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Abstract -- In this paper, a new open-winding control strategy 

is proposed for a brushless doubly-fed reluctance generator 
(BDFRG) used for standalone wind turbine or ship generators. 
The BDFRG is characterized with two windings on the stator: a 
power winding and a control winding. The control winding is 
fed with dual two-level three-phase converters, and a vector 
control scheme based on space vector pulse width modulation 
(SVPWM) is designed. Compared to traditional three-level 
inverter systems, the dc-link voltage and the voltage rating of 
power devices in the proposed system are reduced by 50% while 
still greatly improving the reliability, redundancy and fault 
tolerance of the proposed system by increasing the switching 
modes. Its performance is evaluated by simulation in 

MATLAB/SIMULINK, and an experimental study on a 42-kW 
prototype machine. 

 
Index Terms--Brushless doubly-fed reluctance generator 

(BDFRG), dual two-level converters, open-winding, space vector 

pulse width modulation (SVPWM). 

I. INTRODUCTION 

The penetration of wind power into the power system is 

continuing to grow across the world [1]-[4], with an aid of 

rapid development of machine technologies, power 

electronics and automatic control. 

The brushless doubly-fed machines are the evolution of the 

cascaded induction machine [5]-[13], and are widely used for 

medium and large wind turbines. Among them, brushless 

doubly-fed reluctance generators (BDFRGs) are a promising 

topology owing to their robust rotor [14]-[17]. As shown in 

Fig. 1(a), a typical BDFRG consists of two sets of stator 

windings: a power winding and a control winding. Since the 

rotor winding is moved to the stator as the control winding, 

the brushes and slip-rings in conventional doubly-fed 

machines are eliminated. Therefore the robustness and 

reliability is improved. However, the technical challenges lie 

in the rotor design where the double stator magnetic field 
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modulation is realized; and the control of the converters, 

which manipulates the flow of active and reactive power, and 

power factor regulation through power winding or the control 

winding [5]-[8]. The converters are of about 25% of the 

machine’s rated power to control a wide speed range at 

various operating modes including super-synchronous, 

synchronous and sub-synchronous. Compared with the 

doubly-fed induction machine and permanent magnet 

synchronous machine, the BDFRG is better suited for wind 

turbines, shaft generators, pumps, and hydropower generation 

systems [9]-[17]. 

In references [5]-[18], a BDFRG and its power generation 

systems were analyzed by scalar control, vector control, and 

the power flow analysis. It is well known that traditional 

three-level converter systems have some disadvantages [19], 

[20], such as complex structure, high voltage of DC link and 

power devices, and the potential shift of neutral point voltage. 

In order to improve these, some variable-speed constant-

frequency (VSCF) schemes were proposed [12]-[17], [21]-

[23]. As shown in Fig. 1(b), where have some obvious 

advantages compared with the previous generator system, i.e., 

the control winding of the BDFRG is open-circuited and fed 

with dual two-level converters, and the space vector pulse 

width modulation (SVPWM) coordination control strategy is 

adopted, then the reliability, redundancy and fault tolerance 

of the proposed system are greatly improved while the dc-

link voltage and the voltage rating of power devices are 

reduced by 50%. 

 

wind turbine
BDFRG

Grid

(50Hz)

control winding
pc, fc

power winding
pp, fp

M
S

C

G
S

C

  
gear    +

 
(a) 

http://web.mit.edu/


IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 
 

BDFRG

Grid

(50Hz)

  
gear 

wind turbine

power winding
pp, fp

control 
winding

pc, fc

M
S

C
1

M
S

C
2

   +

G
S

C

 
(b) 

Fig. 1. Schematic diagram of the BDFRG. (a) Traditional topology, (b) The 
proposed topology. 

 

II. OPEN-WINDING CONTROL STRATEGY OF BRUSHLESS 

DOUBLY-FED GENERATOR 

A. The Principle of VSCF Based on BDFRG 

The BDFRG is a new type of machine developed in recent 

years [7]; its stator has two sets of stator windings with two 

different pole numbers. The primary winding (also known as 

the power winding) is directly connected to the grid and the 

secondary winding (also known as the control winding) is fed 

through the converter, as shown in Fig. 1. The relationship 

between frequency, pole pairs and operating speed of the 

BDFRG is given by: 

 
60

r p c

p c

n p p
f f


               (1) 

where fp is the supplied line frequency (also known as the 

frequency of power winding); nr is the rotor speed in rpm; pp 

and pc are the pole pair of the power and control windings, 

respectively; fc is the converter frequency (also known as the 

frequency of control winding). 

Obviously, the BDFRG is suited for VSCF operations and 

its application includes wind turbines, shaft generators and 

hydroelectric generators. 

B. Mathematical Model of BDFRG  

For control implementation, the voltage balance equation 

in a rotating reference frame [8] is expressed as (2), and the 

flux equations is expressed as (3), 

   

   

     

     

qp p qp p qp pc qp pc qp qc dp

dp p dp p dp pc dp pc dp dc qp

qc c qc c qc pc qc pc qc qp r dc

dc c dc c dc pc dc pc dc dp r qc

u r i p L i L i p L i i

u r i p L i L i p L i i

u r i p L i L i p L i i

u r i p L i L i p L i i





  

  

      
 

      
 

       
 

 







     
 






        (2) 

qp p qp pc qc

dp p dp pc dc

qc c qc pc qp

dc c dc pc dp

L i L i

L i L i

L i L i

L i L i









 


 


 
  

               (3)

 

where the letter “p” denotes the differential operator, the 

subscripts “d” and “q” denote the d-axis and q-axis 

components; “p”, “c” and “r” denote the power winding, 

control winding and rotor components, respectively. ω is the 

speed of the rotating coordinate system, ωr denotes the rotor 

angular speed, Lpc is the mutual inductance between power 

and control winding. 

The electromagnetic torque is expressed as (4) and (5) [11], 
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where Ψp and Ψpc denote the flux linkage of power winding 

and mutual flux linkage between power and control winding, 

and δ is the angle between them. Tem denotes the total 

electromagnetic torque, TL denotes the load torque, J denotes 

the moment of inertia, Kd denotes the rotary system damping 

coefficient. 

C. The Control Strategy of BDFRG 

Also in Fig. 1, the wind turbine will drive the rotor to rotate, 

where the power winding is directly connected to the grid or 

load, and the control winding is connected between two bi-

directional converters and then to the grid. During an 

operation, the control winding is fed with the machine side 

converter (MSCs) supplied by the grid side converter (GSC) 

to generate a magnetic field. When the BDFRG is driven by 

the wind turbine, power is generated for the grid, load, or 

charging the battery. In Fig. 1(b), the dotted box represents a 

control topology for the dual two-level converters, which is 

further shown in detail in Fig. 2, where the control winding is 

open-circuited (thus the machine is termed the open-winding 

BDFRG, OWBDFRG), and fed with two reversible 

converters (MSC1 and MSC2) supplied by one DC bus and 

by combining dual two-level converters, can form a three-

level converter while the DC bus voltage (Udc/2) is only half 

of traditional three-level converter (Udc) [19]-[20], as shown 

in Fig. 3. That is, by using the open-winding control strategy, 

the capacitance of the DC-link and the voltage rating of 

power devices can be decreased. When compared with 

typical two-level converters, the open-winding control 

strategy increases the converter voltage step level so that the 

switching power losses are also reduced. If one of the two 

MSCs is faulted or disconnected, the system can still operate 

with the remaining MSC. 
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Fig. 2. The system diagrams of the OWBDFRG. 

 

For the OWBDFRG shown in Fig. 2, the instantaneous 

voltages of the control winding can be found as (6), (7).  

1 2 1 2

1 2 1 2

1 2 1 2

ca a O a O a a

cb b O b O b b

cc c O c O c c

u u u u

u u u u

u u u u

  


  
   

           (6) 

 MSC1 MSC2c  u u u                (7) 

D. SVPWM Coordination Control Strategy 

The SVPWM control strategy, also called the flux sine 

PWM control, uses the output voltage of the three-phase 

inverter in different switching modes to approach to the 

inscribed circle of the corresponding regular polygon, then 

the sine round rotating magnetic field is obtained with a 

constant amplitude in the machine, the advantages of 

SVPWM and constant flux control can be realized. 

In Fig. 2, the phasor diagram of two-level converter 

(MSC1, MSC2) is shown in Fig. 4, where the hexagon vertex 

respectively to 1-6 and 1'-6', and the space is divided into six 

sectors, the effective voltage space vector is U1-U6 and U1'-

U6' (1-6 and 1'-6', respectively), which the mode is Udc/3, 

zero vector is of U7, U8, U7' and U8' (7, 8, 7' and 8', 

respectively). Traditionally, the maximum switching mode is 

23=8 in a two-level three-phase converter and 33=27 in a 

three-level converter [19]-[23], as shown in Fig. 3. By 

cascading the dual two-level converters (see Fig. 2), the 

switch modes in the proposed converter can increase to 

23×23=64 (see Fig. 5(a)). Obviously, the redundancy and fault 

tolerance of the proposed topology are improved. 

The diagram of the voltage space vector with a dual two-

level converter is shown in Fig. 5 (a), where the synthesis 64 

voltage space vector is 11'-88'. The control space is divided 

into 24 small sectors or one inner hexagon and six outer 

hexagons, i.e., ABCDEF is the inner hexagon with its center 

of O, six outer hexagons are OFSGHB, OAHIJC, OBJKLD, 

OCLMNE, ODNPQF and OEQRSA, with their midpoints of 

A-F. In this paper, the two reference voltage space vectors are 

chosen for the two converters (MSC1, MSC2). 
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UMSC1, UMSC2 and Uref denotes the voltage vector of MSC1, 

MSC2 and the reference voltage of the control winding, 

respectively, as shown in Fig. 5(b).  

It is needed to make sure that the two voltage vectors have 

the same amplitude as the reference voltage phasor (half of 

the reference voltage vector). 

Assuming that the reference voltage vector Uref lies in △
IOG, as shown in Fig. 5(b), corresponding to Fig. 4(a) which 

lies in sector 1 for MSC1, and (b) lies in sector 4 for MSC2. 

In Fig. 4(a), due to the parallelogram law, the reference 

voltage vector UMSC1 consists of two adjacent effective 

vectors U1, U2, and zero vector UO, and the operating time 

can be calculated [22], [23].  
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Fig. 3 Topology of BDFRG fed by NPC three-level converter. (a) Topology, 

(b) Voltage space vector. 
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Fig. 4. The space phasors in each inverter. (a) MSC1, (b) MSC2. 
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Fig. 5. The space phasors of proposed dual two-level converters. (a) Voltage 
phasors, (b) Relationship between MSC1, MSC2 and reference voltage 
vector. 

III. SIMULATION RESEARCH ON THE CONTROL STRATEGY 

A. The Simulation Model of the Control System  

The simulation model of the proposed system is established 

in MATLAB/SIMULINK, as shown in Fig. 6, where includes 

a OWBDFRG, a resistive load, a reference speed nr
*, 

frequency calculation (fc), static three-phase coordinates/ 

rotary two-phase coordinates transformation (3s/2r), rotary 

two-phase coordinates/static two-phase coordinates 

transformation (2r/2s), control strategy of constant voltage 

frequency ratio (U/f), the SVPWM scheme. 

During the operation, according to the reference speed nr
* 

of generator rotor, and line frequency of 50 Hz, the required 

frequency and voltage of control winding is calculated in 

real-time, i.e., by the machine side dual two-level converters 

with SVPWM coordinated control, then the voltage and 

frequency required by the dual MSCs can be generated. 

B. Analysis of Simulation Results 

The generator parameters as: PN=42kW, UN.p=UN.c=380V, 

pp=3, Rp=0.1662 Ω, Lp=0.01737 H, Lpc=0.01813 H, pc=1, 

Rc=0.1882 Ω, Lc=0.02351 H, J=0.3 kg.m2. 

In order to validate the effectiveness of the proposed 

topology in VSCF, the simulation is firstly carried out at the 

speed of 606, 750, and 789 rpm, corresponding to sub-

synchronous, synchronous, and super-synchronous modes of 

the BDFRG. Simulation results are shown in Figs. 7-10. Fig. 

7 shows the voltage reference in phase a of the control 

winding according to the VSCF generation, Figs. 8-10 show 

the phase voltage, line voltage and current of the control 

winding, respectively. As can be seen from these figures, the 

proposed SVPWM three-level control strategy in open-

winding brushless doubly-fed reluctance generator is 

effective.  
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Fig. 6.  The simulation diagram of the proposed control scheme. 
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synchronous (789 rpm), (e) enlarged vision of (d). 
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Fig. 9. The line voltage waveform between phase a and b of control winding. 
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Fig. 10. The current in phase a of control winding. (a) Sub-synchronous (606 
rpm). (b) Super-synchronous (789 rpm). 

 

IV. EXPERIMENTAL RESULTS  

The proposed control strategy is implemented and 

executed in DSP28335 in a semi-physical simulation 

experimental platform as shown in Fig. 11, where includes a 

prime mover of the induction motor (IM), OWBDFRG, 

resistive load, converter (15 kW), power analyzer, thermal 

imager, and so on. 

The experimental results in the sub-synchronous and 

super-synchronous modes (nr
*=606 and 789 rpm, respectively) 

are shown in Figs. 12-15. Figs. 12-13 present the control 

winding voltage waveforms, where Fig. 12-13(a) and (c) are 

the voltage in phase a and line voltage between phase a and b, 

Figs. 12-13(c), (d) are their enlarged visions, which are all 

corresponding to Fig. 8-9, and are same to the voltage of 

traditional three-level converter. Fig. 14 shows the current in 

phase a of control winding, which also corresponds to Fig. 10.  

Fig. 15(a)-(b) demonstrates the power winding voltage in 

phase a and its Fourier analysis result. The phase voltage is 

about 224 V, 50 Hz, the THD is 3.7%, and the third harmonic 

voltage is 4.747 V, which satisfying the VSCF requirements. 

From the above analysis of experimental results as shown 

in Fig. 12-15, we can obtain that the new SVPWM strategy of 

proposed OWBDFRG fed with dual two-level converters is 

correct and valid, the control effectiveness and feature are the 

same to the traditional three-level converter, which is of 

three-level phase voltage and five-level line voltage, while 

the dc bus voltage is lower than three-level converter, the 

reliability, redundancy and fault tolerance of the proposed 

system are greatly improved, but does not have the traditional 

three-level converter disadvantages, such as complex 

topology, potential deviation of neutral point, and so forth. 

 

 
(a)                        (b) 

Fig. 11. The semi-physical simulation experimental platform. (a) The 
BDFRG, IM and resistive load, (b) The converter. 
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(b) 

 
(c) 

 
(d) 

Fig. 12. The voltage waveform in phase a of control winding. (a) sub-
synchronous (606 rpm), (b) super-synchronous (789 rpm). 

 
 (a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13.  The line voltage between phase a and b of control winding. (a) 
sub-synchronous (606 rpm), (b) super-synchronous (789 rpm). 

 

 
 (a) 

 
 (b) 

Fig. 14. Phase current in the control winding. (a) Sub-synchronous (606 rpm), 
(b) Super-synchronous (789 rpm). 
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Harmonic oder (N) 

(b) 
Fig. 15. Phase voltage of the power winding and its Fourier analysis. (a) 

Power winding voltage in phase a, (b) Fourier analysis result.  
 

V. CONCLUSION 

This paper has presented a novel control strategy for the 

OWBDFRG, based on the dual SVPWM coordinate control. 

The validity of the proposed algorithm is proved by 

simulation and experimental tests, and the advantages of the 

proposed strategy are a simpler main circuit structure, more 

convenient control scheme, lower DC-link voltage and the 

power device rating while achieving higher redundancy and 

better fault tolerance than existing conventional BDFRG 

control schemes. It will improve the performance of wind 

turbine or hydropower generators. 

In the further work, a grid-connected control strategy will 

be developed to extend the application of the BDFRG.  
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