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Abstract  

This paper introduces a modelling framework which combines Data Envelopment Analysis and 

Markov Chains into an integrated decision aid.  Markov Chains are typically used in contexts where a 

system (e.g. staff profile in a large organisation) is at the start of the planning horizon in a given 

state, and the aim is to transform the system to a new state by the end of the horizon.  The planning 

horizon can involve several steps and the system transits to a new state after each step. The 

transition probabilities from one step to the next are influenced by both organisational and external 

(non-organisational) factors. We develop our generic methodology using as a vehicle the 

homogeneous Markov manpower planning system. The paper recognizes a gap in existing 

Markovian manpower planning methods to handle stochasticity and optimization in a more 

tractable manner and puts forward an approach to harness the power of DEA to fill this gap.  In this 

context, the Decision Maker (DM) can specify potential anticipated future outcomes (e.g. personnel 

flows) and then use DEA to identify additional feasible courses of action through convexity. These 

feasible strategies can be evaluated according to the DM’s judgement over potential future states of 

nature and then employed to guide the organisation in making interventions that would affect 

transition probabilities to improve the probability of attaining the ultimate state desired for the 

system. The paper includes a numerical illustration of the suggested approach, including data from a 

manpower planning model previously addressed using classical Markov modelling.  

                                                             
1 Corresponding author 
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1. Introduction and literature review 

This paper integrates Markov Chains (MCs) and Data Envelopment Analysis (DEA) into a synergistic 

decision aid methodology. The methodology developed exploits the aspects of DEA to generate 

alternative courses of action and to identify the best among them, in order to simplify an otherwise 

stochastic framework and enhance the usefulness from the information that a MCs approach can 

yield as a decision aid. As a vehicle for integrating the use of DEA into a MCs based approach we use 

the Markovian human resource planning context. The use of a specific decision context facilitates 

the communication of the approach without detracting from its generalisability as the approach can 

be readily adapted to other decision contexts as will be discussed later.  

1.1 Data Envelopment Analysis  

Data Envelopment Analysis (DEA), is a non-parametric mathematical programming approach, that 

has been used widely to evaluate the relative performance (relative efficiency) of homogeneous 

entities, that is, operating units that use similar resources (inputs) to produce comparable products 

or services (outputs).  One key feature of DEA is that under minimal assumptions it can use the data 

from observed operating units to generate other feasible in principle operating units even if not 

observed in practice.  Another key feature of DEA is that it is a boundary method in that out of the 

units observed or created it can identify the most ‘efficient’ ones.  That is, it estimates at operating 

unit level, maximum output levels for given resources or minimum input levels for given output 

levels.  It is these two properties of DEA that we shall deploy in the context of a MCs methodology to 

identify interventions that would deliver outcomes best compatible with the Decision Maker’s aims. 

Since the publication of the seminal paper by Charnes, Cooper and Rhodes (1978) who took forward 

ideas from a paper by Farell (1957) on the measurement of efficiency, the literature on DEA has 

flourished. The original idea was to provide a methodology that would yield a measure of efficiency 

of a Decision Making Unit (DMU) relative to a set of comparable DMUs in not for profit 

organisations. However, since then, DEA has evolved into a modelling approach to efficiency and 

productivity analysis which yields much additional information for exploring the production space 

and managing performance. For instance, it identifies benchmark DMUs (peers) inefficient units may 

draw best practice from to improve performance, it identifies targets inefficient units may seek to 

attain, the nature of returns to scale prevailing at a point of the efficient frontier, productivity 

change over time and much more. Due to its strength, applicability and minimal a priori 

assumptions, DEA has seen rapid growth and widespread acceptance in the last forty years, both in 
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theory and practice. For more details  on DEA see Thanassoulis (2001), Cooper (2005), Cooper et al. 

(2007a), Thanassoulis et al. (2008),  Liu et al. (2013), Kao (2014)  and  Portela and Thanassoulis 

(2014).   A more recent survey on the practice and progress of the theory and applications of DEA 

can be found in Emrouznejad and Yang (2018). 

1.2 The Markovian manpower models and their use  

The variability inherent in all processes involving human interaction influences the ability to forecast 

and eradicate the risks within an organization. As mentioned in a recent study on a Markov model 

for manpower prediction (Hrustek et al. 2020), in order to reduce business failures, various 

mathematical and probabilistic instruments have been developed with the purpose of mitigating 

these risks. MC models are among those methods, with a broad range of applications including the 

investigation of the mobility of personnel and the management of human potential within 

organizations. Hrustek et al. (2020) analyse a case study of an ICT service and use an irreducible, 

ergodic MC to predict numbers of people in the main staff categories thus assisting the management 

to plan ahead for budget requirements. As pointed out in a paper about Markovian manpower 

planning in the armed forces, Škulj et al. (2008), “the skills needed to perform assigned tasks are 

acquired through experience and training, shortfall or surpluses of skilled staff might be costly and 

inefficient”. To cope with stochastic fluctuations of future needs, predictions and strategies need to 

be in place. Often estimates are based on previous experiences. Nevertheless, often experience 

alone does not suffice without the application of appropriate quantitative models and the associated 

analyses.  

MCs have been used in many cases in the last fifty or so years in stochastic decision contexts. These 

include health care, corporate manpower planning, defence, educational establishments, civil 

services and, more recently, even in machine learning and artificial intelligence (AI).  As McClean 

(1991) and Smith and Bartholomew (1988) mention, manpower planning can be traced back to 1779 

when John Rowe used an actuarial model to plan careers in the Royal Marines. Pioneering in the 

area are considered the students’ enrolment model of Gani (1963), the work of Young and Almond 

(1965) on predicting distributions of staff, the volumes edited by A.R Smith (1971, 1976 and 1980) 

on manpower planning systems, manpower planning in the civil services and corporate manpower 

planning, the classic book by S. Vajida (1978) on the mathematics of manpower planning and the 

seminal book by Bartholomew (1982). It is also not a coincidence at all that, in a series of papers, the 

pioneers of goal programming and DEA, A. Charnes and W.W. Cooper with their colleagues (1968, 

1972, 1973, 1976) set the fundamentals for predictive and normative manpower modelling for civil 

services and/or corporate settings, using both probabilistic approaches and mathematical 

programming techniques, including multiple objective optimization. They even considered crucial 
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issues that are still at the top of the the social agenda of our times, such as “ensuring equal 

employment opportunity representation of social groups within the organization that matches their 

representation in the environment surrounding the organization”. In addition, Hopkins (1980) used a 

Markov chain based model as an aid in setting realistic numerical goals for the employment of 

women and minority persons in a real university environment.  

The key features of Markov chains as an instrument for investigating future distributions of 

populations across states is that the recruitment, the internal transitions and the attrition 

probabilities drive the whole process. Manpower in organisations of this type, consists of sub-groups 

who interact purposefully and are usually stratified into network structures. Typically, state vectors 

(also called stock vectors) are used to describe the distribution of people (numbers of employees) 

that reside in various states of the system (groups, grades etc.) based on miscellaneous attributes 

such as job positions, departments, length of stay or age, skills, job description etc. These sub-groups 

are sometimes hierarchical in the sense that the grades correspond to promotional opportunities. 

The state vectors change in time according to flows which are typically regulated by internal 

transfers, wastage due to attrition, and recruitment of newcomers. The flow probabilities reflect, in 

most decision contexts, stochastic outcomes of purposeful actions such as recruitment and retention 

policies in manpower planning and medical treatments and their impact on health outcomes of a 

population. 

In a MCs approach to human resource planning staff levels always converge in some asymptotic 

form when internal probabilities and recruitment vectors are kept constant over time. However, in 

reality, organizations exercise control over their personnel strategies to guide the process towards 

desired staff levels. In this respect, one of the many problems that has been given attention to in the 

Markov manpower literature is the problem of attaining desired staff levels, and in particular the 

achievement of desired structural configurations of personnel, using control variables such as 

recruitment flows, internal transfers, retirement and at times  redundancies. The Markovian 

modelling framework lends itself naturally to this kind of personnel planning since it encompasses 

staff flows reflected in transition probabilities. The target is to use Markovian models in various 

forms to describe personnel mobility (forecasting aspect) and to support the preconditions to create 

feasible, satisfying or even optimal policies for attaining or maintaining appropriate population 

structures (normative aspect).  

Formally, MC based manpower models are divided into two main streams; explorative and 

normative.  The explorative (descriptive, predictive) models are used to get insight into the way a 

system operates (descriptive) and how it might respond to various interventions (predictive).  

Normative (optimization) models are used to identify optimal decisions based on control variables 
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such as recruitment, training, promotional rates or retention. Markovian human resource models fall 

in the exploratory category and are used for predicting the population levels of organizations, 

contingent on alternative scenarios of the future (Wang, 2005). The solution of such stochastic 

models delivers insights, predictions and foresights regarding the organization’s personnel and can 

guide purposeful interventions to achieve various goals towards planning and controlling a system’s 

structure. A good account of baseline modelling tools can be found in two influential texts: 

Bartholomew (1982) and Bartholomew et al. (1991). Other approaches of stochastic models in 

manpower planning using MCs can be found in Vassiliou (1982) on the nonhomogeneous Markov 

system, Vassiliou and Tsantas (1984) on one step maintainability, Vassiliou and Georgiou (1990) on 

asymptotic behaviour,  McClean and Montgomery (1999) on semi-Markov models, Papadopoulou 

and Vassiliou (1994, 1999) on semi-Markov asymptotic theory, Nilakantan and Raghavendra (2005) 

on proportionality constraints of attainability, Ossai and Uche (2009) on departmentalized 

manpower structures, Guerry (2011) on the hidden heterogeneity in manpower systems, and more 

recently, Dimitriou and Georgiou (2020) who elaborated on departmental mobility in continuous 

time multivariate Markov settings. From the vast body of the relevant literature we distinguish two 

papers that are somewhat closer to our proposed approach, namely De Feyter and Guerry (2009) 

and Nilakantan (2015). Nilakantan (2015) established an effectiveness measure for the evaluation of 

staffing policies in Markov manpower systems, in relation to the career growth prospects afforded 

by the system to its members. Our paper has a slight similarity in that it evaluates policies specified 

up front.  However, we measure the effectiveness of proposed manpower flows rather than the 

career prospects at employee level using management aspirations. In De Feyter and Guerry (2009) 

the authors propose an approach for the evaluation of recruitment strategies.  We too address the 

issue of identifying efficacious recruitment strategies but unlike   De Feyter and Guerry (2009) who 

use probabilities and fuzzy membership functions, we use DM judgements and preferences which 

are more user-friendly concepts. We compare later their approach to ours using an example from 

their paper.   

A number of applications and case studies have emerged in the literature in tandem with the 

theoretical development of the field as outlined above.  A frequent area of application of MCs is that 

of academic manpower planning, see Ledwith (2019) for a recent review. In earlier studies, such as 

Bleau (1981) and Hackett et al. (1999) we see that Markov approaches provide additional insight 

when planning for personnel in short or midterm horizons. In the academic setting the states of the 

Markov chain usually represent teaching and research staff by academic discipline and grade. The 

transitions in, out, and within the states would reflect stochastic outcomes of a college’s policies on 

recruitment, attrition and promotion. The stochasticity is of course also influenced by random 
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events and factors not in the gift of the University, such as the external market for academic staff, 

Government policies on education etc.  

Another major area of application of manpower planning is that of military forces. There exist 

several applications of   both forecasting and normative MC methodologies for projecting career 

progressions and for modelling personnel’s aggregate mobility behaviour. For a good review see 

Wang (2005) and Ledwith (2019).  Among the first to employ Markov chains to determine the 

structure of armed forces was Brothers (1974). In 1984, the RAND Corporation issued a report 

regarding the use of Markov chain models to predict the probability of officers staying in the Air 

Force (Gotz and McCall, 1984). Another   well-known framework was put forward by Gass et al. 

(1988) and Gass (1991), who proposed Markov chain models and goal programming techniques to 

forecast flows and determine optimal policies using as personnel states combinations of ranks, skills, 

operational units and length of service. Hall (2009), built a Markov model to determine optimal 

policies regarding officers’ decision for retirement (see also Cashbaugh et al. 2007). Škulj et al. 

(2008) presented a case study using Markovian manpower planning for the Slovenian armed forces 

to produce projections for several years ahead and to apply appropriate policies for achieving 

specific staff level goals. Van Utterbeeck et al. (2009), presented a combined simulation and Markov 

chain model for human resource management in the Belgian Defence Forces. Recently, Zais and 

Zhang (2016), developed a Markov chain model to predict individualized stay/leave decisions within 

the US Army and Ledwith (2019) presented a Markov model with absorbing states to forecast 

educational composition according to arrival and internal transition probabilities for a military 

academy.  

Another field of application of MC manpower planning is that of healthcare organizations. Early 

applications of Markovian models in health care can be found in Shuman et al. (1971) and Smith et 

al. (1976) who developed mathematical programming models for investigating optimal staffing in 

health services. Trivedi et al. (1987) focused their attention on Markov models for health care 

manpower supply predictions and McClean et al. (2011) developed a modelling framework that 

combines Markov chains with simulation to investigate the whole care system of stroke patients for 

Belfast City Hospital. Josiah (2014) introduced a Markov forecasting model as a tool for Health Corps 

Administrators to forecast inventory levels across ranks and subspecialties. Also, Lagarde and Cairns 

(2012) used a Markov model to examine the dynamics of movements of health care workers in the 

professional labour market in South Africa.  In the same direction, Srikanth (2015) modelled the 

progression of diabetic retinopathy estimating the time a patient spends on each one of five stages 

of the disease from mild retinopathy through to moderate, severe, PDR (Proliferative Diabetic 

Retinopathy) and ultimately blindness (single or double). Using new patient arrivals to each stage 
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and transitions of existing patients consequent on any medical interventions, the number of patients 

at each stage of the disease at future points in time can be estimated.  This information clearly has 

important implications both for prognosis at patient level but also for resource planning at health 

service provider level.  In a recent review of the relevant literature, Bartelt‑Hofer et al. (2020), 

report that “Markov models using transition states were the most common type of modelling 

approach. Cost-utility models using a mid- to long-term time horizon with a national payer 

perspective were the most frequent type of economic evaluation identified”.  A good account of 

patient flow modelling of healthcare delivery and performance analysis using various techniques 

such as queueing models, Markov chains, simulation modelling and statistical methods, can be 

found in Bhattacharjee and Ray (2014).  

1.3 The research gap and the contribution in this paper 

Although as noted above there is strong evidence that the HR community recognizes the need for 

strategic manpower planning, it seems that barriers such as preoccupation with short-term activities 

and the complexity of uncertainty hinder the wider adoption of MC manpower planning models.  

Taylor (2005) points out that when business decision makers try to predict a company’s internal 

labour supply they lean towards empirical judgements and intuition and not on a thorough statistical 

analysis. Škulj et al. (2014) mention that other reasons raised by researchers in the field of 

management are hostility to statistical (quantitative) techniques, preference of intuitive judgment, 

ignorance, and short-term mentality. The reasons put forward in Taylor (2005) and Škulj et al. (2014) 

are clearly in line with the major findings of the report by Johnson and Brown (2004) attributed to 

the rapid change of the environment and high level of uncertainty in contemporary business 

environment.  As Oczki (2014) emphasises, the doubts concerning the application of more formal 

(quantitative) methods in systematic labour force prediction and optimization, should not hinder the 

fact that these approaches, in the long run, can significantly contribute to an organization’s success.  

In this respect, the method developed here aims to make the handling of uncertainty in an MC 

context more tractable. The majority of MCs approaches in manpower planning focus on examining 

the population’s (mostly) stochastic flowing mechanism  and attempt to determine an optimal 

strategy (e.g. recruitment or promotion), that attains or maintains specific targets in terms of 

personnel.  However, to the extent that these mobility patterns can be influenced by the actions of 

an agent (University in the case of employees, clinicians in the case of patients, the Department of 

Defence in the case of military personnel etc.) the issue arises how to practically identify alternative 

actions an agent can take to achieve desirable outcomes which are stochastic in nature.  The 

approach needs to be tractable so as to be more accessible to non-specialist managers and 

practitioners. This paper recognizes the gap in existing Markovian manpower planning methods to 
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handle stochasticity and optimization in a more tractable manner and puts forward an approach to 

harness the power of DEA to fill this gap. Within DEA it is possible to specify a set of potential 

feasible recruitment strategies and create a space of an infinite number of alternative strategies as 

convex combinations of those specified. These feasible strategies can be evaluated to identify those 

best suited to the personnel targets. This information can then be used to design interventions that 

would influence the flows of the Markov Chain concerned to lead to the desired outcomes. Our 

approach, in effect does not require precise probabilities and uses instead judgement of likelihood of 

state of nature. These likelihoods are converted to weights in the DEA model making the solution 

much more amenable in practical situations than analytical solutions in a purely stochastic context.  

 The rest of the paper is organized as follows. The next section, Section 2, presents background 

theory and develops a radial version of the hybrid DEA - Markovian manpower model. Section 3 puts 

forward an alternative, additive version, of the hybrid DEA-Markov model, offering the user the 

ability to incorporate additional preferences and likelihood information over potential manpower 

flows.  Section 4 presents an ex post measure of the efficacy of alternative personnel flows. Section 

5 illustrates the methodology developed using numerical data. The paper concludes in section 6.  
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2. Theoretical framework  

2.1 The Markov manpower system and the classic problem of attainability 

Markov manpower models stretch more than four decades back. The cornerstone of human 

resource planning at the macro level is the classification of the workforce, into subgroups according 

to some common characteristics. These subgroups are called classes, states, or grades of the Markov 

Chain and their levels, (stock levels), characterise the population structure of the organisation. The 

mobility of staff is investigated by considering the various forms that stock vectors might take as a 

result of rules, functional assumptions, interventions and randomness acting on the system. The 

majority of these models use discrete time scales and a common notation for the number of states 

(grades) of a system is k.  The personnel stocks (the state vector) at any point in time t, is denoted by 

a row vector N(t), for t = 0, 1, 2… The initial population structure N(0) typically comprises non 

negative real numbers and it is a designated known initial vector or a vector in a presumed  steady 

state. 

In general, for any specific starting point at time t-1, this initial stock vector is denoted by N(t-1). 

Then, the baseline non-homogeneous Markov system is realized by the difference equation in (1). 

 ( )   (   ) (   )  [ (   )    
 (   )    (   )]  (   )    (1) 

where,  (   )  [  
      

        
   ] is the known stock vector of the organization’s classes at 

time t-1 and  ( )  [  
    

      
 ]  denotes the one step resulting vector of the expected 

population levels, based on a discrete time scale t=0,1,2,… The transition matrix denoted by P(t-1) 

contains the probabilities of internal mobility (i.e. flows amongst the k grades of the system) and 

obey the Markov property (no memory). For simplicity, we assume that the transition matrix is 

homogeneous in time, thus P(t) can be substituted by P for all t=0,1,… The transition matrix is 

substochastic since there is an additional state, denoted by k+1, which accepts attrition of all types 

(i.e. retirement, dismissal, voluntary leaving etc). In this respect,     
  is a column vector including 

the probabilities of attrition (calculated by 1-∑    
 
    for every i=1,2,…k) where pij is the transition 

probability from state i to state j.   (   )    
  is the expected number of leavers (attrition) during 

the time interval [t-1, t). ΔΤ(t-1) denotes the probable expansion of the system (theoretically, ΔΤ(t-1) 

cannot be negative.) We then have a probability recruitment vector, which often serves as the 

control variable if our aim is to drive the system towards some desirable population structure in a 

single or in several steps in time (or even asymptotically). This row recruitment vector, denoted by 

p0(t-1), is essentially a stochastic vector containing the probabilities for both types of recruitment, 

that is for newcomers due to expansion   (   ) and attrition replacements due to  (  
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 )    
 (   )  who  all enter the system in some of its k grades. Using a homogenous in time 

transition matrix, we get the well-known simpler form of the homogeneous model, depicted in (2).  

 ( )   (   )  [ (   )    
    (   )]  (   )      (2). 

As it is obvious, the resulting expected structure N(t)2 depends on the population structure at time 

(t-1), on the internal flows regulated by the transition matrix P and by a recruitment distribution 

stochastic vector denoted by   
(   )

.  

In the context of the foregoing discussion we take the stock vector as reflecting job positions or 

placeholders in general rather than specific individuals.  It is true that in the case of specific persons 

everybody leaves in the long run, ending up in the absorbing state k+1. That is not the case for the 

stock vector of placeholders (Vassiliou et al. 1990, Vassiliou and Papadopoulou, 1992). The origin of 

this concept lies in Bartholomew (1982) where it is stressed that “an open system in which gains and 

losses were equal could be treated as closed. Each person who leaves can be paired with a new 

entrant and the two changes treated as one. Thus a transition from grade i to j can either take place 

within the system or by loss from grade i and replacement to grade j ...”.  Since we observe the 

system at a discrete time scale, it is common to assume that the interval between t-1 to t provides 

enough time to accommodate and absorb any lag between attrition and recruitment.    

We develop our approach assuming that the organisation aims at a desired population structure 

denoted N* to be attained by a given time horizon.  The decision maker wishes to identify 

interventions that will influence the transition patterns so as to attain N* in one step.  Clearly the 

use of one step has implications for the duration of the planning horizon, in that the longer the 

planning horizon the more the steps needed to attain N*.  Thus, the specification of N* can be such 

that the planning horizon is of a corresponding duration. Assuming then one step planning horizon 

the model of equation (2) takes the following form for a specific recruitment vector   (   ): 

    (   )  [ (   )    
    (   )]  (   )     (3). 

We can simplify the formulation in (3) by using recruitment flows instead of probability recruitment 

vectors. This is shown in equation (4) where  (   )  is as in (3) and  (   ) denotes a 

recruitment flow vector, 

                                                             
2 Another form of equation (1) is the following:  ( )   (   ) (   )  [  (   )]  (   )   

where  (   )   (   )      
 (   )  (   ) is in essence a stochastic matrix that includes the 

probabilities that regulate both internal transitions and recruitment attributed to attrition. This form has been 
widely used in the literature to study various issues related to system evolving either on discrete time points or 
in its asymptotic forms and its variability properties, depending on the properties of the matrix Q (which can 
be for example, regular, periodic or cyclic depending on the embedded markov chain).   
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    (   )   (   )          (4). 

This formulation provides a much more flexible pattern of flow than those in equation (3). 

Conceptually R(t-1) is equal to [ (   )    
    (   )]  (   ) and in that sense is subject to 

uncertainty. However, in our approach we shall use alternative flow vectors (candidate policies) to 

cover the domain of potential flow vectors drawing on the knowledge of the user about the decision 

context at hand. When R(t-1) equals [ (   )    
    (   )]  (   ) it means that we really 

do need to secure the covering of vacancies that arise during a period and we could also have some 

expansion designated by ΔΤ(0). It is interesting to rewrite (4) in the equivalent form depicted in (5) 

where e’ is a column vector of ones.   

    (   )   (   )  
 (   )

 (   )  
          (5). 

In this case, 
 (   )

 (   )  
 is in fact the corresponding recruitment mix equivalent to   (   ) in (3) and 

 (   )   represents the total population recruited.  

Clearly we cannot be certain N* can be attained in one step for a specific recruitment policy 

  (   ) or recruitment flow  (   ), and so we cannot be sure equation (3) or (4) is feasible. See 

for example (Bartholomew 1982, Vassiliou and Tsantas, 1984) for the necessary and sufficient 

conditions in order to have a feasible stochastic recruitment vector   (   ) that drives the system 

exactly to N*.  

In order to allow for the possibility that the equation in (4) may not be feasible for a given 

recruitment flow  (   ) we allow for the under or over attainment of components of the target 

N* by using deviation variables as in the goal programming context. This is shown in (6),  

    (   )   (   )               (6). 

The variables     and    are vectors of negative or positive deviations from the target N*. Equation 

(6) is always feasible since any excess or shortfall from the levels in N* are captured in the 

deviational variables    and   . This approach linearizes the model and also caters not only for 

attrition and/or expansion, but also for probable contraction of the system.  Since the aim is to 

attain the desired structure N*, typically both types of deviational variables are undesirable. As we 

will see later though, weights are used in our model to reflect the DM preferences.  The model to be 

developed will have a minimisation objective function which will ensure that at its optimal solution 

at most one of the deviational variables in each constraint of (6) can be positive.   

The ultimate aim is to attain a desired stock vector N*, from an initial structure N(0) (setting without 

loss of generality t-1 = 0, the initial time point). We address this aim by  assuming  that the 
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management of the organization can  come up with a set of potential recruitment flows to be 

explored for their compatibility with N* within the time horizon being considered. The flows 

management will specify, will reflect the range of possible combinations of the stable internal 

transitions and departures along with recruitments being planned.  These managerial views will 

draw on historical data on transitions, staff attrition and recruitments as a basis for projecting 

alternative visions of recruitment flows into the future.  We will take advantage of the DEA ability to 

then create an ‘infinite’ set of virtual recruitment flows to be explored for attaining N* from N(0).  

More precisely, we will use DEA to pursue simultaneously two aims:  On the one hand the potential 

recruitment vectors will each be evaluated for their own merit to guide the system to the desired 

personnel state denoted N*; on the other DEA will enable us to identify other potential recruitment 

flows, not initially specified by management, which may be even more efficacious in leading to N* or 

its proximity.   
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2.2 The development of a hybrid Markov-DEA model  

In the general form of DEA we have a collection of n Decision Making Units (DMUs) which use a set 

on m inputs (e.g. personnel, materials) to secure s outputs  (e.g. students taught, research outputs 

delivered etc.). The aim is to assess the relative efficiency of each DMU, in terms of minimum input 

levels that could support its output levels, compared to other DMUs in the set. (Output efficiency is 

defined in an analogous manner.) Full details of DEA can be found in a number of texts, including 

Thanassoulis (2001) and Cooper et al. (2007a).  We shall deploy the framework of DEA within the 

context of a Markov Chains approach to manpower planning.    

Let us denote by     and     respectively the level for the i-th input, i=1,…,k and the r-th output, 

r=1,…,m for DMU j. The technical input efficiency of a specific DMU denoted by j0 is the optimal 

value of θ in model (7). Any feasible set of the λ values in (7.1) and (7.2) identifies through a convex 

combination a virtual or real DMU within the feasible production possibility set created using data 

from the real DMUs j=1,2,….,n. Equations (7.1) assure that the virtual DMU uses no more than a 

fraction θ of the inputs of j0 and equations (7.2) ensure that the virtual DMU secures at least the 

output levels of DMU  j0. This model assumes variable returns to scale in that DMU j0 can be assessed 

only relative to other DMUs that have the same scale size as itself. The optimal value θ* in the 

objective function will reflect the lowest fraction to which the inputs of DMU j0 can be reduced 

without detriment to its output levels, using benchmarks from the n DMUs in the set. In this sense 

θ* is the (input) efficiency of DMU     

Min    [∑   
  ∑   

  
   

 
   ]                  (7) 

subject to: 

∑         
       

 
     for                         (7.1) 

∑         
      

 
     for                        (7.2) 

∑      
                     (7.3) 

                
    

    for all i and r, θ unrestricted and ε is a non-Archimedean 

infinitesimal. 

Using ε<<1 in the objective function, gives pre-emptive priority to the minimisation of θ and thus in 

effect the model is solved in two phases. In the first phase, priority is given to the minimization of 

the ‘radial efficiency’ measure θ. Consequently the model identifies a point that uses the lowest 

proportion θ* of the input levels of DMU j0 when output levels are at least as high as those of DMU 

  . Then maintaining the optimal value θ* of θ the model seeks the maximum sum of the slack 
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values(  
  and   

 ) to identify feasible improvements to input and output levels after input levels are 

reduced proportionally to the fraction θ*. (This solution process is often carried out in two-stages, 

avoiding the need to use ε, a non-Archimedean infinitesimal; e.g. see the manual for the PIM DEA 

software www.deasoftware.co.uk). If θ*=1 and no positive optimal slacks are found DMU j0 is 

identified as ‘Pareto’ efficient. However, even when θ*=1, if at least one positive optimal slack 

exists, the DMU is not Pareto efficient though it is lying on the boundary of feasible production 

points. DMU j0 is clearly not efficient if θ*<1, and even more so if additionally any optimal slack is 

positive.  Note that model (7) has always a feasible solution in which θ=1, and thus at its optimal 

solution we will have θ*≤1.  

We return now to the development of a hybrid DEA model that includes the homogeneous Markov 

system and can be used to establish a framework for assessing a set of potential alternative 

recruitment flows to attain a target manpower structure denoted N*. In this respect, we need to 

define our DMUs, their inputs and their corresponding outputs. We must also select input or output 

orientation accordingly and incorporate the DEA framework within the Markov population model. 

First, we define the DMUs as the set of (n) potential recruitment flows specified by management. 

Each alternative recruitment flow    ,           is a k-dimensional vector of staff categories,  

containing non negative  entries which we will treat as ‘inputs’ in the DEA framework.   The 

recruitment flows    ,           are  user specified.  They are the instrument by which the 

Decision Makers (DMs) can reflect the range of alternative person flows that can result from internal 

transitions and attritions and external in-flows. The DM will construct these flows drawing on 

historical transition and attrition probabilities, combined with judgement of the evolving internal 

human resources and external recruitment environment going forward.  It is important to note that 

the DM is not expected to predict recruitment flows. Rather, using judgement, historical data and 

evolving strategies to lay out as wide as possible  a range of potential recruitment flows    , 

          to ensure that some average  of the strategies specified will materialise.  It is DEA that 

will assess the efficiency of alternative averages of the specified recruitment flows    ,           

to lead to the target  N*. The recruitment flows     in keeping with DEA can only take non negative 

values. However, any reductions in personnel desired within N* can still be catered for in our model 

through its goal programming structure which allows for both under and over attainment of 

components of N*. 

The proposed DEA model will have a notional output level of 1 in the spirit of the Benefit of the 

Doubt model (e.g. Karagiannis and Karagiannis, 2018). We shall explain the notional output level 

below after we develop the formulation of the model further.  We use an input orientation, 
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consistent with the notion that as staff costs money, ceteris paribus, the lower the staff flow levels 

the better.   

Let us denote the alternative recruitment flows     ,           where     [             ], 

   [             ] …    [             ] , and the target population structure    

[  
    

      
 ].  Thus     is the ith input level of the jth proposed recruitment flow specified by the 

user and Ni* the target level for input (staff category) i. For convenience, we shall use the notation 

N(0) for the initial vector of stock levels. We start with an initial population structure N(0) and we 

want to evaluate the relative ability (efficacy) of the potential recruitment flows Rj, j=1…n in respect 

of attaining the ideal population structure  N*.  We can use for this purpose the generic model in (7). 

The input constraints (7.1), when      is the object of the assessment takes the form:  

∑         
       

 
     for                (8). 

Here, the radial measure θ will capture the scope, if any, for  reducing all the levels of staff in    , 

keeping their mix constant, in pursuit of N*.  This scope can only be ascertained when we take into 

account the starting and the ideal terminal staff levels. This is done by recourse to the Markov 

manpower system detailed expression (6), which in vector form is reproduced below:  

    ( )         
     

  .         

The ith component of the vector above takes the form: 

  
  ∑  ( )      

            
      

  for              (9). 

We link expressions (8) and (9) by plugging into equation (9) the projection of     on the efficient 

frontier, that is  ∑      
 
    for            resulting in  

  
  ∑  ( )      

   ∑      
 
        

      
       

 (10). 

The formulation in (10) absorbs in the deviational variables any overshoots or shortfalls from N* that 

could arise, contingent on the optimal projection of      to the target in  ∑   
    

 
    (superscripts * 

indicate optimal values of λ).  It is recalled that each flow Rj reflects a different variant perceived by 

the DMs of the historical internal and recruitment transition probabilities. This enables the DMs to 

map out the multiple potential future “states of nature” so far as staff level transitions, attritions 

and recruitments are concerned. Preserving the mix of personnel of each Rj when solving the DEA 

model signals that the DM has no granular level insights as to which components of  Rj  are more and 

which less likely to materialise as future states of nature. (We relax this assumption later.)  The 

Markovian equations in (10) when integrated in a DEA model will yield  the “best” virtual 
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recruitment compatible with the user specified potential       We refer to this as the best feasible 

projections     
   of     where :  

    
    ∑   

           
 
      

   for i=1,2,…,k     

 (11). 

As already indicated, the DEA model we shall solve to derive     
   is input oriented with priority to 

preserve the flow mix in        Thus our model will determine the optimal path to N* when the 

historical transition probabilities combined with any personnel expansion or contraction aims are 

reflected in    . The optimal path is aimed to be, where feasible, at contracted levels of the mix of 

personnel reflected in     . To the extent that any slacks   
  take positive values at optimality they 

will reflect deviations needed from the strict proportionality captured in      for reaching    .  

Finally to create feasible in principle convex combinations of the personnel flows proposed by 

management we impose the familiar in DEA convexity constraint in (12).   

∑      
              

 (12). 

Thus our model is the classical Variable Returns to Scale model albeit with a notional ‘output level’ of 

1 across all units captured in the convexity constraint. DEA models where DMUs have a common 

input or output level are usually referred to as Benefit of the Doubt (BoD) models (Lovell and Pastor 

1999, Rogge et al. 2017, Karagiannis and Karagiannis, 2018). Such models act as instruments to 

compare on desirability a set of alternatives, personnel flows in our case, where the attributes of the 

alternative being assessed are given the most favourable weights possible in measuring its 

desirability compared to the other alternatives in the set. 

Finally in the context of the basic DEA model in (7) the objective function of the hybrid DEA –Markov 

model is  

Min     {∑   
  

   }     {∑ (    
      

 ) 
   }      

 (13). 

The    and     are user specified weights. In order to give pre-emptive priority to the minimisation of 

θ,      and    should be set several orders of magnitude lower than the coefficient of θ.   Notice that 

since we wish to attain the specific target population levels of N*, both groups of deviational 

variables,     
           

 , are included in the objective function to be minimised.  The user could set 

different orders of magnitude for     and    for example to signify that the minimization of the 

deviational variables       
           

  is to take priority over the maximization of the slacks si.  
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Combining together (13), (12), (10) and (8) we arrive at  the following hybrid DEA-Markov model to 

assess the efficacy of  the potential recruitment flow vector Rjo  relative to  the ideal manpower 

structure N*: 

Min     {∑   
  

   }     {∑ (    
      

 ) 
   }       (14) 

subject to 

∑         
       

 
     for                       

 (14.1) 

  
  ∑  ( )      

   ∑      
 
        

      
   for                    

 (14.2) 

∑      
                      

 (14.3) 

        
      

      
    for all i and j. 

The model in (14) is essentially in the spirit of the basic DEA model (7). It gives priority to a radial 

contraction factor θ of a proposed mix of recruitment but it is embedded in the Markovian 

manpower model in a goal programming setting. The goal programming approach is necessary as 

none of the ex-ante proposed recruitment flows, deployed to give expression to the future uncertain 

personnel flows, is guaranteed to lead to the desired ideal population structure N* in one step.  The 

model reflects the notion of attainability of potential recruitment flows in the Markovian manpower 

context and measures the relative efficacy of each one in that context, through the capacity to 

produce a projected flow vector that will take the system as close as possible to the target N*.   

If at the optimal solution to (14) θ*=1 and all slacks and deviational variables are zero then      is 

fully efficient in the sense that it leads to N* directly as specified ab initio in combination with 

anticipated internal transitions. If θ* is not 1 and/or any one of the slacks s or deviational variables  

    
          

   is positive, it means        does not lead to the ideal population structure N* in one 

step. When a flow Rjo does have a radial contraction factor θ*=1 but it has some slacks and/or 

deviational variables positive at the optimal solution to (14) then some but not all components of N* 

are attainable from N(0) in one step, should Rjo materialise in reality. Perhaps the more interesting 

case, is the one of a potential flow vector Rjo where (14) yields a contraction factor θ*<1 while some 

slacks s and/or deviational variables d are positive.  In this case, no component of N* is attainable in 

one step from N(0), should  Rjo materialise in reality. When Rjo is not fully efficient  the solution of 

the model  through the target      
  ∑   

    
 
    will identify a potential flow which is more 

efficacious than Rjo itself in terms of attaining in one step the target N*. The flows are states of 
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nature and not in the gift of the DM. However, the DM through the strategies, policies and timings 

thereof that they adopt can influence the manpower flows. Thus, where the DM has deemed Rjo as a 

potential state of nature and model (14) yields a more efficacious ∑   
    

 
   , the DM can modify the 

Rjo-related policies, timings  and strategies to  favour as far as possible the materialisation of the 

flow depicted in ∑   
    

 
     rather than Rjo. It is in this context that the hybrid DEA-Markovian 

model developed here constitutes a useful aid to the decision making process for manpower 

planning.  

It should be noted that it is possible that none of the alternative potential flow vectors R turns out to 

be fully efficient. Nevertheless, the goal programming formulation of DEA, by construction always 

yields a feasible solution. The hybrid DEA-Markov model proposed here represents a formulation of 

the Markovian population model to accommodate the attainability problem. In this context it is 

using a set of alternative potential recruitment policies specified by the DM drawing on historical 

transitions data and managerial objectives through recruitment, hiring or attrition. The notion of 

using alternative ‘flows’ will differ by Markovian context. For example in a healthcare context the 

recruitment flows R would represent patient flows to the stages of some chronic condition such as 

diabetic retinopathy.  The flows as in manpower planning will not be at the gift of the care provider 

but will be influenced by the nature and timing of clinical interventions such as screening, treatment, 

comorbidities etc. The model will then be used as above to aid the development of interventions 

consistent with the best (most efficient) patient flows identified through model (14).  

3. A non-radial variant of the hybrid DEA-Markov model  

The hybrid DEA-Markov model as presented so far assesses the relative effectiveness of alternative 

recruitment flows R, in leading to an ideal target N* assuming the DM has no prior information as to 

which components of a flow Rj are more likely to materialise, and no preferences such that getting 

closer to some components of N* may be more desirable than attaining others. In this section we 

relax these two assumptions. In some real life cases it is possible that the organisation might have a 

perception on the probabilities of materialisation on certain inflows in a stochastic setting, or varying 

degrees of preference to achieve at their ideal level different categories of personnel contained 

within N*.  For example, in a Business School of a University where restructuring may be taking 

place, it may be more desirable to achieve lead researchers at full Professor level than junior 

teaching fellows at this juncture in order to then grow academic staff round core lead research 

themes. Moreover, in specifying alternative potential flows and taking into account the much 

stronger competition between institutions for lead researchers than junior academic staff, the 

components within flows R relating to lead researchers may be less certain than those relating to 
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junior staff. We propose an additive variant of the hybrid DEA-Markov manpower model developed 

in the previous section in order to better reflect this decision context.   

The additive model will afford us the facility to weight any deviations at component level both 

between Rj and its projection ∑   
    

 
    on the one hand, and between the attained and the ideal 

target N* on the other. The classical additive DEA model was first proposed by Charnes et al. (1985). 

We adapt the objective function to include two parts: the minimization of the undesired weighted 

slacks and the undesired weighted deviational variables. The weights are user specified. Those 

relating to the slacks s express the degree of confidence the DM has about the outturn of each 

component of Rj0 which is the object of the assessment. The weights relating to the deviational 

variables reflect the relative importance the user attaches to attaining the number of staff desired 

at each category or level k.  The weights in both cases need to  take into account the implicit 

weighting each staff category may already have by virtue of different scale sizes of staff categories, 

should that be the case – e.g. fewer managers compared to shop floor personnel in say a factory.  

The additive hybrid DEA-Markov model is in (15). 

For each staff category/level i, the optimal values of s- and s+ in model (15) reflect respectively the 

shortfall or surplus from the optimal projection ∑   
    

 
     of the flow Rj0 being assessed.  The 

optimal projection is with respect to attaining N*, contingent on the weights z on the deviational 

variables d in model (15) (explained below). The higher the probability the DM believes to be of 

attaining the level of staff category i compared to that of m, the higher should be the weights 

attaching on the slacks  si
-/ si

+ compared to those placed on sm
-/ sm

+   in model (15). This would 

prioritise the minimisation of si
-/ si

+ compared to sm
-/ sm

+ which will favour the optimal projection 

∑   
    

 
     to have a value for component i closer to that in Rj0 compared to component m.  This 

would in turn, ceteris paribus, lead to the reflection ∑   
    

 
    being closer to the more likely 

outturn levels of  Rj0. Thus the model in (15) will be assessing the efficacy of the reflection ∑   
    

 
    

whose levels reflect best the probable outturn levels of the components of Rj0 .  

The weights pertaining to the deviations denoted by d+ and d-   in (15) give expression to the varying 

degrees of desirability to reach the different components of the ideal target N* .  The more desirable 

to reach a component of the target i compared to m the higher the weight attaching to the 

deviations d of i compared to m.  Moreover, if the user is more averse to exceeding rather than 

falling short of the target of component i of N* then di
+ would merit a higher weight than di

-. The 

converse is also true.  In many instances in practice, including that of manpower planning, 

overshooting or undershooting a target can have cost implications. For example undershooting a 

target level of staff of a certain category may have significant cost implications in terms of lost 
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output of goods or services including reputational costs until the shortfall in personnel is made good. 

Similarly, overshooting a personnel target will have cost implications in terms of retaining 

underutilised staff or redundancy payments.  Such cost considerations can be estimated and then 

used by the DM in arriving at the weights to be used in model (15).  The minimisation of the sum of 

weighted deviational variables d might be given higher priority than the minimisation of  the 

weighted sum of slacks s, as the minimisation of the deviational variables d is the main instrument 

for identifying recruitment policies compatible with the organisation’s desired  manpower structure  

N*.   

Denoting the weights of the slacks by   
  ,   

 and the weights of the deviational variables  as   
  and 

  
  respectively, the additive DEA- Markov manpower model is as in (15).  

Min {∑   
   

  ∑   
   

  
   

 
   }   {∑ (  

     
 )  ∑ (  

     
 ) 

   
 
   }    (15) 

subject to 

∑         
    

      
 
     for                      

 (15.1) 

  
  ∑  ( )      

   ∑      
 
        

      
   for                   

 (15.2) 

∑      
                      

 (15.3) 

  ,   
    

      
      

   . 

The model in (15), as that in (14), is an instrument to aid the DM in arriving at policies for moving as 

close to the desired target N* as possible. The weights   
 ,   

  on the slacks s and the weights   
  

and   
   on the deviational variables  give the DM the ability to incorporate in the model in (15) 

subjective judgement both on the degree of uncertainty and the degree of desirability of attaining 

individual staff categories. Moreover, through varying the magnitudes of the weights for s- relative 

to the weight for s+ the DM can further express the degree of certainty when it is more likely a 

component might be over achieved rather than under attained, it being the case that the less likely 

an attainment the lower the weight pertaining to it.  

The DMs specify multiple potential flows Rj which reflect historical transitions and attritions in 

personnel along with potential recruitments. All these are not in the gift of the DM but are generally 

influenced by policies adopted by the DM. Model (14) would be deployed where the DM has an 

equal preference over attaining individual component levels of N* and no varying prior expectation  

at component level of each  Rj  as to the likelihood of materialising.  In contrast, the model in (15) 

would be the one of choice where the DM has varying degrees of  preference over attaining 
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individual component levels of N* and/or  varying prior expectation  at component level of each  Rj  

as to the likelihood of materialising. In both cases model (15) offers a targeted exploration of the 

specified flows Rj   and those created as convex combinations of the former.   

Model (15), through the weighting structure over the slacks s and the deviational variables d, 

identifies convex combinations  ∑   
    

 
     or specified flows Rj that would be best to aim for under 

the preference structure concerned. Clearly if the instance of model (15) when solved yields zero 

values for all slacks s and deviational variables d, then N* is one step attainable from N(0)  were  Rjo 

proves to be the state of nature that materialises.  If any one of the (optimal) slacks    
    

  or 

deviational variables      
          

   is positive  it  would mean the DM would need to adopt internal 

policies to steer the flow Rjo  in the direction of the flow in  ∑   
    

 
     in order to better, if not fully,  

attain  N*.  The levers in the gift of DMs to steer Rjo in the direction of   ∑   
    

 
    are the internal 

policies the organisation adopts.  These may include talent management, training, job rotation, etc. 

(for a pertinent Markov model see, for example, Georgiou and Tsantas, 2002). In this respect, 

management can influence transition patterns directly or indirectly. Our approach follows an 

indirect path towards influencing these transitions.  It is important to recall however, that the 

effectiveness of model (15) to lead to suitable policies for attaining N* depends on the choice of the 

weights for slack and deviational variables. The weights need to reflect, as noted above, degrees of 

certainty over expected states of nature and degrees of desirability of attaining different 

components of attain  N*. In addition, the weights need to reflect the scale of measurement of 

different components of N*. In view of the uncertainty about future states of nature and the 

subjective nature of degrees of desirability over the attainment of each component of N*, in practice 

the user could opt for sensitivity analysis to arrive at a more robust determination of the 

interventions that may be adopted for attaining N*. Such sensitivity analysis would involve 

specifying alternative sets of personnel flows Rj, weights   
 ,   

  on the slacks s and weights   
  and 

  
   on the deviational variables and then using the model in (15) in alternative ‘what if’ runs to 

identify, should it exist, a converging notion of the interventions needed for attaining N*.   

4. A composite slack based metric of efficacy  

We conclude the methodology section by noting that once model (14) or (15) is solved it is possible 

to compute a composite measure of the efficacy of a recruitment vector Rjo relative to the target  

N*. The measure is akin to the slack-based measures of efficiency found in the DEA literature, e.g. 

Tone (2001) and Cooper et al. (2007b).  We propose the measure ρ in (16) which is multiplicatively 

decomposed. The first bracketed term to which we will refer as ρs, measures the distance of the flow 

Rjo under assessment from its optimal projection  ∑   
    

 
     derived from the model solved.  The 
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first term in (16)  equals 1 when Rjo is identical with the vector ∑   
    

 
    . Otherwise it exceeds 1 

and the larger its value  the larger the deviation between the projection ∑   
    

 
    and  Rjo.   

  (  
 

 
∑

  
    

 

    

 
   )  (  

 

 
∑

    
      

 

  
 

 
   )      (16) 

The second bracketed term in (16), to which we will refer as ρd, reflects the distance of the ultimate 

level of personnel of each category derived through the model solved from the corresponding ideal 

level in N*. If the ideal target N* were to be attained the value of the second bracketed term would 

be 1. Otherwise it would exceed 1 and the larger its value the larger the deviation between the 

ultimate level of personnel of each category derived through the model solved from the 

corresponding ideal level in N*.  

It is noted that though under and over shoots of components s and d of each category i of staff are 

included in both the bracketed terms of (16), by the nature of the minimization models (14) and (15) 

solved, at most only one of the s and d per i can be positive at the optimal solution to either model. 

The aggregate measure in (16) is monotone increasing in each shortfall or overshoot and it is 

inspired by the Slack-Based Measure (SBM) of efficiency used in the DEA literature. The SBM 

measure proposed by Tone (2001) is also multiplicatively decomposed, one term reflecting input and 

the second term output inefficiency. These inefficiencies correspond in (16) to distances between  

∑   
    

 
     and  Rjo. on the one hand, and between ultimate personnel levels and the ideal target N* 

on the other.  

Note that when the aggregate ρ equals 1 in (16), Rjo.leads in one step to target N*.  Otherwise we 

have ρ>1 in which case it is still possible to have attained the target N* but only if ρd in (16) is 1.  In 

this latter case, the value of ρ>1 would indicate that Rjo. needed adjustment to ∑   
    

 
    before it 

could lead to the ideal  target N*. In contrast if ρ>1 but ρs in (16) is 1, it would indicate that even if  

Rjo. is identical  to ∑   
    

 
    it still does not lead in one step to the target N*.   

A variant of the model proposed in (15) could be to replace its objective function with the measure 

in (16) and then solve the resulting model using nonlinear programming techniques or linear 

transformations based on the linear fractional programming method proposed by Charnes and 

Cooper (1962). In the interests of simplicity we do not pursue this avenue further. We instead 

recommend using the appropriate to  DM preferences radial or the additive DEA-Markov model in 

(14) or (15) to explore alternative routes to attaining the ideal staff levels N*. Then ex post the 

expression in (16) can be used, if desired, to capture  the degree of efficacy of each proposed 

recruitment vector Rjo for attaining the ideal staff levels in N*.  This approach is amenable to the DM 

varying progressively the combinations of weights and specified alternative possible personnel flows 
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in order to carry out sensitivity analysis as noted above. In view of the uncertainty inevitably 

surrounding both the DM preference weights and the future states of nature sensitivity analysis is a 

valuable tool for mitigating the impacts of uncertainty. 

5. Numerical Illustrations 

5.1 An illustrative application of the radial DEA-Markovian model 

To illustrate the procedure of evaluating potential sets of recruitment flows using the radial  hybrid 

DEA-Markov model in (14) we assume that we have an organization with four personnel grades, that 

is, k=4. The initial population vector is  ( )  [            ] . We assume that 

managerial aspirations look forward to a future population structure denoted by 

   [            ]. The internal transitions probabilities have been estimated from 

historical mobility records (see Bartholomew et al. 1991) and are provided in the following time-

homogeneous transition matrix P for the time horizon pertaining to the target N*.  

  [

                
                
                
                

] 

The transition matrix, is upper triangular, denoting a common case in a managerial setting of 

negligible demotion probabilities. We further assume that the management examines the historical 

records of transitions, recruitment and mobility patterns and taking into account its own goals and 

the uncertainty surrounding future internal and external transitions it comes up with a set of seven 

potential recruitment flows in the sense that they capture the range of possible variations of 

recruitment to each level for a certain personnel prospective philosophy. The set is provided here: 

   [            ] ,    [           ] ,    [         ] , 

   [           ] , 

    [           ],    [            ] ,    [            ]. 

For illustrative purposes we have ensured that amongst the above recruitment flows there is one 

capable of attaining the desired structure N* in a single step.  

To apply the hybrid DEA-Markov model in (14) we employ lexicographic optimization by prioritising 

the minimization of θ, followed by the maximization of the input slacks and finally the minimization 

of the deviational variables.  The weights we have used in the objective function appear in brackets 

next to the s and d variables in Table 1.  The weights are consistent with assuming we have no prior 

information on which components of a candidate flow are more likely to materialise, and having 

equal preferences over the attainment of the target staff components. In the interests of simplicity 

we do not normalise weights of the slacks or for the deviations for the differences in magnitude 
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between components of the targets or the staff flows being tested. We have however, assumed a 

higher weight for the slacks s compared  to the deviational variables  d  consistent with the notion 

that the projections of the hypothesised staff flows being as realistic in terms of possible outturn 

values as possible before consequent distances from the targets N* are assessed.  Thus for example, 

the model for potential flow R1 is as in (17): 

Min     {∑   
  

   }     {∑ (   
     

 ) 
   }       (17) 

Subject to 
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]                                               
     

      

[            ][

    
    
 
 

]                                              
     

      

[            ][

    
    
    
 

]                                             
     

      

[            ][

 
    
    
    

]                                            
     

      

                                     

      ,   
     

     
   for all i and j. 

Table 1, shows the results after solving the model in (17) as above, modified accordingly for each 

one of the seven potential recruitment flows in turn. As we can see, there is only one fully efficient 

recruitment flow in the strict sense, R3, as it attains N* in one step when starting from N(0). In this 

case, the optimal value of λ3 equals 1 when the instance of model (14) relates to R3.  All slacks and 

deviational variables are zero and also the contraction factor θ has optimal value of 1 (no 

contraction of the levels in R3 is needed). We deduce that R3, is fully efficient. In terms of policy by 

the organisation the solution for R3 means no changes are required to current incentive structures, 

promotion, recruitment and retention decisions. Were  R3 to prevail as state of nature by the end of 

the period for which  N* is the target the target N* will be attained. 
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Please place Table 1 near here 

We note that when solving (17) in respect of R2 and R5 we find their corresponding λ2 and λ5, have 

values of 1 and the radial contraction θ = 1. However, the model still yields some positive deviational 

variables at its optimal solution. So flows R2 and R5 are deemed “weakly efficient”. We see that R2 is 

closer to the target N* than R5 as the deviational variables of R2, are much lower than those of R5. 

Looking at the SBM measure we see that ρ=1.3981 for R2 compared to ρ=2.3 for  R5, confirming the 

superiority of R2. The HR policy implications for the organisation are that whether R2 or R5 

materialises as state of nature by the end of the planning horizon no changes in HR policies are 

needed but N* itself is not likely to be attained. The optimal values of the deviational variables 

indicate the likely shortfalls and overshoots at each personnel grade.   

Looking next at R1 and R6 we find that they have a contraction factor θ of 1 but they are not 

benchmark. R1 has as benchmark (‘efficient peer’) R2 (λ2 = 1) and R6 has efficient peer R3 (λ3 = 1). It is 

recalled that each  flow such as  R1  will have been specified by the user to reflect some potential 

‘state of nature’ where recruitment is concerned (for example an optimistic view of recruiting staff 

of one category but pessimistic of recruiting staff of another category etc.).  In view of the fact that 

R2 dominates R1, if the prevailing internal and external transitions ultimately point towards the flow 

reflected in R1 materialising, management should make internal interventions (e.g. through rewards 

and sanctions) to steer the transition rates going forward towards those that gave rise to flow R2.  A 

similar statement can be made for R6 relative to R3 and it is further worth mentioning in this case 

that it is possible to attain the target N* should managerial actions steer R6  to  R3. This is also 

reflected in the ρd value of 1 under R3 and a ρs value equal to 1.5792.     

Finally, we have the two “inefficient” flows R4 and R7. R4 has a radial contraction θ= 0.975 and some 

slacks that provide a projection which is a convex combination of R2 and R3. In this case λ2=0.125 and 

λ3=0.875. This radial projection of R4 provides a virtual recruitment vector of [243.75, 143.75, 

24.375, 10.625]. This projection is close to the target N* a fact reflected also in the close to 1 value 

of ρd=1.0498 for R4 (see Table 1). This virtual projection prompts management to modify HR policies 

to influence transition probabilities, recruitment and retention away from those that favour R4 and 

towards those that favour the materialisation of R2 and R3 and especially R3, in view of the latter 

dominating the convex target with λ3=0.875.  Target virtual flows of this type illustrate an important 

contribution of DEA within the Markovian manpower planning model. They enable the user to 

identify potential recruitment flows, not initially specified, which offer a better path to the ideal 

manpower structure thus increasing the probability of attainability. An analogous interpretation of 

the solution for flow R4 can be made also for R7. However, as can be gathered from Table 1, in this 

case HR policies should aim towards those favouring R2 and even then the target  N*  will not be 
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likely to be reached  as can be seen from  the optimal deviation values for R7  in Table 1 and the 

rather large value of the ρd = 1.3867.   

 In concluding our look at Table 1 we note the component ρd of the SBM measure reflects the 

optimal projection to the boundary of the DEA-Markovian model of the corresponding initially 

specified potential staff flow. This brings to the fore one of the key features of DEA that we exploit 

within the MCs framework: that is, through the projections of the initial manpower flows the model 

identifies virtual flows which are more efficacious in leading towards the target vector N* than the 

originally specified ‘best guess’ flows.  

5.2 An illustrative application of the additive DEA-Markovian model 

We illustrate the additive DEA-Markovian model using data from the paper De-Feyter and Guerry 

(2009) (DFG). It is important to underline, that the Markovian framework of the DFG paper is set in 

an exclusively stochastic environment based on fuzzy set theory while our approach, in essence, 

simulates the stochastic context within a deterministic approach. Nevertheless, since the DFG paper 

uses expected staff flows in the same way we use them in this paper, it lends itself for contrasting 

the two approaches. The DFG paper assumes 3 categories of staff, an initial population vector of 

N( )  [         ]  and a target vector    [         ]. The authors provide data 

of transitions and using maximum likelihood estimators they calculate the following transition matrix 

P.  

  [
               
               
               

] 

As it is clear from the above, demotions are allowed, albeit with very low probabilities. The set of 5 

potential recruitment vectors is     [      ] ,    [     ] ,    [      ] , 

   [      ]         [    ]. We know that none of these recruitment flows is 

capable of attaining the desired structure N* in a single step.  The instance of model (15) populated 

with the DFG data and set to assess the efficacy of potential flow R5 is as in (18): 
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     for all i and j,  

 

where    
     

  ,   
      

  are user specified weights.  

The weights   
     

  on the slacks s are intended to drive the optimal reflection of the components 

of the flow being assessed, R5 in model (18), closer to what the DM expects their levels to turn out to 

be when we reach the end of the planning horizon. For example, if we expect the outturn value of 

component i to exceed rather than fall short of its specified value within R5 then a higher weight 

  
 compared to    

  would be assigned. Within the minimisation objective function of model (18) 

this will favour a higher value   
  compared to   

  in line with DM expectations. It is recalled that 

only one of   
  compared to   

 can have a positive value at the optimal solution to Model (18).  The 

weights   
      

   on the deviational variables d are intended to reflect DM relative preferences 

between exceeding or falling short of the target value of component i. For example, in the event the 

target value for component i in N* cannot be met exactly, if the DM prefers to undershoot rather 

than overshoot it then the weight   
                                      

      

For those cases where the magnitudes of components are different in terms of scale, the weights 

further  need to be normalised, or alternatively the components of the flows R within the model in 

(18) need to be normalised, to eliminate implicit weights contingent on differences in component 

magnitudes.  In the interests of simplicity and in view of the relatively similar scale size of staff 

components in flows R5 and targets in N*  in our illustrative data, we ignore here  the normalisation 

for scale size. Finally, though we have applied the same set of weights when solving model (18) for 

each flow R in turn, this need not be the case in practice, especially when it comes to the weights on 

slacks   
  or   

  where the degree of confidence may vary both within components and across 

recruitment flows.  

We begin by solving an instance of the additive model in (18) in respect of each one of the flows R1 

to R5 in turn. We have used the weights appearing in brackets next to the slacks s and deviational 

variables d in Table 2. For example, for    
   (denoted s1m) the weight is 1 while for   

   (denoted 

s1p) the weight is 10. The weights for the deviation d1m and d1p follow a similar pattern. The 

weights used imply the DM expects for each component the outturn value is more likely to be below 
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rather than above its specified value within the flow. Further, where necessary, the DM prefers 

target component values within N* to be under rather than overshot.  

It is noteworthy that with few exceptions the slacks and deviational variables take values in line with 

the weights intended to reflect DM expectations and preferences. Thus for R1-R4  the slacks s1m, 

s2m and s3m all have positive optimal values  while the corresponding s(i)p  values are zero, except 

s2p of R4 which is positive. In other words, the optimal projections for R1-R4 incorporate 

overwhelmingly undershoots from the values specified in these flows. The practical implication of 

this is that the model uses projections of the flows R as close to expectation as possible. This in turn 

means the evaluation of the efficacy of the flows specified by the DM for getting to the target N* is 

as close to the DM expectations of outturn values as possible. 

 Flow R5 bucks the trend in that despite the DM expectations, the model produces a reflection with 

positive values for s1p and s3p suggesting it is preferable to plan for overshoots of these two 

components of this flow.  The practical implication of this outcome for R5 is that the DM should aim, 

to the extent it might be possible, to influence (for example through internal promotions and 

retentions) to overshoot these two components for a better chance of getting closer to the targets 

in N*.    It is perhaps worth noting that components 1 and 3 have very low values in R5 and so 

overshooting them maybe desirable even if difficult or unlikely.   

The ρs index values in Table 2 reflect how close the optimal projected values of each flow R are to its 

original specification. In the case of R2 the value is 1 and so the optimal projection and the specified 

value coincide. At the other extreme the ρs value for R5 at 1.368, is the highest suggesting this flow 

has a specified value the furthest from expectation.  

As far as deviation values are concerned undershoot values d1m, d2m and d3m are the only ones to 

take positive values, in line with the weights used for deviational variables in model (18). The ρd 

index values are all close to 1 suggesting the projections of the original flows, if attained, would all 

get us close to the target N*.  Thus the key value of the model is in revealing projections of flows 

which are efficacious in reaching N*.  Of these the most efficacious is R2 while R1 and R3 are the next 

best in terms of the ρs and indeed SBM overall values.  

It is worth pointing out that these results are in line with the results in the DFG paper even though 

the modelling context is different.  DFG find that in a deterministic framework of their approach R2 is 

more efficacious while using a stochastic approach R1 is preferred.  In our approach, as noted above, 

both R2 and R1 are among the most preferred flows, notwithstanding the fact that our approach 

relies on a weighting structure in the objective function of model (18) to capture the stochastic 

information used in the DFG paper.   
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To further illustrate the working of the additive model we now focus on flow R5 which in DFG, as well 

as in our model above, was ranked at the bottom of the preference list.  Let us assume the 

probability of achieving at the end of the horizon overshoots of inflows of 8 and 7 in staff grades 1 

and 3 respectively, is rather high and certainly higher than the probability of realisation of 

undershoots of these grades. This is not an unreasonable assumption if we assume that the low 

values of 8 and 7 do signal some confidence that these levels as a minimum have been secured. By a 

similar reasoning we can assume that overshooting of grade 2 is less likely than undershooting it, 

given the relatively high level specified for that component. Table 3 shows the weighting structure 

adopted to reflect these expectations. The relative values of the weights can be seen in parentheses 

next to the variable names. Thus the weight on s1m and s3m is 100 compared to 1 for s1p and s3p 

respectively. In contrast the weight is 100 for s2p and 1 for s1m.   Regarding the achievement of 

targets in N* we have assumed in this variation that over achievement of staff target numbers is 

preferred rather than under achievement and so we have used larger weights for all    
 

.  

The solution of this model is presented in Table 3.  As can be seen the model yields a solution where 

indeed the slacks s1m and s3m are zero and s1p and s3p are positive.  In contrast, s2m is positive 

and s2p is zero. So the optimal slack values are in line with expectation.  However, the resulting 

optimal reflection is quite far from the specified flow R5 as ρs = 1.5146 in Table 3 compared to ρs 

=1.368 in Table 2 indicates. On the positive side, this reflection is marginally closer to the ideal 

values in N* as the ρd = 1.0037 in Table 3 compared to ρd = 1.0044 in Table 2 shows.  So the 

reflection of R5 depicted in Table 3 is marginally better to aim for rather than that in Table 2. Note in 

this respect that the reflection of R5  is in large measure R3  as deduced from λ3=0.9  in Table 3. This 

further signifies how the weights reflecting a combination of likelihood and preferences judgements 

by the DM alter the actions the DM should take in order to get as close as possible to the ultimate 

target N*.   

We continue our comparison of the additive deterministic DEA model with the approach in DFG by 

adding to the five staff flows above, a 6th flow  R6 =  [14  25  10] which DFG present as one capable of 

attaining in one step  the target N* = [200 260 230] when starting from N(0) = [200 275 225].  Apart 

from introducing this 6th ‘desirable’ flow we also incorporate differences in weights as might be the 

case when the DM is much more certain about the likely future value of one component in particular 

for the potential flows specified.  This for example might be the case when for one potential staff 

category the DM may have a substantial degree of control, e.g. some level of current staff for which 

supply is plentiful.  The weights we have used in this illustration appear next to the slacks s and 

deviational variables d in Table 4.  The weights indicate that the DM is far more certain of an 

overshoot occurring in flow component 1 than is the case for undershoots or overshoots in 
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components 2 and 3. Having said that, the DM is more certain of undershoots than overshoots in 

components 2 and 3, albeit not to the degree of certainty regarding component 1. The solution of 

model (18) modified to include R6 and the foregoing weights can be found in Table 4.  

Table 4 shows that in response all optimal reflections of the specified flows have at least the 

specified value of component 1 as can be seen from the zero   
  values across all flows R.  This leads 

to re-adjustments of the optimal projections for the other two components across all flows R and 

reflected in the fact that the ρs values in Table 4 are the same or lower than the corresponding 

values in Table 2.  The improved ρs values in Table 4 compared to Table 2 suggest projected flows 

are on the whole closer to the originally specified flows which can be seen as a consequence of the 

DM having given the model a stronger indication of the likely outturn levels of staff going forward.  It 

is noteworthy also that the overall SBM values in Table 4 are the same or closer to 1  than those in 

Table 2. This is as we might expect given the prevailing improvement in the ρs values from Table 2 to 

Table 4. It is also noteworthy that in Table 4 the preferred flow is R6 just as in DFG. This is concluded 

both from the closest overall SBM value of almost 1 in Table 4 and the fact that λ6 = 0.91 at the 

optimal solution to the instance of model (18) corresponding to R6.  This makes R6 by far the most 

dominant influence on its optimal projection. In fact R6 is also the dominant influence in the optimal 

projections of the flows R1 and R3 as can be deduced from the value of 0.88 for λ6 for these two 

flows in Table 4.  Finally, a further interesting impact of the stronger information on likely outcome 

regarding staff category 1 compared to the rest can be seen when we compare the outcome for flow 

R4 in Tables 2 and 4. Flow R4 is one of the weaker flows in Table 2 with overall ρ=1.2798. It has only 

marginal impact on its optimal projection with λ4=0.10537. Yet in Table 4  its ρ index drops to 1.0225 

making it one of the stronger flows with its projection being flow R4 itself as we have λ4 = 1.   

Clearly the results of the additive model are data dependent and contingent on the weighting 

structure used on slacks and deviational variables. Therein, however, also lies the strength of our 

approach. It offers the DM the means to explore, using sensitivity analysis, the decision space by 

bringing to bear a full range of potential courses of action, in combination with alternative levels of 

perceived certainty of likely outturn values all assessed relative to her underlying preferences over 

ultimate target outcomes.  

Please place Tables 2, 3 and 4 near here 

5.3 A schematic representation of the DEA-Markov approach 

We conclude the illustration of our DEA –Markov decision aid with the schematic representation in 

Figure 1 of its main steps for the generic case. 
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Figure 1. Schematic representation of the main steps 

6. Conclusion  

The main contribution of this paper is a DEA-enabled approach to aid decision making in contexts 

hitherto addressed using Markov Chains. The use of DEA makes it possible to circumvent 

complexities caused by the inherent stochastic nature of the problem addressed, through the use of 

a combination of user-specified potential alternatives and weights reflecting uncertainty and 

preferences over final outcomes.  This approach will make easier the use of MC models in a variety 

of contexts.   

To present our methodology, without loss of generality, we have used a classic Markov manpower 

planning model. The approach assumes an organisation which has a current personnel structure and 

wishes to attain an ideal structure within a given planning horizon. The method developed is used 

for generating and evaluating potential recruitment policies for reaching as close as possible the 

desired personnel structure. The approach begins with the Decision Maker specifying potential 

personnel flows over the planning horizon based on historical data and informed judgements of 

future recruitment and transition possibilities between personnel categories. The DEA assumption of 
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convexity is then used to form an infinite set of feasible courses of action (recruitment flows). Then, 

still within the DEA framework, the efficacy of each initially specified course of action and of its 

optimal reflection within the infinite set of actions, is measured for attaining the ultimate state of 

the system under investigation. The most suitable of these virtual flows are identified as potential 

candidates that management can attempt to bring about, as far as possible, through instruments at 

its disposal within the organisation. Using weights in a goal programming objective function our 

hybrid DEA-Markov method can reflect the Decision Maker’s subjective confidence about the 

realization of specific policies or staff flow levels as well as the desirability and importance of specific 

targets on staff categories. In essence, the proposed framework offers a means of converting an 

otherwise stochastic problem into a deterministic one, by offering the opportunity to the Decision 

Maker to express their attitudes on likelihoods and preferences in a tractable manner.  

Our approach, presented here in the context of Markovian manpower planning, can be readily 

repurposed to aid other decision contexts. For example, a field where Markov chains are also used is 

that of health care delivery.  Our approach can be used to identify the most efficacious way from the 

cost perspective of managing a chronic illness such as diabetes.  In this case flows and transitions are 

affected by treatment protocols and healthcare interventions informed by medical research and 

expected patterns of mobility due to new drugs or healthcare policies (e.g. home treatment vs 

hospitalization). Models of the type we have proposed here, once developed to the more complex 

area where both clinical outcomes, alternative clinical interventions and quality of life are relevant, 

could aid health professionals in managing chronic diseases. Although Markov processes have long 

since been used to model mobility patterns in chronic diseases, we are not aware of any approaches 

comparing the efficiency of alternative policies using approaches like DEA.  

We have used in this paper the classical DEA model in the context of Markov chains. However, 

further research is possible for additional contributions to Markov chain models that may be 

possible through extended DEA models. In particular, DEA models for estimating allocative 

efficiencies could be usefully explored.  Allocative efficiencies take into account prices of the factors 

for delivering goods or services and reflect gains that could be made by aligning the mix of resources 

used with their prices. Another type of DEA model that could be explored are network models. In 

network DEA models, outcomes from one stage feed into subsequent stages before final outcomes 

are delivered. For example, we can expand the one step attainability problem we have considered 

into the multiple step attainability problem. For instance, in the manpower planning context the 

manpower structure resulting in a given step forms the starting manpower structure for the next 

stage and so on. This format is the type of problem handled in network DEA models.  In addition, the 

possibility of using the transition probabilities as control variables could be explored further. This 
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approach would give the decision maker an additional lever to drive the system towards desirable 

structures, e.g. manpower or health outcomes, as derived through the solution of the DEA models 

involved. This more direct approach is an important aspect, especially in manpower planning where 

it has been occasionally used in Markov modeling, with relative caution though, due its increased 

computational complexity.   

In summary, our approach has opened an avenue for exploring how DEA models can render the 

handling of Markov chain models more tractable. This paper has used only the basic DEA models. 

Further research can explore benefits that may be available from using extended DEA models.  
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Table 1: Example 1. Lambdas, slacks, deviational variables, radial θ and SBM indices for seven 

recruitment potentials – radial model  
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  Table 2: Example 2. Results for Flows R1-R5 - additive model in (18)  
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  Table 3: Example 2. Results for R5 – additive model an assortment of weights reflecting alternative 

likelihoods and desires  
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     Table 4: Example 2. Lambdas, slacks, deviational variables, and SBM indices for six recruitment 

potentials – additive model uncertainties differ across components 
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