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Abstract

In wireless sensor networks where nodes are poweyebatteries, it is critical to
prolong the network lifetime by minimizing the eggrconsumption of each node. In
this paper, the cooperative multi-input—-multi-outdiviiIMO) and data aggregation
techniques are jointly adopted to reduce the eneapsumption per bit in wireless
sensor networks by reducing the amount of datatremmsmission and better using
network resources through cooperative communicaf@n this purpose, we derive a
new energy model that considers the correlatiowéen data generated by nodes and
the distance between them for a cluster-based saeswork employing the combined
techniques. Using this model, the effect of thestdu size on the average energy
consumption per node can be analyzed. It is shdwahthe energy efficiency of the
network can be enhanced significantly in coopeeatMIMO systems with data
aggregation, compared to either cooperative MIM&eys without data aggregation or
data aggregation systems without cooperative MINfGsensor nodes are properly
clusterized. Both centralized and distributed daiggregation schemes for the
cooperating nodes to exchange and compress thaiadaalso proposed and appraised,
which lead to diverse impacts of data correlationtibe energy performance of the

integrated cooperative MIMO and data aggregatictesys.



Index Terms. Cooperative MIMO, data aggregation, energy edficy, wireless sensor

networks.

[. INTRODUCTION

The wireless sensor networks (WSNs) have receivgdifisant attention from
researchers as they find applications spanning was&rand varied areas such as habitat
monitoring, object tracking, military systems, isthial and home automation [1].
Sensor nodes are typically powered by batterieh witimited lifetime and, in most
cases, the batteries cannot be recharged. The yempeodplem in wireless sensor
networks remains as one of the major barriers prteéwg the complete exploitation of
this technology.

To save energy in WSNs, many techniques and pristdtave been investigated
using different approaches, such as reducing transower or condensing data for
transmission or the combination of the two. By trgp diversity using the
multi-input—multi-output (MIMO) technique in a wiess network, less transmit power
is required than that in a single-input-single-ottgSISO) system under the same
bit-error-rate and throughput performance requirei¢2]. However, due to size, cost,
or hardware limitations, a wireless sensor nodengble to support multiple antennas
on its small operation platform. Under this circtamee, the cooperative MIMO
technique that exploits distributed single antenmas group of neighboring nodes is
proposed in WSNSs to improve energy efficiency vasmit power reduction [3][4][5].
In [3] sensor nodes within a cluster participate@operation in order to reduce energy
consumption in so called long-haul transmissionveen clusters. It is shown that over

certain distance ranges the total energy consumptian be reduced by joint
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information transmission and reception in coopgeatIMO systems, in comparison
with non-cooperative or SISO systems. The supé¢yiaf cooperative MIMO over
SISO in energy efficiency can also be achieved eviean the effect of extra training
overhead required in MIMO systems and differentncieh propagation conditions are
taken into account [4]. The overall energy consuompbf the model proposed in [3]
can be further reduced by properly balancing thegrallocation between intra-cluster
(local) and inter-cluster (long-haul) transmissi@Bis

The energy consumed in long-haul transmission tsm lze saved by applying the
data aggregation technique to reduce the amourtatd in transmission. In many
applications of wireless sensor networks such ag@ment monitoring, the sensing
data from neighboring nodes may be spatially cateel. Data aggregation has been
naturally considered as an essential tool to iategsuch data to reduce redundancy and
minimize the number of transmissions, resultingpimered energy consumption [6]. In
general, some studies that combine data aggregaiibnother techniques for saving
energy in WSNSs, such as with cluster-based routrilgchannel assignment [8] and
power scheduling [9] protocols, have been reported.

Recently, an approach that combines cooperative MIdhd data aggregation is
presented [10] based on the model given in [3x#mines the effect of the distance of
long-haul transmission on the energy efficiencythed network and has demonstrated
that the total energy consumption can be furthdueed by jointly considering both
cooperative MIMO and data aggregation. However,tmesults of this work are based
on a cluster of no more than two sensor nodes,ithsigdifficult to properly gauge the
impact of data aggregation within the cluster aaddiscriminate between different
aggregation schemes. Furthermore, when the siaeVdEN in terms of the number of

sensor nodes is given and the long-haul transmmisdistance is fixed (which is



normally the case once a sensor network is depjoyes always desirable to find a
way to maximize the energy efficiency by choosipgrapriate cluster sizes. Therefore,
the scheme presented in [10] is limited in carryog such an investigation.

In fact, correlation between the data collectedseysor nodes is related to the
distance between these nodes. Consequently, teecckize chosen for a network can
affect both the amount of data that can be compdeaad the energy consumption of
cooperative communication within the cluster. Toisservation leads naturally to the
consideration in this paper to optimize the clusiee, which can effectively deal with
the energy efficiency problems in combining datagragation with cooperative
communication. This is also the major differencaween our work and what is
presented in [10] where only a data compressidon tatween two nodes is assumed
without considering the effect of the distance ribsttion of sensor nodes on data
correlation.

In this paper, we propose a framework for improvemgrgy efficiency in WSNs, in
which both cooperative MIMO and data aggregatiahméues are jointly investigated
and the average energy consumption per node regioirgend a given number of bits is
minimized through the optimization of the clusteres Fig. 1 illustrates an overview of
this framework, where local communication requitsdboth cooperative MIMO and
data aggregation takes place within each of thestets indicated and long-haul
communication for cooperative MIMO occurs betweee cluster and the access point
(AP) in the air. During local communication, thetalaggregation method is used to
exploit the information generated through data exges among the nodes (this process
is originally designed for the purpose of coopeatMIMO), in order to reduce the
redundancy of the data. The data aggregation mettidsl no extra energy consumption

to the local communication process and, instead reduce the amount of data or save



energy consumption for long-haul communication. @ilethis combined approach,
namely cooperative MIMO systems with data aggregatiCMIMO-A), can save
energy consumption mainly for long-haul communmatin two ways: by reducing
transmit power through employing cooperative MIM@lay condensing data through
data aggregation. For data aggregation, two dritesehemes, namely, centralized and
distributed, are introduced and their performancéerms of energy efficiency versus
the degree of spatial correlation in data is alsomened.

The remainder of this paper is organized as follos Section Il, the energy
consumption model for cooperative MIMO systems vd#ta aggregation is proposed
and both centralized and distributed data aggregaithemes are presented. In Section
lll, the average energy consumption per node ismined and the optimal cluster size
is obtained through numerical methods. The eneffigrency performance of both data

aggregation schemes is evaluated. Finally, therpap®ncluded in Section IV.

. ENERGY MODEL
In this section we present an energy model for ecatpre MIMO systems with data
aggregation. As explained previously, the modebugt upon a cluster-based sensor
network, which is distinct from those used in [BH410].
Referring to Fig. 1, the sensor nodes are uniforthgtributed in the region with

nodal density p and subjected to strict energy constraints. Thelesoare

self-organized into clusters and cooperate on ttatesmission to the AP. We assume
that each cluster consists nfsensor nodes (i.e. the cluster sizenjsand that the

amount of data sensed by each node lgts within a defined period of time. Since the
nodes in the same cluster are closely spaced,ateesgnsed by them are correlated.

Through the aggregation process data are compressedresult of exploiting their



correlation properties and consequently much less deeds to be transmitted from the
cluster to the remote AP. We assume that each mottee wireless sensor network is
equipped with a single antenna due to the limitbgsyzal size. The individual nodes
with a single antenna in the same cluster transrfotmation cooperatively to the AP.
For simplicity, we assume that the AP is also eg@ipwith a single antenna. The nodes
in a cluster and the AP form a cooperative mulpidtr-single-output (MISO) system. As
MISO is a variation of MIMO, we choose to use teert MIMO or cooperative MIMO
thereafter in the paper to describe this scenaribthis does not affect the conclusion
we draw with regard to the performance comparisith thie SISO system.

The communication based on cooperative MIMO wdita aggregation can be
divided into two steps: local communication andgidraul communication. During
local communication, sensor nodes in the sameerlestchange their data with each
other or via a central node for the preparatiotadperative transmission in the next
step and, at the same time, data are compressaddbe exchange procedure using
appropriate aggregation schemes, and then disdbtd individual nodes. During
long-haul communication, individual nodes transthé& compressed data concurrently
over the wireless channel to the AP using a spatcelock coding scheme.

A square-law path loss with additive white Gauss@@AWGN) is assumed for local
communication, while for long-haul communicationRayleigh-fading channel with
square law path loss is assumed. We adopt orthbgpaae time block coding (STBC)
in long-haul cooperative communication and the adears assumed constant during the
transmission of each orthogonal STBC codeword. Trannel gain of the
Rayleigh-fading channel between a transmitting naxdlé a receiving node is a scalar.
Therefore, the fading factors of the cooperativéMidl channel can be represented as a

scalar matrix. In other words, the signal is ategad further on top of the square-law



path loss by a scalar fading matkk in which each entry is a zero-mean circulant
symmetric complex Gaussian (ZMCSCG) random varialile unit variance [2].
The total energy consumption for transmittingits from each of the nodes in a

cluster to the AP,E,,, can be divided into two components: the energysomption of
local communication for data exchange and compessk,.. and the energy

consumption of long-haul communication for coopesy transmitting the

compressed data by the nodes in a cluster to theE\Pwhich is given by

Etot = Eintra + EIh (1)
A. Energy consumption of local communication E .,

We propose two data aggregation schemes in a CMAVISstem that provide
different ways for nodes to exchange and compress tlata and result in different
forms of energy consumption in local communicati@ne is the centralized data
aggregation scheme (CAS), in which a central ndde @uster collects data sensed by
all the nodes in the cluster, integrates and cossg®ethe data, and then distributes the
compressed data back to the nodes. The other digtidbuted data aggregation scheme
(DAS), in which each node exchanges its data witbther nodes in a cluster and then
compresses the data separately. The energy corisanfpt local communication,
E..... depends on the aggregation scheme used.

1) Centralized data aggregation scheme

The centralized data aggregation scheme workgée thhases as follows:

Gathering phase: The nodes in a cluster use different time slotgsansmit their raw

sensing data to a central node with a data Rt . The central node can be any node

in the cluster but normally the node located atdiweter of the cluster is chosen for this

role.



Compressing phase: As the data sensed by different sensor nodesmaétluluster are

correlated due to the relatively small spatial mgement, some redundancy can be
taken off from them through compression at the reémode alongside the process of
data integration in this phase. The degree of taifoa in the data from different nodes
is a function of the distance between them, thassthe of the cluster has an impact on
the compression efficiency of the cluster.

Broadcasting phase: The central node broadcasts the compressed agtated data

to the nodes within the same cluster at the sartgerdte as used in the gathering phase.
All the nodes in the cluster receive the data siamgously.
The energy consumption of the CAS in a clustehésgum of the energy consumed

in the three phases, which is given by

Enva = Ega + Ecompt E o 2
whereE_ , E5> and E;.,° are the energy consumptions of the gathering,

compressing and broadcasting phase in the CASgctgely.

To maintain the efficiency of the model, basebaigthad processing overheads and
corresponding energy consumptions from coding agdatl modulation are omitted
here. The energy dissipated in the gathering pltase be divided into two main
components: the energy consumption of the power lihenpand the energy
consumption of all other circuit blocks, i.e.

L L
E;:aAS:(n_l) PSiso +(n—1)(PT+PR) (3)
Rntra Rintra

where P{,, denotes the power consumption of the power amplétethe transmitter
side, B, and B, are the power consumptions of circuit blocks &t tfansmitter side
and the receiver side, respectively. The transomnsdata rate is given by .. =b[B

with b the constellation size (bits per symbol) &the modulation bandwidth.



The power consumption of the power amplifi€.,, can be calculated based on

the link budget relationship [11], [12]. Specifigahwhen the channel experiences only a

square-law path loss, we have

242
Ps(:so:(l"'a)Ep R (47 d

intra! imraW |\/ll Nf (4)

Here a=(&/n)-1 with & the peak to average ratio (PAR) amg the drain

efficiency of the RF power amplifier. The energyr [t required for a given BER

requirement is represented &, .. For simplicity, we approximate all the clusterighw

tra *

a circular area of the same size and the radiuth®fcircular area is used as the
transmission distance, denoteddyyor all the nodes in a cluster to exchange ttiata

through a central node. Also in (4%5, and G, are the transmitter and receiver
antenna gains, respectivelyl is the carrier wavelengthM, is the link margin

compensating the hardware process variations dmet additive background noise or

interference, N, is the receiver noise level defined & =N,/N, with N, the
power spectral density (PSD) of the total effectingse at the receiver input and,

the single-sided thermal noise PSD at the room ¢eatpre.

The PAR ¢ depends on the modulation scheme used and theciatssb

constellation sizeb . Multi-quadrature amplitude modulation (MQAM) isad for local

communication, thus we have [13]

b
22 -1

¢=3— (5)
22 41

In order to obtain F’S‘fso, the power consumption of the power amplifier, émergy

per bit E?_ required for a given BERE, ., heeds to be determined. The average

BER of a SISO with MQAM whenb =2 is given by [11]



Eva = QY2 )
where Q(x) is the Q-function, defined aSQ(X)=(]/\/2_ﬂ)jje_t2/2dt, and ..
denotes the instantaneous received SNR, which eavriten as

— Eitr)nra
intra 7
o = )

We can substitute (7) into (6), and then invertfivenula to obtain the required?, .

for the given ‘Ei?ma-
The energy dissipated in compressing phase is diyen
oS =nLE (8)

omp comp

where E denotes the energy cost per bit for data compessi

comp
The energy dissipated in broadcasting phase is atsdributed by the power

amplifier and other circuitry, which is given by

ECAS — |:>S-'1sol_n+(q(n)|:>T +(n-1)R) ly 9)

bro
ntra ntra

For (9) to be valid when is any positive integer, a binary functiam(n) is defined

as:

0 n=1
q(n)—{l nz 2

| is the total amount of data after data compressian cluster withh nodes and the

n

general expression of  is application-dependenflo calculate I, an empirical

n )
data-set pertaining to rainfall [14] is adopted this paper. The total amount of
compressed data generated by a seh afodes after lossless compression can be

calculated approximately by an iterative formulda®ws:
| =1 +1—; L, i=2,3;--n (10)
i i-1 (dl/C+1) ’ 1y

1C



wherec is a constant and represents the degree of spati&lation in the data and,

is the minimum distance between the new source (ibaée-th node) and the existing
set of nodes. An example of how to determine thatadce is illustrated in Fig. 2.

The initial set of nodes consists of only one sourcde, thus we have, =L . At

each iteration, the new source node makes a cemagunt of contribution to the total

compressed data, which is equal t@l—]/(di/cﬂ)] L . To determine
d, i=23---,n, we adopt the results from Monte Carlo simulatibgsaveraging the

values of distances calculated from 20,000 randayeherated network topologies. Fig.

3 shows the first nine minimum distanak (i = 2,3,---,10) between the new source

node and the existing set of nodes versus the nuaitike nodesi, with nodal density
p=10"°/m*. We see from this figure that when the numberafes involved increases

from 2 to 10, the distance increases from 736n7in8 Furthermore, we can conclude
based on (10) that the amount of compressed datalogted by the new source node,

Al, =1, —1,,, increases as the total number of the nodes iedalcreases.

Combining (2), (3), (8) and (9), the energy constiompduring local communication

under the centralized data aggregation schemeeargressed as

Einva =${[(n—1)L+ L] Piso+[ (n=DL+q(n)1, R +[@-DL+1,)| R} an
+nLE

comp
2) Distributed data aggregation scheme
The distributed data aggregation scheme works inpgiaases as follows:

Gathering phase: Each node in a cluster uses different time slotsrbadcast its data

to other nodes within the same cluster, so that eade in the cluster will have a copy
of data sensed by all the nodes in the cluster. dtoplicity the diameter of the

approximating circular area of the clusters is uaedhe transmission distance in this
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phase.

Compressing phase: Each node integrates and compresses the data eptinem the

first phase separately, and thereafter the dateeadty for long haul communication.
The energy consumption of the DAS in a clustehé&s gum of the energy consumed
in two phases, which is given by
B = Ega * Ecomy (12)

DAS
omp

whereEgDaAS and are the energy consumptions in the gathering angpcessing

phases, respectively, which are given by

L L
EPN® = nPSso——+n(a(n)P +(n-1) R )—— (13)
ntra ntra
and
E(53Amsp = nzLEcomp (14)

B. Energy consumption of long-haul communication E,

During the long-haul communication, the sensor sode a cluster encode the
compressed data with the orthogonal STBC schemet@am$mit them to the AP
cooperatively. The energy consumption during loagtcommunication,E, , is given

by

In
Elh = PIV?IMO _+(nPT + PR)
R

% (15)
where P, ., is the power consumption of the power amplifiers tbe transmitting
side and R, denotes the transmission bit rate definedRys= RbB, with R; the
spatial rate of the encoding scheme. Hé&te=1/2 as we use an orthogonal space-time

block code with the code rate df 2.

In our scenario the AP flies over the sensor fteldollect data. The AP retrieves the

data of a cluster when it is right above the clusece the long-haul distance between
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the AP and the cluster is usually much larger tt@ maximum separation of the
clusters, we assume that this distance, denotdd, as the same for all transmitting
sensor nodes. When the channel experiences onfjuareslaw path loss the power

consumption of the power amplifiers in one clustBp,,, , is given by [11], [12]

(4m)°D?

Powo = (L+)EPR, ~ 20—
MIMO h GtGr/‘z

M, Ny (16)

where E; is the average energy per bit required for a giB&R requirement. The

average BER,Z;, of a MIMO with MQAM when b=2 is given by [11]

2 = u[Q2n)]

o (17)
= [, QW2 (5.,

where g, (x) denotes the expectation af with channel vectoh, and y,, is the

instantaneous received SNR for the cooperative MBYi§&em [2], which is given by
_E) e
to = oy I s

For n cooperative nodes communicating to the AP, thenmdla vector is

h :[hl,hz,m ,m] . Each channel gairh is independent and identically distributed with

a Rayleigh fading, an(ﬂh”i is subject to a central chi-square distributiothw2n

degrees of freedom. During the long-haul commuimoathe same bit is transmitted by
all n sensors at staggered times according to the OS®BRogonal space-time block
code) mapping.

According to the Chernoff bound [15] (in the higNIFS regime), we can derive the

upper bound for the required energy per bit as

=, _ NN,
By <—m 19
(=) -

Ein

By taking the equality in (19) and substitutingnito (16), we can calculate the power
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consumption of the power amplifiers in one clustgf,, .
With E, ., for local communication andg, for long-haul communication, the total
energy consumption for nodes in a cluster to trangmair sensed data to the AE,,,

can then be obtained accordingly. The average grmygsumption per node will be
used as an indicator to evaluate the energy dfiigieof cooperative MIMO systems

with data aggregation, which is expressed as

Egor = B (20)
n
For the centralized data aggregation scherggy'°* can be worked out by

combining (1), (11), (15) and (20) as

S :ni{[(n—l)uIn]Ps‘iso+[(n—1>L+q(n)In]PT +[O-DL+1,)] R
ntra I ] (21)
+ LEcomp+n_F2h|:PMIMO + 'QPT + PR j

[ll. EVALUATION OF ENERGY-EFFICIENT CMIMO-A SYSTEMS

In this section, we first compare the performantderms of energy efficiency of
CMIMO-A systems with cooperative MIMO systems witthodata aggregation
(CMIMO), data aggregation systems without coopeeaMIMO (DATAG), and SISO
systems. For this purpose, we take CAS as a speas¢ in carrying out the
comparisons based on the energy model built iteittesection.

The local communication in a CMIMO system operatethe same way as in the
CMIMO-A system except without the process of datggragation. Due to this
difference, CMIMO will transmit more data than CMO4A during long-haul
communication. The average energy consumption pee of CMIMO can be derived

using the approach described in Section Il as
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Enco%:eMo = n = [(zn_l)Pglso"'q(n) (n-1R + @2 - 1PR:|+RLh[PI\;IDIMO + OR + R )J

ntra

(22)
+LE

comp
In the DATAG system, the central node collects aothpresses the data sensed by
nodes in the cluster, and then transmits the cossptedata to the AP. The average

energy consumption per node of DATAG can be deragd

node

L
Eme = —(n _1)(Pg|so+ R+ PR) +LE

com|

ntra (23)

o [Po B4R

where Po., is power consumption of the power amplifier duringad@ransmission

from the cluster to the AP, which is the sameR{s, expressed by (4) except replacing

d with D. Both energy models given in (22) and (23) arevedrfor the cluster-based
WSN in the scenario illustrated in Fig. 1, whichsweot the case investigated in either
[3] or [10].

In the SISO system, each node transmits their eamsisg data to the AP directly
without data exchanges with other nodes. The aeeeagrgy consumption per node of

SISO can be derived as

ESISO: PD L_'_(Pr +PR)

node SISO

L

* LEomp (24)

ntra intra

which is similar to that given in [3] but has indkd the energy consumed by data
compression.

There are some assumptions made in simulation€¥tiMO-A, CMIMO, DATAG
and SISO systems. We suppose that the WSN concearedbe clusterized using a
certain algorithm among many that are available &hergy consumption on signalling
such as for clusterization and channel distribuf@mmtransmission within the cluster is
neglected. We also assume that the AP’s movemepredefined to collect data from

the WSN. Sensor nodes can communicate with theyPwehen it moves right above
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the cluster they are located in. Energy consumed hamd-shaking for this
communication is also neglected. The time synchlaiion among the nodes is assumed
and, like in [3], related energy consumption is cotinted. Finally, the baseband signal
processing overhead and corresponding energy cgigumon coding and modulation
are omitted as well. As the above assumptions appi}l the systems, the conclusions
drawn based on the results through comparisons guthedifferent systems will not be
affected.

The energy consumption related results presentddisnsection are based on the
four analytical models derived in (21) ~ (24). Whaéemonstrating the effect of one
parameter on another such as the cluster sizessersrgy consumption, other system
and environment settings will be specified and dixgauch as operating frequency,
antenna gains, bandwidth, and power and energyuogoton of certain device and
circuit. The parameter settings we adopt, in linghwother research work, are
summarized in Table I.

Fig. 4 shows the average energy dissipated per asa@efunction of the number of
nodes in one cluster, or the cluster size, for CKdH4, CMIMO, DATAG and SISO
systems, respectively. Clearly from this figure, IBND-A outperforms all other
systems in energy efficiency in most cases. Atsdrae time, as we can see, choosing a
proper cluster size is essential for making the lwoation of cooperative MIMO and
data aggregation beneficial in terms of achievinghér energy efficiency. If no
clusterization (=1) is applied, there will be no difference in enegfficiency for all
the four systems. If the cluster size is too la@®IMO-A and CMIMO could be less
energy-efficient than DATAG and SISO. This featuras not been investigated in
previous work.

Note that the optimal cluster size correspondingh® minimum average energy
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consumption per node for CMIMO-A or CMIMO relat@sthe settings of a number of
parameters in (21) or (22). In Fig. 4, for the isg given in Table I, CMIMO-A
achieves the minimum energy consumption at thetenusize of 4, 50% less than
CMIMO, 93% than DATAG, and 97% than SISO.

To better understand the performance differencevdet CMIMO-A and CMIMO,
we demonstrate the two components of the energysuroption (for local
communication and long-haul communication, respebt) for these two systems in
Fig. 5. As we can observe, CMIMO-A consumes lessgnthan CMIMO in both local
and long-haul communication processes for all elusizes. This is because in the
broadcasting phase of local communication the aemode in CMIMO-A transmits
compressed data back to other sensor nodes, wh@TiMO uncompressed data are
transmitted in the same phase. The reduction indt#ta volume per node after this
phase, due to data aggregation adopted in CMIM@stfems, increases with the cluster
size. Consequently, fewer data need to be traresmitt CMIMO-A than CMIMO
during long-haul communication.

In order to examine how spatial correlation affestergy saving in the CMIMO-A
system, we define the saving gain as a ratio ofedeaction in energy consumption per
node between CMIMO and CMIMO-A versus the energpsconption per node of

CMIMO, i.e.,

CMIMO CMIMO-A
_ESMMo _E

nergy — n(oie_l_ 9) Ecrlu)ldnjo » 620 (25)

node

Pe

The impact ofoverhead energy consumption due to signaling, laskprocessing eton the

energy saving gain has been considered in thisitlefi and ES"° denotes the

node
overhead energy consumption.

Fig. 6 shows the energy saving gain of a CMIMO-Ateyn for & = 0, 0.5 and 1,
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respectively. It can be seen from Fig. 6 that t#narg) gain decreases with the increase
in the average distance because spatial correlatithe data produced by sensor nodes
will decrease for the increased average distandeerVny two neighboring nodes in a
sensor network are close enough, nearly all thesmadthe network will duplicate data
and the energy consumed by the CMIMO-A systemaistional compared to that of the
CMIMO system. It can also be seen that the savaig decreases with the increase of
overhead energy consumptioln Fig. 6, the degree of spatial correlation is &etbe
¢ =500.

We now look at the optimization problem for the iggyemodel developed, which can

be expressed as

ECMIMO-A
node

min
Subject to:n s intege (26)
n=1

CMIMO-A
node ’

The energy consumption per node in CMIMO-A systemith CAS, E is a

function of the cluster size, defined in (21) and demonstrated in Fig. 4. Taimize

ECMIMO-A
node

, our goal is to find the optimal cluster size* . A straightforward

optimization process is conducted by allowing thester sizen to vary and fixing other

parameters given in Table 1 while computing (219.(21) contains an iterative function

CMIMO-A
Enode

of n, I,, the optimal value oh for achieving the minimum cannot be

obtained through a simple derivative procddsewever, we can show that (21) is an
integer concave function [16]. Firstly, it is easyshow that whenn =1 the gradient of

EMMOA is OE(n=1)<0. We then show thatJE(n - «)>0 by the following

node
proposition.
Proposition 1: The gradients of the energy consiongunction given in (21) are

more than zero when the cluster swzacreases towards positive infinity.
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The proof of Proposition 1 is provided in Appengix

For examining the impact from other factors ondpémization result, we also alter
the values of one other parameter each time to $towthe optimal cluster size*
correlates with other parametefsg. 7 shows the relationship between the optimal
cluster sizen* and the distance from the cluster to the AP, As we can see, for
example, when the distance increases from 5000&%5®0m the optimal cluster size
increases linearly from 3 to 5, whilst between 1H80and 20000m there is no change
in the optimal cluster size.

The effect from the nodal density on the optimal cluster size is plotted in Fig. 8.

The effect results are mixed over different rangethe density values. For example,

when the density is one node per 10°Km = 107 /m?) the optimal cluster sizen* = 2
nodes, while when the density is increased to @ue per 1 kih(p = 10° /m?) n*=4

nodes.

We then examine the effect of the degree of spatatelationc on the optimal
cluster size. In this case, we demonstrate theltsesar the two different data
aggregation schemes, CAS and DAS. It can be seen Fig. 9 that the degree of
spatial correlation has little impact on the vatfiehe optimal cluster size, showing that

nearly the same value afi* (4 in this case) is obtained for all the schenkeswyever,

CMIMO-A
node !

the degree of spatial correlation does affect tlergy consumption per nodd;,

for different data aggregation schemes. We canrebsiat whenc =200 DAS is
better than CAS in terms of energy efficiency, whilhen ¢ =5000 CAS outperforms
DAS for the same account.

To further demonstrate the difference in energigieficy performance between CAS

(ECMIMO-A
node

and DAS, we plot their minimize against a wide range of the valuesan

Fig. 10. Clearly, there exists a threshold of tbgrde of spatial correlatiort €1740in
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this case), above which CAS outperforms DAS in geohenergy efficiency, and vice
versa. The energy consumptions of the two dataeggg@ion schemes are the same for
long-haul communication but different for local ammnication. During local
communication, the average transmission distaned us DAS is longer than that in
CAS, hence DAS consumes more energy in the gathehase than CAS; but, unlike
CAS, it has no broadcasting phase. Wheas low, not much redundancy can be taken
off from the original data through data compressaaod consequently a similar amount
of data transmitted in the gathering phase willdngebe transmitted in the broadcasting
phase of CAS as well. Therefore, in this case, neoergy will be consumed overall in
CAS than DAS. Wherc is high, however, much less data are transmittedhe
broadcasting phase of CAS due to larger data restu¢chrough compression. As a

result, CAS becomes more energy efficient than DA®Bis scenario.

IV CONCLUSION

In this paper, an energy saving strategy that ésptbe combination of cooperative
MIMO and data aggregation techniques in clusteetiasireless sensor networks has
been investigated. Compared to traditional SISQesys and MIMO systems without
data aggregation, the proposed strategy has deratatsits performance superiority in
terms of energy efficiency for different clustezes. Two data aggregation schemes,
centralized and distributed, are introduced in CMDMA systems and their energy
performances with the effect of the degree of spatorrelation are examined. The
optimal cluster size that minimizes the averagerggneonsumption per node is also
obtained based on the energy model we have defitvisdshown that the optimal value

achieved is independent of the degree of spatiakletion and the data aggregation
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scheme used. However, as demonstrated by our geshét optimal cluster size is
affected by the long-haul transmission distancethedhodal density of the network. It
is also observed that to ensure the cooperative™M#vid combined cooperative MIMO
with data aggregation schemes to be more energyeeiff than other schemes, the
sensor nodes should be properly clustered and Itietec size cannot be too big.
Otherwise, no benefit could be achieved or evenenemergy could be consumed as a

result.
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Tables:

Table | System parameters
P =150mwW P, =100mW
n=0.35 B =10KHz
G,G, =5dBi M, =40dB
N, =10dB N, =-171dBnf Hz
A=0.12m Ecomp = 5NJ bit/ signa
Epa = Ep =107 L = 2000bits
D =10000m b=2
p=10"°/n? ¢ =2500
Appendix A:

Proof of Proposition 1: To prove this propositiae, [E(n — «) >0, is equivalent to

showing that:

CMIMO-A CMIMO-A
“m Enode n=m+1 E node n=m

>0.

We split (21) into a number of components in ortierexamine their trends when

n - oo,
pownon — (M=DLRY,  1,PSso, (M-DL(R +R:)  am)lR | 1R, (0-D)I,P,
node antra r]Rintra nI:zintra antra nR Ih nR intra
D (A1)
I PMIMO 4+_nT InP +LEc
R, R, "
Let
= (n _1)LPS(:SO (AZ)

n Rntra
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| P

— 'nFsiso
E, =

antra

_(n-DL(P +R)
B antra

L WL IN
antra nR1h

= (n_l)InPR

ES n Rntra

D
E = InPMIMO
s —— —

nR;,
e LR

Ry
EB = I-Ecomp

We then show thatim E |y~ E | pem 20,1 =1,2,.. &

n=m+1

1. E

L [’ Ps(:so| n=m+1" (m2 _1) PgISO| n=m
Rntra m( m + 1)

E1|n:m+1 - E1| n=m —

From (4), we have

Ps(:so =pn

where [ represents all the variables in (4) that are ingddbn, i.e.
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(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)



(4m)°

B= (1+a)Ei$1traRintraC;tc;er7TMl N
Thus
L
E1|n:m+1_El|n:m:_'8>O
ntra
2. E,
Ez n:m+l_E2|n:m = Rira(|m+l_|m) >0
3. K
L(R+R)( 1
_.—E, _ = 0
ES | n=m+1 3| n=m Rmra (m(m-'_l)] >
4. E,

E4|n:m+1_ E4|n:m z(m+ij( Im+1_ Im

m+1

I%ntra th

From (10), we have

|, =1, = -——L L
(dm+1/C+l)
When m - o, d_ - const(constant). Therefore,

liml ., -1, =const

m- oo

im A1~
mee m+1

|
lim —™ = const
m— oo m

According to (A16), (A19) and (A20), we have

fim E.|

n=m+1

_E4|n:m:0'

| m

JLECRE

1~ Esloem =
ES | n=m+1 5| n=m Rmra m+1
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m(m+1)

|

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)
(A19)

(A20)

(A21)



According to (A18) (A20) and (A21), we have

lim Eg |-y~ Es|pom = CONSt >0.
m- oo

6. E,
_ — 1 Im+1|:>l\/|:I)IMO n=m+l _ ImPMDIMO |n=m
E6|n:m+1 E6|n=m - Rh ( m+1 m (A22)
From (16) and (19), we have
D — n
Ravo =B (gb)]/n (A23)
Ih
Again, £ is not relative ton, i.e.
. N, (47)’ D?
B _(1+a)RhWMINf (A24)
t=r
According to (A22), (A23) and (A24), we have
im Eg| e, = Eg|n-m = cONSt >0.
m- oo
7. E,
lim E E =i i I | )= 0
m'['l 7|n:m+1_ 7|n:m - n!EnmR_( m+l m) =const > (A25)
h
8. E, is aconstant, henc&,|,,,,, ~ Eg| - = 0.
Based on the above results, we conclude fiatE " | —ESWMOA| >0
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