
electronics

Article

Assessment in Software Development for Competitive
Environments: An AI Strategy Development Case Study

Manuel Palomo-Duarte 1,* , Antonio García-Domínguez 2 and Antonio Balderas 1

����������
�������

Citation: Palomo-Duarte, M.;

García-Domíngue, A.; Balderas, A.

Assessment in Software Development

for Competitive Environments: An AI

Strategy Development Case Study.

Electronics 2021, 10, 1566.

https://doi.org/10.3390/

electronics10131566

Academic Editor: George Angelos

Papadopoulos

Received: 6 May 2021

Accepted: 25 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ingeniería Informática, Universidad de Cádiz, 11519 Puerto Real, Spain;
antonio.balderas@uca.es

2 School of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
a.garcia-dominguez@aston.ac.uk

* Correspondence: manuel.palomo@uca.es

Abstract: Competitions are being widely used to motivate students in diverse learning processes,
including those in computer programming. This paper presents a methodology for designing
and assessing competitive learning scenarios that allow students to develop three different coding
skills: the ability to compete against unknown competitors, the ability to compete against known
competitors and the ability to compete against refined versions of known competitors. The proposal
is based on peer code review, implemented as an improvement cycle after the dissemination of the
code among participants. A case study evaluating the methodology was conducted with two cohorts
of students in an undergraduate course. The analysis of the obtained grades suggests that while
performance after our assistance was improved, students could still fail or succeed independently of
the assistance. Complementary data from student questionnaires and supervisor observations are
aligned with this finding. As a conclusion, the evidence supports the validity of the methodology.
Additionally, several guidelines based on the experience are provided to transfer the proposal to
other environments.

Keywords: computer science education; programming; competition-based learning; assessment;
open source software

1. Introduction

Higher education has to develop both specific and generic skills in their students,
in response to the stringent demands of the current job market [1,2]. These skills will
make the difference between their own success and that of their competitors, which may
be known or not. Even if those skills are known, rapidly evolving markets may require
preempting competitors in order to stay in business. Students can benefit from practic-
ing these competitive scenarios in advance in well-defined learning environments [3].
Among other benefits, competitive learning can boost motivation while avoiding some
of the problems (e.g., plagiarism [4]) of other grading methods [5]. Software engineering
students in particular have the benefit over other more “tangible” engineering disciplines
that programs are highly malleable and new versions can be quickly produced, accelerating
these competition cycles [6].

Farr et al. [7] pointed out that the leaderships’ attitude is fundamental to facing
competitive environments in engineering contexts. Schoemaker et al. [8] identified six
skills that allow leaders to think strategically and navigate the unknown effectively: the
abilities to anticipate, challenge, interpret, decide, align, and learn. However, according to
Siewiorek et al., they are difficult to train and learn in a formal educational context [9].

Competitive methods are usually deployed on games [10,11]. However, the rankings
they commonly generate are only comparative and do not fit into regular qualification
schemes. They do not actually assess students’ learning outcomes, but their performances
compared to their peers. Simply turning rankings directly into grades could raise issues,
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since students would not be assessed according to what they learned from the experi-
ence [12].

The research question derived from this context was: can a multi-level software devel-
opment learning method provide evidence of the students’ competitive skills?. To answer the
research question, we created a methodology that aligns these abilities with three skills of
the participants in competition:

1. The ability to surpass unknown competitors (ASUC): in this case we work on the
ability to anticipate the strategies of our rivals may be, in order to beat them.

2. The ability to surpass known competitors (ASKC): once we know the strategies of
our rivals, we can interpret them, align them with ours, and decide how to act.

3. The ability to surpass improved competitors (ASIC) or the ability to improve in a
new generation of evolving known competitors: this implies learning from one’s own
mistakes and from the successes and mistakes of one’s rivals.

The contribution of this paper is a methodology for designing competitive software
development learning scenarios which train and assess the three aforementioned skills
using objective data. The proposal consists of a programming competition divided into
several rounds, allowing students to refine their strategies between rounds. The learning
assessment considers not only competition against peers, but also improvements in the
performance of each student’s strategy. This way, students are required to find weak points
in their own strategies and adopt the best parts of the strategies implemented by their
colleagues, thereby rewarding asynchronous and implicit collaboration.

A case study was designed and implemented using the proposed approach as part
of a university-based computer science course, based on the principles of design-based
research [13] and the existing literature on competition-based learning. The experience
was supported by a purpose-built environment, available as open-source software, where
students programmed rule-based expert systems to compete in a predefined board game.
The results obtained by the students in the case study for the three competitive skills
mentioned above were complemented with the students’ answers to a final questionnaire
on the method. Both sources of information have been analyzed and complemented with
the observations of the supervisor compiled during the experience. Insights are discussed
in the case study section.

The state of the art is discussed in the following section. Next, the research design
section presents the proposed competitive evaluation methodology and a description of
the case study’s evaluation. Then, the case study is analyzed and discussed in the results
section. Finally, some conclusions and future lines of work are outlined.

2. The State of the Art

While the first proposals of challenge-based learning were available in 2008 [14], it
has not received significant attention in academia until recent years [15]. Although there is
no consensus among the different approaches to challenge-based learning [16], according
to Johnson and Adams, it is a multidisciplinary approach to education that encourages
students to leverage the technology they use in their daily lives to solve real world prob-
lems [17]. It has proved to be an effective approach not only for teaching both specific and
soft skills, but also for increasing diversity and inclusiveness in the design of solutions to
complex problems [18].

Literature shows that competitive learning structures bring their own challenges.
Slavin mentioned two key points to take into account [19]:

• Firstly, competition can be a highly contingent reward structure, to the degree that
competitors are evenly matched, and success depends on effort.

• Secondly, within a win–lose competition, one student’s success necessitates another
student’s failure.

These points require looking into ways to structure the competition. Researchers
and practitioners have demonstrated that students working in a competitive environment
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can get better results than those working in a traditional one [20,21]. However, in such a
learning environment, students can lose motivation because of the nature of the competition.
If certain students are frequently beaten by most of their competitors, it can be difficult
for them to demonstrate their aptitude. The main issues derived from competition found
by Muñoz-Merino et al. [22] are disappointment and loss of confidence and interest, lack
of efficacy, and a poor attitude toward mistakes. The same authors developed a tool to
support competitions that comprised several rounds [23]. By using this tool, students
are dynamically paired to compete against peers with similar scores, avoiding negative
emotions in them caused by the aforementioned issues. However, the experiment found
several students who, despite feeling motivated, had very poor performance.

Another proposal using the same game we used for our case study was introduced
in [24]. It proposes a betting system as a solution for students lacking the programming
skills necessary for competition. Students review the code of other students before the
competition takes place, and are invited to compose their grades from their own strategies
and those of colleagues that they consider superior. This is formalized as a single-round
competition methodology to specifically work and assess the skill “critical analysis of the
code written by peers”, which is different from the skills proposed in this paper.

Similar experiences that use competitions to motivate students in programming
courses have been found in the literature [25,26], but unfortunately only a few of them con-
sidered multiple rounds for assessment. Arevalillo-Herráez et al. conducted an experiment
where strategies for the first competitions were programmed in groups and those of the
second round were refinements of them by each member. In the second round, students
with better programming skills could advise colleagues with limited programming skills,
thereby getting extra points for improving the performances of other strategies. While
interesting, the proposal raises the question of the actual role of the advisers in the second
round, as providing advice to average colleagues and trusting their supposedly improved
skills seems less attractive that directly programming for them [27]. A second related study
with two serialized competitions, so competitors could refine their systems, was conducted
by Paneda et al. [28]. Students’ proposals (but not the source code) were shared with the
rest of the colleagues after the second round. Unfortunately, both papers include little in-
formation on the assessment method and no empirical data. Besides this fact, an important
difference from the current proposal is the code sharing between peers that should exercise
their code reading skills.

Peer code review has demonstrated improvements in students’ learning outcomes
regarding several abilities, such as programming skills, collaborative learning, compliance
with coding standards, time management, and giving and accepting criticism [29]. There-
fore, the application of different phases of coding and peer code review in a competitive
scenario could provide teachers with a number of ways to apply in enriched assessments
of students’ learning outcomes.

3. Research Design

The research design that follows is a combination of a software system development
methodology and a research methodology, based on the principles of design-based re-
search [13], which is a “systematic but flexible methodology aimed to improve educational
practices through iterative analysis, design, development, and implementation, based on
collaboration among researchers and practitioners in real-world settings.” Thus, the assess-
ment intervention was inspired by these principles.

To be effective, interventions should be able to migrate from experimental classrooms
to average classrooms operated by average students, supported by realistic combinations
of technologies. The intervention may be a learning activity, a type of assessment, or a tech-
nological intervention. In this paper, the novel intervention is the competitive assessment
methodology that was applied in a computer programming course.
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3.1. Competitive Assessment Methodology

The design of the competitive assessment intervention includes the following phases
(Figure 1):

Figure 1. Proposed methodology.

1. Background: First, students need the proper theoretical/practical background to face
the competition. Instructors must provide lectures or laboratory sessions depend-
ing on the prior skills of the students and the competition settings (programming
language, game structure, and so on).

2. Competition rules: Students must know the rules of the competition they will face.
This includes the aim of the competition, any support that will be provided (e.g.,
a simulation environment or some examples), whether they can play in teams, what
measures are to be taken to prevent plagiarism between rounds, and so on. The as-
sessment scheme must be also publicly known.

3. Initial development: After analyzing the game, the students design and code their
strategies. This can be done in a laboratory (ideally, with the support of a supervisor),
at home, or using a mixed approach.

4. Initial submission: Before the deadline, students must submit their strategies to
participate in the competition.

5. Initial competition round: The first round of the competition is played. If the kind
(and scale) of competition allows for it, providing real-time graphical feedback on the
performances of the strategies can be both engaging and formative for the students.

6. Initial assessment: The supervisor collects assessment metrics of the experience and
discusses with students the key aspects that set the strategies apart, encouraging self-
criticism.
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7. Initial dissemination: If desired, the supervisor can take actions so students actively
share their approaches. Among other things, students could have a forum to share
their code snippets explaining their strategies, they could work in teams to analyze
the code of colleagues and write reports, and/or the source code of the programs
could be publicly available.

8. Improvement development (first refinement): After playing the first competition,
students must identify bugs and weak points in their strategies and refine them.

9. Improvement submission: There is then a new deadline for sending improved strategies.
10. Improvement competition round: When all the refined strategies are submitted, a new

competition must take place in two parts.

(a) Firstly, a customized competition round is allowed for each strategy. In it,
the refined strategies are pitted against the original strategies to measure
their relative performance improvements. For instance, each refined strategy
could take part in a round with the other original strategies. Alternatively,
each refined strategy could be pitted only against its own original version,
against the strategies that the original version lost to, against a reference
strategy, against the best strategies, and so on. This way, different metrics can
be obtained for fine-grained assessment. Note that, depending on the settings,
this phase can take far longer than previous ones. In that case, it could be
performed in batch mode away from the classroom.

(b) Secondly, a new competition round with all the refined strategies takes place.

11. Improvement assessment: The supervisor collects additional metrics to improve the
assessment of the three skills. A final reflection on the experience is conducted with
the whole group.

Phases 7–11 can be repeated as a block to enable more than two competitive rounds
if time allows for it. For each new round, new metrics would be obtained by pitting the
improved and previous versions of the strategies against each other.

3.2. Evaluation

The research evaluation was carried out through a case study, according to the in-
formation systems research classification of Hevner et al. [30]. The experimental setting
was an intervention with the competitive assessment strategy proposed in this paper.
The intervention was included in the development of a rule-based software module by
students, which followed a traditional software development process based on analysis,
design, and software construction [31].

The research question was answered in our case using data from complementary
sources: the supervisor and the students. The observations of the supervisor were compiled
during the whole experience by both person-to-person and virtual interactions. As for the
information from the students, a mixed approach was used, combining objective data from
the competition, a questionnaire, and notes from informal comments/reactions.

3.3. Participants

The implementation of the competitive assessment intervention was analyzed in
two cohorts of students undertaking a video game design course at the University of
Cadiz (Spain; 31 students in total). It was offered as an elective course for students of its
computer science degree in their third year. The first cohort consisted of 15 students; the
second one had 16 students. In the artificial intelligence lessons, students participated
in the competition individually as an assessment. A tight restriction was that all work
for this assessment had to be done within two weeks (i.e., two hours of lectures and two
of laboratory practice each week, plus six hours of independent work), so the game and
programming language were carefully chosen to be easy to code for.
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3.4. Instruments

The competition involved a simple board game based on Stratego. Two players took
turns at moving one piece: a player could win by eliminating the piece of the other player
with the lowest value. The game was slightly modified in cohort 2 to discourage direct
copying of agents from cohort 1 and provide more depth to the game: an obstacle was placed
randomly on the field, and had to be avoided. An open source software tool implementing the
game, named Gades Siege (http://drpantera.github.io/gsiege accessed on 28 June 2021), was
specifically developed for the competition. It accepts files in the CLIPS/JESS programming
language with the players’ strategies. It can then run leagues or play-offs with the various
strategies, and allows for step-by-step execution of single matches and massive unattended
execution of a batch of matches (Figure 2 shows a screenshot of a match).

Figure 2. A screenshot of a match.

To keep the programming task simple, each team is controlled by only one agent.
This way, the strategy of each player can be easily programmed as a rule-based expert
system (also known as production system) [32]. Each expert system is implemented as
a set of prioritized if–then conditional rules that are executed according to information
from the current status of the game. Coding is as simple as adding, modifying, removing,
or re-prioritizing rules. This way, a wide variety of behaviors that can be implemented by
making slight changes in a rule set.

The game provides partial knowledge of the world for each player, so there can hardly
be unbeatable agents. This way, agents start playing the game with most of the information
unavailable. As the game goes on, players collect more information about their opponent
and can apply more specific behaviors. Therefore, a good balance between general and
specific rules is required (but not sufficient) to create a winning agent.

3.5. Course Design

In order to base the intervention on a realistic situation, a number of introductory
lectures about rule-based expert systems programming were provided, and a simulation
of the design and development of a game was designed as a scaled-down dramatization
of actual computer science design and artificial intelligence issues [33]. The challenge
of bounding the temporal scope of the interventions was partially solved by developing
a multi-year design [13]. Nevertheless, the strict temporal bounds for each academic
year limited the number of iterations available to provide changes and improvements of
the learning process. For this reason, the redesign of the process has included only two
iterations per year: first designing a competitive strategy and programming the rules for a
first version of the software system; and then analyzing the code of their peers, proposing a
refined design, and programming a second solution to be delivered. The interventions used
an implicit cooperative learning strategy in which students criticize their peers’ designs
before starting the competitive assessment phase.

http://drpantera.github.io/gsiege
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3.6. Implementation

The undergraduate course included the competitive assessment intervention accord-
ing to the proposed design:

1. Background: As the course was elective, students with different backgrounds enrolled.
To provide a common ground, a proper theoretical/practical formation on rule-based
expert systems programming was provided.

2. Competition rules: The grading system was described in the virtual learning envi-
ronment. The game platform used to enact the competition was freely available for
students, who could install it on their computers and run different competitions with
the provided sample strategies. Students were warned that they could only change
up to 30% of their code in the refined version.

3. Initial development: Students had two hours to start developing their strategies in
the laboratory with the help of the supervisor. Most queries were about programming
syntax errors and rule-based programming concepts. Students could continue coding
at home for another 5 days.

4. Initial submission: Students uploaded their strategies to a handout activity of the
virtual learning environment.

5. Initial competition round: The first round of the competition was played. It consisted
of 10 round-robin leagues played with different random seeds because strategies
usually include non-deterministic behavior, so results could vary in each league.
Some matches were projected in real time on a big screen (Figure 3).

6. Initial assessment: The supervisor collected assessment metrics of the experience and
informally commented with students the key aspects that set apart the strategies.
While only some students acknowledged the strong points of the best strategies,
most of them agreed on the weak points of their own strategies (they usually were
quite obvious).

7. Dissemination: A dedicated forum in the virtual learning platform was set up to have
students explain their designs to their peers. Those forum posts were complemented
with the comments included in the code of the strategies, which usually described low-
level design implementation details. This was done to show that students knew the
general ideas behind each strategy, and could help them to review code to get winning
behavior. Additionally, the lecturer disseminated the source code of the strategies.

8. Second development (refinement): After playing the first round, students had one
hour to identify bugs and weak points in their strategies and refine them. They
had a limited period of time and could only modify a certain amount of code (30%).
Despite the limited time, the behavior of a rule-based expert system could be easily
changed by re-prioritizing, adding, or removing rules, so the time was enough to tune
the strategies.

9. Second submission: Students uploaded their improved strategies to a new handout
activity of the virtual learning environment before the deadline.

10. Improvement competition round: When all the refined strategies were submitted,
the new competition took place in two parts.

(a) Firstly, every improved strategy was pitted versus the original versions of the
other strategies in 10 round-robin leagues (using different random seeds)

(b) Secondly, a new competitive round of 10 round-robin leagues took place, again
with different random seeds.

11. Improved assessment: The supervisor collected additional metrics to conduct the
assessment of the three skills. A more informal final reflection on the experience was
conducted with the whole group. The number of students that acknowledged the
strong points of the best strategies significantly increased, and the overall comments
about the experience were very positive.
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Figure 3. Students watching a match.

The assessment was conducted by using the ratios of points obtained by individual
students to those attainable in each league. Let (AOO, POO) be the pair of attainable and
obtained points in the set of leagues with all the original strategies. Likewise, let (ARR, PRR)
be the equivalent pair for the leagues with all the refined strategies and let (ARO, PRO) be
the pair for the leagues with one refined strategy and the rest of the original strategies.
These values can be combined to produce one grade for each scenario:

• Against unknown competitors: GOO = POO/AOO.
• Against known competitors: GRO = PRO/ARO.
• Against refined versions of known competitors: GRR = PRR/ARR.

3.7. Metrics

The proposed assessment scheme uses three sources of objective information: the first
competition with the original strategies, the second one that confronts each refined version
with the rest of the original ones, and the last one with all the refined strategies.

Depending on the game context, different metrics can be used to assess each skill.
As an example, the grade for each source can be derived from how many points were
obtained out of all the attainable credit points in a league. Another option is using certain
key performance indicators from the game: the values of the pieces captured in a chess
match, the goal difference in a football match, etc. In fact, even internal program metrics
can be extracted if considered of interest, such as program size and efficiency. If there is a
random factor in the competitions, playing several rounds for each phase can provide a
more meaningful result.

4. Results

The research question is answered using data from complementary sources: first,
the objective data obtained during the competition are shown. That is followed by an
analysis of the answers to the student questionnaire and the comments from students.
Finally, the perspective of the supervisor is discussed.

4.1. Data Perspective

Figures 4 (cohort 1) and 5 (cohort 2) show the ratios of achievable points that were
obtained by each of the students’ strategies in the different settings. Students are ordered
by grade in the first round, so the X axis shows the position they achieved in the ranking.
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Figure 4. Ratio of achievable points actually obtained by round type for each student in cohort 1.

Figure 5. Ratio of achievable points actually obtained by round type for each student in cohort 2.

Additionally, the correlation coefficients of the ratios of achievable points were cal-
culated (Tables 1 and 2). The coefficients between the original agent’s performance and
the improved agent’s performance range between 0.73 and 0.83. This suggests that while
performance by the improved agent is related to the performance of the original one, it is
not a 1:1 relation and students can still fail or succeed independently of it.

Table 1. Correlation coefficients (cohort 1).

Original One Refined All Refined

Original 1.00 0.73 0.83
One refined 0.73 1.00 0.95
All refined 0.83 0.95 1.00
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Table 2. Correlation coefficients (cohort 2).

Original One Refined All Refined

Original 1.00 0.81 0.83
One refined 0.81 1.00 0.96
All refined 0.83 0.96 1.00

4.1.1. The Ability to Surpass Unknown Competitors

This ability was measured in phase 5, shown as the Original rows. At this point, each
student had no more information than a sparring strategy that they had to beat to take part
in the competition. This required them to build their strategies to surpass their companions’
unknown strategies. It is interesting to note that the two cohorts presented notably different
features in their results: while cohort 1 (Figure 4) was largely divided into three levels
(below 40%, between 40% and 50%, and above 60%) with around one third of students in
each, students in cohort 2 (Figure 5) had more linear outcomes.

4.1.2. The Ability to Surpass Known Competitors

This ability was measured in phase (10.a), shown as One refined rows. In this case,
cohort 1 presents a more positive picture than cohort 2 in general, as several students
significantly improved their strategies as they refined them. Compared to the previous
skill, the number of students in the average group increased; the top group remained much
the same. Cohort 2 presents more varied changes, with two students sharply rising, one
from 20% to almost 60% and another from 30% to nearly 50%. This way, more than half of
the students were in the 40–60% range. This led to a more stratified ranking, with a poor
group, an average one, and a top one.

4.1.3. The Ability to Improve in a Competitive Environment

This ability was measured in phase 10.b, shown in the All refined rows. The results of
cohort 1 again show two students sharply improving, one passing from a poor result to
50% of the possible points, and another one improving from an average position to a top
one with over 60% of the possible points. Interestingly, two students in the “top” group
according to the first round ranked averagely with around 50% of the possible points.
In cohort 2, the results show a more compact group in this skill (the first round defined
a clear linear rank). This is so because three students from the lower half of the class
improved significantly and six of the upper-half decreased.

4.2. Data Analysis

In both cohorts there were initially three groups of students according to their per-
formances in ASUC: a poor group (students under 35%), an average group (between 35%
and 50%), and a top group (students over 50%). However, the results obtained in the first
competition round (original line) showed a different pattern.

The different patterns in the ASUC (cohort 1 is stratified; cohort 2 is more linear)
show a quite different starting point. Students in the poor group (cohort 1) had room
for improving, especially after performing a critical review of their own strategies. They
acknowledged that their poor results were mainly due to poor overall strategy, rather than
being caused by the good ideas of their rivals. Students in the average group tried to fix
some issues in their own strategies while incorporating some ideas of some top strategies.
Finally, students in the top group had to face the challenge of improving their successful
strategies after they became publicly available for classmates. In this case, fine refinement
of the strategies was the most sensible option.

Additionally, while students’ performances in cohort 1 were stratified, values concen-
trated between 20% and 73%. This is a rather narrow range compared to that of cohort 2,
which was wider at both ends: the lowest score was 10% and the highest one was 84%.
These data reflect that students’ ASUC in cohort 1 was more uniform than that of students
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in cohort 2, and suggests that students in cohort 2 dared to make deeper changes in their
strategies. The exception was for students with very high performance, which a priori had
less room for improvement: they had to defend their positions once their strategies had
been revealed.

In cohort 1, two students showed significantly better performance after refinement,
both in the ASKC and in the ASIC: student S2 from the poor group and student S7 from
the average one. Conversely, two students fell from the top group to the average one
in the second round. These four students had very different performances across the
three different skills, showing the advantage of the proposal for multiple skill assessment.
Interestingly, another four students had worse performances after the code refinement:
while students S8 and S10 kept rather similar average skill performances; students S12
and S15 (top students in the ASUC) performed averagely in the ASIC. This may indicate
that some students failed to adequately test whether their changes really improved the
performances or not. Their behavior is different from that of S13 and S14, who were also in
the top group. They not only remained on top, but increased their performances, obtaining
around 10% more of the achievable points (something especially difficult, as their room for
improvement was greatly reduced). Finally, most students obtained better grades in ASKC
compared to the ASUC, demonstrating being able to learn from experience.

In cohort 2, initial performance in the ASUC followed a linear pattern, but after code
refinement the grades became more uniform: the students with average original strategies
learned well from the best competitors, thereby improving their performances. In fact,
in the ASKC half of the students performed similarly (average), and that average group
even increased in the ASIC. Individually, the top four students in the ASUC (S13, S14,
S15, and S16) also stayed at the top in the ASKC and ASIC by making small refinements,
applying what they learned by reviewing their peers’ code. The same applied to the low
performance side, students S1 and S3: they retained poor performance for all three skills.
However, we can observe that student S2 started by showing very poor performance
in ASUC, but was in the top group in the ASKC and performed similarly in the ASIC.
Conversely, student S8 worsened a bit in the ASKC and decreased more his performance
badly in ASIC.

4.3. Students’ Perspectives

In order to evaluate the competitive assessment methodology from the point of view
of the participants, a final anonymous questionnaire was passed to all students. In this
questionnaire, the students evaluated, using a 5-point Likert scale, the question: Do you
consider this use of competitions to assess skills to be fair? Table 3 shows the summary of answers.

Table 3. Summary of answers to the question on the competitive assessment methodology.

Answer Proportion of Students

(1) Strongly disagree 3%
(2) Disagree 0%

(3) Neither agree nor disagree 8%
(4) Agree 25%

(5) Completely agree 65%

The answers to the questionnaire show good reception from the students: 65% and
25% of the them, respectively, fully agreed or agreed with the fulfillment of the objectives
by the methodology. Only one student disagreed.

In addition, the students could also make some comments, such as feedback on the
experience. It should be noted that most of the comments were along the lines that they
really liked the approach of the experience, which they found interesting, entertaining,
and enjoyable. Only one student indicated that he would have liked to have more time to
refine his code. Finally, it is worth highlighting the final comment by one of the students:
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“This course was very useful to improve programming techniques. This is the best pro-
gramming course I have ever followed. It helped me a lot to improve my programming
skills.”

4.4. Discussion

On the basis of these results and in line with the research question, the lecturer did
consider that the multi-level software development learning method provided evidence of
the students’ performances in terms of competitive skills. Competition among students
provides objective indicators of student performance and prepares students for positions
in the workforce [34]. In this paper, we have presented a methodology for designing and
evaluating competitive learning scenarios. This methodology has allowed us to obtain
evidence to assess our students in three competitive skills.

Selvi and Çosan observed that students developed strategic skills by playing games
that provided an environment of competition among themselves, which encouraged the
students’ decision-making processes [35]. However, the focus was not on measuring the
ability to beat their peers’ strategies but on understanding student motivation. In our
study, each student’s strategy aimed to outperform their peers’ strategies, which they did
not initially know. Therefore, based on the evidence obtained in phase 5 of the game,
students designed their strategies and competed against their peers. The students knew
what their goal was, but not how their peers would develop their strategies. Thanks to the
evidence collected from the games, the lecturers could measure the students’ performances
in the ASUC.

What happens to students who lose? According to the research of Muñoz-Merino
et al. [22], students who performed poorly in competition lost interest in the game. How-
ever, the results provided by Ventura et al. [36] show that players become even more
engaged in the competition when they are losing. In line with the research of Burleson
and Olimpo [37], the design of our methodology allows the student to guess how their
peers think, i.e., how their peers will perform in the next phases of the game. It did not
matter whether they were high or low performers in the previous phase. With phases
10.a and 10.b, we allow students to improve their strategies and participate in a new
round of competition with their peers. In phase 10.a, we measure how they improve their
strategies to face competitors whose strategies they may already know, i.e., to surpass
known competitors. In phase 11, we measure how they improve their strategies to face
competitors whose strategies may also have been improved, i.e., to surpass rivals in a
competitive environment. Thus, we have shown how lecturers can use this evidence to
measure students’ performances in ASKC and ASIC.

Another interesting issue is the approach to refinement. While we have no conclusive
evidence about this, the informal comments of the students showed that students mainly
followed three different approaches: just fixing bugs, modifying the strategy, or adopting
rules from their peers’ strategies. Most likely, those who followed the first approach
were sure that their strategy was a winning one, but detected some bugs and just fixed
them. Others could consider that their strategy could significantly improve with minor
modifications, and probably re-priorized rules, deleted undesired ones, or added new
rules that they programmed after the first competition. Students in these two situations
could have not actually peer-review the code of other students. We cannot blame them for
this: if after the first competition they really considered that the other strategies could not
provide them what they needed to succeed, we have to respect their opinions. In any case,
the lecturer reminded them before the refinement phase that the programming language
was chosen to simplify incorporating rules from other strategies (just copying and pasting
rules), and that reviewing colleagues’ code, even if they finally decided not to adopt any
of their rules, could be a source of inspiration. Finally, some students who reviewed
peers’ strategies acknowledged that they focused on the strategies of colleagues who had
brilliantly performed in previous courses about computer programming.
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Concerning the approach to designing a strategy, most students admitted that, due
to the competition being seen on the big screen, they worked harder than in similar
assignments in other courses. The assignment stated that students had to individually
program a strategy to play the game; they were not allowed to work in groups or get help
from any other source (including students enrolled in previous editions of the course).
Breaking this rule would be a violation of the institutional code of conduct. In any case,
the game used in the experience was a simplified version of Stratego, a well known board
game. It was selected as an easy to play but difficult to master game. This way, if students
had previously played the game, or if they checked in the Internet, they would be aware
of some required features of a winning strategy for that game. For further research,
complementary experiences using other games could be interesting.

The number of participants is another key factor for the proposal: due to the nature
of the refinement phase considering peer review, if the number of students is rather high,
this process could take too long to be properly conducted. Conversely, if the number of
participants is too low, the competition could be easily biased: one student beating all the
others, or even worse, a student surpassed by the rest. The alternative for large groups
could be dividing them into medium-sized ones, but this could raise issues around bias.
This could be mitigated by playing a previous qualifying round before each competition
(i.e., playing a short round robin, and then, based on the results, matching leading teams
in a competition and those with poor results in another one). This, while possible, would
complicate the implementation in the classroom significantly.

Finally, the addition of the random obstacle to the second cohort made the game a
bit more difficult, but it was the same game for all participants. Additionally, the second
cohort had better resources with which to learn expert systems programming: refined
slides, a lecturer aware of the usual problems students had when learning the topic, etc.
All in all, we consider that the difficulty ended up being similar for both cohorts.

4.5. Lessons Learned

After reflecting on the experience, we have compiled the following recommendations
for transferability:

1. Keeping focus. We learned the importance of remarking all through the experience
that in a one versus one competition, there must be a winner and a loser. However, it
is the strategy and not the student who coded it that is a winner or loser. a student
whose strategy did not perform well usually felt discouraged, and sometimes even
blamed the game or the assessment method. After insisting on the differences between
the strategy designed, the refinement, and the general programming skills of a person,
they usually felt better.

2. Related to the previous reflection, we also insisted on the three skills (especially
ASUC). Students appreciated when, after the first assessment, we explained that
losing a competition was not a failure if they had tried their best. Confronting
unknown competitors is hard, and they are not used to facing those situations in
academia. In real life, competition is often faced in teams, and there is not always
a clear winner and loser. We insisted that, probably, the key aspect of the learning
experience for each of them was the refinement. It was the moment to show what
they had learned from the first competition and to demonstrate their ability to learn
from their own mistakes and the success of others.

3. Students really enjoyed watching their matches projected on a big screen during
the competitions. They shouted as though they were watching a soccer match (the
national sport in Spain). Due to the amount of matches, it would not be possible to
watch even half of them, but we tried to watch as many as possible. This allowed
seeing the strategies live and reflecting on their pros and cons. The supervisor insisted
that all strategies had some interesting aspects, and they were discussed informally,
providing feedback to the authors.
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4. The game and the scoring frame have to be carefully selected according to the context.
We used a simplified version of Stratego, a board game for two players, and it proved
to be suitable to be programmed (and later modified) in the available time slots.
However, there are other games for three, four, or more players (such as [38]) that
can be programmed in other programming languages (as seen in [39]) and may be
suitable for different environments given different time restrictions.

4.6. Threats to Validity

Although the results have been satisfactory, the validity of this study is subject to
several threats—first, students’ genders, as the majority of the students enrolled in this
course were men, so in order to generalize these findings, it would be interesting to replicate
the experiment with gender parity.

Secondly, the addition of the random obstacle to the game in the second cohort could
be considered a way to improve the game and make it more similar to the original Stratego
(adding a bit more depth to the game). While this led to making the game a little more
difficult, it was the same game for all participants. Additionally, the second cohort benefited
from better resources to learn expert systems programming: refined slides, a lecturer aware
of usual problems of students when learning the topic, etc. Thus, we consider that the
difficulty was very similar.

Finally, in regard to time limits, although the time restriction was partially solved
using the strategies from previous years, a more complete analysis of the improvement in
skill acquisition might be reached by a longer practice period. Unfortunately, the course
was discontinued in the undergraduate program.

5. Conclusion

This paper presents a methodology with which to design and assess competitive
learning scenarios consisting of serialized programming competitions using objective
information. The strategies programmed by students during the first competitive round
were publicly disseminated. Students developed skills while refining their solutions for a
second round, by fixing bugs, fine-tuning their strategies, or applying what they learned
by reviewing their peers’ code. Such refined strategies also faced their previous versions,
thereby providing metrics about their actual learning. Taking advantage of this approach,
this work assessed the following skills:

1. The ability to surpass unknown competitors (ASUC)
2. The ability to surpass known competitors (ASKC)
3. The ability to surpass improved competitors (ASIC)

A case study based on the principles of design-based research has been shown.
The case study was conducted in an elective computer science course, where students
developed rule-based expert systems for a simple board game. Complementary sources of
information were used: the observations from the supervisor and the students’ results in
the competitions and their comments.

The different sources of information support the validity of the proposal in context.
Firstly, most students showed significantly different performances in the three skills, usually
showing what they had learned from the first round. Their opinion about the experience
was also very positive, aligned with the observations from the supervisor, providing
evidence of the validity of the data produced to objectively assess student performance in
the three targeted competitive skills.

We can compile the following conclusions: Firstly, the vast majority of students were
faced for the first time in their degree with a competition. While the capitalist world
is competitive by nature, the competition seems to be focused on the grades that each
student independently gets. The competition was considered positive in general, so we
can conclude competitions could be included more often in courses to improve students’
skills for the real world. In this case, the proposal was successful, obliging all the students
to take part in the competition.
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Secondly, the measurement of the ASUC proved to be useful for demonstrating to
students their actual ability to learn from mistakes. It helped to encourage students who
had performed poorly in ASUC and/or ASIC. We have found no similar approach in
the literature.

Thirdly, students acknowledged their limited experience in reviewing peers’ code.
Despite being a basic skill for actual collaboration in programming real-world projects,
academia fails to properly develop it in degrees. Unfortunately, in this case not all the
students did actually review code, so the success of the proposal in this aspect was limited.

Finally, positive evaluations were given by both the students and the supervisor. This
enjoyment, while subject to limitations due to the limited sample of data and specific
context (i.e., specific academic background of students, choice of game, scoring system,
time restrictions, and programming language), should help academics successfully transfer
the proposal to other contexts.

Two future lines work are planned. The first line of work will be validating the
proposal in other settings: changing the game, the programming language, and other
aspects. The second line of work will be providing additional contextual information to
the expert systems. For example, if in the recent matches of a league a strategy has a rather
high performance, perhaps its rival could try to tie a match and incur no risk in trying to
win it.
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