by deletion of the Snta1 gene, glymphatic function is similarly impaired.55 

While these findings suggest that one of the roles of perivascular AQP4 is to facilitate the 

exchange of CSF and interstitial fluid along the axis of the cerebral vasculature, thereby 

supporting solute distribution and waste clearance, the mechanism controlling changes in the 

cell-level localization of AQP4 to perivascular endfeet under physiological and pathological 

conditions remains to be established. Importantly, these studies defining the role of 

perivascular AQP4 in glymphatic function have not clearly distinguished between AQP4 pools 

inserted into the endfoot plasma membrane and those in sub-membrane vesicles. The manner 

in which cell-level changes in perivascular AQP4 localization interact with the recently-

described dynamic subcellular changes in AQP4 abundance7 to govern glymphatic function 

remains to be explored.
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Pathological roles of AQP4

Neurodegenerative disease

Ageing, cerebrovascular disease, prior exposure to TBI, and sleep disruption are established 

and emerging risk factors for the development of neurodegenerative conditions, including 

Alzheimer’s disease. In animal models of each, glymphatic function is impaired.49,56-59,62 Given 

the role of perivascular glymphatic exchange in amyloid β40,48 and tau49,50 clearance, 

impairment of glymphatic pathway function is now proposed to be important in the 

development of these conditions.63 While imaging of glymphatic function using dynamic 

contrast-enhanced magnetic resonance imaging (DCE-MRI) has only recently begun,42,64 early 

studies demonstrate that glymphatic function in humans is impaired in normal-pressure 

hydrocephalus43,65 and in the presence of small vessel disease.66 

The role of glymphatic impairment in the development of other neurodegenerative diseases has 

not yet been directly evaluated, but emerging data from studies in human populations suggest 

a role for AQP4 in these conditions. In a post-mortem case series,67 reduced perivascular AQP4 

abundance was observed in the frontal cortex of subjects diagnosed with Alzheimer’s disease, 

while preservation of perivascular AQP4 abundance was observed in subjects remaining 

cognitively intact over the age of 85. The reduced perivascular AQP4 abundance was further 

associated with increasing amyloid β and tau pathology, as well as with global measures of 

cognitive decline. In three recent genetics studies carried out in distinct human populations, 

single nucleotide polymorphisms in the human AQP4 gene were associated with variation in 

cognitive decline,68 amyloid burden and clinical status,69 and an association between sleep 

disruption and amyloid burden.70 A recent human transcriptomic study further demonstrated 

that in addition to the expression of AQP4, differences in the expression of genes whose 

products determine perivascular AQP4 localization (specifically genes encoding elements of 

the DAC, SNTA1, DTNA, DMD, DAG1) were associated with dementia status and temporal 

cortical tau pathology.71 These findings suggest that changes in AQP4 expression and 

localization may contribute to the development and progression of neurodegenerative diseases, 

including Alzheimer’s disease, in human populations. Understanding the emerging role of 

dynamic AQP4 subcellular relocalization provides a new framework to understand waste 

clearance in the healthy brain and opens up new treatment avenues to slow the progression of 

neurodegenerative diseases.
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CNS oedema

Following a traumatic primary injury to the brain or spinal cord, a series of molecular cascades 

is triggered that results in further neuronal and glial cell death from inflammation, changes in 

brain energy metabolism and/or ischaemia/hypoxia, referred to as secondary damage.72,73 

These molecular changes have architectural and functional consequences, including the 

development of oedema, the formation of glial scars and cavities, and neuronal cell loss.74 It is 

now clear that no single pathological feature can be explained in isolation in this complex 

process, which remains incompletely understood (Figure 3). It is established that water flows 

into CNS tissue through AQP4, but the source of the water (whether the blood column, or the 

CSF/perivascular spaces) remains controversial.

Oedema is a particular issue in the injured CNS because of the limited space (in the skull and 

spine) into which damaged tissue can swell. This is relevant following not only traumatic 

injury, but also in stroke and CNS tumours. In the last decade, the reclassification of oedema 

as cytotoxic, ionic or vasogenic (Figure 4) based on observed changes in the brain has been 

widely adopted.75 Cytotoxic oedema (Figure 4A) is defined as intracellular water accumulation 

without BBB disruption, usually as a consequence of the loss of oxygen tension. 

Morphologically, it is characterized by the swelling of astrocytes and the focal swelling of 

neuronal dendrites (known as beading).76,77 Ionic oedema (Figure 4B) results from influx of 

water and sodium ions into the brain parenchyma prior to tight junction dysfunction, and is 

usually associated with cytotoxic oedema. Vasogenic oedema is a result of BBB dysfunction 

(Figure 4C). The sources of water driving the formation of brain oedema remain a topic of 

debate.57,75,78,79 Methodological advances over the past decades, including two-photon 

microscopy and magnetic resonance imaging, have led to new insights into the role of fluid in 

the perivascular spaces and the glymphatic system. In a recent study using a mouse ischemic 

stroke model, the use of 22Na+ suggested that the CSF, not the blood, is the source of sodium 

ions.57 CSF was also identified as a major source of water driving AQP4-dependent oedema. 

Due to the incompressibility of CSF, enhanced influx of CSF into the parenchyma must be 

balanced either by enhanced secretion of CSF at the choroid plexus, enhanced drainage of CSF, 

or a change in the total volume of the ventricles and perivascular spaces. Temporarily limiting 

CSF secretion by targeting aquaporins or ion pumps in the choroid plexus membrane might 

therefore limit oedema formation in the short-term. 
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In TBI and SCI, where the BBB/BSCB can be damaged directly by the primary injury (i.e. 

cytotoxic and vasogenic oedema co-exist), the source of water and sodium ions is likely to be 

a mixture of CSF and blood, with the exact ratio depending on the extent of BBB damage. 

Further endothelial dysfunction, secondary to the primary insult, leads to vasogenic oedema 

(Figure 4C). For many years, it was proposed that BBB breakdown is required to facilitate the 

entry of plasma proteins into the extracellular space. However, more recent work has shown 

that vasogenic oedema can occur without physical rupture of endothelial cells.80-82 Although 

the suppression of transcellular transport (transcytosis) at the BBB is an active process that 

maintains a functional barrier, increased transcytosis observed in injured capillary endothelial 

cells may contribute to plasma protein entry, exacerbating brain swelling.83 Transcytosis may 

also be involved in the elimination of some proteins from the perivascular space back into the 

blood stream. Relocalization of AQP4 to the perivascular astrocyte membrane facilitates 

cytotoxic oedema,7 and may also increase the rate at which ionic oedema develops, both by 

increasing astrocyte membrane water permeability and possibly by regulating the endfoot 

membrane localization of ion channels via direct interaction (e.g. with Kir4.1, TRPV4, SUR1-

TRPM4).84-86

Current available therapies for the treatment of brain oedema are hypertonic mannitol or saline, 

steroids for tumour-induced brain swelling and, once the oedema becomes life-threatening, 

decompressive craniotomy.87 The reliability and validity of the results of high-dose mannitol 

trials in the treatment of traumatic brain injury have been questioned88; a Cochrane review 

concluded that insufficient evidence was available to recommend mannitol for the management 

of TBI patients.89 Although hypertonic saline is used to treat brain oedema following ischemic 

stroke,90 a Cochrane review similarly reported that conclusions could not be drawn about the 

efficacy and safety of hypertonic saline or other intracranial pressure‐lowering agents in the 

management of acute TBI.91 While the use of steroids did not reduce oedema following 

stroke,92 some success was reported in reducing brain tumour-associated oedema with 

dexamethasone.93 However, the molecular pathogenesis of tumour-associated oedema is quite 

different from that of trauma- or stroke-associated oedema, as it is primarily driven by 

neoangiogenesis of vessels under-expressing tight junction proteins within the tumour.94 A 

recent study suggested that loss of AQP4 assembly into OAPs may facilitate evasion of 

apoptosis and enhanced migration in glioma cells,95 but how this interacts with tumour-

associated oedema or AQP4 localization remains unexplored.

Little is known about mechanisms controlling the resolution of brain oedema. Early 
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experiments showed that increased AQP4 expression was associated with oedema 

resolution,76,96-100 and in a vasogenic oedema model,  Aqp4-/- mice developed significantly 

increased intracranial pressure compared to wild-type mice, confirming a role for AQP4 in 

oedema resolution.101 Understanding this dynamic mechanism, including the role of the 

glymphatic system, will guide the development of new therapeutic approaches to treating 

oedema.

Neuromyelitis optica

Neuromyelitis optica (NMO) is a rare but severe demyelinating autoimmune inflammatory 

condition of the CNS, formerly classified as a type of multiple sclerosis that primarily affects 

the optic nerve and spinal cord.102 The majority of NMO patients have autoantibodies against 

AQP4 (termed NMO-IgG) detectable in their serum.103 The mechanisms by which NMO-IgG 

cause the pathophysiological features of NMO remain elusive,104 although administration of 

NMO-IgG leads to NMO-like pathology in rodents,105,106 providing strong evidence that NMO-

IgG is causative. However, different NMO-IgGs can have large differences in their ability to 

activate complement upon AQP4 binding, with some epitopes more facilitative for IgG 

hexamerisation, meaning that there is not a simple relationship between antibody titre and 

disease severity.107 There is also evidence to support the idea that NMO-IgG facilitates both 

complement-dependent and complement-independent astrocytopathy.108,109 Most NMO-IgGs 

preferentially bind the M23 isoform of AQP4, but this selectivity appears to depend on an OAP 

assembly-associated conformation of the extracellular loops of AQP4, rather than a difference 

between the M1 and M23 proteins per se.110,111 The effect of NMO-IgG on OAP size is unclear; 

one study reported an increase in average OAP size following NMO-IgG binding,112 another 

found no effect113 and a third reported a decrease in average OAP size.19 More recent work 

suggests that changes in the dynamics (rather than the average size of OAPs) may be altered 

by NMO-IgG, with potential consequences for glutamatergic synapse function.19 Similarly, 

whether NMO-IgG inhibits AQP4 water channel function is controversial112,113; an exquisitely 

tight seal between the extracellular domain of AQP4 and NMO-IgG would be required to 

inhibit water transport. The potential effects of NMO-IgG on AQP4-mediated glymphatic 

function remain unexplored.
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Neuroinflammatory disorders

AQP4 may also have a role in CNS inflammation in a manner that is independent of 

autoantibody formation. AQP4 expression, either on peripheral immune cells, or on CNS 

astrocytes may regulate CNS immune cell migration and trafficking, or glial activation and 

cytokine production, respectively.114 One study using Aqp4-/- mice reported that the central 

neuroinflammatory response to CNS lipopolysaccharide (LPS) injection, including TNFα 

release, was reduced, suggesting a pro-inflammatory role for AQP4.115 In a more recent study, 

Aqp4 gene deletion altered astroglial cytokine release and exacerbated α-synuclein pathology 

in a rodent model of Parkinson’s disease.116 These studies suggest that AQP4 may function to 

regulate CNS cytokine signalling. Given the role of AQP4 in glymphatic clearance,36,55 one 

possible explanation for these findings is that AQP4-dependent glymphatic exchange 

contributes to the distribution and clearance of cytokines within the CNS. The impacts that 

physiological and pathological changes in AQP4 localization have on its inflammatory roles 

remain to be defined. 

New horizons for drug discovery 

IMD-0354/AER-270, TGN-020, acetazolamide, budesonide, furosemide, and various anti-

epileptics have all been proposed to be AQP4 inhibitors on the basis of data primarily derived 

from the Xenopus laevis oocyte swelling assay.39 When re-tested in transport assays using 

primary astrocytes expressing endogenous AQP4, mammalian cell-lines overexpressing 

exogenous AQP4 or recombinant AQP4 protein, many putative pore-blockers have been found 

to lack AQP4 inhibitory function39,117,118. It therefore remains unclear, after several decades of 

effort, whether a specific AQP4 pore-blocking inhibitor can be developed, providing impetus 

to explore alternative strategies, such as targeting dynamic AQP4 subcellular relocalization.

Several lines of evidence over the last decade have also highlighted the diverse functions of 

aquaporins beyond water homeostasis.10 AQP4 has been proposed to associate with various ion 

channels in the astrocyte membrane, including the inwardly rectifying potassium channel 

Kir4.1,119 the mechanosensitive cation channel TRPV4,120 and the ABC protein/TRP channel 

complex SUR1-TRPM4.121 AQP4 and Kir4.1 are co-localized in astrocyte membranes,122 and 

co-immunoprecipitate from glial cells.119 This interaction was proposed to support potassium 

ion spatial buffering by astrocytes after neuronal activity,123 and cellular potassium ion re-

uptake is delayed in Aqp4-/- mice in an epilepsy model,124 although it still unclear whether there 
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is a functional relationship between AQP4 and Kir4.1.125 However, there is some evidence that 

Kir4.1 limits the osmotic swelling of spinal cord astrocyte processes.126,127 In several cell types, 

TRP channel plasma membrane trafficking is dependent on the expression of an aquaporin 

protein.10 AQP4 and the SUR1-TRPM4 monovalent cation channel complex co-

immunoprecipitated when overexpressed in COS-7 cells, pre-activation of SUR1 with 

diazoxide increased astrocyte swelling in response to a calcium ionophore, and SUR1-TRPM4 

was up-regulated and TRPM4 knockout blocked astrocyte swelling in a mouse cerebellar cold 

injury model.121 Furthermore, inhibition of the SUR1-TRMP4 complex using glyburide 

reduces oedema formation in multiple rodent models of brain pathology.73 This work raises the 

intriguing possibility that as well as directly regulating astrocyte membrane water permeability, 

AQP4 facilitates membrane insertion of oedema-associated TRP channels. Based on the new 

molecular understanding of the role and mechanisms of dynamic AQP4 subcellular 

relocalization and protein-protein interactions in CNS oedema, novel anti-oedema therapies are 

likely to emerge. This is of the utmost importance because there are currently no 

pharmacological tools to prevent or reduce CNS oedema. Treatment therefore focuses on 

symptom management, which is only possible after the oedema has developed (and has caused 

secondary damage) and which uses interventions developed decades ago. These new 

possibilities for drug discovery offer new hope to the millions of people annually affected by 

CNS oedema and neurodegenerative diseases.7

The dependence of the field on static, in vitro models rather than dynamic, in vivo visualization 

may have contributed to both the glymphatic system and AQP4 subcellular relocalization 

remaining undiscovered for so long. Recapitulating the complex structure and function of the 

BBB in vitro is challenging. Rodent in vivo studies and slice cultures are anatomically more 

realistic, but are hampered by species differences in BBB function and by the isolation of tissue 

slices from the blood circulation, peripheral immune actors, and both CSF and intracranial 

pressure dynamics. New developments in 3D tissue engineering, organ-on-a-chip technologies, 

and induced pluripotent stem cell differentiation may help the field to begin to address some 

of these limitations.128-130 Future gains in our understanding of astroglial and AQP4 

contributions to CNS physiology, and how their dysfunction contributes to the development of 

CNS disease, will likely depend on the combined use of emerging in vitro techniques, such as 

BBB/glymphatics-on-a-chip, to dissect specific physiological processes along with dynamic in 

vivo approaches that preserve the full anatomy and physiology of the glial-vascular unit.
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Figure legends

Figure 1. AQP4 localization in the CNS. (A) AQP4 (blue) is located within astrocyte endfeet 

processes surrounding blood vessels in both brain tissue and the blood-brain barrier (BBB). 

The inset panel shows the crystal structure of human AQP4 (PDB code 3GD8). AQP4 

assembles as a tetramer with each monomer comprising six transmembrane helices and two 

half-helices (grey). The two half helices harbour the aquaporin signature motif (NPA) as well 

as part of the aromatic-arginine (ar/R) motif that functions as a selectivity filter. Within the 

pore, water molecules (red spheres) align in a single file. (B) AQP4 is localized at the astrocyte 

component of the tripartite synapse. During neurotransmission, neurons release mediators and 

neurotransmitters from synaptic nerve terminals (affecter cells) into the synaptic cleft to 

communicate with other neurons (effector cells). This synaptic activity induces an increase in 

intracellular Ca2+ concentration which is accompanied by changed water and solute 

concentrations in astrocytes, leading to the release of glutamate and other gliotransmitters. This 

gliotransmission results in negative feedback to the presynaptic neurons to modulate 

neurotransmission. AQP4 plays an essential role in maintaining water homeostasis during this 

process. (C) In ventricles, AQPs are present within ependymal cells lining the brain-CSF 

interfaces (left insert). AQP4 is localized to the basolateral membrane of ependymal cells and 

the endfeet of contacting astrocytes (right insert). AQP1 (purple) is localized to the apical 

membrane of the choroid plexus epithelium.6,131 (D) CSF within the subarachnoid and cisternal 

spaces flows into the brain specifically via periarterial spaces and then exchanges with brain 

interstitial fluid facilitated by AQP4 water channels that are positioned within perivascular 

astrocyte endfoot processes.

Figure 2. The glymphatic pathway. The glymphatic system is a perivascular network that 

facilitates fluid exchange between the CSF and interstitial compartments, supporting the 

clearance of interstitial solutes. The function of the glymphatic system relies on perivascular 

astrocyte AQP4 expression. In the healthy young brain, AQP4 localizes to the astrocyte endfeet 

along the perivascular space (top left, arrows). In the context of ageing and Alzheimer’s 

disease, perivascular AQP4 levels are reduced while cellular AQP4 levels are increased 

(bottom left, arrows). The loss of AQP4 from perivascular astrocytic endfeet slows glymphatic 

clearance, which may accelerate amyloid β accumulation and cognitive decline. The column 

on the right details specific findings from studies in rodents (top) and humans (bottom).

Figure 3. The pathogenesis of traumatic injury in the CNS. In the primary injury phase, the 
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brain or spinal cord is injured following external insult. This primary injury results in 

mechanical damage to neurons, astrocytes, oligodendrocytes and blood vessels. A series of 

secondary injury cascades then occurs that potentiates the primary injury. In the earlier post-

injury stages, damaged blood vessels may haemorrhage, resulting in ischaemia and release of 

inflammatory cytokines (e.g. TGF-β, TNF-α, IL-1, and IL-6). These cytokines attract blood-

borne inflammatory cells such as neutrophils, macrophages and leukocytes, which act both to 

clear up cellular debris, but also cause further damage to healthy cells by enhancing local 

inflammation, eventually leading to neuronal loss from inflammatory damage and through 

Wallerian degeneration following oligodendrocyte death and demyelination. Damaged neurons 

may secrete free radicals, nitric oxide (NO), glutamate, and Ca2+ which further potentiate 

cellular damage by causing mitochondrial dysfunction leading to the loss of ATP, and by 

causing localized excitotoxicity. Collectively, these two events result in the loss of Na+/K+-

ATPase activity and the loss of oxygen tension in astrocytes, which results in cytotoxic oedema 

through increased water absorption through AQP4 (blue). This is followed by ionic 

dysregulation, eventually leading to swelling via vasogenic oedema and cavity formation 

limited by the formation of a glial scar, which obstructs neuronal regrowth and enhances cell 

damage. Created using www.biorender.com.

Figure 4. Classification of CNS oedema. A) Cytotoxic oedema is defined by astrocyte 

swelling (black arrows) followed by neuronal dendrite swelling. The net entry of water (blue 

arrows), most likely from the perivascular space, is caused by disruption of cellular ion 

homeostasis (green arrows) following hypoxic insult. B) Ionic oedema is characterized by 

transcapillary sodium ion and anion fluxes associated with cellular uptake of ions from the 

perivascular CSF, and entry of water into the brain parenchyma. Astrocytes continue to be 

swollen (black arrows) by water from the perivascular space and the vascular compartment. 

Neuronal death produces cellular debris in the extracellular space (ECS). C) Vasogenic oedema 

is a result of BBB dysfunction, possibly following ionic oedema. Increased transcytosis may 

contribute to the entry of plasma elements (brown), followed by water. Clearance of debris 

from the ECS produced by neuronal cell death may also occur by transcytosis (green). In some 

severe cases, the tight junctions between the endothelial cells are weakened leading to 

increased permeability of cerebral blood vessels to plasma components. Created using 

www.biorender.com.
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