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Abstract—This work utilizes an experimentally designed erbium-

doped fiber-based tunable dual-wavelength laser (EDFL) to 

generate phase-stable millimeter waves over a wide-band of ≈ 12-

110 GHz and their transmission over the radio-over-fiber (RoF) 

link. The generated fiber-laser-based millimeter waves are 

transmitted over a RoF link, including an optical link of 20 km and 

a wireless link of 50 m, which is carried out via a co-simulation 

of OptisystemTM and MATLABTM software. The successful 

transmission of the proposed fiber-laser-based millimeter waves 

show the possibilities of realizing diverse 5G-supported 

microwave-photonic systems. 

 

Index Terms— Fiber lasers, Radio-over-fiber links, radio 

frequency photonics, tunable lasers, 5G 

I. INTRODUCTION 

HE  unprecedented demands for high-speed wireless access 

have been augmenting for providing high-speed broadband 

multi-media services over prolonged wireless links. The 

deployment of the existing wireless-links using micro-and pico-

cell architecture proved to be expensive with having other link-
issues, including congestion and atmospheric fluctuations. 

Alternatively, the use of millimeter-wave (mmW) bands for the 

realization of fifth-generation (5G) networks is gaining 

considerable attraction to meet the required demands of high-

speed indoor- and outdoor- wireless services. For the 

deployment of 5G technology, the mmW waves are sub-divided 

into two designated bands as mid-band and low-band. The low-

band utilizes the same frequency range as the fourth-generation 

(4G) technology and offers a similar capacity. However, for 24 

GHz-72 GHz, beyond the lower boundary of the EHF band 

(extremely high-frequency band), the covered area is less, 

which augments the need for a large number of cells and thus 
the number of antennas [1]. It further increases the cost of the 

system-infrastructure. Moreover, the link-fading due to severe 

atmospheric fluctuations in the mmW band limits the coverage 

area. The RoF technology, a versatile back- and front-haul 

architecture are gaining popularity for the last few years due to 

its potential to offer high-speed wireless access over an 

extended coverage area even in the presence of adverse 

environmental conditions [2].  The resources are shared among 

all the front-haul links to serve several macro-cell, micro-cell 
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for outdoor coverage, and pico-cells for indoor applications at 

the central office. The central office is connected to a simple, 

low-cost radio access point (RAP) through an interference-

resistant, high-capacity optical fiber.  At the RAPs, the optical 

signals are transformed back to the radio frequencies and then 

radiated via an air interface after amplification [3]. Due to its 

centralized architecture, it is also convenient to upgrade the 

existing wireless services to adopt advanced signal processing 

methods and improve the wireless access in terms of data rate 

and reliability [4].  

As per [5], the optical access networks need to be scalable to 

deploy 5G technology to provide ≈ 10 Gb/s at the user-end, 100 
Gb/s at the back-haul links, 1 Tb/s for metro transport, and 

1Pb/s for the core transport. Also, for the deployment of 5G-

supported high-speed wireless access networks, several mmW 

bands including 28-30 GHz, 55-60 GHz, 71-76 GHz, 81-86 

GHz, and 92-95 GHz are available to provide proficient 

spectrum-utilization together with a covert transmission that 

attracts the telecommunication-and intelligent transportation- 

industries [6-8]. However, the generation of mmW waves in the 

available bands using traditional electronics-based techniques 

is costly and less phase-stable. Moreover, these techniques 

usually are accompanied by some frequency-multipliers which 
offer low-power, low-efficiency, and high phase-noise.  

Alternatively, the high-power photonics-based millimeter 

wave-generation are more phase stable and simpler to realize. 

Due to a cost-effective approach, the dual-wavelength fiber-

lasers (DWFL) are attaining significant attention for the last few 

years in designing various integrated microwave-photonics 

systems like integrated microwave-photonics systems, 

intelligent transport systems, and light detection and ranging 

systems. In contrast to the earlier reported approaches [9-11], 

DWFL-based generated mmW waves are free from using any 

high-quality microwave source. It further reduces system 

complexity and cost considerably. Moreover, DWFL generates 
mmW signals with low phase-noise by beating two optical 

signals with a wavelength spacing analogous to the desired 

millimeter-wave [12]. In the last few years, many approaches 

for developing the DWFL lasers by incorporating a dual-

wavelength-filter inside the laser-cavity have been 

demonstrated successfully [13-18]. However, achieving a 
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phase-stable dual-wavelength laser output by employing an 

erbium-doped fiber laser (EDFL) in the 1.55 μm region at room 

temperature is a thought-provoking task due to strong mode-

competition. The mode-competition is triggered due to the 

homogeneous gain-broadening in the EDFL laser. Many 
approaches have been reported to overcome the mode-

competition problem [16-28] but result in an increased cost and 

designing-complexity. Moreover, these approaches require a 

high-quality tunable microwave reference source that compels 

to discover another economical alternative to generate phase-

stable mmW signals.  

On the other hand, the 55 GHz – 60 GHz band is used for 

sensing climate variations and for Wi-Fi-based applications. 

The 74-77 GHz frequency band is used for automotive target 

detection and ranging by Autonomous Vehicle (AV) industries 

for achieving high range-and velocity-resolution in contrast to 

the 24 GHz frequency band [29]. Moreover, the 71-76 GHz, 81-
86 GHz, and 92-95 GHz frequency bands for deploying point-

to-point high-bandwidth communication links are preferred 

[30]. The 40-70 GHz band is also gaining popularity in 

millimeter-wave therapy to examine the cell-growth variations, 

enzyme functions, and membrane activities [31]. Subsequently, 

the authors demonstrate a simple tunable dual-wavelength 

EDFL laser in a simple design to generate phase-stable mmW 

waves to implement a 5G-supported microwave-photonics 

system over a wide range of ≈ 12-110 GHz in this work [32]. 

The proposed EDFL laser is designed experimentally using a 

high-birefringence fiber with two polarization controllers in a 
ring-structured laser-cavity.  A controlled-tuning of laser-cavity 

generates stable mmW signals by adjusting its state-of-

polarization in the wide range of ≈ 12-110 GHz.  These mmW 

signals are transmitted over RoF links successfully through the 

co-simulation of the OptisystemTM and MATLABTM to show the 

possibilities of the developed EDFL laser in 5G-supported 

telecommunication-related applications. This work 

demonstrated as Section I illustrates the earlier reported 

approaches to generate mmW waves and the current 

developments. Section II describes an experimental set-up of 

the developed laser to generate phase-stable RF frequencies in 

the mid-boundary of the extra high frequency (EHF) range of 
the defined 5G technology to realize a RoF transmission 

system. Section III demonstrates the transmission of OFDM 

signals over the EDFL-driven RoF system using OptisystemTM 

and MATLABTM software. Section IV presents the conclusion. 

II. EXPERIMENT SETUP FOR TUNABLE DUAL WAVELENGTH 

EDFL LASER 

The ring-configuration of a simple, compact, and alignment-
free EDFL laser set-up, with single-mode all-fiber integrated 

components, is shown in Fig. 1. The set-up employed a laser 

pump-source (980-nm) to pump a one-meter single-mode 

erbium-doped active fiber (Liekki Er80-8/125) using a 

wavelength-division multiplexer (980/1550 nm). Further, two 

polarization controllers (PCs) are incorporated in the laser-

cavity with an optical isolator (ISO), forming a nonlinear 

polarization rotation configuration to control the birefringence 

for achieving an optimum amplification at the stable lasing-
action [32].  Instead of using fused silica etalon as a tunable 

filter [33], a high-birefringence fiber (HiBi) has been used in 

this work as a birefringent filter and also to mitigate the 

inhomogeneous broadening of the Er-doped gain fiber. The 

HiBi fiber is also incorporated with two PCs to provide a 

wavelength-dependent polarization rotation with an optimum 

amplification performance by attaining a linearly polarized 

output. The HiBi fiber length is 10 m with a numerical aperture 

of 0.125, a core of 8.5 µm diameter, and cladding of 125 µm. It 

provides an extreme birefringence with polarization at the beat-

length of ≈ 2.5 mm and attains a usable bandwidth of ≈ 12.5 

THz. A polarization-independent ISO is also incorporated to 
achieve one-way circulation inside the laser-cavity. A 90:10 

fiber coupler to redirect 90% of the signal power into the laser-

cavity to attain optimum lasing action, and 10% out of the laser-

cavity for spectral-and temporal- measurements, is used. The 

overall laser-cavity length is ≈ 18 m.  

By measuring different laser dynamics without incorporating 

the HiBi fiber, the net laser-cavity birefringence is low [34-35]. 

In this work, an improved laser-cavity birefringence is attained, 

which tunes to ≈ 1.3 mm - 12 mm by precise tuning of the two 

PCs, due to attainment of the two orthogonal polarization 

refractive indices with minima (1.35 × 10−4) and maxima (1.2 × 
10–3). Subsequently, the HiBi fiber provides a single-

longitudinal mode operation with a tunable spacing and an 

improved FSR of the HiBi filter [32]. It produces a dual-

wavelength spectrum with varying wavelength separation (0.1 

nm-0.89 nm) corresponding to generate high carrier frequencies 

in mmW band (~12.3 GHz to ~110 GHz) in a tunable step of 

~10 GHz shown in Fig. 1-2. The stability-spectra is recorded 

for a total time-span of 60 minutes at 0.02 nm spectrum 

resolution using an optical spectrum analyzer (Yokogawa; 

AQ6370B; 600-1700nm). The designed laser output shows a 

good power uniformity with power fluctuations of 0.32 dB and 

generates stable mmW waves of 56 GHz with wavelength 
fluctuations of 0.03 over an observation period of 60 minutes. 

Subsequently, a phase-stable RF spectrum is achievable as the 

minimal wavelength-fluctuations are recorded in this work 

without using any optical modulator, which causes instability 

in laser-based mmW wave generations due to fluctuations in 

DC biasing [36]. Moreover, the proposed EDFL laser is a 

simple and inexpensive structure contrast with without using 

any photonic-crystal fiber [37]. Fig. 2 shows the RF spectrum 

of the generated mmW waves at varying dual-wavelength 

spacing, Δλ of the proposed laser after photo-detection, and 

proper amplification using an EDFA. 
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Fig. 1 Tunable dual-wavelength EDFL with dual-wavelength traces at different wavelength spacing [32]

 

Fig. 2. RF spectrum of generated mmW waves ranging from 12.5 GHz to 110 GHz 

III.  SIMULATION SETUP FOR TRANSMISSION OF MMW WAVES 

OVER RADIO-OVER-FIBER LINK  

In this section, an equivalent model of the experimentally 

designed DWFL laser in section II is developed using a well-

known photonic module of OptisystemTM to generate millimeter 

waves over a wide range of 12GHz-110GHz. This DWFL laser 

model is further used to realize an OFDM-RoF transmission 

system at different RF frequencies. Besides it, the wireless 

channel incorporated with the antenna module is modeled 

in MATLABTM software. Fortunately, the photonic software 

contains a MATLABTM component tool that enables the system 

designers to integrate MATLABTM software-based modeled 

components within its environment 
(OptisystemTM) using MATLAB.dll files. By co-simulating both 

software-based modeled sub-systems, the tunable DWFL-based 

mmW waves are generated and then transmitted over the 

OFDM-RoF link. The performance evaluation of the DWFL 

derived OFDM-RoF system is computed in terms of eye 

diagrams, bit-error-rate versus signal-to-noise ratio, and 

constellation diagram. Fig. 3 shows the simulation setup for 

transmitting the proposed laser-based generated RF signals over 

the RoF link. The RoF transmission system is designed in the 
mid-boundary of the extra high frequency (EHF) range of the 

defined 5G technology (50 GHz-110 GHz).  For demonstrating 

the RoF system, the OFDM modulated data signals are 

generated employing an M-ary QAM digital modulation scheme 

to attain high spectral efficiency. In this work, M = 16, i.e. 16-

QAM modulation scheme is considered. These OFDM signals 

are then up-converted to the intermediate frequency (IF) using 

an IQ mixer and a local oscillator (LO) of 5 GHz shown in Fig. 

3. The laser-cavity is adjusted carefully to generate dual-

wavelength signals with a wavelength spacing of 0.46 nm (~ 

56.7 GHz) to transmit the OFDM signals over the RoF link. The 

dual-wavelength optical signals with a wavelength spacing of 
0.46 nm (~ 56.7 GHz) split into two different arms via 1:2 
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DMUX. In the first arm, the OFDM data signals are modulated 
optically over the optical carrier frequency of 1559.40 nm using 

a single-arm external Mach Zehnder (SAMZM) modulator to 

generate dual sideband modulated signals (ODSB). The upper 

sideband is filtered out with an optical bandpass filter (OBPF) 

of center-wavelength of 1559.40 nm for obtaining the lower 

sideband of the OFDM signals (LSB-OFDM). This LSB-OFDM 

signal is multiplexed with the unmodulated carrier signal of arm 

two via 1:2 MUX and then transmitted over the standard single-

mode fiber (SSMF) of 20 Km [36]. For a multi-channel system 

or to accommodate more than one channel simultaneously over 

the attenuating fiber links for realizing the wavelength division 

multiplex (WDM) system, there is a probability of signal 
attenuation due to signal demultiplexing components.  The 

multiplexed signals are amplified using low-noise and easily 

realizable erbium-doped fiber amplifiers (EDFA) before 

transmitting through the RoF link. The EDFAs are nearly 

unresponsive to the signal-polarization and offer flat-gain over 

a wider RF band. At radio access unit (RAU), the modulated 

OFDM signals and the unmodulated carrier signals are mixed 

in a PIN photo-detector (0.8 A/W) to generate the required 

mmW signals. These OFDM signals are then transmitted over 

a wireless link using a transmitting antenna with a gain of 25 

dBi.  

An Additive White Gaussian Noise (AWGN) wireless 

channel, with channel-parameters given in Table 1 is designed 

using MATLABTM and is integrated with the OptisystemTM 

photonic-module to realize the RoF system. In the 55-60 GHz 

frequency band, the atmospheric factors like absorption by 

atmospheric gasses, water vapor-density, and other atmospheric 

constituents offer a significant signal-fading under dry and 

standard atmospheric situations [38-39]. It causes a weak signal 

reception at the radio unit (RU) and leads to a short 
transmission-range. Therefore, due to the high attenuation of 

signals in this frequency band with geometric losses, it is 

essential to restore the required signal power by applying a 

suitable amplification. Therefore, the received signals are 

amplified at the RU unit using a low-noise amplifier (LNA) of 

17 dB in the demonstrated mmW band (56 GHz- 110 GHz) with 

noise figure of ≈ 5 dB [40-41] after propagating through the 

wireless link. These amplified signals are applied to a band pass 

filter (BPF) after OFDM-demodulation to retrieve the 

transmitted data signals. 

 

TABLE 1. WIRELESS LINK PARAMETERS 

Parameter Value 

M 16 

No. of carriers 256 

No. of symbols 50 

OFDM bandwidth 2.5 GHz 
Wireless Channel AWGN 

Wireless link 10 meter, and 50 meter 

Fiber link 20 Km 

Tx Antenna gain 25 dBi 

Rx Receiver gain 25 dBi 

 

 

Wireless Link 

Fading 

Frequency Attenuation @ 

Link range = 

10 m 

Attenuation @ 

Link range = 

50 m 

56.7 GHz 87.5 dB 101.5 dB 

77.6 GHz 90.24 dB 104.2 dB 

86.2 GHz 91.15 dB 105.1 dB 

110 GHz 93.27 dB 107.2 dB 

 

    

 

 

                

 

 

Fig. 3. Simulation setup of Tunable DWFL-driven RoF transmission system 
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Fig. 4. Eye diagram estimation over fiber link of 20 Km at wavelength spacing of (a) 0.46 nm (b) 0.63 nm (c) 0.70 nm, and (d) 0.89 nm 

 

 
 

 

Fig.5. BER measurements versus SNR penalty at varied mmW signals over wireless link of (a) 10 meter, and (b) 50 meter 
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Fig.6. Constellation diagrams over wireless link of 10 meter at (a) 56.7 GHz (@ SNR = 25 dB, (b) 77.6 GHz (@ SNR = 29 dB, (c) 86.2 GHz (@ SNR = 31.5 dB, 

and (b) 110 GHz @ SNR = 35 dB 

 

The results of the demonstrated dual-wavelength EDFL 

laser-driven RoF transmission system are depicted in Figs. 4-6, 

and shows the successful transmission of OFDM data-signals 

centered at the generated mmW frequencies (≈ 50 GHz -110 

GHz) analogous to the dual-wavelength separation of the 

proposed dual-wavelength laser. Fig. 4 shows the eye diagram 
estimation of the transmitted signals over SSMF of 20 Km at 

varied wavelength spacing at the radio access unit after photo-

detection. Furthermore, the BER estimation as a function of 

wireless link-length and SNR ratio is carried-out to achieve the 

threshold BER of 10-3. The outcomes reveal that as the 

transmission occurs at a higher frequency of millimeter-wave 

band, the SNR penalty increases to obtain the threshold BER 

(10-3). As per the atmospheric impact on the transmission of 

mmW signals beyond the mid-boundary of the EHF frequency 

band of the 5G frequency spectrum [39-40], the link- length 

reduces along with the augmentation of power penalty to 
achieve the threshold BER as shown in Figs. 5-6. An SNR 

penalty of ≈ 25 dB and ≈ 34 dB is required to attain the BER of 

10-3 at 55.6 GHz over a wireless link of 10 m and 50 m, 

respectively. For the successful transmission at 110 GHz, a 

power penalty of ≈ 35 dB and ≈ 45 dB is required over the 

demonstrated link lengths due to high-fading in this frequency-

band. Thus, this work shows the feasibility of using the 

proposed laser for realizing the RoF transmission systems over 

a wide span of mmW band with a possibility of attaining an 

effective data rate of ≈ 100 Gbps over a wireless link up to ≈ 10 

m using the existing state-of-the-art 75-110 GHz antenna 

technology capable of providing a combined antenna gain of ≥ 
48 dBi [42]. Moreover, the spatial diversity and beamforming 

techniques may play a significant role in achieving high 

transmission data rates in non-LOS environments at minimal 

power requirements. 

IV. CONCLUSION 

The demonstration of a tunable dual-wavelength EDFL laser 

to generate millimeter-wave signals over a wide range and their 

successful transmission over a RoF link is carried-out in this 

work. The proposed fiber-laser is designed in a ring NPR 

configuration using HiBi fiber and generates a broadened 

frequency range in the mmW band. In this work, the 

transmission of EDFL laser-generated mmW signals over the 

RoF link is reported using a fixed OBPF and MUX/DMUX 

corresponding to the wavelength spacing of 0.46 nm to generate 

mmW of ≈ 56 GHz. However, the EDFL-driven OFDM-RoF 

system is reconfigurable to the wavelength spacing of the laser's 
output using tunable optical bandpass filtering. Moreover, the 

system can be reconfigurable as per the tunablity of the 

developed laser-output using the software-defined network 

(SDN) technology and can be demonstrated as future work. 

Nevertheless, the authors believe that the proposed tunable laser 

has the probabilities in a wide range of 5G-supported 

applications, including telecommunication, remote sensing, and 

tunable multiband photonics-based radar systems. 
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