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Abstract 

In wireless sensor networks where nodes are powered by batteries, it is critical to 

prolong the network lifetime by minimizing the energy consumption of each node. In 

this paper, the cooperative multi-input–multi-output (MIMO) and data aggregation 

techniques are jointly adopted to reduce the energy consumption per bit in wireless 

sensor networks by reducing the amount of data for transmission and better using 

network resources through cooperative communication. For this purpose, we derive a 

new energy model that considers the correlation between data generated by nodes and 

the distance between them for a cluster-based sensor network employing the combined 

techniques. Using this model, the effect of the cluster size on the average energy 

consumption per node can be analyzed. It is shown that the energy efficiency of the 

network can be enhanced significantly in cooperative MIMO systems with data 

aggregation, compared to either cooperative MIMO systems without data aggregation or 

data aggregation systems without cooperative MIMO, if sensor nodes are properly 

clusterized. Both centralized and distributed data aggregation schemes for the 

cooperating nodes to exchange and compress their data are also proposed and appraised, 

which lead to diverse impacts of data correlation on the energy performance of the 

integrated cooperative MIMO and data aggregation systems. 
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I. INTRODUCTION 

 

The wireless sensor networks (WSNs) have received significant attention from 

researchers as they find applications spanning over vast and varied areas such as habitat 

monitoring, object tracking, military systems, industrial and home automation [1]. 

Sensor nodes are typically powered by batteries with a limited lifetime and, in most 

cases, the batteries cannot be recharged. The energy problem in wireless sensor 

networks remains as one of the major barriers preventing the complete exploitation of 

this technology.  

To save energy in WSNs, many techniques and protocols have been investigated 

using different approaches, such as reducing transmit power or condensing data for 

transmission or the combination of the two. By creating diversity using the 

multi-input–multi-output (MIMO) technique in a wireless network, less transmit power 

is required than that in a single-input–single-output (SISO) system under the same 

bit-error-rate and throughput performance requirements [2]. However, due to size, cost, 

or hardware limitations, a wireless sensor node is unable to support multiple antennas 

on its small operation platform. Under this circumstance, the cooperative MIMO 

technique that exploits distributed single antennas on a group of neighboring nodes is 

proposed in WSNs to improve energy efficiency via transmit power reduction [3][4][5]. 

In [3] sensor nodes within a cluster participate in cooperation in order to reduce energy 

consumption in so called long-haul transmission between clusters. It is shown that over 

certain distance ranges the total energy consumption can be reduced by joint 
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information transmission and reception in cooperative MIMO systems, in comparison 

with non-cooperative or SISO systems. The superiority of cooperative MIMO over 

SISO in energy efficiency can also be achieved even when the effect of extra training 

overhead required in MIMO systems and different channel propagation conditions are 

taken into account [4]. The overall energy consumption of the model proposed in [3] 

can be further reduced by properly balancing the power allocation between intra-cluster 

(local) and inter-cluster (long-haul) transmissions [5].  

The energy consumed in long-haul transmission can also be saved by applying the 

data aggregation technique to reduce the amount of data in transmission. In many 

applications of wireless sensor networks such as environment monitoring, the sensing 

data from neighboring nodes may be spatially correlated. Data aggregation has been 

naturally considered as an essential tool to integrate such data to reduce redundancy and 

minimize the number of transmissions, resulting in lowered energy consumption [6]. In 

general, some studies that combine data aggregation with other techniques for saving 

energy in WSNs, such as with cluster-based routing [7], channel assignment [8] and 

power scheduling [9] protocols, have been reported. 

Recently, an approach that combines cooperative MIMO and data aggregation is 

presented [10] based on the model given in [3]. It examines the effect of the distance of 

long-haul transmission on the energy efficiency of the network and has demonstrated 

that the total energy consumption can be further reduced by jointly considering both 

cooperative MIMO and data aggregation. However, most results of this work are based 

on a cluster of no more than two sensor nodes, thus it is difficult to properly gauge the 

impact of data aggregation within the cluster and to discriminate between different 

aggregation schemes. Furthermore, when the size of a WSN in terms of the number of 

sensor nodes is given and the long-haul transmission distance is fixed (which is 
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normally the case once a sensor network is deployed), it is always desirable to find a 

way to maximize the energy efficiency by choosing appropriate cluster sizes. Therefore, 

the scheme presented in [10] is limited in carrying out such an investigation. 

In fact, correlation between the data collected by sensor nodes is related to the 

distance between these nodes. Consequently, the cluster size chosen for a network can 

affect both the amount of data that can be compressed and the energy consumption of 

cooperative communication within the cluster. This observation leads naturally to the 

consideration in this paper to optimize the cluster size, which can effectively deal with 

the energy efficiency problems in combining data aggregation with cooperative 

communication. This is also the major difference between our work and what is 

presented in [10] where only a data compression ratio between two nodes is assumed 

without considering the effect of the distance distribution of sensor nodes on data 

correlation.  

In this paper, we propose a framework for improving energy efficiency in WSNs, in 

which both cooperative MIMO and data aggregation techniques are jointly investigated 

and the average energy consumption per node required to send a given number of bits is 

minimized through the optimization of the cluster size. Fig. 1 illustrates an overview of 

this framework, where local communication required by both cooperative MIMO and 

data aggregation takes place within each of the clusters indicated and long-haul 

communication for cooperative MIMO occurs between one cluster and the access point 

(AP) in the air. During local communication, the data aggregation method is used to 

exploit the information generated through data exchanges among the nodes (this process 

is originally designed for the purpose of cooperative MIMO), in order to reduce the 

redundancy of the data. The data aggregation method adds no extra energy consumption 

to the local communication process and, instead, can reduce the amount of data or save 
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energy consumption for long-haul communication. Overall, this combined approach, 

namely cooperative MIMO systems with data aggregation (CMIMO-A), can save 

energy consumption mainly for long-haul communication in two ways: by reducing 

transmit power through employing cooperative MIMO and by condensing data through 

data aggregation. For data aggregation, two different schemes, namely, centralized and 

distributed, are introduced and their performance in terms of energy efficiency versus 

the degree of spatial correlation in data is also examined. 

The remainder of this paper is organized as follows. In Section II, the energy 

consumption model for cooperative MIMO systems with data aggregation is proposed 

and both centralized and distributed data aggregation schemes are presented. In Section 

III, the average energy consumption per node is minimized and the optimal cluster size 

is obtained through numerical methods. The energy efficiency performance of both data 

aggregation schemes is evaluated. Finally, the paper is concluded in Section IV. 

 

II. ENERGY MODEL 

In this section we present an energy model for cooperative MIMO systems with data 

aggregation. As explained previously, the model is built upon a cluster-based sensor 

network, which is distinct from those used in [3] and [10].  

Referring to Fig. 1, the sensor nodes are uniformly distributed in the region with 

nodal density ρ  and subjected to strict energy constraints. The nodes are 

self-organized into clusters and cooperate on data transmission to the AP. We assume 

that each cluster consists of n sensor nodes (i.e. the cluster size is n), and that the 

amount of data sensed by each node is L bits within a defined period of time. Since the 

nodes in the same cluster are closely spaced, the data sensed by them are correlated. 

Through the aggregation process data are compressed as a result of exploiting their 
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correlation properties and consequently much less data needs to be transmitted from the 

cluster to the remote AP. We assume that each node in the wireless sensor network is 

equipped with a single antenna due to the limited physical size. The individual nodes 

with a single antenna in the same cluster transmit information cooperatively to the AP. 

For simplicity, we assume that the AP is also equipped with a single antenna. The nodes 

in a cluster and the AP form a cooperative multi-input–single-output (MISO) system. As 

MISO is a variation of MIMO, we choose to use the term MIMO or cooperative MIMO 

thereafter in the paper to describe this scenario and this does not affect the conclusion 

we draw with regard to the performance comparison with the SISO system.  

  The communication based on cooperative MIMO with data aggregation can be 

divided into two steps: local communication and long-haul communication. During 

local communication, sensor nodes in the same cluster exchange their data with each 

other or via a central node for the preparation of cooperative transmission in the next 

step and, at the same time, data are compressed during the exchange procedure using 

appropriate aggregation schemes, and then distributed to individual nodes. During 

long-haul communication, individual nodes transmit the compressed data concurrently 

over the wireless channel to the AP using a space-time block coding scheme. 

A square-law path loss with additive white Gauss noise (AWGN) is assumed for local 

communication, while for long-haul communication, a Rayleigh-fading channel with 

square law path loss is assumed. We adopt orthogonal space time block coding (STBC) 

in long-haul cooperative communication and the channel is assumed constant during the 

transmission of each orthogonal STBC codeword. The channel gain of the 

Rayleigh-fading channel between a transmitting node and a receiving node is a scalar. 

Therefore, the fading factors of the cooperative MIMO channel can be represented as a 

scalar matrix. In other words, the signal is attenuated further on top of the square-law 
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path loss by a scalar fading matrix H, in which each entry is a zero-mean circulant 

symmetric complex Gaussian (ZMCSCG) random variable with unit variance [2]. 

The total energy consumption for transmitting L bits from each of the n nodes in a 

cluster to the AP, totE , can be divided into two components: the energy consumption of 

local communication for data exchange and compression, intraE , and the energy 

consumption of long-haul communication for cooperatively transmitting the 

compressed data by the nodes in a cluster to the AP, lhE , which is given by 

tot intra lhE E E= +  (1) 

A.  Energy consumption of local communication intraE  

We propose two data aggregation schemes in a CMIMO-A system that provide 

different ways for nodes to exchange and compress their data and result in different 

forms of energy consumption in local communication. One is the centralized data 

aggregation scheme (CAS), in which a central node of a cluster collects data sensed by 

all the nodes in the cluster, integrates and compresses the data, and then distributes the 

compressed data back to the nodes. The other is the distributed data aggregation scheme 

(DAS), in which each node exchanges its data with all other nodes in a cluster and then 

compresses the data separately. The energy consumption for local communication, 

intraE , depends on the aggregation scheme used. 

1) Centralized data aggregation scheme 

The centralized data aggregation scheme works in three phases as follows:  

Gathering phase: The nodes in a cluster use different time slots to transmit their raw 

sensing data to a central node with a data rate intraR . The central node can be any node 

in the cluster but normally the node located at the center of the cluster is chosen for this 

role. 
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Compressing phase: As the data sensed by different sensor nodes within a cluster are 

correlated due to the relatively small spatial arrangement, some redundancy can be 

taken off from them through compression at the central node alongside the process of 

data integration in this phase. The degree of correlation in the data from different nodes 

is a function of the distance between them, thus the size of the cluster has an impact on 

the compression efficiency of the cluster. 

Broadcasting phase: The central node broadcasts the compressed and integrated data 

to the nodes within the same cluster at the same data rate as used in the gathering phase. 

All the nodes in the cluster receive the data simultaneously.  

The energy consumption of the CAS in a cluster is the sum of the energy consumed 

in the three phases, which is given by 

CAS CAS CAS
intra ga comp broE E E E= + +  (2) 

where CAS
gaE , CAS

compE  and CAS
broE  are the energy consumptions of the gathering, 

compressing and broadcasting phase in the CAS, respectively.  

To maintain the efficiency of the model, baseband signal processing overheads and 

corresponding energy consumptions from coding and digital modulation are omitted 

here. The energy dissipated in the gathering phase can be divided into two main 

components: the energy consumption of the power amplifier and the energy 

consumption of all other circuit blocks, i.e.  

( ) ( ) ( )CAS
ga SISO

intra intra

1 1d
T R

L L
E n P n P P

R R
= − + − +  (3) 

where SISO
dP  denotes the power consumption of the power amplifier at the transmitter 

side, TP  and RP  are the power consumptions of circuit blocks at the transmitter side 

and the receiver side, respectively. The transmission data rate is given by intraR b B= ⋅  

with b the constellation size (bits per symbol) and B the modulation bandwidth. 
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The power consumption of the power amplifier, SISO
dP , can be calculated based on 

the link budget relationship [11], [12]. Specifically, when the channel experiences only a 

square-law path loss, we have 

2 2

SISO intra intra 2

(4 )
(1 )d b

l f
t r

d
P E R M N

G G

πα
λ

= +  (4) 

Here ( ) 1α ξ η= −  with ξ  the peak to average ratio (PAR) and η  the drain 

efficiency of the RF power amplifier. The energy per bit required for a given BER 

requirement is represented by intra
bE . For simplicity, we approximate all the clusters with 

a circular area of the same size and the radius of the circular area is used as the 

transmission distance, denoted by d, for all the nodes in a cluster to exchange their data 

through a central node. Also in (4), tG  and rG  are the transmitter and receiver 

antenna gains, respectively, λ  is the carrier wavelength, lM  is the link margin 

compensating the hardware process variations and other additive background noise or 

interference, fN  is the receiver noise level defined as 0f rN N N=  with rN  the 

power spectral density (PSD) of the total effective noise at the receiver input and 0N  

the single-sided thermal noise PSD at the room temperature. 

The PAR ξ  depends on the modulation scheme used and the associated 

constellation size b . Multi-quadrature amplitude modulation (MQAM) is used for local 

communication, thus we have [13] 

2

2

2 1
3

2 1

b

b
ξ

 
− =

 
+  

 (5) 

In order to obtain SISO
dP , the power consumption of the power amplifier, the energy 

per bit intra
bE  required for a given BER, intra

bε , needs to be determined. The average 

BER of a SISO with MQAM when 2b =  is given by [11] 
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( )intra intra2b Qε γ≈  (6) 

where ( )xQ  is the Q-function, defined as ( ) ( ) 2 21 2 t

x
Q x e dtπ

∞ −= ∫ , and intraγ  

denotes the instantaneous received SNR, which can be written as 

intra
intra

0

bE

N
γ =  (7) 

We can substitute (7) into (6), and then invert the formula to obtain the required intra
bE  

for the given intra
bε . 

The energy dissipated in compressing phase is given by 

CAS
comp compE nLE=  (8) 

where compE  denotes the energy cost per bit for data compression. 

The energy dissipated in broadcasting phase is also contributed by the power 

amplifier and other circuitry, which is given by 

( )CAS
bro SISO

intra intra

( ) ( 1)d n n
T R

I I
E P q n P n P

R R
= + + −  (9) 

For (9) to be valid when n is any positive integer, a binary function ( )q n  is defined 

as:  

0      1
( )

1      2

n
q n

n

=
=  ≥

 

nI  is the total amount of data after data compression in a cluster with n nodes and the 

general expression of nI  is application-dependent. To calculate nI , an empirical 

data-set pertaining to rainfall [14] is adopted in this paper. The total amount of 

compressed data generated by a set of n nodes after lossless compression can be 

calculated approximately by an iterative formula as follows: 

( )1

1
1 , 2,3, ,

1i i
i

I I L i n
d c−

 
= + − = + 

L  (10) 
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where c is a constant and represents the degree of spatial correlation in the data and id  

is the minimum distance between the new source node (the i-th node) and the existing 

set of nodes. An example of how to determine this distance is illustrated in Fig. 2.  

The initial set of nodes consists of only one source node, thus we have 1I L= . At 

each iteration, the new source node makes a certain amount of contribution to the total 

compressed data, which is equal to ( )1 1 1id c L− +   . To determine 

nid i ,,3,2, L= , we adopt the results from Monte Carlo simulations by averaging the 

values of distances calculated from 20,000 randomly generated network topologies. Fig. 

3 shows the first nine minimum distance id ( 10,,3,2 L=i ) between the new source 

node and the existing set of nodes versus the number of the nodes, i, with nodal density 

6 210 mρ −= . We see from this figure that when the number of nodes involved increases 

from 2 to 10, the distance increases from 736m to 877m. Furthermore, we can conclude 

based on (10) that the amount of compressed data contributed by the new source node, 

1−−=∆ iii III , increases as the total number of the nodes involved increases. 

Combining (2), (3), (8) and (9), the energy consumption during local communication 

under the centralized data aggregation scheme can be expressed as 

[ ] ( ) [ ]{ }intra SISO
intra

comp

1
( 1) ( 1) ( 1)( )

          

d
n n T n RE n L I P n L q n I P n L I P

R

nLE

= − + + − + + − +  

+
 (11) 

2) Distributed data aggregation scheme 

The distributed data aggregation scheme works in two phases as follows:  

Gathering phase: Each node in a cluster uses different time slots to broadcast its data 

to other nodes within the same cluster, so that each node in the cluster will have a copy 

of data sensed by all the nodes in the cluster. For simplicity the diameter of the 

approximating circular area of the clusters is used as the transmission distance in this 
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phase. 

Compressing phase: Each node integrates and compresses the data gathered from the 

first phase separately, and thereafter the data are ready for long haul communication. 

The energy consumption of the DAS in a cluster is the sum of the energy consumed 

in two phases, which is given by 

DAS DAS
intra ga compE E E= +  (12) 

where DAS
gaE  and DAS

compE  are the energy consumptions in the gathering and compressing 

phases, respectively, which are given by 

( )( )DAS
ga SISO

intra intra

( ) 1d
T R

L L
E nP n q n P n P

R R
= + + −  (13) 

and 

DAS 2
comp compE n LE=  (14) 

B.  Energy consumption of long-haul communication lhE  

During the long-haul communication, the sensor nodes in a cluster encode the 

compressed data with the orthogonal STBC scheme and transmit them to the AP 

cooperatively. The energy consumption during long-haul communication, lhE , is given 

by 

( )lh MIMO
lh lh

D n n
T R

I I
E P nP P

R R
= + +  (15) 

where MIMO
DP  is the power consumption of the power amplifiers on the transmitting 

side and lhR  denotes the transmission bit rate defined as lh SR R bB= , with SR  the 

spatial rate of the encoding scheme. Here 1 2SR =  as we use an orthogonal space-time 

block code with the code rate of 1 2.  

In our scenario the AP flies over the sensor field to collect data. The AP retrieves the 

data of a cluster when it is right above the cluster. Since the long-haul distance between 
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the AP and the cluster is usually much larger than the maximum separation of the 

clusters, we assume that this distance, denoted as D, is the same for all transmitting 

sensor nodes. When the channel experiences only a square-law path loss the power 

consumption of the power amplifiers in one cluster, MIMO
DP , is given by [11], [12] 

2 2

MIMO lh lh 2

(4 )
(1 )D b

l f
t r

D
P E R M N

G G

πα
λ

= +  (16) 

where lh
bE  is the average energy per bit required for a given BER requirement. The 

average BER, lh
bε , of a MIMO with MQAM when 2b =  is given by [11] 

lh lh

lh lh lh0

[ ( 2 )]

 ( 2 ) ( )

b Q

Q f d

ε µ γ

γ γ γ
∞

=

= ∫

h
 (17) 

where ( )xµh  denotes the expectation of x with channel vector h, and lhγ  is the 

instantaneous received SNR for the cooperative MIMO system [2], which is given by 

2lh
lh

0

b

F

E

nN
γ = h  (18) 

For n cooperative nodes communicating to the AP, the channel vector is 

[ ]1 2, , , nh h h=h L . Each channel gain ih  is independent and identically distributed with 

a Rayleigh fading, and 
2

F
h  is subject to a central chi-square distribution with 2n  

degrees of freedom. During the long-haul communication, the same bit is transmitted by 

all n sensors at staggered times according to the OSTBC (orthogonal space-time block 

code) mapping. 

According to the Chernoff bound [15] (in the high SNR regime), we can derive the 

upper bound for the required energy per bit as  

( )
0

lh 1

lh

b
nb

nN
E

ε
≤  (19) 

By taking the equality in (19) and substituting it into (16), we can calculate the power 
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consumption of the power amplifiers in one cluster, MIMO
DP . 

With intraE  for local communication and lhE  for long-haul communication, the total 

energy consumption for nodes in a cluster to transmit their sensed data to the AP, totE , 

can then be obtained accordingly. The average energy consumption per node will be 

used as an indicator to evaluate the energy efficiency of cooperative MIMO systems 

with data aggregation, which is expressed as 

CMIMO-A tot
node

E
E

n
=  (20) 

For the centralized data aggregation scheme, CMIMO-A
nodeE  can be worked out by 

combining (1), (11), (15) and (20) as 

[ ] ( ) [ ]{ }CMIMO-A
node SISO

intra

comp MIMO
lh

1
( 1) ( 1) ( 1)( )

                 ( )

d
n n T n R

Dn
T R

E n L I P n L q n I P n L I P
nR

I
LE P nP P

nR

= − + + − + + − +  

 + + + + 

 (21) 

 

III. EVALUATION OF ENERGY-EFFICIENT CMIMO-A SYSTEMS 

 

In this section, we first compare the performance in terms of energy efficiency of 

CMIMO-A systems with cooperative MIMO systems without data aggregation 

(CMIMO), data aggregation systems without cooperative MIMO (DATAG), and SISO 

systems. For this purpose, we take CAS as a special case in carrying out the 

comparisons based on the energy model built in the last section. 

The local communication in a CMIMO system operates in the same way as in the 

CMIMO-A system except without the process of data aggregation. Due to this 

difference, CMIMO will transmit more data than CMIMO-A during long-haul 

communication. The average energy consumption per node of CMIMO can be derived 

using the approach described in Section II as 
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( )CMIMO 2
node SISO MIMO

intra lh

comp

(2 1) (2 1) ( 1) ( )

              

d D
T R T R

L L
E n P q n n P n P P nP P

nR R

LE

   = − + − + − + + +   

+
 (22) 

In the DATAG system, the central node collects and compresses the data sensed by 

nodes in the cluster, and then transmits the compressed data to the AP. The average 

energy consumption per node of DATAG can be derived as 

( )DATAG
node SISO comp

intra

SISO
lh

( 1)

       

d
T R

Dn
T R

L
E n P P P LE

nR

I
P P P

nR

= − + + +

 + + + 

 (23) 

where SISO
DP  is power consumption of the power amplifier during data transmission  

from the cluster to the AP, which is the same as SISO
dP  expressed by (4) except replacing 

d with D. Both energy models given in (22) and (23) are derived for the cluster-based 

WSN in the scenario illustrated in Fig. 1, which was not the case investigated in either 

[3] or [10].  

In the SISO system, each node transmits their own sensing data to the AP directly 

without data exchanges with other nodes. The average energy consumption per node of 

SISO can be derived as 

( )SISO
node SISO comp

intra intra

D
T R

L L
E P P P LE

R R
= + + +  (24) 

which is similar to that given in [3] but has included the energy consumed by data 

compression. 

There are some assumptions made in simulations for CMIMO-A, CMIMO, DATAG 

and SISO systems. We suppose that the WSN concerned can be clusterized using a 

certain algorithm among many that are available. The energy consumption on signalling 

such as for clusterization and channel distribution for transmission within the cluster is 

neglected. We also assume that the AP’s movement is predefined to collect data from 

the WSN. Sensor nodes can communicate with the AP only when it moves right above 
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the cluster they are located in. Energy consumed on hand-shaking for this 

communication is also neglected. The time synchronization among the nodes is assumed 

and, like in [3], related energy consumption is not counted. Finally, the baseband signal 

processing overhead and corresponding energy consumption on coding and modulation 

are omitted as well. As the above assumptions apply to all the systems, the conclusions 

drawn based on the results through comparisons among the different systems will not be 

affected. 

The energy consumption related results presented in this section are based on the 

four analytical models derived in (21) ~ (24). When demonstrating the effect of one 

parameter on another such as the cluster size versus energy consumption, other system 

and environment settings will be specified and fixed, such as operating frequency, 

antenna gains, bandwidth, and power and energy consumption of certain device and 

circuit. The parameter settings we adopt, in line with other research work, are 

summarized in Table I.  

Fig. 4 shows the average energy dissipated per node as a function of the number of 

nodes in one cluster, or the cluster size, for CMIMO-A, CMIMO, DATAG and SISO 

systems, respectively. Clearly from this figure, CMIMO-A outperforms all other 

systems in energy efficiency in most cases. At the same time, as we can see, choosing a 

proper cluster size is essential for making the combination of cooperative MIMO and 

data aggregation beneficial in terms of achieving higher energy efficiency. If no 

clusterization ( 1n = ) is applied, there will be no difference in energy efficiency for all 

the four systems. If the cluster size is too large, CMIMO-A and CMIMO could be less 

energy-efficient than DATAG and SISO. This feature has not been investigated in 

previous work.  

Note that the optimal cluster size corresponding to the minimum average energy 
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consumption per node for CMIMO-A or CMIMO relates to the settings of a number of 

parameters in (21) or (22). In Fig. 4, for the settings given in Table I, CMIMO-A 

achieves the minimum energy consumption at the cluster size of 4, 50% less than 

CMIMO, 93% than DATAG, and 97% than SISO. 

To better understand the performance difference between CMIMO-A and CMIMO, 

we demonstrate the two components of the energy consumption (for local 

communication and long-haul communication, respectively) for these two systems in 

Fig. 5. As we can observe, CMIMO-A consumes less energy than CMIMO in both local 

and long-haul communication processes for all cluster sizes. This is because in the 

broadcasting phase of local communication the central node in CMIMO-A transmits 

compressed data back to other sensor nodes, while in CMIMO uncompressed data are 

transmitted in the same phase. The reduction in the data volume per node after this 

phase, due to data aggregation adopted in CMIMO-A systems, increases with the cluster 

size. Consequently, fewer data need to be transmitted in CMIMO-A than CMIMO 

during long-haul communication. 

In order to examine how spatial correlation affects energy saving in the CMIMO-A 

system, we define the saving gain as a ratio of the reduction in energy consumption per 

node between CMIMO and CMIMO-A versus the energy consumption per node of 

CMIMO, i.e., 

( )
CMIMO CMIMO-A
node node

energy CMIMO
node

   0
1

E E

E
ψ θ

θ
−= ≥

+
，  (25) 

The impact of overhead energy consumption due to signaling, baseband processing etc. on the 

energy saving gain has been considered in this definition and CMIMO
nodeEθ  denotes the 

overhead energy consumption. 

Fig. 6 shows the energy saving gain of a CMIMO-A system for θ  = 0, 0.5 and 1, 



 18

respectively. It can be seen from Fig. 6 that the saving gain decreases with the increase 

in the average distance because spatial correlation in the data produced by sensor nodes 

will decrease for the increased average distance. When any two neighboring nodes in a 

sensor network are close enough, nearly all the nodes in the network will duplicate data 

and the energy consumed by the CMIMO-A system is fractional compared to that of the 

CMIMO system. It can also be seen that the saving gain decreases with the increase of 

overhead energy consumption. In Fig. 6, the degree of spatial correlation is set to be 

500c = . 

We now look at the optimization problem for the energy model developed, which can 

be expressed as  

CMIMO-A
nodemin

Subject to:   is integer

   1

n
E

n

n ≥
 (26) 

The energy consumption per node in CMIMO-A systems with CAS, CMIMO-A
nodeE , is a 

function of the cluster size n, defined in (21) and demonstrated in Fig. 4. To minimize 

CMIMO-A
nodeE , our goal is to find the optimal cluster size *n . A straightforward 

optimization process is conducted by allowing the cluster size n to vary and fixing other 

parameters given in Table 1 while computing (21). As (21) contains an iterative function 

of n, nI , the optimal value of n for achieving the minimum CMIMO-A
nodeE  cannot be 

obtained through a simple derivative process. However, we can show that (21) is an 

integer concave function [16]. Firstly, it is easy to show that when 1n =  the gradient of 

CMIMO-A
nodeE  is ( 1) 0E n∇ = < . We then show that ( ) 0E n∇ → ∞ >  by the following 

proposition. 

Proposition 1: The gradients of the energy consumption function given in (21) are 

more than zero when the cluster size n increases towards positive infinity. 
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The proof of Proposition 1 is provided in Appendix A.  

For examining the impact from other factors on the optimization result, we also alter 

the values of one other parameter each time to show how the optimal cluster size *n  

correlates with other parameters. Fig. 7 shows the relationship between the optimal 

cluster size *n  and the distance from the cluster to the AP, D . As we can see, for 

example, when the distance increases from 5000m to 15000m the optimal cluster size 

increases linearly from 3 to 5, whilst between 15000m and 20000m there is no change 

in the optimal cluster size.  

The effect from the nodal density ρ  on the optimal cluster size is plotted in Fig. 8. 

The effect results are mixed over different ranges of the density values. For example, 

when the density is one node per 10 km2 ( ρ = 10-7 /m2) the optimal cluster size *n = 2 

nodes, while when the density is increased to one node per 1 km2 ( ρ = 10-6 /m2) *n = 4 

nodes. 

We then examine the effect of the degree of spatial correlation c on the optimal 

cluster size. In this case, we demonstrate the results for the two different data 

aggregation schemes, CAS and DAS. It can be seen from Fig. 9 that the degree of 

spatial correlation has little impact on the value of the optimal cluster size, showing that 

nearly the same value of *n  (4 in this case) is obtained for all the schemes. However, 

the degree of spatial correlation does affect the energy consumption per node, CMIMO-A
nodeE , 

for different data aggregation schemes. We can observe that when 200c =  DAS is 

better than CAS in terms of energy efficiency, while when 5000c =  CAS outperforms 

DAS for the same account. 

To further demonstrate the difference in energy efficiency performance between CAS 

and DAS, we plot their minimized CMIMO-A
nodeE  against a wide range of the values of c in 

Fig. 10. Clearly, there exists a threshold of the degree of spatial correlation ( 1740c = in 
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this case), above which CAS outperforms DAS in terms of energy efficiency, and vice 

versa. The energy consumptions of the two data aggregation schemes are the same for 

long-haul communication but different for local communication. During local 

communication, the average transmission distance used in DAS is longer than that in 

CAS, hence DAS consumes more energy in the gathering phase than CAS; but, unlike 

CAS, it has no broadcasting phase. When c is low, not much redundancy can be taken 

off from the original data through data compression and consequently a similar amount 

of data transmitted in the gathering phase will need to be transmitted in the broadcasting 

phase of CAS as well. Therefore, in this case, more energy will be consumed overall in 

CAS than DAS. When c is high, however, much less data are transmitted in the 

broadcasting phase of CAS due to larger data reduction through compression. As a 

result, CAS becomes more energy efficient than DAS in this scenario.  

 

IV  CONCLUSION 

 

In this paper, an energy saving strategy that exploits the combination of cooperative 

MIMO and data aggregation techniques in cluster-based wireless sensor networks has 

been investigated. Compared to traditional SISO systems and MIMO systems without 

data aggregation, the proposed strategy has demonstrated its performance superiority in 

terms of energy efficiency for different cluster sizes. Two data aggregation schemes, 

centralized and distributed, are introduced in CMIMO-A systems and their energy 

performances with the effect of the degree of spatial correlation are examined. The 

optimal cluster size that minimizes the average energy consumption per node is also 

obtained based on the energy model we have derived. It is shown that the optimal value 

achieved is independent of the degree of spatial correlation and the data aggregation 
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scheme used. However, as demonstrated by our results, the optimal cluster size is 

affected by the long-haul transmission distance and the nodal density of the network. It 

is also observed that to ensure the cooperative MIMO and combined cooperative MIMO 

with data aggregation schemes to be more energy-efficient than other schemes, the 

sensor nodes should be properly clustered and the cluster size cannot be too big. 

Otherwise, no benefit could be achieved or even more energy could be consumed as a 

result.  
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Figures: 

 

sensor node 
cluster 

AP 

 

Fig. 1.  Overview of cooperative MIMO systems with data aggregation. 
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Fig. 2.  An example of the minimum distance between the new source node and the existing set of 

nodes. 
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Fig. 3.  The minimum distance id  versus the number of nodes involved i. 

 

 

 

Fig. 4.  Average energy consumption per node against cluster size for CMIMO-A, CMIMO, 

DATAG and SISO. 
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Fig. 5.  The energy consumption comparison between CMIMO-A and CMIMO for both local 

communication and long haul communication. 

 

 

 

Fig. 6.  Energy saving gain of CMIMO-A  compared with CMIMO versus average distance of 

two neighboring nodes when θ = 0, 0.5 and 1. 
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Fig. 7.  The optimal cluster size versus the distance from sensor nodes to the AP. 

 

 

 

Fig. 8.  The optimal cluster size versus nodal density. 
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Fig. 9.  Average energy consumption per node over cluster size for CMIMO-A when 200c =  and 

5000, CAS versus DAS. 

 

 

 

Fig. 10.  Minimized average energy consumption per node versus the degree of spatial correlation 

for CAS and DAS of CMIMO-A systems. 
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Tables: 

 

Table I  System parameters 

150TP mW=  100RP mW=  

0.35η =  10B KHz=  

5t rG G dBi=  40lM dB=  

10fN dB=  0 171dBm HzN = −  

0.12mλ =  comp 5nJ bit signalE =  

4
intra lh 10b bε ε −= =  2000bitsL =  

10000mD =  2b =  

6 210 mρ −=  2500c =  

 

 

Appendix A:  

Proof of Proposition 1: To prove this proposition, i.e. ( ) 0E n∇ → ∞ > , is equivalent to 

showing that: 

CMIMO-A CMIMO-A
node 1 nodelim 0n m n m

m
E E= + =→∞

− > . 

We split (21) into a number of components in order to examine their trends when 

∞→n . 

( )CMIMO-A SISO SISO
node

intra intra intra intra lh intra

MIMO
comp

lh lh

( 1)( 1) ( ) ( 1)

             

d d
T Rn n T n R n R

D
n n T

n L P Pn LP I P q n I P I P n I P
E

nR nR nR nR nR nR

I P I P
LE

nR R

− +− −= + + + + +

+ + +

 (A1) 

Let 

SISO
1

intra

( 1) dn LP
E

nR

−=  (A2) 
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SISO
2

intra

d
nI P

E
nR

=  (A3) 

 

( )
3

intra

( 1) T Rn L P P
E

nR

− +
=  (A4) 

 

4
intra lh

( ) n T n Rq n I P I P
E

nR nR
= +  (A5) 

 

5
intra

( 1) n Rn I P
E

nR

−=  (A6) 

 

MIMO
6

lh

D
nI P

E
nR

=  (A7) 

 

7
lh

n TI P
E

R
=  (A8) 

 

8 compE LE=  (A9) 

 

We then show that 1lim 0, 1,2, ,8i n m i n m
m

E E i= + =→∞
− ≥ = K . 

1. 1E  

( )
( )

2 2
SISO 1 SISO

1 1 1
intra

1

1

d d
n m n m

n m n m

m P m PL
E E

R m m
= + =

= + =

 − −
 − =
 +
 

 (A10) 

From (4), we have 

SISO
dP nβ=  (A11) 

where β  represents all the variables in (4) that are relative to n, i.e. 
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2

intra intra 2

(4 )
(1 ) b

l f
t r

E R M N
G G

πβ α
λ ρπ

= +  (A12) 

Thus 

1 1 1
intra

0n m n m

L
E E

R

β
= + =− = >  (A13) 

2. 2E  

( )2 1 2 1
intra

0n m n m m mE E I I
R

β
= + = +− = − >  (A14) 

3. 3E  

( )
( )3 1 3

intra

1
0

1
T R

n m n m

L P P
E E

R m m= + =

 +
− = >  + 

 (A15) 

4. 4E  

( )
1

4 1 4
intra lh

( )

1 1
m m mT R

n m n m

I I Iq n P P
E E

R R m m m
+

= + =

   −− = + −   + +  
 (A16) 

From (10), we have 

( )1
1

1
1

1m m
m

I I L
d c+

+

 
− = − + 

 (A17) 

When ∞→m , constdm → (constant). Therefore, 

1lim m m
m

I I const+→∞
− =  (A18) 

1lim 0
1

m m

m

I I

m
+

→∞

− =
+

 (A19) 

lim m

m

I
const

m→∞
=  (A20) 

According to (A16), (A19) and (A20), we have 

4 1 4lim 0n m n m
m

E E= + =→∞
− = . 

5. 5E  

( )
( )

1
5 1 5

intra 1 1
m m mR

n m n m

m I I IP
E E

R m m m
+

= + =

 −
− = +  + + 

 (A21) 
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According to (A18)，(A20) and (A21), we have 

5 1 5lim 0n m n m
m

E E const= + =→∞
− = > . 

6. 6E  

1 MIMO 1 MIMO
6 1 6

lh

1

1

D D
m n m m n m

n m n m

I P I P
E E

R m m
+ = + =

= + =

 
− = − +   

(A22) 

From (16) and (19), we have 

( )MIMO 1

lh

D
nb

n
P β

ε
′=  (A23) 

Again, β ′  is not relative to n, i.e. 

2 2
0

lh 2

(4 )
(1 ) l f

t r

N D
R M N

G G

πβ α
λ

′ = +  (A24) 

According to (A22), (A23) and (A24), we have 

6 1 6lim 0n m n m
m

E E const= + =→∞
− = > . 

7. 7E  

( )7 1 7 1
lh

lim lim 0T
n m n m m m

m m

P
E E I I const

R= + = +→∞ →∞
− = − = >  (A25) 

8. 8E  is a constant, hence 8 1 8 0n m n mE E= + =− = . 

Based on the above results, we conclude that CMIMO-A CMIMO-A
node 1 nodelim 0n m n m

m
E E= + =→∞

− > . 


