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THESIS SUMMARY 

Traumatic brain injury (TBI) is a common leading cause of disability for children and young adults. 
Such an insult during development leads to a cognitive-behavioural syndrome of impairments post-
injury however, the trajectory and magnitude of this syndrome at an individual-patient level are 
unknown. Pathological effects of a TBI on neuroanatomy can be quasi-quantitatively measured using 
magnetic resonance imaging (MRI). The current thesis highlights the current state of research into 
neuroanatomical differences post-TBI and identifies previous investigations of neuroanatomical 
correlates of later functioning adopt mostly reductionist and univariate approaches. It was posited that 
utilising MRI methodologies that respect the complex, interrelated nature of neuroanatomy across the 
cortex would provide better understanding of the neuroanatomical correlates of later cognitive 
functioning post-injury. The current thesis investigates novel network-level analyses of neuroanatomy, 
specifically structural covariance and morphometric similarity approaches, and its relationship with 
neuropsychological functioning, with a focus on executive functioning (EF) at 2 years post-injury. The 
data used included 107 survivors of paediatric TBI and 36 typically developing controls. 

Using a structural covariance methodology the current thesis provides evidence that executive 
dysfunction is associated with atrophic neuroanatomical-changes to topologically important brain-
regions within the network. Results also provided evidence that the magnitude of EF difficulties was 
associated with the extent to which an injury diverted the brain from the ‘typical’ organization of the 
neuroanatomical network. Using individual morphometric similarity approaches coupled with 
supervised machine learning, a pattern of morphology, centred in the pre-frontal cortex, predicted later 
EF. 

Overall, these findings fit with the hypothesis that network-level neuroanatomical correlates of EF 
would be found. The current thesis concludes that, regarding the neuropsychological sequalae post-
neurological insult, quantification of the complex organisation of neuroanatomy across the cortex is a 
useful biomarker. Future investigations integrating neuropsychology and neuroimaging to understand 
brain structure-function relationships should continue to utilise modern network approaches which 
capture the diffuse, disconnecting nature of injury. 

Keywords: ‘Traumatic Brain Injury’, ‘Structural Covariance’, ‘MRI’, ‘Executive Function’, 
‘neurodevelopment’ 
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Chapter 1 – General Introduction 

“Of great value to both clinicians and to the families of TBI patients would be the ability reliably 

to predict the recovery of consciousness as well as the evolution of cognitive and behavioural 

abilities in the long term [emphasis added]. Such ability would dramatically change … 

treatment and rehabilitation strategies … reduce the financial burden of TBI upon the healthcare 

system … more efficiently proportionate the level of care … [and] inform families on 

rehabilitation goals” (Irimia, Wang, et al., 2012, p. 11). 

1.1 Precis 

Neuropsychological investigation of the cognitive and behavioural ramifications of brain disorders 

typically use psychometric evaluations to infer ‘damage’ to the neural systems that subsume those 

functions. The assumption implicit to the field is that brain structure underpins functions in a certain 

way. The advent of in-vivo imaging of the brain, using magnetic resonance imaging (MRI), allows the 

integration of these neuropsychological findings and a visualisation of the location and nature of the 

pathology in not only abnormal, but also typically developed or developing populations. 

The technological advancement of MRI is ongoing but novel analytic frameworks offer scope to 

improve our understanding of structure-function relationships. The promising approach of brain 

network-level analysis, includes methodologies that incorporate metrics about the complexity of brain 

organization at the systems-level, where brain structure and function are modularly organised into 

networks of brain regions, rather than as unitary, isolated processing units. This has yet to be applied 

systematically to paediatric populations, but has potential relevance to children with acquired brain 

injuries. 

Traumatic brain injuries lead to damage across brain networks that is not uniform between different 

patients, creating an opportunity to refine our understanding of the relationship between brain injury and 

functional outcomes by using a network-level analytic framework. This is particularly relevant for 

children who experience traumatic brain injury, in whom there is an ongoing development of brain 

structure and function. These network-level methodologies may allow us to place the neurological insult 

within the context of the wider system; damage does not exist in isolation from the rest of the developing 

brain. This approach represents a recent step-change in the field of neuropsychology, a contemporary 

approach that may, in future, be a valuable addition to the toolbox of neuropsychologists to 

quantitatively investigate symptomatic changes to neuroanatomy at the network-level. This is especially 

true given that many higher cognitive functions are subsumed by the synchronous functioning of diffuse 

neuroanatomical networks. 

The research described in the current thesis presents a novel network approach where structural 

neuroanatomy is characterised with respect to its meso-scale organisation across the rest of the brain. 
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Within the context of this thesis, this approach has enabled a better understanding of the neuroanatomical 

correlates of long-term neuropsychological functioning in children who have experienced a TBI. In this 

introductory chapter, research pertinent to the reader is highlighted and the thesis is outlined in general 

terms. 

1.2 Traumatic Brain Injury in Children 

The overall incidence of traumatic brain injury (TBI) is estimated at between one and five people in 

every thousand (Sosin, Sniezek, & Thurman, 1996). TBI is a leading cause of disability for both children 

and young adults (World Health Organization, 2006). Estimates of incidence are much higher for the 0-

25 year old age group, with ~30% of individuals experiencing a TBI by the time they reach young-

adulthood (aged 25). Between the ages of 0-15 years, there is an estimated incidence between 1.10-1.85 

cases per hundred (McKinlay et al., 2008). Thus, many injuries occur in the still-developing brain 

(Wilde, Hunter, & Bigler, 2012). 

Although TBI has a clearly defined onset, as a polypathology (Smith, Johnson, & Stewart, 2013) the 

injury sets into motion a number of pathological effects including axonal pathology (Johnson, Stewart, 

& Smith, 2013; Johnson et al., 2016) and brain atrophy (particularly in frontal-temporal regions (Farbota 

et al., 2012; Keightley et al., 2014; Ross, 2011)), amongst others. In the case of paediatric TBI (pTBI), 

these pathological mechanisms dynamically interact with the ongoing neurodevelopmental maturation 

of the brain. This raises the question as to how the brain continues to develop after such an injury? 

Around 100-154 in every 100,000 head injuries result in persistent disability at one-year post-injury 

(Thornhill et al., 2000). It is well documented that a pTBI typically leads to a cognitive-behavioural 

syndrome of impairments post-injury (Crowe, Catroppa, & Anderson, 2015). However, the trajectory, 

when an impairment may appear or resolve, and the magnitude, the degree of impairment experienced, 

of this syndrome is unclear at an individual-level. Ultimately, the risk of poor neuropsychological and 

functional outcomes for those with mild to severe paediatric TBI (pTBI) is not clearly understood, 

especially due to the many factors upon which the likelihood of ongoing sequelae may be predicated 

(Babikian & Asarnow, 2009; Crowe et al., 2015; Irimia et al., 2017; Polinder, Haagsma, van Klaveren, 

Steyerberg, & van Beeck, 2015). 

With the high prevalence of TBI in paediatric populations and survival rates following pTBI increasing, 

there is an ever-increasing need for the accurate prediction of clinically relevant, long-term cognitive 

outcome (Crowe et al., 2015). Understanding the neurobiological impacts of TBI on the developing 

brain is important to this task (Genc et al., 2017). 

Essentially, being able to make these predictions will allow us to better support families, and answer the 

question; what does the future look like for my child, after surviving a traumatic brain injury? (Irimia, 

Wang, et al., 2012). With this information, clinicians could begin to offer support and guidance to 
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parents from an early stage, manage expectations, and improve the family interaction over the long 

recovery period. 

1.3 In vivo investigation of brain development with MRI 

1.3.1 MRI of the Brain 

During the developmental period, the brain undergoes major maturational changes that are observable 

in-vivo using MRI, specifically structural MRI (sMRI). MRI allows us to visualise the soft-tissue within 

the head. Images are generated by firstly aligning protons in hydrogen molecules found in the water of 

the brain to a static magnetic field within the bore of a powerful magnet. The alignment of these protons 

is perturbed by the application of a radiofrequency pulse, with the resultant rebound upon turning off of 

the RF pulse being measured across the brain, localised using spatially varying gradients. This rebound 

time, otherwise known as T1 relaxation time, varies according to a number of factors including density 

of protons and local tissue microstructure. Due to this, the resultant 3D image is characterised by 

different intensities in each voxel (a 3D pixel), allowing for the visualisation of different tissue types. 

For example, cerebrospinal fluid (CSF) in the ventricles has a dark appearance (hypointense) in a T1-

weighted (T1w) MRI, due to the high water-content of CSF, which has a slow relaxation time. The 

cortical grey matter (GM) ribbon which constitutes the neocortical sheet, appears grey on a T1w MRI 

due to high iron content, which has slightly faster relaxation time, whilst white-matter (WM), comprised 

of the dense fiber tracts of myelinated axons which connect GM regions, has a high-fat content with the 

quickest relaxation time and appears bright (hyperintense) on T1w MRI. 

T1w sMRI is most commonly used to investigate neuroanatomy due to the stark differences in contrast 

across the image. The differences in contrast allow the automatic tissue segmentation of the brain into 

the separate tissue types (GM/WM/CSF), detecting boundaries between tissues using the changing 

gradients of contrast. This, alongside the high spatial resolution of MR images, enables the 

quantification of the morphometry of the brain at different spatial locations on the cortex. For instance, 

volume or the thickness of the cortical ribbon within anatomical GM regions (as defined by anatomical 

atlases) can be estimated. Changes or differences in these measures can be indicative of neurobiological 

processes relevant to neurological plasticity, pathology and/or development, such as synaptic pruning, 

or atrophy, and are commonly used across neuroimaging research. In estimating these over a large 

population, we can begin to characterise ‘typical’ development over time. 

MRI provides a clear and high spatial resolution image of the brain however, it is, in fact, an indirect 

measure of in-vivo neuroanatomy. The signal intensity within voxels is quasi-quantitative in the sense 

that they are dependent on both hardware and RF pulse sequence. However, measures such as cortical 

thickness or volume have been validated based upon histological and manual measures (Kuperberg et 

al., 2003; Rosas et al., 2002; Salat et al., 2004) and are thus an effective approach to understand the 

relevant biological basis of neurological conditions. 



19 
 

1.3.2 Developing brain structure 

Developmental neuroscience has embraced neuroimaging studies of the morphology of brain structure 

to characterise how the brain matures over this period and to better understand how this gives rise to 

cognitive development, over childhood. Developmental neuroimaging studies have highlighted distinct 

developmental trajectories for the structure of differing brain tissues (WM/GM), across different regions 

of the cortex (Giedd & Rapoport, 2010). The volume of cortical GM specifically shows an ‘inverted U’, 

nonlinear trajectory (Giedd, 2004; Giedd & Rapoport, 2010; Gilmore et al., 2007; Knickmeyer et al., 

2008), with pre-pubertal expansion of the cortical GM, peaking during childhood (Mills et al., 2016; 

Vander Linden, Verhelst, Verleysen, et al., 2019) followed by a post-pubertal sustained loss of GM 

volume (despite synaptic density plateauing after puberty according to molecular and cellular evidence 

(Mills et al., 2016)). Brain maturation occurs across specific regional trajectories; peak GM density and 

reductions in GM volume occur earliest in primary function areas, somatosensory and primary motor 

cortices, and latest in higher-order association areas, dorsolateral prefrontal cortex and superior temporal 

gyrus for instance (Giedd & Rapoport, 2010; Vander Linden, Verhelst, Verleysen, et al., 2019). Cortical 

thickness maturation over time also shows a similar pattern, with generalised reductions over time 

(Herting, Gautam, Spielberg, Dahl, & Sowell, 2015; Nie et al., 2014; Whitaker et al., 2016). These 

trajectories of GM change are in line with what would be expected from models of synaptic pruning and 

myelination (Whitaker et al., 2016). Both post-mortem and electrophysiology studies suggest that these 

changes may be due to synaptic pruning (Huttenlocher, 1994; Whitford et al., 2007). 

Overall, the literature suggests that childhood and adolescence are characterised by highly programmed 

trajectories of GM development (Batalle, Edwards, & O'Muircheartaigh, 2018; Mills et al., 2016; 

Raznahan, Shaw, et al., 2011; Shaw et al., 2008). This programmed maturation may be driven in some 

part due to genetics for instance, with the heritability of cortical thickness and cortical thickness change 

being estimated at around 50-60% in some studies (Schmitt et al., 2007; Teeuw et al., 2019; Wallace et 

al., 2006). Hence, regions with similar genetic architecture show similar trajectories of developmental 

change on MRI (Fjell et al., 2015). Given this highly coordinated, genetically programmed, 

developmental ‘blueprint’ of brain maturation, neurological disruption to the structure of the brain 

during this period, such as a pTBI, is likely to have a significant, and potentially symptomatic, impact 

on the ongoing development of the brain. 

1.3.3 Development of Brain Structure and Cognition 

The protracted development of the brain during childhood and adolescence (Giedd & Rapoport, 2010) 

leaves the brain at risk of neurological insult throughout the paediatric period. The pathological effects 

of a TBI in childhood will necessarily interact with these normative developmental processes which also 

occur. The traumatic force of a TBI can result in cellular and tissue-related damage (Bigler, 2007b, 

2016; Maxwell, 2012), compromise vasculature and physiology of the brain (Bigler, 2001), as well as 
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resulting in trauma-induced cell loss (Bigler, 2013). This atrophy can vary in relation to injury factors 

such as mechanism, severity and pathology (Bigler, 2013; Cullen, Vernekar, & LaPlaca, 2011; Maxwell, 

MacKinnon, Stewart, & Graham, 2010) and be realised on sMRI as changes to both regional volumes 

(Bigler, 2016) and cortical thickness (Urban et al., 2017). Thus, a pTBI during the developmental period 

means that the pathophysiological changes that occur as a result of injury interact with similar, ongoing, 

age-related changes to the cortex. 

Due to the dynamic nature of both brain and cognitive maturation (Giedd & Rapoport, 2010), 

neurocognitive morbidities post-injury are likely due to the fact that the injury itself disrupts this neural 

development (Crowe et al., 2015). These controlled, spatially-specific developmental trajectories of 

regional morphometry (Taylor, Barker, Heavey, & McHale, 2015; Vander Linden, Verhelst, Verleysen, 

et al., 2019; Vijayakumar et al., 2016; Walhovd et al., 2016) and neuronal connectivity (Lamblin, 

Murawski, Whittle, & Fornito, 2017; Marek, Hwang, Foran, Hallquist, & Luna, 2015; Marrus et al., 

2018), have strong correspondence with trajectories of acquisition of cognitive skills. Essentially, brain 

structure gives rise to cognitive and behavioural function. Thus, neurological disruption to this highly-

controlled, developmental blueprint of the brain due to TBI is likely to be symptomatic, in terms of later 

cognitive functioning. It is, therefore, logical to assume that the assessment of the post-injury 

development of the brain, using in-vivo MRI approaches, will aid in the identification of those children 

that are at risk for persistent cognitive impairment (Wilde, Merkley, et al., 2012). 

This concept of MRI methodologies to index brain development, and how this may be affected by a 

pTBI, is picked up throughout the current thesis, across all experimental chapters. Specifically, this is 

addressed in a systematic review of the effects of an injury on the morphometry of the brain, which is 

presented in Chapter 2. 

1.4 Executive Functions, MRI and pTBI 

1.4.1 Neuropsychology of Executive Functions 

Executive functions (EF) are a collection of top-down control processes that allow an individual to be 

adaptive to novel situations in their environment (Diamond, 2013). EF has been used as an umbrella 

term in neuropsychology to describe a number of higher-order, interrelated cognitive functions that aid 

an individual to achieve this goal. In the common three-factor model, EF can be conceptualised of 

comprising three core cognitive skills; working memory, inhibitory control, and cognitive flexibility 

(Karr et al., 2018; Miyake & Friedman, 2012; Miyake et al., 2000). From these three core skills arise 

higher-order EFs such as planning and novel problem solving (Diamond, 2013; Krasny-Pacini et al., 

2017). Whilst other models of EF exist, there are multiple reasons for which this model has been 

selected. Firstly, since the introduction of the three-factor model by Miyake et al. (2000), it has been 

one of the most widely studied. Due to this, there is significant data-driven evidence of the factorial 

structure of this model. The fact that this model has been widely studied also means that there is 
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significant understanding of the neurobiological correlates that underpin the cognitive skills outlined by 

this three-factor model (i.e. Smolker, Friedman, Hewitt, and Banich (2018) & McKenna, Rushe, and 

Woodcock (2017)). 

There is evidence of a nested factor model of distinct constructs of updating/working memory, shifting 

and a common EF construct which spans skills of updating/working memory, shifting and inhibition 

(Karr et al., 2018). However, in childhood and adolescence, there is modest evidence for a 

unidimensional model of EF, with measures of these three skills most commonly loading onto a single, 

latent EF component. Even though there are models which define EF across a greater number of EF 

subdomains, this unitary structure is beneficial as; a) it provides a theoretical basis for the high level of 

inter-correlations between components of EF and b) reduces the number of multiple comparisons when 

investigating the neuroanatomical correlates of these cognitive functions. Essentially, this highlights 

both unity and divergence of EF skills; subdomains of EF are not necessarily orthogonal constructs 

(Karr et al., 2018), but heavily rely on one another in order to adaptively function. 

The complexity and diversity of EFs make them particularly difficult to test using neuropsychological 

measures. A number of performance-based tasks exist, including some suitable for use in children 

(Welsh & Peterson, 2014), and tasks which have been used to elucidate EFs can be found in a number 

of existing test batteries (i.e. Tests of Everyday Attention – Children (TEA-Ch; (Manly, Robertson, 

Anderson, & Nimmo-Smith, 1999)), Delis-Kaplan Executive Function System (D-KEFS, (Delis, 

Kaplan, & Kramer, 2001)), and Wechsler Intelligence Scale for Children (WISC-IV, (Wechsler, 

2003))). However, one difficulty is ‘task impurity’ (Miyake et al., 2000), the fact that many EF skills 

are dependent on one another, and therefore any one task is likely to tap many aspects of these different 

EF skills. EFs in children and adolescents can also be evaluated using behavioural reports. The Behavior 

Rating Inventory of Executive Function (BRIEF) was specifically designed to index these executive 

skills in everyday environments such as home and school (Gioia, Isquith, Guy, & Kenworthy, 2000). 

However, it has been suggested that this measure may index problem behaviours and concerns, rather 

than neuropsychological or cognitive ratings of executive functions (McAuley, Chen, Goos, Schachar, 

& Crosbie, 2010; Toplak, West, & Stanovich, 2013). 

Due to the task impurity of neuropsychological testing and the fact that behavioural ratings seemingly 

tap different skills, results from any one measure will elucidate differing levels of impairment or 

executive dysfunction. Thus, the current thesis utilises multiple measures to index EF. The following 

section briefly outlines the three domains of functioning defined in the three-factor model and, in turn, 

describes the neuropsychological tests used in the current thesis to index each of these. 

1.4.1.1 Working Memory and Updating 

Working memory (also conceptualised as updating in some descriptions) is the ability to manipulate and 

work with the information currently held in mind/memory. This idea of being able to hold in mind what 
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has come previously but is no longer perceptually present is important for many higher executive 

functions such as planning and reasoning (Diamond, 2013). This is inherently linked to inhibitory 

control in the sense that, in order to know what to inhibit, you need to be able to hold the current goal 

in working memory. The current thesis utilises a single measure of working memory, the ‘Digit Span 

Backwards’ score from the WISC-IV (Wechsler, 2003). 

a)  ‘Digit span backwards’ – In this task a list of numbers is read by the examiner, with an 

increasing span of digits. Participants are required to hold these numbers in working memory 

and repeat them backwards to the examiner. This task requires both aspects of this factor, 

working memory storage to memorise the numbers, but also memory updating, once the 

numbers have been reordered to then recall them to the examiner (Coulacoglou & Saklofske, 

2017). 

1.4.1.2 Inhibitory Control 

Inhibitory control is defined as the ability to control one’s attention, behaviour, thoughts, and/or 

emotions despite a strong predisposition to a given automatic, yet less adaptive, response. This allows 

us to conduct a repertoire of behaviours beyond that of habits, impulses and conditioned responses 

(Diamond 2013). This skill is inherently linked to both response inhibition, inhibition of behavioural 

responses and executive attention, representative of interference control via inhibition at the level of 

attention (Diamond 2013). However, this use of selective attention is also explicitly linked to the abilities 

of working memory, in order to stay focussed on the working memory contents of interest  (Santa-Cruz 

& Rosas, 2017). The current thesis utilises three measures to index aspects of inhibitory control; the 

‘Colour-Word interference’ task from the D-KEFS, and both the ‘Walk-don’t-walk’ task and the ‘Sky 

Search’ attention score from the TEA-CH. 

a)     ‘Colour-Word interference’ – This task consists of two different conditions used to index 

inhibition, an incongruent Stroop condition, where participants read the colour of the ink and 

not the word written, followed by a switching trial where they must read either the colour of the 

ink or the word written, depending on whether the word is displayed inside a box or not. It is 

pertinent to note that these measures may also be related to processing speed due to their ‘time-

to-completion’ scoring  (Karr, Hofer, Iverson, & Garcia-Barrera, 2019). 

b)     ‘Walk-don’t-walk’– This task is a classical go-no-go task where children are presented a 

path of squares and are played one of two tones, one which means the child should move forward 

by one space, the other tone means the child should not move forward. This task specifically 

indexes response inhibition, inhibitory control at the level of behaviour (Diamond, 2013). 

c)     ‘Sky Search’ attention score – This is a selective attention task where children are presented 

with a sky filled with pairs of space ships. Children must circle those pairs that comprise the 
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same space ship and ignore those with unmatched pairs. The attention score is the time taken 

on this task relative to time taken on a similar motor-based control task in which there are no 

distractors present (Manly et al., 1999), to isolate executive attention abilities. Although 

nominally a test in the ‘selective attention’ domain of the TEA-Ch, the measure correlates with 

and, in factor models, loads with, other measures of inhibition (Downing, 2015; Wu et al., 2011). 

Thus, in the current thesis it is included within the inhibitory control domain. 

1.4.1.3 Cognitive Flexibility 

Cognitive flexibility (sometimes referred as, but not limited to, set shifting) is the ability to adapt 

behaviour or responses to changing rules, demands or priorities in the immediate environment(Diamond, 

2013). The current thesis indexes this using the ‘creature counting’ task from the TEA-Ch. 

a)  ‘Creature Counting’ – In this task, the child is asked to count creatures along a path. 

When an arrow is encountered (either upward or downward pointing) the direction of counting 

is changed. The current study uses both the accuracy and time taken as two separate indicators 

of cognitive flexibility. 

1.4.2 Executive functions post-injury 

Cognitive-skills are more likely to show dysfunction when damage occurs during the period of skill-

maturation (Ewing-Cobbs, Prasad, Landry, Kramer, & DeLeon, 2004; Krasny-Pacini et al., 2017). As 

EFs show a protracted period of maturation and development (Diamond, 2013; Friedman et al., 2016; 

Perone, Almy, & Zelazo, 2018), they are likely to have an extended window of vulnerability to the 

effects of injury (Krasny-Pacini et al., 2017). This is seemingly the case following a pTBI, as EFs have 

been shown to be commonly impaired, both acutely and chronically post-injury. 

Rates of parent-reported executive dysfunction are raised after pTBI (18-38%) during the first year post-

injury (Sesma, Slomine, Ding, McCarthy, & Children's Health After Trauma Study, 2008), with greater 

EF related difficulties in daily living tasks seen in patients compared to controls (Krasny-Pacini et al., 

2017; Mangeot, Armstrong, Colvin, Yeates, & Taylor, 2002; Vander Linden, Verhelst, Verleysen, et al., 

2019). Whilst performance-based measures of EF seemingly show some improvement over time 

(Anderson, Damasio, & Damasio, 2005; Krasny-Pacini et al., 2017; Levin et al., 1997), these difficulties 

in daily living, essentially the application of EF skills to everyday life, do not show similar improvement 

(Keenan, Clark, Holubkov, Cox, & Ewing-Cobbs, 2018; Krasny-Pacini et al., 2017; Vander Linden et 

al., 2018). Although there is evidence of greater executive dysfunction seen for greater injury severities, 

outcomes are highly variable and degree of functional impairment is characterised by an inter-individual 

heterogeneity which is poorly understood (Anderson et al., 2005; Catroppa & Anderson, 2009; Konigs 

et al., 2018; Polinder et al., 2015). For instance, current reports have highlighted that data-driven 

approaches can identify at least three distinct clusters of pTBI patients based on EF performance 
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(Ringdahl et al., 2019). These impairments are likely to be more apparent over childhood as there are 

multiple, ever-increasing demands in school and social environments, such as attentional, social and 

academic demands, especially in middle childhood and adolescence (Hunter & Sparrow, 2012). Overall, 

this highlights EF as a key domain of impairment within the sequelae of pTBI however, there is large 

within-population heterogeneity. 

EF is a cognitive domain of especially great importance for children, and thus, executive dysfunction 

has significant links to impairments in attainment of expected skills at a functional level, setting the 

scene for long-term developmental outcomes (Perone et al., 2018). EF abilities in children predict 

attainment, health and competencies (Diamond, 2013; McKenna et al., 2017; Perone et al., 2018), such 

as math and reading abilities (Blair & Razza, 2007), school readiness (Welsh, Nix, Blair, Bierman, & 

Nelson, 2010), later school accomplishment (Checa & Rueda, 2011), social understanding (Riggs, 

Jahromi, Razza, Dillworth-Bart, & Mueller, 2006) and a number of other aspects of daily living 

(Diamond, 2013; Gaines & Soper, 2018). Executive dysfunction is defined as; 

“…deficits in the ability to inhibit well-learned patterns of behaviour and derive new ways of 

solving problems. Individuals become trapped in repetitive cycles of well-learned behaviour 

(perseveration) and lack flexibility to accommodate and re-accommodate their behaviour to 

novel situations”  (Henry & Bettenay, 2010, p. 3). 

It is therefore easy to see how dysfunction in these cognitive skills can lead to wider difficulties for 

children who have suffered a pTBI. Therefore, understanding how pathological brain changes may 

predicate and potentially subsume later executive dysfunction is of great importance, as it may have 

much wider implications on their day-to-day quality of life. Early prediction, and identification of those 

who are likely to experience difficulties in EF will allow us to better target individuals for early 

intervention to promote best-attainable outcomes. 

Impairment to executive functioning abilities therefore represents a common and functionally significant 

consequence of a pTBI. Early identification of those individuals that are more likely to experience 

significantly greater executive dysfunction is a key aim for clinical research in this area. Early 

identification would promote targeting individuals for early intervention, and reduce stress for families 

by giving them early prognostic information as the trajectory for recovery. One way by which to achieve 

this is understanding how pathological brain change, as identified with MRI, may predicate and 

potentially subsume, later executive dysfunction. 

1.4.3 Neural correlates of executive function following pTBI 

In neuropsychology, the term ‘executive functioning’ has previously been used interchangeably with 

‘frontal lobe functioning’ (Ardila, Fatima, & Rosselli, 2019). However, recent research has asserted that 

EFs are  subsumed by a widely distributed network of neural regions (Beauchamp, Catroppa, et al., 
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2011; Collette, Hogge, Salmon, & Van der Linden, 2006; Nowrangi, Lyketsos, Rao, & Munro, 2014; 

Slomine et al., 2002). These networks may be particularly at risk of the diffuse nature of morphometric 

changes post-TBI and the diffuse axonal injury which is likely to ‘disconnect’ distant cortical regions 

(Treble-Barna et al., 2017). EFs are also more likely to experience less complete recovery and 

difficulties in making age-appropriate gains (Anderson, Spencer-Smith, & Wood, 2011), due to this 

diffuse network. 

Furthermore, studies that investigate the brain-behaviour correlates of executive dysfunction post-injury 

using sMRI have provided little evidence of regionally-specific damage subsuming these deficits. 

Contrary to adult literature, where EF is implicated following frontal-region pathology, EF deficit in 

early brain injury occurs irrespective of injury factors such as lesion location (Anderson et al., 2010; 

Jacobs, Harvey, & Anderson, 2011). Non-significant correlations are reported between thinner cortical 

thickness (greater atrophy) of EF supporting ROIs and increased parent-reports of executive dysfunction 

(Vander Linden, Verhelst, Verleysen, et al., 2019). No relationship was found between GM volume and 

a performance measure of working memory (Konigs et al., 2018), but parent-reported working memory 

problems were significantly associated with the cortical thickness of temporal and parietal ROIs 

(Merkley et al., 2008). Similarly, no relationship was found between frontal pole cortical thickness and 

performance-based measures of mental flexibility and working memory (Levan et al., 2016). However, 

in a group with mild pTBI, thinner cortical thickness of the dorsolateral prefrontal cortex was associated 

with slower reaction times in a high cognitive load working memory dual-task (Urban et al., 2017). 

Smaller parietal and cingulate volumes were also related to longer reaction times in a working memory 

task (Wilde et al., 2011). Cortical WM volume predicted long-term inhibition/cognitive flexibility 

outcomes at 16 years post-injury (Yu, Seal, et al., 2018). Cognitive training has improved EF outcomes 

for children post-injury, but no associated change in brain morphometry was observed, despite 

differences in EF ROIs pre-training compared to controls (Vander Linden, Verhelst, Deschepper, et al., 

2019). Differences in cortical thickness of frontotemporal regions were related to case-control 

differences in performance on a novel social problem-solving VR task (Hanten et al., 2011) likely to 

involve multiple complex EF demands.  A diffuse set of cross-sectional and longitudinal changes in 

volume were also related to performance on a composite cognitive functioning index which included 

both working memory and cognitive flexibility indices (Dennis, Faskowitz, et al., 2017; Dennis et al., 

2016). This literature clearly highlights the fact that there is no apparent consensus in the brain 

behaviour-correlates of EF post-injury, across multiple methodologies and approaches. 

However, it is also important to note that these studies have three key limitations. Firstly, they 

investigate populations with a very limited sample size (Hanten et al., 2011; Levan et al., 2016; Merkley 

et al., 2008; Urban et al., 2017; Vander Linden, Verhelst, Deschepper, et al., 2019; Vander Linden, 

Verhelst, Verleysen, et al., 2019) limiting statistical power to detect effects. Secondly, they perform 

analyses on highly reductionist ‘summary’ measures of sMRI (mean over multiple EF ROIs (Vander 
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Linden, Verhelst, Verleysen, et al., 2019); whole GM volume (Konigs et al., 2018); Cortical WM as 

proportion of eTIV (Yu, Seal, et al., 2018)) or across a very limited number of ROIs (Levan et al., 2016; 

Vander Linden, Verhelst, Deschepper, et al., 2019). These two issues are likely highly intertwined, with 

limited statistical power due to small sample sizes, analyses are unable to be conducted across multiple 

ROIs whilst still maintaining adequate control over the false positive rate. 

The final key limitation of this work is the specific univariate approach to these analyses. The 

neuropsychological research highlighted above discusses at great length that damage to the diffuse 

networks that subsume the development and maturation of EF is what results in the failure to reach age-

appropriate milestones. However, the univariate approaches assume that each region occurs and exists 

independently of all other regions, rather than interconnected components of the wider neural system, 

in contradiction of these neuropsychological assumptions. 

Considering the morphometry of the brain post-TBI as a set of interrelated regions is not a new concept. 

Spanos et al. (2007) investigated volumetric correlations across cerebro-cerebellar regions and reported 

a significant positive relationship between DLPFC/cerebellum was found in the TD but not in the TBI 

group. Drijkoningen et al. (2017) adopted a similar approach by estimating the correlational structure of 

atrophy scores between regions. Moderate to very strong positive correlations were found for these 

relationships. Bigler (2016) suggests that a potential explanation for volume/cortical thickness changes 

distal to primary locales of injury post-TBI may be due to the loss of connectivity between regions 

following a TBI, with the connection dropout affecting the morphometry of the regions that were once 

connected, thus providing a potential mechanism by which these changes in morphological covariation 

and correlations of atrophy may be driven. 

Bigler (2016) suggested that a systems biology approach to TBI is necessary to better understand 

pathological mechanisms after injury and prognostication of post-injury functioning. He stated that; 

“… how pathology influences the organism at the systematic level… is the most important 

challenge because therein is the link between damage, neural networks, and behaviour” (Bigler, 

2016, p. 16). 

Therefore, the current thesis takes a systems-level approach to investigate the changes to the structural 

organisation of the brain post-injury, specifically utilising network-analysis approaches, and how this 

may be related to later EF. 

1.5 Network analyses of in-vivo MRI 

1.5.1 Network analyses 

Recently there has been a rise in neuroimaging studies investigating the network structure of the whole-

brain, modelling this ‘connectivity’ within a graph-theoretic framework. Graph-theoretic approaches to 

neuroscience stem from a seminal paper by Sporns, Tononi, and Kotter (2005) which described the 
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human connectome as “a comprehensive structural description of the network of elements and 

connections forming the human brain” (p. 245). Mathematical graphs are representations of these 

interactions, otherwise known as edges, between several individual, communicating units, referred to as 

nodes. This collection of nodes and edges constitutes the network. The topological organization of the 

produced networks can then be quantitatively described using a mathematical language from graph 

theory. For a more detailed explanation of graph theoretical analysis in the neurosciences, see Fornito, 

Zalesky, and Bullmore (2016). As cognitive functioning arises through the coordinated activation of 

disparate neural units which comprise neural networks these approaches are highly intuitive (Giedd et 

al., 2015). 

Network-level investigations of the brain in-vivo using MRI imaging is usually conducted in the 

functional domain, using functional MRI (fMRI) to understand how brain ‘activity’ is synchronous 

between pairs of communicating regions, or using diffusion MRI (dMRI) to estimate the degree and 

direction of which free water molecules can diffuse in the brain, allowing us to infer the presence and 

location of bundles of myelinated axons within the white matter, connecting different brain regions 

together. In the field of paediatric TBI, both fMRI and dMRI have been used to investigate the network-

level organization of the brain post-injury. This is unsurprising; given the diffuse damage which can 

occur across the brain after a pTBI (Fujiwara, Schwartz, Gao, Black, & Levine, 2008; King, Ellis, Seri, 

& Wood, 2019) and recent characterizations of TBI as a connectivity disorder (Hannawi & Stevens, 

2016; Hayes, Bigler, & Verfaellie, 2016; Wilde, Hunter, et al., 2012).  

However, a key limitation of these types of analyses is that the MRI sequences required to generate 

fMRI and dMRI datasets have long acquisition times and may therefore be less tolerable in clinical 

populations. Given the arguably greater appropriateness and ease of collecting T1w MRI data from 

participants over fMRI and dMRI, the current thesis adopts a network-level approach to the investigation 

of meso-scale brain organisation post-injury using sMRI, an approach that is novel to the field of pTBI. 

1.5.2 Network analyses of sMRI 

Instead of treating the morphometry of the brain as independently segmented regions, one way to probe 

the structural network following TBI is to investigate the relationships between these regions using a 

structural covariance (SC) network approach (Bigler, 2016; Lerch et al., 2017). An approach which 

gained traction following a paper by Mechelli, Friston, Frackowiak, and Price (2005), SC is the degree 

to which the macroscopic structure of brain regions, as measured by in-vivo MRI morphometric 

measures (such as cortical volume or thickness for instance), statistically co-varies with that of all other 

regions of the brain across individuals (Alexander-Bloch, Giedd, & Bullmore, 2013; Alexander-Bloch, 

Raznahan, Bullmore, & Giedd, 2013; Evans, 2013). As multiple participants are required to sample 

enough cortical measurements to generate a correlation between all possible regional pairs, this approach 

generates group-level brain networks, expressing population-level covariance in neuroanatomy 
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(Alexander-Bloch, Raznahan, et al., 2013). However, this whole-brain approach to sMRI particularly 

lends itself to graph theoretical analysis (Evans, 2013), allowing for the quantification of whole-brain, 

interregional relationships (Alexander-Bloch, Giedd, et al., 2013). 

SC between regions is likely driven by a range of (non-mutually exclusive) biological phenotypes and 

thus represents a biologically-meaningful ‘signal’ in the brain. These drivers include genes, 

development, ageing or plasticity (Evans, 2013; Pagani, Bifone, & Gozzi, 2016). It is suggested that the 

covariance may also reflect maturational changes or maturational coupling (Alexander-Bloch, Giedd, et 

al., 2013; Evans, 2013; Raznahan, Lerch, et al., 2011) over time which is synchronized between 

connected regions. As the infant brain begins forming and reforming axonal connections with 

development (Cao, Huang, Peng, Dong, & He, 2016) this synchronous axonal activity could have a 

trophic effect on regional levels of growth (Alexander-Bloch, Raznahan, et al., 2013). SC may also be 

genetically influenced through the co-expression of similar genes between regions as developmental 

‘cues’ (Raznahan, Lerch, et al., 2011; Romero-Garcia et al., 2018; Yee et al., 2017), with 9% variance 

in SC explained by co-expression of Human Supragranular Enriched (HSE) genes (Romero-Garcia et 

al., 2018). It has further been suggested that SC may arise due to the trophic effects of co-activation of 

regions sharing direct axonal connections (Gong, He, Chen, & Evans, 2012). However, there is a limited 

correspondence between tract-tracing or tractography and SC, although some variance in SC can be 

explained (Gong et al., 2012; Reid, Lewis, et al., 2016). Reid, Lewis, et al. (2016) highlight the variance 

in SC explained by resting-state fMRI (rsfMRI) between regions. SC also shows greater congruence 

within, rather than between, fMRI network modules (Alexander-Bloch, Raznahan, et al., 2013). These 

structural-functional relationships are despite obvious differences in temporal dynamics of these 

processes, with the BOLD signal rapidly evolving over time whereas the maturational or disease-related 

organization of morphology occurs over longer periods of time (Alexander-Bloch, Raznahan, et al., 

2013; Evans, 2013; Zhang et al., 2011). These studies therefore support the idea of mutually trophic 

influences, due to functional connectivity, “sculpting” SC development (Geng et al., 2017, p. 1805) or, 

put more simply, the notion that “form follows function” (Reid, Bzdok, et al., 2016, p. 2). 

It must be remembered that in-vivo assessment of SC is not a direct assessment of the architecture of 

the brain, and thus it is unclear to what extent these networks resemble actual anatomical networks 

within the brain (Batalle et al., 2013). Gong et al. (2012) argue that given limited correspondence 

between white-matter fibre connectivity and SC (replicated by Reid, Lewis, et al. (2016)), SC should 

not be used as a proxy for actual anatomical connections. However, as stated, these potential driving 

mechanisms may not be mutually exclusive from one another (Yee et al., 2017). Whilst it is accepted 

that the neurobiological basis for this network of inter-regional relationships is poorly understood 

(Romero-Garcia et al., 2018), evidence presented here suggests that variance in SC between regions 

may be best explained by multiple driving biological phenotypes (Reid, Lewis, et al., 2016; Yee et al., 

2017). This diverse evidence-base highlights the fact that the SC between regions represents a 
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biologically-meaningful signal which captures variance across multiple connectivity phenotypes, 

potentially offering complementary and beneficial information with which to investigate the brain. 

With potential relationships with genetic control of cortical development (Romero-Garcia et al., 2018) 

and the trophic effects of co-activation on maturation (Alexander-Bloch, Raznahan, et al., 2013) it is 

perhaps unsurprising that SC is seemingly sensitive to neurodevelopmental change over time. These SC 

networks maintain efficient, small-world organization across early and late childhood and adolescent 

age groups (Khundrakpam et al., 2013), even as early as one month postnatally (Fan et al., 2011), 

suggesting that the changes over development to the SCN are meaningful in the sense that they maintain 

the expression of this important network-topology. Change in SC shows weak association with changes 

to cortical thickness and myelination suggesting this age-related change is beyond that of well-

researched processes such as thinning and myelination (Váša et al., 2017). SC in the brain also appears 

to be sensitive to diversions of cortical development and maturation. SC in children with malformations 

of cortical development (MCD) due to multiple mechanisms of cortico-genesis disruption, showed 

gradiated differences, with more marked differences found for multiple MCD structural phenotypes 

which pathologically occur at similar late stages of cortico-genesis  (Hong, Bernhardt, Gill, Bernasconi, 

& Bernasconi, 2017). These differences seemingly specific to timing of disruption suggest that SC can 

index diversions of the typical maturational trajectory of the cortex, such as that seen post pTBI. 

Overall this evidence suggests SC is sensitive to neurodevelopment. However, a barrier to a true 

longitudinal investigation of this coordinated maturational change is the slow rates of cortical 

development (Raznahan, Lerch, et al., 2011; Shaw et al., 2008). Nonetheless, sensitivity to 

neurodevelopment makes this method particularly appropriate for paediatric populations. For example, 

studies have investigated the cross-sectional differences to the structural covariance of the cortex of a 

number neurodevelopmental disorders and neurological conditions presenting in the paediatric period, 

including ADHD (Griffiths et al., 2016), autism (Bethlehem, Romero-Garcia, Mak, Bullmore, & Baron-

Cohen, 2017), dyslexia (Liu et al., 2015; Qi et al., 2016), epilepsy (Bonilha et al., 2014; Garcia-Ramos 

et al., 2016) and, as discussed previously, malformations of cortical development (Hong et al., 2017). 

Previous studies of GM atrophy and change following pTBI have looked at focal/univariate changes 

that treat the morphometry of multiple ROIs as distinct, independent features. The brain represents an 

organ of extreme complexity, and yet this mass univariate approach assumes that each region occurs 

and exists independently of all other regions, rather than interconnected components of a multivariate 

whole. However, network neuroscience approaches may alleviate this reductionism, providing a low 

dimensional description of the relatedness of the brain across the cortex. Overall, the studies highlighted 

in this section indicate that the in-vivo measurement of SC provides information that is biologically 

meaningful in terms of this meso-scale organisation of morphometry between regions. Given the fact 

that SC approaches are also sensitive to the effects of neurodevelopment and neurological disruptions, 
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the current thesis investigates the role of network analyses of sMRI in better understanding the brain-

behaviour correlates, and potential predictors, of executive dysfunction following pTBI. 

1.6 Executive Summary 

1.6.1 Main Thesis Aims 

The major aim of the current thesis was to investigate the brain-behaviour correlates between acute 

investigations using sMRI and executive dysfunction at two-years post-injury in a relatively large cohort 

of children who have experienced a pTBI. Specifically, the current thesis adopts a novel, network-level 

analyses of sMRI data to better capture the complex, meso-scale organisation of the cortex in relation 

to both development, and pathological damage of diffuse regions across the cortex. This addresses the 

three key limitations of existing investigations of the brain-behaviour correlates of executive 

dysfunction post-pTBI; i) analyses mostly restricted to univariate assessments, ii) highly reductionist 

approaches to sMRI data over a limited number of ROIs and iii) limited sample sizes. In addressing 

these, the current thesis aims to reconcile inconsistent findings regarding brain-behaviour correlates of 

EF in pTBI, likely due to the fact that previous research has focussed on univariate analyses which treat 

the morphometry of multiple ROIs as distinct, independent features, despite evidence to the contrary, 

especially during brain development. 

The specific aims of the current thesis of work were threefold: 

a) To assess the current state of the field in regard to changes to brain morphometry post-TBI 

and the brain-behaviour correlates of post-injury cognitive impairment, 

b) To validate methodologies for sMRI network analyses for investigating cognitive functioning 

and pTBI populations, 

c) To conduct novel experimental investigations of the sMRI network-level brain-behaviour 

correlates of future executive dysfunction in a pTBI population. 

1.6.2 Thesis Outline 

The current thesis presents six experimental chapters in which the stated thesis aims are addressed across 

both hypothesis-driven investigations and methodological validations. Chapter 2 presents a systematic 

review that highlights the current state of the literature regarding morphometric changes to the brain 

post-TBI and current evidence for brain-behaviour correlates of later cognitive impairment. This 

highlights current concerns for the field, including pathological lesions on sMRI processing pipelines, 

an issue which is explored further using experimental investigations in Chapter 3. In Chapters 4 & 5, 

group-level, structural covariance methodologies are investigated for the first time in the field of pTBI 

research, with the findings proposing network-level, neuropathological mechanisms that are associated 

with poorer executive functioning outcome post-injury. Chapter 6 represents a methodological 
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validation of an adaptation to the state-of-the-art analysis approach to sMRI data, the morphometric 

similarity network, using a large publicly-available dataset. Given the success of this validation, this 

approach (within a supervised learning framework) was employed in the investigation of the pTBI 

dataset within Chapter 7, in order to assess the predictive validity of this approach in regard to post-

injury executive dysfunction. Finally, in Chapter 8, the main findings of this research are more generally 

discussed, alongside various limitations and implications for the field. 
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Chapter 2. A systematic review of cross-sectional differences and longitudinal changes to the 
morphometry of the brain following paediatric traumatic brain injury 

2.1 Overview 

The main aim of the current chapter was to review the current state of the field regarding morphometric 

changes to the brain following a pTBI. The systematic literature search found that there is limited spatial 

consensus as to how the MRI-derived morphometry of the brain changes after a traumatic brain injury 

within the childhood period, but longitudinal studies suggest that developmental trajectory over time is 

different post-injury compared to controls. A version of the work presented in this chapter is published 

as follows: 

King, D. J., Ellis, K. R., Seri, S., & Wood, A. G. (2019). A systematic review of cross-sectional 

differences and longitudinal changes to the morphometry of the brain following 

paediatric traumatic brain injury. NeuroImage. Clinical, 23, 101844. 

DJK designed, conducted the search and wrote-up the results of this work. KRE conducted the second 

screening of search results. SS reviewed and provided comments on the manuscript. AGW supervised 

the design of the study and reviewed and provided comments on the manuscript. 

2.2 Introduction 

Traumatic brain injury (TBI) is a leading cause of disability for both children and young adults (World 

Health Organization, 2006). Estimates of incidence are high for the 0-25 year old age group, with overall 

prevalence being estimated at approximately 30% of individuals experiencing a TBI by the time they 

reach young-adulthood (aged 25). Between the ages of 0-15 year olds there is an estimated incidence 

between 1.10-1.85 cases per hundred (McKinlay et al., 2008). Thus, many injuries occur to the still-

developing brain (Wilde, Hunter, et al., 2012). Unfortunately, the risk of poor neuropsychological and 

functional outcomes for those with mild to severe paediatric TBI (pTBI) is not clearly understood, 

especially due to the many factors upon which the likelihood of ongoing sequelae may be predicated 

(Babikian & Asarnow, 2009; Crowe et al., 2015; Irimia et al., 2017; Polinder et al., 2015).  

In particular, the interaction between injury mechanisms and brain maturation in childhood may 

underpin the long-term neuropsychological effects of TBI. The impact and extent of ongoing neural 

changes associated with TBI is likely to have significant implications for children’s later functioning. 

That is, the disease process that occurs following a pTBI necessarily interacts with the trajectory of 

normal brain development. Thus, the extent to which the injury alters that normal process may be an 

important factor to consider when trying to understand the apparent vulnerability of children’s brains to 

early TBI and producing clinically relevant and reliable predictions for long-term outcomes. The current 

systematic review aims to investigate the interaction of injury and development by examining studies 

which have measured the effects of injury on the paediatric brain through MRI. 
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Alterations in brain structure occur after TBI but also as a part of normal development. TBI is defined 

as a neurological condition in which a traumatic external force to the brain leads to deformation of tissue, 

resulting in cellular or tissue damage which can cause transient or permanent functional impairment 

(Bigler, 2007b, 2016; Maxwell, 2012). TBI can result in the compromise of vasculature and physiology 

of the brain (Bigler, 2001) as well as resulting in trauma-induced cell loss (Bigler, 2013). This atrophy 

can vary in relation to injury factors such as mechanism, severity and pathology (Bigler, 2013; Cullen 

et al., 2011; Maxwell et al., 2010). This can be realised as changes to both brain volume (Bigler, 2016) 

and cortical thickness (CT) measures (Urban et al., 2017). Morphometric brain changes are also a feature 

of typical brain developing throughout childhood and adolescence (Batalle et al., 2018; Mills et al., 

2016; Raznahan, Shaw, et al., 2011; Shaw et al., 2008). Non-linear trajectories of grey matter (GM) and 

white matter (WM) maturation are apparent in measures of volume (Giedd, 2004; Gilmore et al., 2007; 

Knickmeyer et al., 2008), gyrification patterning (Dubois et al., 2008) and cortical thickness (Herting et 

al., 2015; Nie et al., 2014; Whitaker et al., 2016), usually showing reductions over time, in line with 

models of synaptic pruning and myelination (Whitaker et al., 2016). This means that the morphometric 

atrophy and developmentally-inappropriate apoptosis (Urban et al., 2017; Wilde et al., 2005) due to 

pTBI is occurring in the context of an already changing, age and development-dependent brain (Bigler, 

2016; Maxwell, 2012). Therefore, long term effects of injury are likely due to these interactions of age, 

neuroinflammation and neurodegenerative effects (Bigler, 2013; Johnson et al., 2013).  

Bigler (2013) suggested that changes to the volumetrics of the brain, as measured by MRI, beyond that 

of anticipated age-dependent differences, may act as a biomarker of the state of health of the brain 

following pTBI. Previous reviews and investigations of quantitative MRI have also suggested a more 

long-term neurodegenerative effect of TBI on volumetry of the brain, in both adult and childhood TBI 

(Bigler, 2013; Cole, Leech, Sharp, & Alzheimer's Disease Neuroimaging, 2015; Keightley et al., 2014; 

Masel & DeWitt, 2010; Ross, 2011). Given the sensitivity of MRI-derived morphometry of the brain to 

typical development (as highlighted above), assessments of the brain using MRI post-TBI could prove 

to be key in understanding the potential long-term neurobehavioural and cognitive sequelae of pTBI 

(Bigler, 2013; Levin et al., 2008). 

The brain can be uniquely vulnerable to the primary effects of TBI depending on the developmental 

stage at which the insult occurs (Anderson et al., 2011; Goldstrohm & Arffa, 2005; McCrory, Collie, 

Anderson, & Davis, 2004; Wilde et al., 2006). For example, the state of development of myelinated 

axons at the time of injury influences the response of tissues to brain injury (Adelson & Kochanek, 1998; 

Kochanek et al., 2000; Maxwell, 2012). Degeneration of nerve fibres following TBI occurs at a faster 

rate for unmyelinated versus myelinated cells (Maxwell, 2012; Staal & Vickers, 2011). Therefore, the 

early developing brain may be uniquely vulnerable in this way, with injuries occurring at different 

critical periods of development experiencing potentially very different functional trajectories (Anderson 

et al., 2011). In addition to potentially deleterious effects of a brain injury, it is also important to consider 



34 
 

the potential of compensatory neural trajectories, through mechanisms such as neural plasticity, which 

may lead to restitution of function (Anderson et al., 2011; Bigler & Wilde, 2010). 

With this in mind, the current systematic review aimed to evaluate studies in which MRI-derived 

morphometry was measured in comparison to typical development, or longitudinally in paediatric 

patients following a TBI. In this vein, we chose to only include those studies that report on both patients 

and controls, thus excluding studies which only report on morphometry of patients. Whilst still 

informative, studies that just compare morphometry across injury severity cannot necessarily tease apart 

difference due to the injury and those expected differences due to typical development. A previous 

scoping review of studies investigated evidence of neurodegenerative change following TBI in children 

(Keightley et al., 2014). However, recent expansion of the literature in this field warrants a re-

investigation. 

The current systematic review aimed to answer the question; following paediatric brain injury, over a 

range of severities, does the morphology of the brain exhibit either i) longitudinal change and/or ii) 

differences compared to healthy controls. We then sought to determine whether there was evidence of 

a relationship between these changes or differences in morphology and cognitive outcomes. 

2.3 Methods 

2.3.1 Review Strategy 

Five sources were searched for the systematic review; Web of Science, Psycharticles, Cochrane Library, 

PubMed and Scopus. No limits on publication dates were applied. Three blocks of related search terms 

were used: block 1 for ‘paediatric’ terms, block 2 for ‘TBI’ terms and block 3 for ‘neuroimaging’ terms. 

Table 2.1 shows the full list of search terms for each block. Blocks were combined using the AND 

function for searching and terms within each block were combined with the OR function. The 

‘neuroimaging’ block was left deliberately broad to capture studies where investigations of 

morphometry were carried out as a secondary outcome (i.e. alongside DTI investigations in Konigs et 

al. (2018)). 
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Table 2.1 Blocks of search terms used to query publication databases in the review strategy 

Block Terms 

Block 1 - Children (pe$diatric OR infant OR child* OR Adolescen* OR youth OR teenage* OR 

young) 

Block 2 - TBI (TBI OR Trauma*-brain-injury OR brain-injur* OR brain NEAR/3 injury 

OR brain-insult OR DAI OR diffuse-axonal-injur* OR axonal-injur*) 

Block 3 - Imaging (MRI OR magnetic-resonance-imag* OR neuroimag*) 

 

Returned records from each database were combined and collated using Endnote (Tomson Reuters, 

2013) and duplicate records were excluded. Publications were included in the synthesis if they; i) report 

on human participant data following non-penetrating TBI of any severity using;  a. between groups 

analysis against an appropriate comparison group of either typically developing (TD) or orthopaedic 

injury (OI) controls or, b. within groups analysis investigating longitudinal change over time against 

controls, ii) presented isolated results of a paediatric sample (ages 0-19) at scanning, iii) presented 

original empirical quantification of the morphometry of the brain from T1-weighted (T1w) magnetic 

resonance images (MRI), and iv) written in English. Exclusion criteria included lack of control 

comparison group, reviews, conference abstracts, case studies, dissertations and/or book chapters. 

Initial screening of abstracts for inclusion was conducted independently by two reviewers (DJK and 

KRE). Full-text articles of records identified by the two reviewers were independently assessed for 

inclusion by two reviewers (DJK and AGW) and consensus on eligibility was sought through discussion. 

Following identification of relevant records for inclusion, a further backwards (reference lists) and 

forwards (citations) search were conducted in the web of science platform to ensure identification of all 

relevant publications. This was done iteratively, i.e. new papers selected for inclusion were subjected to 

the same forwards and backwards searches, until no new publications were identified.  

Information from the studies chosen for inclusion was systematically extracted into a pre-designed data 

pro-forma from full-text articles by two reviewers (DJK and KRE). The following data were abstracted; 

citation details, country of origin, inclusion/exclusion criteria, design, study aim, MR imaging 

timepoint(s) relative to time of injury, patient sample (size, gender, injury severity, age at MRI, age at 

injury), control sample (size, gender, age at MRI, control comparison group (ie. typically developing 

(TD) vs orthopaedic injury (OI) samples)), neuroimaging characteristics (magnet strength, scan 

parameters, scale of region-of-interest (ROI; i.e. whole brain, ROI, voxel-wise), software, statistical 

design, morphometric measure(s) derived), results, and cognitive tests (tests administered, statistical 
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approach, results). Where relevant and/or necessary, authors were contacted to request further 

information about the methodology or data. 

2.3.2 Study quality 

Assessment of study quality was conducted using the ‘Methodological Index for Non-Randomized 

Studies’ (MINORS; Slim et al. (2003)) tool (full 12-item checklist). Assessment was conducted by a 

single reviewer (DJK). Studies were given a rating of 0 (not reported), 1 (reported but inadequately), 2 

(reported adequately) or N/A if deemed to be not relevant to the study design. An average score was 

calculated across all non-N/A items to produce a continuous measure of quality from 0 to 2. High quality 

was identified as 1.51+, moderate as 1-1.5 and low as 0-0.99.  

2.3.3 Data Visualisation 

Visualisation of dispersion of cross-sectional studies based upon sample characteristics of age at injury 

and injury-scan interval was achieved with the ggplot2 package in R (Wickham, 2009). This was to aid 

qualitative interpretation of the heterogeneity in the patient populations being tested. Details of the 

methodology used are included in supplementary materials (Appendix A).  

2.3.4 Overlapping samples 

Similar to Dennis, Babikian, Giza, Thompson, and Asarnow (2017), we attempted to identify 

overlapping samples across the eligible studies presented for qualitative synthesis. Some studies clearly 

referenced other instances where the dataset was used in other published works. However, due to gaps 

in reporting of demographic characteristic or differences in the exact selection of participants used from 

a wider sample, we may have missed some of these overlaps. Despite data reuse, we report on all studies 

as the hypotheses tested were substantially different enough to warrant inclusion. 

2.4 Results 

2.4.1 Eligible studies 

The search strategy (including forwards and backwards searches) was conducted on 15/11/17 and the 

initial search identified 17,005 articles over the five databases. Figure 2.1 shows the PRISMA flowchart 

of this process. The iterative forwards and backwards searches concluded in two iterations (i.e. for the 

2nd iteration, no new papers were identified). 

Overall, 33 studies were deemed as meeting the inclusion criteria and were included in the narrative 

synthesis. Study characteristics of all eligible studies are reported in Table 2.2 for cross-sectional studies 

and Table 2.3 for longitudinal studies. 

Of the included studies, two were rated as poor quality, 22 were rated as medium and nine as high. The 

individual ratings are reported in both Table 2.2 and Table 2.3. Many studies were rated low on items 



37 
 

pertaining to items of ‘Unbiased assessment of study endpoint’, where there may have been a lack of 

blinding practices. Low ratings also occurred for all studies for the item of ‘Prospective calculation of 

the study size’ due to lack of a-priori power calculations for sample size (Slim et al., 2003). 

We were precluded from performing a formal quantitative meta-analysis because included studies 

utilised divergent approaches, both across dimensions of methods and anatomical partitions tested. 
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Figure 2.1 PRISMA flowchart, modified from (Moher, Liberati, Tetzlaff, Altman, & Grp, 2009) 
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Table 2.3a. Study demographics for all cross-sectional studies included in the review 

Reference Sample and age (age at scanning; years, M±SD) Age at injury (years, M±SD) 

Time since injury 

(days/months/years, 

M±SD) 

Comparative Group and age at scan 

(years, M±SD) 

Study 

quality 

Early stage (days to 1-year post injury) 

Urban et al (2017), Canada 13 Mild TBI, 12.2 years ± 1.6, 13M Not reported 120.69 days ± 2.05 (range 

90.07-240.27) 

14 TD controls, 12.6 years ± 1.6, 14M, 

(age and sex matched) 

High 

(1.55) 

Ryan et al (2017), AUS 57 Mild TBI, 10.80 years ± 2.33, 13F, 44M, 

14 Mild complex TBI, 9.57 years ± 2.43, 6F, 8M, 

26 Moderate TBI, 10.37 years ± 2.58, 10F, 16F, 

15 Severe TBI, 10.41 years ± 3.10, 7F, 8M 

Mild TBI, 10.67 ± 2.36,  

Mild complicated TBI, 9.47 

years ± 2.44, 

Moderate TBI, 10.33 years ± 

2.49, 

Severe TBI, 9.72 years ± 3.01 

42.28days ± 29.53 43 TD controls, 10.41 years ± 2.76, 19F, 

24M 

High 

(1.73) 

Ryan, Beauchamp et al 

(2016), AUS 

67 Mild TBI, 10.54 years ± 2.39, 19F, 48M,  

24 Moderate TBI, 10.37 years ± 2.58, 10F, 14M,  

12 Severe TBI, 10.41 years ± 3.10, 4F, 8M 

Mild TBI, 10.44 ± 2.40, 

Moderate TBI, 10.26 years ± 

2.58, Severe TBI, 10.22 years ± 

3.08 

42.29days ± 29.53 34 TD controls, 10.41 years ± 2.76, 13F, 

21M (matched on age, sex and SES) 

High 

(1.73) 

Ryan, Catroppa et al 

(2016), AUS 

53 Mild TBI, 13F, 40M,  

13 Mild complicated TBI, 5F, 8M,  

22 Moderate TBI, 9F, 13M,  

10 Severe TBI, 3F, 7M (Age at scan not reported) 

Mild TBI, 10.69 ± 2.35, Mild 

complicated TBI, 9.65 years ± 

2.45, Moderate TBI, 10.37 years 

± 2.47, Severe TBI, 10.33 years 

± 3.25 

Mild TBI, 38.77days ± 

21.84,  

Mild complicated TBI, 

37.62days ± 17.91,  

Moderate TBI, 38.33days 

± 19.34, 

33 TD controls, 13F, 20M (Age at scan 

not reported) 

High 

(1.64) 
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Severe TBI, 57.31days ± 

30.93 

Juranek et al (2012), USA 21 Moderate to Severe TBI, 12.08 years ± 3.58 (range 6.5-

16.4), 6F, 15M  

Not reported Females 95.67days ± 

42.34, Males 84.47days ± 

39.73 

20 OI Controls, 12.25 years ± 2.79 (range 

8-15.9), 7F, 15M 

High 

(1.64) 

Max et al (2012), USA 27 Severe TBI,  

7 Moderate TBI, 

10 Complicated Mild, 14F, 30M (some patients excluded for 

cortical thickness analysis due to quality) 

13.4 years ± 3.0 3 months 44 OI controls, 12.0 years ± 2.6, 12F, 

32M 

Medium 

(1.27) 

Wilde et al (2011), USA  25 Severe TBI,  

8 Moderate TBI,  

7 Complicated Mild TBI, 12.1 years ± 2.4 (range 7-17), 14F, 

26M 

Not reported 4.0days ± 0.9 41 OI controls, 13.5 years ± 2.5 (range 7-

17), 13F, 28M 

High 

(1.55) 

McCauley et al (2010), 

USA 

40 Moderate to severe TBI, 13.8 years ± 2.5, 14F, 26 M Range 7-17 years 124.8days ± 30.9 41 OI controls, 12.4 years ± 2.4, 11F, 

30M 

Medium 

(1.46) 

Chronic stage (1 – 5 years post injury) 

Konigs et al (2017), 

Netherlands 

20 Mild RF+ TBI, 10.5 years ± 1.8, 7F, 13M, 

17 Moderate to Severe TBI, 10.0 years ± 1.4, 7F, 10M 

Mild TBI RF+ 7.7 years ± 

2.3,  

Moderate/Severe TBI 7.0 

years ± 1.9 

Mild TBI RF+ 2.8 years ± 1.1,  

Moderate/Severe TBI 3.0 years 

± 1.4 

Traumatic injury controls, 10.2 years ± 

1.5, 15F, 12M  

Medium 

(1.33) 

Drijkoningen et al (2017), 

Belgium 

19 Moderate to Severe TBI 13 years11month ± 3 years1m 

(range 8y6m-18y11m), 10F, 9M 

10 years1month ± 3y3m 3 years 8months ± 3y3m 30 TD controls, 14 years 10months ± 

2y2m (range 9y5m-17y3m), 17F, 13M 

Medium 

(1.18) 
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Bigler et al (2016), Canada 

& USA 

82 Complicated Mild to Severe TBI, 72 scanned, refers to 

Bigler et al 2013 for demographics 

Not reported 2.7 years 61 OI controls, 52 scanned, refers to 

Bigler et al 2013 for demographics 

(comparable on age and sex) 

Poor 

(0.91) 

Drijkoningen et al (2015), 

Belgium 

18 Moderate to Severe TBI, 14 years 2months ± 2 years 

11months, 9F, 9M 

range 3.0-15.6 3 years 10months ± 3 years 

3month (range 0.3-10.8) 

30 TD controls, 14 years 2months ± 2 

years 11months, 17F, 13M 

Medium 

(1.18) 

Yeates et al (2014), USA 82 Complicated Mild to Severe TBI, 10.36 years ± 1.50, 28F, 

54M 

7.83 years ± 1.94 range 12 - 63 months 61 OI controls, 10.62 years ± 1.68, 24F, 

37M 

Medium 

(1.18) 

Cook et al (2013), USA 15 Moderate to Severe TBI, 16.66 years ± 2.22 (range 12.38-

19.70), 7F, 8M  

13.43 years ± 2.35 (range 

9.16-16.66) 

38.81months ± 10.47 (range 

11.32-52.96) 

13 TD controls, 16.87 years ± 2.1 (range 

13.19-19.94), 7F, 6M 

Medium 

(1.42) 

Bigler et al (2013), USA 41 Complicated mild TBI, 10.67 years ± 1.42, 32%F, 68%M, 

(only 32 used in quantitative neuroimaging),  

11 Moderate TBI, 10.16 years ± 1.35, 36%F, 64%M, (only 9 

used in quantitative neuroimaging),  

20 Severe TBI, 10.13 years ± 1.61, 45%F, 55%M, (only 18 

used in quantitative neuroimaging) 

Mild complicated TBI, 

8.08 years ± 1.87,  

Moderate TBI, 7.40 years ± 

1.74,  

Severe TBI, 7.85 years ± 

2.04 

Mild complicated TBI, 2.59 

years ± 1.26,  

Moderate TBI, 2.77 years ± 

1.35,  

Severe TBI, 2.28 years ± 1.14 

61 OI controls, 10.66 years ± 1.64, 42%F, 

58%M 

Medium 

(1.36) 

 

Dennis et al (2013), USA 

57 Mild to Moderate TBI, 10.5 years ± 1.5, 19F, 38M, 25 

Severe TBI, 9.9 years ± 1.5, 9F, 16M 

 

Mild to Moderate, 8.0 years 

± 1.9, Severe, 7.5 years ± 

2.1 

 

Mild to Moderate, 2.6 years ± 

1.2, Severe, 2.5 years ± 1.2 

 

61 OI controls, 10.6 years ± 1.4, 24F, 

37M 

 

Medium 

(1.36) 

Hanten et al (2011), USA 15 Moderate to Severe TBI, 16.66 years ± 2.22 (range 12.38-

19.70), 7F, 8M 

13.43 years ± 2.35 (range 

9.16-16.66) 

38.81months ± 10.47 (range 

11.32-52.96) 

13 TD controls, 16.87 years ± 2.1 (range 

13.19-19.94), 7F, 6M 

Medium 

(1.17) 

Krawczyk et al (2010), 

USA 

12 Moderate to severe TBI, 16.51 years ± 2.14 (range 12.79-

19.12, 5F, 7M 

Not reported 2.65 years ± 0.76 11 TD controls, 16.37 years ± 1.89, 5F, 

6M 

Medium 

(1.27) 
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Bigler et al (2010), USA 16 Moderate to Severe TBI, 12.9 years ± 2.5 (range 9.0-16.8), 

8F, 8M 

9.75 years ± 3.0 (range 3.7-

13.8) 

3.1 years ± 2.4 (range 1.0-10.1) 16 TD controls, 12.8 years ±2.4 (range 

9.0-16.4), 8F, 8M 

Medium 

(1.36) 

Fearing et al (2008) 16 Moderate to Severe TBI, 12.9 years ± 2.5 (range 9.0-16.8), 

8F, 8M 

9.75 years ± 3.0 (range 3.7-

13.8) 

3.1 years ± 2.4 (range 1.0-10.1) 16 TD controls, 12.8 years ±2.4 (range 

9.0-16.4), 8F, 8M (matched on ages, sex, 

ethnicity, handedness and maternal 

education) 

High 

(1.64) 

Merkley et al (2008), USA 16 Moderate to Severe TBI, 12.9 years ± 2.5, 8F, 8M (SAME 

AS BIGLER 2010) 

9.75 years ± 3.0  3.1 years ± 2.4 16 TD controls, 12.8 years ±2.4, 8F, 8M Poor 

(0.91) 

Spanos et al (2007), USA 16 Moderate to Severe TBI, 12.9 years ± 2.5 (range 9.0-16.8), 

8F, 8M (SAME AS BIGLER 2010) 

Not reported 3.1 years ± 2.4 (range 1.0-10.1) 16 TD controls, 12.8 years ±2.4 (range 

9.0-16.4), 8F, 8M (matched on ages, sex, 

ethnicity, handedness and maternal 

education) 

Medium 

(1.27) 

Wilde et al (2007), USA 16 Moderate to Severe TBI, 12 years 10months ± 2 years 

6months (range 9-16 years 9month), 8F, 8M  

Not reported 3 years ± 2 years 5month (range 

1-10yr) 

16 TD controls, 12 years 10months ± 2 

years 5months (range 9-16 years 

5months) 

Medium 

(1.46) 

Wilde et al (2006), USA 16 Moderate to Severe TBI, 12.9 years ± 2.5 (range 9-16.8), 

8F, 8M 

9.75 years ± 3.0 (range 3.7-

13.8) 

3.1 years ± 2.4 (range 1.0-10.1) 16 TD controls, 12.8 years ±2.4 (range 

9.0-16.4), 8F, 8M (age and gender 

matched) 

Medium 

(1.36) 

Wilde et al (2005), USA 16 Moderate to Severe TBI, 12.9 years ± 2.5 (range 9.0-16.8), 

8F, 8M  

9.75 years ± 3.0 (range 3.7-

13.8) 

3.1 years ± 2.4 (range 1.0-10.1) 16 TD controls, 12.8 years ±2.4 (range 

9.0-16.4), 8F, 8M 

High 

(1.64) 

Late chronic stage (9+ years post injury) 

Beauchamp et al (2011), 

AUS  

11 Mild TBI, 17.08 years ± 3.77, 6F, 5M,  

26 Moderate TBI, 17.24 years ± 3.60, 8F, 18M,  

12 Severe TBI, 16.34 years ± 3.30, 4F, 8M 

Mild TBI 7.04 years ± 3.54, 

Moderate TBI 6.99 years ± 

Mild TBI 10.04 years ± 1.39, 

Moderate TBI 10.25 years ± 

20 TD controls (from NIH repository), 

15.80 years ± 1.94, 7F, 13M (matched on 

age and gender) 

Medium 

(1.17) 
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3.18, Severe TBI 5.29 years 

± 2.77 

1.44, Severe TBI 11.06 years ± 

1.44 

Serra-Grabulosa et al 

(2005)  

16 Severe TBI, 17.88 years ± 2.85, 2F, 14M 8.18 years ± 3.65 9.68 years ± 1.88 16 TD controls, 16.94 years ± 3.21, 2F, 

14M, (Gender, age, education and 

parental SES matched) 

Medium 

(1.09) 

Note. OI=Orthopaedic Injury, SES=socio-economic status 
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Table 2.2b. Study findings for all cross-sectional studies included in the review 

Reference 
Magnet 

Strength 

Methodology 

(software, 

statistical 

approach, 

anatomical-level) 

Measure of 

interest 

Variables 

controlled 

for 

Findings 

Early stage (days to 1 year post injury) 

Urban et al (2017), 

Canada 

3T CIVET (GLM, 

Vertex-wise) 

Cortical 

Thickness 

None 

reported 

Significantly thinner cortex found in TBI group compared to controls in the ldlPFC, right anterior IPL and posterior IPL 

(Cohen's d=.963, 1.152 and 1.002 respectively). 

Ryan et al (2017), AUS 3T Freesurfer 

(MANOVA, 

Network ROI 

summed for DMN, 

CEN, SN, MN and 

MNEN) 

Volume Age at 

Scanning 

and ICV, 

SES and 

sex 

Time between injury and MRI was not significantly related to any measure of global or regional volumes. Volume of 

DMN, CEN, SN, CCMN and MNEN all significantly differed as a function of group, with significant differences found 

between severe TBI and all other severity/control groups. vmPFC, PCC, IPL, hippocampus, dlPFC, PPC, TH, vlPFC, 

ACC, A, STS, TPJ, TP, IPL, iFG-po had reduced volumes in the severe group. 

Ryan, Beauchamp et al 

(2016), AUS 

3T FreeSurfer 

(ANCOVA, 

Network ROI 

summed for CSN) 

Volume Age and 

ICV 

Significant effect of group on the volume of the total CSN, with smaller CSN for severe injury compared to control, 

moderate and mild groups. Of the CSN regions, only the severe group differed from controls in vmPFC, nucleus 

accumbens and ACC. 

Ryan, Catroppa et al 

(2016), AUS 

3T Freesurfer 

(ANCOVA, 

global-brain and 

Network ROI 

summed for SBN) 

Volume ICV, age 

and SES 

Across severity groups and controls, there was no multivariate effect of group on total brain, CC, WM and GM volumes. 

However, univariate effect of group was found on total WM volume and total SBN volume. SBN (specifically regions 

of STS, TP, mPFC, OFC, TPJ, cingulate, and insula) was significantly smaller only for severe TBI compared to controls. 
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Juranek et al (2012), 

USA 

3T Freesurfer 

(ANOVA, ROI) 

Volume ICV No main effect of TBI/OI group (or gender or hemisphere) on the volume of the amygdala or hippocampus. 

Max et al (2012), USA 1.5T Freesurfer 

(MANCOVA, 

ROI) 

Volume and 

Cortical 

Thickness  

Age and 

ICV 

No effect of group on structural volumes of cerebral GM and WM, cerebellar GM and WM, right and left frontal, right 

and left temporal, basal ganglia, amygdala, thalamus, corpus callosum and hippocampus. 

Wilde et al (2011), USA  1.5T Freesurfer (GLM, 

ROI, Vertex-wise) 

Volume and 

Cortical 

Thickness 

Volume 

corrected 

for ICV, 

age at 

testing 

Smaller volumes were found for bilateral frontal regions, as well as right MFG in the TBI group compared to controls 

(Cohen's f = .42, .37 and .35 respectively). Reported group effects on cortical thickness across regions of frontal lobe 

(pTRI, pORB, LOF, MOF, rostral rMFG, FP, SFG) and right temporal lobe (STG, MTG, ITG and FFG). 

McCauley et al (2010), 

USA 

1.5T Freesurfer 

(QDEC, vertex-

wise) 

Cortical 

Thickness 

Age at 

testing 

TBI showed significantly thinner cortex than controls bilaterally for anterior prefrontal (superior, middle, inferior, and 

medial cortices), temporal lobes and parahippocampal gyri, posterior cingulate, and parietal and precuneus regions. 

Chronic stage (1 – 5 years post injury) 

Konigs et al (2018), 

Netherlands 

3T SIENAX and 

FIRST (ANOVA, 

Global-brain, 

ROI) 

Volume Head size Main effect of severity on the volume of total brain WM, but not GM. Mild and Moderate/Severe groups had significantly 

smaller WM volumes than controls (Cohen’s d=-.74 and -.80 respectively). No significant differences were found for the 

tested subcortical structures. 

Drijkoningen et al 

(2017), Belgium 

3T Freesurfer 

(ANOVA, Global-

brain, ROI) 

Volume ICV Total subcortical GM (not total cortical volume) was smaller in the TBI group compared to controls. No significant 

differences in cortical ROIs, but subcortically, thalamus, putamen, hippocampus and cerebellar cortex were significantly 

smaller in TBI. 

Bigler et al (2016), 

Canada & USA 

1.5T Freesurfer 

(QDEC, vertex-

wise) 

Cortical 

Thickness 

Sex, Age No significant effect of group on vertex-wise cortical thickness. Age was significantly related to decreasing cortical 

thickness, with distribution of age-related changes being similar for TBI and OI. 
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Drijkoningen et al 

(2015), Belgium 

3T SPM8, SUIT 

toolbox, 

DARTEL, 

MRIcron (GLM, 

Global-brain, 

Voxel-wise) 

Volume ICV No significant differences in total ICV. Reduced volume in TBI compared to OI for global infratentorial GM and WM. 

Cerebellar volume as a percentage of total ICV was significantly lower in TBI. A significant cluster of reduced WM 

volume in the infratentorial region for TBI compared to OI (but not for GM). 

 

Bigler et al (2013), USA 1.5T Freesurfer and 

VBM (voxel-wise) 

Volume None 

reported 

Smaller CC volumes were found for severe injury compared to controls in anterior, mid-anterior, central, mid-posterior 

and posterior regions and total CC as well as total brain, total GM, total WM, thalamus, basal ganglia, amygdala and 

hippocampus. Posterior and anterior CC also showed reductions compared to controls in moderate and mild-complicated 

injuries. Severe injury group also had greater total ventricular volume and ventricle-to-brain ratio than controls. VBM 

showed largest significant reductions for severe injury compared to controls in CC, ventral frontal, basal forebrain regions 

and lateral ventricles. 

 

 

Dennis et al (2013), 

USA 

 

1.5T 

 

Freesurfer 

(MANOVA, 

Network ROI 

summed for DMN, 

CEN, SN, MN and 

MNEN) 

 

Volume 

 

None 

reported 

 

No significant differences in total ICV. Significant reductions in DMN, CEN, SN, MN and MNEN network volumes was 

found for severe TBI compared to OI and mild-moderate. Severe TBI group had significantly reduced volumes, compared 

to OIs, in PCC, HF, PPC, TH, I, A and STS. 

 

Bigler et al (2010), USA 1.5T Freesurfer and 

ANALYZE 

(ANCOVA, ROI) 

Volume Age at 

testing 

TBI had reduced volume compared to controls in amygdala, brain stem, globus pallidus and thalamus, regardless of 

method (Freesurfer and ANALYZE). Putamen only smaller in TBI group when using ANALYZE method. 

Fearing et al (2008) 1.5T ANALYZE 

(MANCOVA and 

GLM, ROI) 

Volume Age at 

Scanning 

and ICV 

TBI group showed reduced thalamic GM (but not WM) compared to controls (Cohen’s d = 1.050), as well as total 

midbrain volume (Cohen’s d = 1.91) and also its constituent parts, the tectum and tegmentum (d = 0.999 and 1.074 

respectively). The pons, medulla and total brainstem did not significantly differ. 
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Merkley et al (2008), 

USA 

1.5T Freesurfer 

(ANCOVA, ROI) 

Cortical 

Thickness 

Age and 

gender 

Significantly reduced cortical thickness in TBI compared to controls was found for lSFG, rpOPER, rFP, bilateral rostral 

MFG, bilateral caudal MFG, lpreC, bilateral supramarginal, lMTG, bilateral ITG, lFFG, bilateral postC, bilateral SPL, 

bilateral IPL, and bilateral precuneus regions. 

Spanos et al (2007), 

USA 

1.5T ANALYZE 

(GLM, ROI) 

Volume ICV TBI group showed reduced volumes compared to controls in cerebellar WM and GM (even after removing patients with 

focal cerebellar lesions. A significant interaction between groups was found, in which a significant positive correlation 

between DLPFC/cerebellum was found in the TD but not in the TBI group. 

Wilde et al (2007), USA 1.5T ANALYZE 

(ANCOVA, ROI) 

Volume Age and 

ICV 

The TBI group showed volumetric reductions in bilateral hippocampus, amygdala and globus pallidus regions (Cohen's 

d = 2.140, 0.801 & 0.775 respectively) compared to controls, but not putamen and caudate. 

Wilde et al (2006), USA 1.5T Picture Archival 

System Software 

(ANOVA, ROI) 

Volume None  Showed the anterior-commissure volume was significantly smaller in the TBI group compared to controls. 

Wilde et al (2005), USA 1.5T ANALYZE 

(MANCOVA, 

ANCOVA, global 

brain and regional) 

Volume Age at 

testing 

TBI group showed significantly reduced global brain measures of total brain and GM volumes, as well as increased 

ventricle to brain ratio, ventricle volume, whole brain, temporal and frontal CSF compared to controls. Regional 

reductions in the TBI group were found in lateral frontal WM, as well as ventromedial frontal, superior media frontal 

and temporal GM/WM. 

Late chronic stage (9+ years post injury) 

Beauchamp et al (2011), 

AUS 

1.5T FSL and 

ANALYZE 

(ANCOVA, 

Global brain and 

ROI) 

Volume Age at 

Scanning 

and ICV 

A significant effect of group (TBI vs control) was found for total CSF, GM and WM volumes (Partial η2 = .54, .41 and 

.17 respectively). Controls had less CSF and greater total GM and left hippocampus volume than all severity groups. 

Only severe injuries had smaller WM than controls. Right amygdala significantly bigger in controls than mild and 

moderate injury. 

 

Serra-Grabulosa et al 

(2005)  

1.5T ANALYZE (t-test, 

ROI and global-

brain) 

Volume None 

reported 

The TBI group showed significant reductions in global WM (specifically frontal WM) volume and increases in CSF 

volume. No significant differences were found in total or frontal GM. Significant reductions were found in bilateral 

hippocampal volume in TBI compared to control. 
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Note. GLM=general linear model, ICV= Intra-cranial volume, OI=Orthopaedic Injury, QDEC=Query Design Estimate Contrast, ROI=Region of interest, SES=socio-economic status, VBM=voxel-based morphometry 
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2.4.2 Cross-sectional studies 

Twenty-seven studies investigated cross-sectional differences in morphology between paediatric TBI 

groups and controls. Figure 2.2 plots the descriptive characteristics of these studies. Eligible studies 

sampled a range of ages at injury (meanpooled = 9.551, range of means = 6.58 years - 13.86 years). The 

distribution of pooled ages fits into a bell curve, with few investigating very early childhood and late 

adolescence. The sample sizes for the majority of studies are small, with the average sample size for 

eligible studies being 38.96 participants (SD = 29.74, range = 12-112). The majority of studies 

investigated samples that were scanned within the first five years post injury. The minimum mean time 

post injury for which MRI’s were obtained was 4.0 days ± 0.9 (Wilde et al., 2011), with the maximum 

mean being 10.4 years ± 1.45 post injury (Beauchamp, Ditchfield, Maller, et al., 2011). Table 2.2a lists 

all cross-sectional studies eligible for review and their sample demographics. Here we report on the most 

commonly replicated findings across studies. Table 2.2b summarises the results from all individual, 

cross-sectional studies included in this section. 

At the early stage post-injury differences were found for total WM (Ryan, Catroppa, et al., 2016) and 

total GM (Ryan et al., 2017), but these findings were not reliably replicated across these studies. When 

comparing summed volume of ROIs comprising major brain networks (default mode network (DMN), 

central executive network (CEN), salience network (SN), cerebro-cerebellar mentalising network 

(CCMN) and mirror neuron empathy network (MNEN), cortico-striatal network (CSN) and social brain 

network (SBN); Ryan, Beauchamp, et al. (2016); Ryan, Catroppa, et al. (2016); Ryan et al. (2017)) as 

well as bilateral frontal regions (Wilde et al., 2011) smaller volumes were observed in the TBI groups 

compared to controls. 

At the chronic stage post-injury, decreases to total brain and total GM (Bigler et al., 2013; Wilde et al., 

2005), total WM (Bigler et al., 2013; Konigs et al., 2018), and increases to ventricles and ventricle to 

brain ratio were found in the TBI group  (Bigler et al., 2013; Wilde et al., 2005). Specifically, whilst 

regional differences were understudied, volume differences were found in frontal and temporal GM/WM 

(Wilde et al., 2005) as well as the DMN, CEN, SN, MNEN and CCMN networks (Dennis et al., 2013), 

replicating findings from the early stage post-injury. Large WM tracts were also impaired across both 

corpus callosum (CC), and the anterior commissure (Bigler et al., 2013; Wilde et al., 2006). Commonly, 

replicated findings suggest that the thalamus, amygdala, hippocampus, putamen, global pallidus and 

cerebellar regions were smaller in volume cross-sectionally compared to controls (Bigler et al., 2013; 

Bigler et al., 2010; Dennis et al., 2013; Drijkoningen et al., 2017; Drijkoningen et al., 2015; Fearing et 

al., 2008; Spanos et al., 2007; Wilde et al., 2007). This period post-injury was specifically characterised 

by studies which had a mean time since injury between 2.53 years ± 1.24 (Bigler et al., 2013) and 3.83 

                                                
1 This value does not consider the overlap of sample/datasets 
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years ± 3.25 (Drijkoningen et al., 2015). However, the studies in this band of enquiry showed much 

greater variability in the time between injury and MRI at an individual study level. For example, 

Drijkoningen et al. (2015) reported a mean time since injury of 3.83 years ± 3.25 but the reported range 

was 0.3 to 10.8 years post injury. Similarly, Bigler et al. (2010) reported a mean time post injury of 3.1 

years ± 2.4, but the range was 1.0 to 10.1 years. Thus, not all participants reported in this band of chronic 

stage post-injury are within this period, due to this large within-study variability. Given this large 

dispersion of time between injury and MRI/testing within-studies, we suggest greater caution when 

interpreting these findings and suggest that they may not be specific to the reported time post-injury. 

It is pertinent to note that, of the cross-sectional studies included in the current review, only nine studies 

reported the range of time between injury and MRI/testing across time bands, and thus variability of 

time between injury and MRI may be greater than that reported in this review. In addition, even in 

studies that did not report the range of time between injury and MRI, standard deviations of this 

injury/MRI interval are particularly high.  

At the late chronic stage, total cerebrospinal fluid (CSF) volume was greater for TBI patients 

(Beauchamp, Ditchfield, Maller, et al., 2011; Serra-Grabulosa et al., 2005), total GM was reduced 

(Beauchamp, Ditchfield, Maller, et al., 2011) and these changes where independent of severity, these 

differences were significant for all TBI severity sub-groups. However, total WM was found to be 

significantly lower only for severe injury group compared to controls (Beauchamp, Ditchfield, Maller, 

et al., 2011; Serra-Grabulosa et al., 2005). At the ROI level, studies reliably found hippocampal volume 

differences across studies with the injury group showing smaller volumes (Beauchamp, Ditchfield, 

Maller, et al., 2011; Serra-Grabulosa et al., 2005).  

Morphometric investigations of the brain post-TBI were not limited to the volume of cortical regions, 

but also the cortical thickness. There were fewer investigations of cortical thickness, but early post-

injury studies showed regions of dorso-lateral prefrontal cortex (dlPFC; McCauley et al. (2010); Urban 

et al. (2017); Wilde et al. (2011)) and other prefrontal regions (McCauley et al., 2010; Wilde et al., 2011) 

as well as superior temporal sulcus (STS; McCauley et al. (2010); Wilde et al. (2011)), cingulate regions 

(McCauley et al., 2010) and regions of the inferior parietal lobule (iPL;Urban et al. (2017)) to be 

significantly thinner in the TBI group compared to controls. However, these differences were not 

replicated at a later timepoint post injury (Bigler et al., 2016). This is not to say that these differences 

have ‘recovered’ over time (due to the cross-sectional nature of this evidence) but more likely due to 

differences in methodology and samples.  

The evidence presented from these cross-sectional studies suggests that frontal, temporal and parietal 

regions areas are commonly (and persistently over time) impacted following a pTBI (Wilde et al., 2005). 

However, it is important to note that the regions identified by individual studies span multiple regions 

of the cortex and subcortical regions, suggesting in fact that the effects of pTBI can be seen diffusely 
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across the brain. This is specifically highlighted in studies investigating summed ROI volumes across 

distributed brain networks (Dennis et al., 2013; Ryan, Beauchamp, et al., 2016; Ryan, Catroppa, et al., 

2016; Ryan et al., 2017). 

However, some studies used innovative methodologies to investigate the diffuse nature of morphometric 

brain changes post-injury. Spanos et al. (2007) took an innovative approach to investigate volumes of 

the cerebro-cerebellar network (dlPFC, thalamus, pons and cerebellum) by estimating correlations 

between volumes of these structures. Significant correlations were found between volumes of the 

thalamus/dlPFC and the pons/cerebellum in both groups. A significant interaction between groups was 

found, in which a significant positive relationship between dlPFC/cerebellum was found in the TD but 

not in the TBI group. Drijkoningen et al. (2017) investigated the statistical relationship between regional 

subcortical-atrophy. Volume deviation score was calculated with a linear regression of subcortical 

volumes against intracranial volume (ICV) in the control group, with the linear model providing a 

predicted volume for regions given an ICV. Thus, the deviation score for any given patient was actual 

volume minus predicted volume. Correlations were assessed between the volume deviation scores across 

the TBI group. Moderate to very strong positive correlations were found for these relationships, with 

significant correlations found between deviation scores for multiple, subcortical regions. This 

interrelation between deviation scores suggests a diffuse pathology that affects wider subcortical 

volume, rather than specific areas (Drijkoningen et al., 2017). 
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Figure 2.2. Descriptive plot of all eligible cross-sectional studies included for review. Studies are plotted 

based on mean age at injury of their sample against mean time between injury and MRI (years). Size of 

each point is proportional to the size of the TBI participant sample used in the study whilst the colour 

segregates clusters of studies that all use the same dataset of patients. To aid qualitative synthesis, 

studies were grouped into three major ‘bands’ of enquiry; i) an early stage (days to 1 year post-injury), 

ii) chronic stage (1-5 years post-injury) and iii) late chronic stage (9+ years post-injury). These band 

were qualitatively identified once studies where plotted in this way and are therefore based on the 

‘natural’ grouping of the studies and therefore represent the current state of the literature. 
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Table 2.4a Study demographics for all longitudinal studies included in the review 

Reference Sample and age (age at scanning; years, M±SD) 
Age at injury 

(years, M±SD) 

Longitudinal Timepoints (days/months/years, 

M±SD) 

Comparative Group and age at scan (years, 

M±SD) 

Quality 

Rating 

Dennis et al 

(2017), USA 

11 TBI-slow IHTT,   

Timepoint 1: 14.1 years ± 1.9, 3F, 8M,  

Timepoint 2: 15.0 years ± 2.0,  

10 TBI-normal IHTT,  

Timepoint 1: 16.0 years ± 2.6, 2F, 8M,  

Timepoint 2: 17.0 years ± 2.8 

 

Not reported Timepoint 1, TBI-slow IHTT 50.6days ± 5.9, TBI-

normal IHTT 52.5days ± 9.7,  

Timepoint 2, 12 approximately 12 months post-

timepoint 1 (Not reported) 

26 Healthy Controls,  

Timepoint 1: 14.5 years ± 3.0, 11F, 15M,  

Timepoint 2: 15.6 years ± 3.0 

Medium 

(1.33) 

Wu et al (2018), 

USA 

10 Sports concussion mTBI,  

Timepoint 1: 14.58 years ± 1.5, 4F, 6M,  

Timepoint 2: Not reported 

Not Reported Timepoint 1, <96hours post injury (range 21-116h),  

Timepoint 2, 3 months post injury (range 84-143days) 

12 sports-related OI, 14.06 years ± 1.63, 3F, 9M 

(only 9 included for morphometric analysis at T1 

and 12 at T2),  

12 TD controls (no age or gender reported, only 

received single MRI) 

Medium 

(1.25) 

Dennis et al 

(2016), USA 

36 (18 completed longitudinal testing) Moderate-

Severe TBI,  

Timepoint 1: 14.1 years ± 2.7, 10F, 26M,  

Timepoint 2: 15.9 years ± 2.6, 5F, 13M (some 

participants were tested at only timepoint 1, others 

at only timepoint 2) 

Not reported Timepoint 1, post-acute phase (1-6 months post-

injury),  

Timepoint 2, chronic phase (13-19 months post injury) 

35 (22 completed longitudinal testing) TD 

controls,  

Timepoint 1: 14.8 years ± 2.8, 12F, 23M,  

Timepoint 2: 16.2 years ± 3.2, 7F, 15M (matched 

for age, sex, and educational level) 

Medium 

(1.17) 

Mayer et al 

(2015), USA 

15 (11 completed longitudinal testing) Mild TBI,  

Timepoint 1: 13.47 years ± 2.20, 2F, 13M,  

Not reported Timepoint 1, within 21days post injury (TBI 15.87days 

± 4.93),  

15 (12 completed longitudinal testing) TD 

controls,  

High 

(1.58) 
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Timepoint 2: Not reported Timepoint 2, 4months post injury (TBI 127.82days ± 

14.60) 

Timepoint 1: 13.40 years ± 1.84, 3F, 12M (age 

and education matched),  

Timepoint 2: Not reported 

Wilde et al 

(2012), USA 

13 Severe TBI,  

4 Moderate TBI,  

3 Complicated Mild TBI,  

Timepoint 1: 13.6 years ± 2.9 (range 8.2-17.5),  

Timepoint 2: 14.8 years ± 2.9 (range 9.3-18.7), 9F, 

11M 

Not reported Timepoint 1, 3 months post injury (TBI 4.0months ± 

1.0, OI 4.7months ± 2.6),  

Timepoint 2, 18 months post injury (TBI 18.5months ± 

3.6, OI 18.4months ± 4.2) 

21 OI controls,  

Timepoint 1: 12.3 years ±2.5 (range 7.4-16.7),  

Timepoint 2: 13.2 years ± 2.6 (range 8.8-18.0), 

6F, 15M 

Medium 

(1.33) 

Wu et al (2010), 

USA 

3 Complicated Mild TBI,   

4 Moderate TBI,  

16 Severe TBI,  

Timepoint 1: 12.9 years ± 3.2 (range 7.8-17.2), 8F, 

15M,  

Timepoint 2: Not reported  

12.9 years ± 3.2 Timepoint 1, 3months post injury (TBI 4.0months ± 

0.9, range 2.5-5.3, OI 4.2months ±1.0, range 2.7-7.1),  

Timepoint 2, 18months post injury (TBI 18.9months 

±1.5, range 16.7-22.6, OI 18.8months ± 1.3, range 

16.6-20.9) 

25 OI controls,  

Timepoint 1: 11.8 years ± 2.7 (range 7.1-16.3), 

7F, 18M,  

Timepoint 2: Not reported 

Medium 

(1.50) 

Note. CT=computed tomography, HTT=Inter-hemispheric transfer time, OI=Orthopaedic Injury 
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Table 2.3 b Study findings for all longitudinal studies included in the review 

Reference 
Magnet 

Strength 

Methodology 

(software, 

statistical 

approach, 

anatomical-

level) 

Measure 

of 

interest 

Variables 

controlled 
Findings 

Dennis et al 

(2017), USA 

3T Tensor based 

morphometry 

(linear 

regression, 

voxel-wise) 

Volume Age at 

scanning, 

sex, 

scanner, 

and ICV 

Longitudinal regional volume changes differed significantly across a number of clusters between TBI-slow, TBI-normal and controls.  Over 

time, TD children showed significant volume increases, but TBI-slow group showed mostly decreases across regions of splenium, CC, 

capsule and claustrum, posterior thalamic radiation and hypothalamus. The TBI-normal group had significantly greater reductions in 

including SFG, parietal operculum, PCC, thalamus, MFG, putamen, MTG, postC, internal OG, SFG and insula compared to controls and 

increases in internal capsule. TBI-slow showed greater volume reduction whereas TBI-normal showed longitudinal increase in internal 

capsule, thalamus and superior corona radiata. TBI-slow group had significantly greater atrophy than TBI-normal group in regions of SFG, 

inferior OG, SPL, cingulate, MFG, cuneus, PCUN and parietal operculum. 

Wu et al 

(2017), USA 

Not 

reported 

Freesurfer 

(Between and 

paired T-test, 

ROI) 

Volume ICV No cross-sectional or longitudinal differences in volume between TBI, and OI/TD groups. 

Dennis et al 

(2016), USA 

3T Tensor based 

morphometry 

(linear 

regression, 

voxel-wise) 

Volume Age at 

scanning, 

sex, 

scanner, 

and ICV 

Longitudinal effects not statistically assessed. At timepoint 1 significantly greater volume for the lateral ventricles in TBI (indicative of CSF 

expansion). Lower volumes found compared to controls in left LING, bilateral PCG, right FFG, right STG, left thalamus, left PCUN, left 

SFG, left OG, right PCG, cingulum, and parahippocampal gyrus. At timepoint 2 significantly increased ventricle size for the TBI group and 

smaller volumes for the TBI group compared to controls bilateral LING, right MTG, bilateral OrbG, right FFG, ACC and mid-cingulate 

cortex, left SPL, and left preC. However, greater volumes in TBI group in left IFG, and the bilateral posterior thalamic radiations, right 

superior longitudinal fasciculus, right OG, right AG, and right SPL. 

Mayer et al 

(2015), USA 

3T Freesurfer 

longitudinal 

pipeline 

(GLM, 

Volume 

and 

None 

reported 

No significant group differences in vertex-wise cortical thickness or volume of hippocampus and thalamus at timepoint 1. No significant 

effect of group on subcortical volume change. TBI group showed greater atrophy over time in the left SFG and MFG, left MTG, left postC 

running into IPL, left IPL, left cuneus, left MOG, right SFG and MFG. 
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MANOVA, 

Vertex, ROI) 

Cortical 

Thickness 

Wilde et al 

(2012), USA 

1.5T Freesurfer 

longitudinal 

pipeline 

(GLM, 

Vertex) 

Cortical 

Thickness 

None 

reported 

At timepoint 1, smaller cortical thickness in TBI group compared to controls in bilateral rostral, MFG, SFG, lateral and medial OFC, anterior 

cingulate, and FP and unilaterally in the right pORB, right pTRI and right pOPER and at timepoint 2, bilateral rostral MFG, caudal MFG, 

FFG and lingual regions, and unilateral left SFG, preC, PCUN, isthmus cingulate, SPL and IPL, right pTRI, pORB, and lateral OFC. 

Longitudinally TBI group showed significant thinning in many cortical areas, with sparing of this effect seen in bilateral TP, and medial 

aspects of the frontal lobes, cingulate and left FFG. Significant longitudinal thinning in TBI versus OI group in SPL and right paracentral 

regions, but increase in medial OFC, bilateral cingulate, and right lateral OFC. 

Wu et al 

(2010), USA 

1.5T Freesurfer 

longitudinal 

pipeline 

(GLM, t-test 

difference 

score, ROI) 

Volume ICV At timepoint 1, TBI showed smaller midanterior CC compared to OI. Total CC volume significantly smaller in TBI group at timepoint 2 

(but not timepoint 1) and anterior, midanterior, central and mid posterior CC. Longitudinally, the total, anterior, midanterior, midposterior, 

and posterior regions of the CC reduced in volume for the TBI group compared to slight increases in volume for OI group. 

 

Note. GLM=general linear model, ICV= Intra-cranial volume, IHTT=Inter-hemispheric transfer time, OI=Orthopaedic Injury, ROI=Region of interest,  
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2.4.3 Longitudinal studies 

Whilst there were significantly fewer studies eligible for inclusion that incorporated a longitudinal design 

compared to those who utilised a cross-sectional design, these longitudinal studies here showed that there 

were widespread differences in both volume and cortical thickness. Similarly small sample sizes were seen 

in the longitudinal studies as the cross-sectional studies with the average sample size for eligible studies 

being 20.83 (SD = 8.03, range = 10-36). A narrow distribution of age at scanning was seen (initial timepoint: 

meanpooled= 13.9132, range of means=12.9 years-16.0 years), with no studies looking at the very extremes 

of childhood. However, it is important to note that this does not refer to the age at injury, but the age at MRI 

scanning.  This is because all six longitudinal studies did not report the mean age at which the injury 

occurred. Table 2.3a describes the sample demographics of each study. 

Differences in volume between timepoint one and two consistently changed as a function of group (patient 

vs control) across common regions of dlPFC (Dennis, Faskowitz, et al., 2017; Mayer et al., 2015), STS 

(Dennis, Faskowitz, et al., 2017; Dennis et al., 2016; Mayer et al., 2015), posterior parietal cortex (PPC) 

extending into iPL, cingulate regions (Dennis et al., 2016; Mayer et al., 2015; Wilde, Merkley, et al., 2012), 

and hypothalamic, thalamic and CC regions (Dennis, Faskowitz, et al., 2017; Wu et al., 2010). In these 

regions patients were more likely to show reductions or atrophy greater than that of the control group over 

the same time period, indicating that the rate of change in volume/cortical thickness differs between groups. 

However, whilst Dennis et al. (2016) and (Wilde, Merkley, et al., 2012) found significant differences 

between patients and controls in morphometry at both timepoint one and two, Wu et al. (2010) found 

differences at only timepoint two.  

Interestingly, Dennis, Faskowitz, et al. (2017) used a longitudinal design (upon the same data as Dennis et 

al. (2016)) to investigate two sub-groups of the original moderate/severe injury group. Patients were divided 

based upon inter-hemispheric transfer time (IHTT); those that were slower than normal (TBI-slow) and 

those with normal IHTT (TBI-normal). Longitudinal regional volume changes differed significantly across 

a number of regional-clusters for pairwise comparisons of TBI-slow, TBI-normal and controls. When 

comparing TBI-slow and TD control groups, over time TD children showed significant increases in volume 

in regions, whereas the TBI-slow group mostly showed decreases. This was across mostly WM regions of 

splenium, CC (two clusters), external/extreme capsule and claustrum, posterior thalamic radiation and 

hypothalamus. The TBI-normal group had significantly greater reductions in a number of GM regions 

compared to controls, including superior frontal gyrus (SFG, four clusters), parietal operculum, PCC (three 

                                                
2 This value does not consider the overlap of sample/datasets 
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clusters), thalamus, middle frontal gyrus (MFG), putamen, middle temporal gyrus (MTG), post central gyrus 

(postC), internal- occipital gyrus (OG), SFG and insula. However, the TBI-normal group had two clusters 

of greater longitudinal volume change compared to controls in the internal capsule. When comparing the 

two TBI subgroups, TBI-slow showed more longitudinal reduction whereas the TBI-normal showed 

longitudinal increase in mostly WM tissue regions of internal capsule, thalamus and superior corona radiata. 

However, the TBI-slow group had significantly less longitudinal growth/greater atrophy than the TBI-

normal group in mostly GM regions of SFG (four clusters), inferior- OG, superior parietal lobule (SPL), 

cingulate (two clusters), MFG, cuneus, precuneus (PCUN) and parietal operculum. Whilst the direction of 

causality remains unclear, this suggests potential relationships between both structural and functional 

changes. 

Some studies utilise statistical methods controlling for effects such as total intracranial volume (Dennis, 

Faskowitz, et al., 2017; Dennis et al., 2016; Wu et al., 2018; Wu et al., 2010) or age at scanning  (Dennis, 

Faskowitz, et al., 2017; Dennis et al., 2016) as proxies for the stage of brain development, or reported using 

age-matched samples (Dennis et al., 2016; Mayer et al., 2015). Theoretically, this would remove variance 

in morphometry due to the age-related development of the cortex, and group differences that survive 

removal of this covariance would be where the changes in morphology post-TBI are exceeding or fall short 

of typical development. However, in the current literature, when controlling for these proxies of 

development, the reported effects are not consistent across studies, with some studies still finding an 

interaction between group and timepoint on morphometry (Dennis, Faskowitz, et al., 2017; Wu et al., 2010) 

and others not (Wu et al., 2018). Although it is interesting to note that Wu et al. (2018) investigated a cohort 

of mild TBI due to sports concussion. This potential lack of consensus amongst studies limits assessment 

of whether or not the effects of injury are truly beyond that of expected developmental differences over time 

and warrants further study.   

2.4.4 Linking morphometry to cognition in TBI 

Of the eligible papers, 16 investigated the associations between morphometry after a TBI and 

cognitive/neuropsychological outcomes across multiple domains. Some studies investigated outcome 

measures that were not directly linked to cognitive ability (e.g. postural control (Drijkoningen et al., 2017; 

Drijkoningen et al., 2015)). Although we accept that these outcome measures are important and may be 

related to variation in cognition (such as postural control), we only review those outcomes that are direct 

measures of cognition (such as IQ). The results of these studies are summarised in supplementary materials 

(Table A.2, Appendix A)  and are divided into the cognitive domains assessed. This table shows clearly the 

disparity in methods, measures and regions tested, thus highlighting the difficulty with which any significant 

qualitative synthesis can be achieved. 
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There were many ways in which studies designed analyses to probe brain-behaviour relationships post 

injury, and these are described in the design column of Table 2.4. The majority of studies used a correlational 

design, and did not model group differences, but instead looked at whole sample (across patients and 

controls) or just correlations within the TBI group.  Other studies took a cross-sectional approach but varied 

in how vigorously they probed the cross-sectional differences between groups. In Table A.2 (Appendix A), 

cross-sectional (comparative) refers to studies which statistically investigated brain-behaviour relationships 

within both TBI and control groups but only qualitatively compared these relationships between the two 

groups, whereas cross-sectional (statistical) refers to those studies that statistically modelled differences in 

these brain-behaviour relationships between groups (for example modelling the main effect of group in a 

GLM of volume by performance relationship).  Of the studies that used a cross-sectional design to probe 

these links between morphometry and cognition, the majority used the comparative approach. 

The most common domain that was assessed was working memory, including a number of validated normed 

(i.e. WISC-III digit span test) and non-normed tests (i.e. Sternberg Item recognition tests (SIRT)).  Reduced 

performance in the TBI group was seen repeatedly in relation to reduced volumes of parietal regions and 

cortical thickness of parietal and frontal regions (Merkley et al., 2008; Urban et al., 2017; Wilde et al., 

2011). However, it is unclear if there are any meaningful differences in actual performance between patients 

and controls in working memory performance across the studies included in this review. Studies found 

significant reductions in performance for patients (Konigs et al., 2018), limited interaction effects of group 

and performance on certain task variables (Urban et al., 2017; Wilde et al., 2011) or did not report 

performance differences at all (Fearing et al., 2008; Merkley et al., 2008). Thus, without meaningful 

differences in performance it is difficult to realise the potential utility of these brain-behaviour relationships. 

Multiple studies used a battery of tests to assess the relationship between cognitive (understanding false 

beliefs), affective (interpreting emotive communication) and conative (understanding social communication 

which influences others thinking i.e. irony) aspects of ToM morphometry after TBI (Dennis et al., 2013; 

Ryan et al., 2017; Yeates et al., 2013). Cognitive, conative and affective ToM abilities were all positively 

associated with total GM volume and negatively associated with ventricle to brain ratio (Yeates et al., 2013). 

Specifically cognitive ToM was related to total volume of the CCMN and affective to the SN (Ryan et al., 

2017) Conative ToM was predicted by a model of DMN, CEN and MNEN volume (Dennis et al., 2013) 

and total MNEN volume (Ryan et al., 2017). Of the decomposed regional volumes of these networks only 

posterior cingulate/retrosplenial cortex and hippocampal formation remained significant following multiple 

comparison corrections (Dennis et al., 2013). VBM only found significant clusters of brain-behaviour 

relationship in the OI not the TBI group (Yeates et al., 2013).  
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Significant brain-behaviour relationships between morphometry and cognition post-injury were also found 

for other domains of executive functioning (Wilde, Merkley, et al., 2012), anticipating social consequences 

(Cook et al., 2013), social problem solving (Hanten et al., 2011), and analogous reasoning (Krawczyk et al., 

2010). Across two studies, Dennis and colleagues (Dennis, Faskowitz, et al., 2017; Dennis et al., 2016) 

investigated the potential brain-behaviour relationships using a summary score of overall cognitive function 

(comprising a wide number of domains of processing speed, working memory, verbal learning, short term 

memory and attention switching), finding significant relationships both at a cross sectional and longitudinal 

basis, in the same sample. Domains of processing speed (Wu et al., 2010), IQ or verbal learning (Konigs et 

al., 2018) showed no significant relationships with morphometry. However, there were only a limited 

number of studies that measured each of these cognitive outcomes. As many of these studies had limited 

sample sizes and studies with significant findings utilised mass univariate approaches (i.e. voxel/vertex-

wise analysis), there is a heightened risk of Type 1 errors even when controlling for multiple comparisons. 

Therefore, it is important to look at convergence of results across multiple studies to determine whether 

findings are reliable or not. 

2.5 Discussion 

The current review has found some consistency in the differences and changes to the brain following a TBI 

during childhood, with most findings reporting reduction of volume and cortical thickness at a whole brain 

and regional level compared to TD peers’ between and across timepoints. This consistency across studies 

was found despite the considerable heterogeneity in the resulting neuropathology following a TBI (Dennis, 

Babikian, et al., 2017), and the additionally complexity introduced by the fact that the injury occurs within 

the context of developing paediatric brain. 

Overall, cross-sectional studies largely replicated the idea that frontal, temporal and parietal regions are 

particularly vulnerable following a pTBI (Wilde et al., 2005), likely due to the unique biomechanics of 

injury within the paediatric brain (Pinto, Poretti, Meoded, Tekes, & Huisman, 2012). However, regions of 

significant differences identified by individual studies can also be seen across the brain, suggesting a diffuse 

effect of injury on post-pTBI morphometry. 

We synthesised the data from the reviewed cross-sectional studies into ‘bands’ post-injury to make 

longitudinal inference in regard to the time since injury. It is important to note that these bands were derived 

based upon the ‘natural’ grouping of studies in the literature (see Figure 2.2) and thus clinical relevance of 

these bands may be limited. This is especially true of the early-stage post-injury, given the very dynamic 

nature of evolving and resolving pathology. Differences in imaging methodology and participant cohorts 

did not allow for an alternative sub-grouping within this first year, however, some patterns still emerge. The 
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cross-sectional evidence presented suggests that TBI is related to atrophy of the brain post-injury and that 

some regions are more vulnerable to these effects. The regions affected, whilst broadly similar, still vary 

across these post-injury bands. These findings indicate that cross-sectional studies can provide information 

about the morphometric differences related to a given condition (Madan, 2017), in this case pTBI by 

highlighting, for example, regions at high potential risk of atrophy (Irimia et al., 2017). Nevertheless, these 

studies are limited as they provide only a snapshot of the highly dynamic process of lesion and pathology 

development (Bigler, 2016).  It is not possible to disentangle whether differences across time periods could 

be attributed to either true longitudinal differences or variability in samples and/or methodologies (Kraemer, 

Yesavage, Taylor, & Kupfer, 2000; Vijayakumar, Mills, Alexander-Bloch, Tamnes, & Whittle, 2017). 

Hence, as we cannot imply a longitudinal process from the comparison of these cross-sectional studies, we 

may conclude that in fact these spatial differences arise as a function of the variability in injury; no two 

individuals, or even two patient populations, experiences the same biomechanics of injury, genetic context, 

and experience-dependant plasticity (Saatman et al., 2008). The key evidence presented here is that 

differences occur at each of the three bands post injury, from acutely to as far as 9-10 years post injury 

(Beauchamp, Ditchfield, Maller, et al., 2011). This suggests that there is a non-transient effect of paediatric 

traumatic brain injury, which neither recovers nor is compensated for over time. 

The wide within-study variability of time between injury and MRI assessment affects interpretation of these 

cross-sectional data. The study with the greatest variability is Drijkoningen et al. (2015), with the range of 

time between injury and follow-up in their TBI cohort was 0.3 to 10.8 years post injury. Although this means 

that direct comparison between studies is not possible, it does not preclude studies from investigating time 

since injury as a covariate of analyses, an approach that no study included in this review took. Only Urban 

et al. (2017) investigated similar effects by looking at the correlation of time since injury on cortical 

thickness measures in the patient group, finding no significant relationship. This absence of evidence for an 

atrophic process differing as a function of time since injury would seem to disagree with a continuing, 

longitudinal injury process. However, it is important to consider that this univariate relationship does not 

consider other factors (such as age at time of injury) and would provide far more convincing evidence if 

conducted in a longitudinal cohort. Thus, at this point in time it is not possible to draw any conclusions 

about the influence of time since injury on brain morphometry on the basis of the cross-sectional data alone.  

The longitudinal studies identified in the current systematic review point towards a divergence of the usual 

/ expected developmental trajectory of the brain post-injury. Studies showed that change over time differed 

between groups (TBI vs Control) with patients more likely to show reductions or atrophy greater than that 

of the control group over the same time period. Given these data, and the presence of chronic cross-sectional 

differences between controls and patients highlighted previously (Beauchamp, Ditchfield, Maller, et al., 
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2011), it is unlikely that the maturational processes which occur to the brain during childhood are able to 

‘overwrite’ the original damage post-injury as proposed by Bigler and Wilde (2010), or even that brain 

development after a pTBI ‘catches up’ with that of healthy peers. However, the current literature is limited 

in understanding at an individual level where, how much and in which individuals these long-term changes 

occur, and how these relate to individual-level neuropsychological performance post injury. 

The timing of both the initial brain injury and the resultant assessments that evaluate its effects, are known 

to be important factors in understanding the impact of TBI and subsequent neuropsychological sequelae in 

children (Anderson et al., 2011). Some research suggests that there are critical periods in development where 

the effects of injury are most severe (Anderson et al., 2011), potentially due to vulnerability to injury 

pathology that is specific to certain stages of brain development (Anderson et al., 2011; Goldstrohm & 

Arffa, 2005; McCrory et al., 2004; Urban et al., 2017; Wilde et al., 2006). This is also likely to go on to 

affect functional outcomes; if there is structural damage to still-developing brain networks which typically 

subsume given cognitive functions, then this may result in difficulties making “age-appropriate gains” 

(Ryan, van Bijnen, et al., 2016, p. 27) in the acquisition of these skills (Anderson et al., 2009; Ryan et al., 

2015). There was, however, a limited number of studies in the current review which investigated the effects 

of age at injury on morphometric differences/variables. Three studies reported analyses that examined the 

effect of age at injury on morphometry (Bigler et al., 2016; Max et al., 2012; Urban et al., 2017). Urban et 

al. (2017) found no significant correlations between cortical thickness and age at or time since injury, whilst 

Max et al. (2012) found that structural volumes of regions did not differ as a function of age across both 

controls and TBI patients. Bigler et al. (2016) found a significant relationship between age and cortical 

thickness but this relationship did not statistically differ between groups (although they do not report if this 

is age at injury or age at MRI, it is likely to be age at scan). None of the longitudinal studies investigated 

morphometric changes differed as a function of age at injury. If we assume that there are critical periods of 

development when there is specific vulnerability to the pathology of injury, then TBI at these critical periods 

may result in changes to morphometric measures that are greater than if the injury occurs at other stages of 

development. Further to this, without thorough investigation of patient-control differences across the range 

of time post-injury it is difficult to assess the emergence of differences in the post-TBI developmental 

trajectory. That is to say, the exact timings of when this developmental ‘divergence’ is unknown, based on 

the present state of the literature.  

Although age at injury is a salient variable when trying to understand the impact of TBI on brain 

development and later functional outcomes, the review demonstrates a paucity of studies in some age 

groups. At key stages of postnatal cortical development - in preschool age groups and late adolescence - the 

consequences of TBI on the morphometry of the brain are understudied. This is of particular concern given 
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that these are both periods of non-linear cortical change (Mills et al., 2016; Raznahan, Shaw, et al., 2011) 

in which developing brain networks are crucial for neurodevelopment. In order to understand the specific 

consequences and subsequently make treatment or rehabilitation recommendations for cognitive and 

behavioural impairments, a better understanding of age-related effects is needed. Thus, future studies should 

sample these age-bands.  

A fundamental challenge for the field is to tease apart the various factors that interact with one another to 

determine brain morphology, such as the interaction between age at injury and the age at MRI scan. This is 

further complicated by the fact that these variables are unlikely to be independent, especially due to current 

practices of recruiting patients at an a-priori defined period post injury (i.e. acute, chronic). In such studies, 

the age at scanning will be systematically related to the age at injury (by the amount of the post-injury 

period). Future longitudinal studies (and even cross-sectional designs) may therefore be advised to take an 

accelerated longitudinal design approach to time since injury. By choosing a prospective study design which 

recruits at varying times post-injury (from acute to chronic stages) it will enable more effective statistical 

modelling of the independent trajectories that are determined by age at which an injury has occurred and 

the time since the injury, by giving suitable range of sampling of each of these variables. 

One of the greatest challenges to the field is to understand how the whole-system level pathology to the 

brain gives rise to changes in functional behaviour (Bigler, 2016). The current review specifically 

investigated how gross brain atrophy in children with TBI may be associated with differences in post-injury 

cognition from TD controls. However, the lack of consistency in methods, measures and brain partitions 

used across the included literature makes synthesis of findings across studies difficult. The most commonly 

investigated association was between brain morphology and working memory. Specifically, regions of 

parietal and frontal lobe morphometry not only related to working memory measures (Merkley et al., 2008; 

Urban et al., 2017; Wilde et al., 2011), but also contributed to the difference in performance between 

controls and patients (McCauley et al., 2010). Longitudinal investigations of cognitive change over time 

also suggest that possible ‘divergence’ of morphometric maturation may be associated with differing 

development of and performance on a number of cognitive domains for the TBI group (Dennis, Faskowitz, 

et al., 2017; Dennis et al., 2016). However, it is important to note that, due to our inclusion criteria, we only 

looked at studies with a control group to assess morphometric change after injury. Papers that examined at 

brain-cognition relationships in solely a patient group were not included in the initial search.  

The interrogation of any association between morphometry and cognition in children with TBI varies across 

studies. Individual differences in morphometry were typically correlated with individual differences in 

neurocognitive performance. Some studies did this solely in the TBI group (Konigs et al., 2018; Ryan et al., 

2017; Wilde, Merkley, et al., 2012; Wu et al., 2010) and not in the TD control group. Thus, on the basis of 
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their reports, it was not possible to not separate out developmentally-appropriate brain behaviour 

relationships from those that are truly atypical. For example, if cognitive ability ‘X’ scales linearly/non-

linearly as a function of the size of region ‘Y’ (or network ‘Z’) during development, then any brain-

behaviour relationships between region ‘Y’/network ‘Z’ and cognitive tasks assessing ‘X’ seen in a TBI 

population could potentially represent normative development, rather than informing us how damage and/or 

atrophy is potentially disrupting the development and retention of cognitive skills. Few papers in the current 

review approached this question using a cross-sectional approach, and even fewer statistically modelled the 

effect of group in these brain-behaviour relationships (i.e. through GLM using group as a between-subjects 

factor, (Dennis et al., 2013; Fearing et al., 2008; McCauley et al., 2010)). It is important to recognize that 

these differing approaches answer very different hypotheses on how the injured brain relates to cognitive 

development. It is our opinion that, in order to make clinically useful predictions about functional outcome 

based on morphometry measures of the brain, then it is important to see if the brain-behaviour relationships 

differ post-injury from those seen in typical development. If this is not the case, then it would be just as 

prudent to predict cognitive performance in the TBI group using morphometric models derived from healthy 

participants.  

Synthesis of a large body of literature is important for understanding the nature of morphometric changes 

post-pTBI. However, there are methodological considerations within the field that must be considered both 

in the interpretation of this synthesis and in future studies. A key issue is the presence of macroscopic lesions 

on MR images as well as more subtle pathology. These include lesions due to WM deformation and shear, 

Wallerian degeneration, compromised vascular integrity, hemosiderin deposition and encephalomalacia, 

which are highly heterogeneous between individuals (Bigler, 2013; Bigler et al., 2016). In a study of a pTBI 

sample (used by multiple papers in the current review (Ryan, Beauchamp, et al., 2016; Ryan, Catroppa, et 

al., 2016; Ryan et al., 2017)) the presence of a lesion on MRI (T1w, T2w or FLAIR) was detected in 54% 

of cases (Beauchamp, Ditchfield, Babl, et al., 2011). This represents ~56% (n=20) of the cases for which 

the researchers had access to MRI, CT and susceptibility weighted imaging (n=36), and is therefore likely 

a slight overestimation. Despite the prevalence of lesions on MRI scans included in papers reporting global 

and regional morphometry following pTBI, only four studies discussed methodological approaches to deal 

with the presence of lesions. Spanos et al. (2007) replicated findings of cerebellar differences even when 

removing patients with focal cerebellum lesions, whilst Serra-Grabulosa et al. (2005) listed focal lesions as 

an exclusion criterion for their sample selection and still found cross-sectional differences between non-

lesioned TBI cases and controls. Bigler et al. (2013) stated that, due to extreme structural damage in two 

patients, Freesurfer was unable to reconstruct the brain surfaces and thus these patients were excluded from 

analyses. The most proactive approach to controlling for the effect of lesion was that of Drijkoningen et al. 

(2017) who excluded regions where the presence of a focal lesion (>0.5 cm3) had resulted in distortion of 
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the segmentation or parcellation by Freesurfer, resulting in the exclusion of seven regions across two 

participants (although it is pertinent to note that only 1.8% of all ROI data across the whole TBI sample was 

excluded in this way). However, the remaining studies did not explicitly state how lesions were addressed 

in their quantitative neuroimaging pipelines or even if any lesions were present in their sample at all.  

The presence of lesions may influence image processing pipelines, and therefore the resultant morphometric 

findings. This might lead to under- or over-reporting of TBI-control differences, depending on the approach 

adopted. For example, disruptions to voxel intensities (due to oedema for example) can lead to inappropriate 

solutions to cost-function algorithms (such as those in spatial normalization), causing observable distortion 

around the lesion (Brett, Leff, Rorden, & Ashburner, 2001; Goh, Irimia, Torgerson, & Horn, 2014; Irimia, 

Wang, et al., 2012). Gross anatomical lesions can also result in brain segmentation and surface 

reconstruction failures (Irimia, Goh, Torgerson, Vespa, & Van Horn, 2014; Merkley et al., 2008; Wang, 

Prastawa, Awate, et al., 2012; Wang, Prastawa, Irimia, et al., 2012) . Anatomy can also be mislabelled by 

probabilistic-labelling when pathological lesions lead to gross and/or focal deformation of tissue, producing 

morphometric measures for ROIs which are not accurate (Dennis et al., 2016; Goh et al., 2014; Irimia, 

Chambers, et al., 2012; Irimia et al., 2014). Other methodologies, such as Freesurfer, are also semi-

automated, and thus require manual intervention to ‘correct’ potential inaccuracies such as this. However, 

the degree to which manual intervention is conducted is solely at the discretion of the researcher and the 

details of which are often not transparently reported (Vijayakumar et al., 2017). None of the morphometric 

studies in the current systematic review reported how lesions were approached within this framework of 

manual editing, and there are no clear recommendations in software documentation as to how to approach 

such pathology. 

The methods used to estimate morphometric estimates of the brain may not be robust in the presence of the 

lesions characteristic of TBI, and there is a lack of validation of these methods in TBI cohorts (Goh et al., 

2014; Irimia et al., 2011; Irimia et al., 2014). This is especially true given the fact that many of these 

methodologies operate on detection of tissue boundaries within an MRI via changes in image contrast. In 

the presence of a TBI, tissue contrast of an MRI is suggested to be different to controls (Palacios et al., 

2013). Even though some software allows (limited) integration of lesion masks into processing (ANTS 

allows users to perform cost-function masking during registration using a lesion mask), studies did not 

outline how the processing pipeline had been tested or optimised for use with MRI where there are traumatic 

lesions present. These methodological concerns raise questions about the credibility of the individual studies 

reported here, but also creates a critical question for our field; in order to accurately identify and report data 

on brain changes following pTBI it is important that our quantitative methodologies include pathological 

brains. Although excluding cases is an appropriate approach, and sometimes the only option available when 
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registration failures occur, these cases warrant inclusion in large, representative datasets. Future work needs 

to assess how lesions may impact the processing of neuroimaging data, however, due to the fact there is no 

one ‘universal’ TBI lesion (Bigler, 2016), this is unlikely to be a trivial endeavour. 

The current review specifically focused on structural changes to the brain as measured with T1w structural 

MRI. Structural changes post pTBI have also been recognized using diffusion weighted imaging (DWI) and 

related WM-tract modelling (for an extensive review of this literature see Dennis, Babikian, et al. (2017)). 

The two methods provide unique information about differing injury mechanisms. For instance, fractional 

anisotropy of the diffusion signal can infer microstructural properties of WM following diffuse axonal injury 

(Dennis, Babikian, et al., 2017). GM measures of structure outlined in this review, such as cortical thickness 

or volume, aim to assess the potential atrophic effects of the cascade of mechanisms that occur post-injury 

(Bigler, 2013). Whilst indexing different injury mechanisms, these neuroimaging methodologies provide 

complementary information for the basis of understanding the brain post pTBI. For instance, multimodal 

imaging can enhance the segmentation of pathological lesions in pTBI (Irimia et al., 2011) with each 

modality detecting specific properties of the lesion (Zhang et al., 2016). Future research should therefore 

echo approaches of studies such as Konigs et al. (2018), by combining multiple modalities of imaging to 

better understand the brain post pTBI. 

2.6 Concluding remarks 

In the adult TBI literature, Cole et al. (2015) propose a model for changes to the ‘brain age’ of a patient after 

TBI. They prescribe that TBI does in fact cause a long-term chronic disease process, and these interact with 

the normative process of ageing of the brain. Thus, the resultant state of the brain can be expressed in terms 

of additive effects, the sudden departure of the brain from the ‘healthy’ brain state for an individual of that 

age, and interaction effects, which potentially accelerate the ageing process (particularly atrophy) due to the 

interaction of this process with the cascade of pathologies following injury. The studies shown in this review 

seem to paint a similar picture, but with the idea of ‘healthy ageing’ replaced instead with ‘normative 

development’. Our findings of the both volumetric and cortical thickness differences from controls in the 

initial stages of early injury highlight this potential ‘additive effect’ where the injury has caused sudden 

change to the morphometry to the brain. The current review also highlights the longitudinal effect of injury 

on development, supporting such a model of ‘interactive effects’ in paediatric TBI.  

Overall the current systematic review draws the following conclusions from the existing literature on 

morphometric changes to the brain post pTBI; a) differences are apparent cross-sectionally at both acute 

and late-chronic timepoints post-injury, thus suggesting a non-transient effect of injury and b) morphometric 
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change over time is altered in TBI groups compared to patients, but it is currently unclear if this is an effect 

of disrupted development or a continuing ‘neurodegenerative’ effect of injury.  

The current review also highlights challenges to the field in regard to within-study sample heterogeneity, 

limited investigations of the extreme tails of childhood, and the potential effect of lesions on analyses. In 

addition, further work is needed to effectively relate these morphometric measures to cognitive measures of 

post-injury functioning to firmly establish the role of TBI-related brain changes in long-term functional 

outcomes.  
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Chapter 3. Lesion Induced Error on Automated Measures of Brain Volume: Data From a 
Paediatric Traumatic Brain Injury Cohort 

3.1 Overview 

Chapter 2, highlighted a specific limitation of existing work into understanding the morphometry of the 

brain post pTBI, namely the effect that frank parenchymal lesions may have on processing pipelines. Given 

this, the current chapter further investigates how these may affect a standard, surface-based anatomical 

parcellation algorithm which is commonly used in the field of neuroimaging. The introduction of TBI 

lesions into pipelines commonly used to assess MRI-derived brain morphometry results in biased results. A 

version of the work presented in this chapter has been submitted for publication as follows; 

King, D. J., Novak, J., Shephard, A. J., Beare, R., Anderson, V. A. & Wood, A. G. (Submitted). 

Lesion induced error on automated measures of brain volume: Data from a paediatric 

traumatic brain injury cohort. Frontiers in Neuroscience. 

DJK and AW contributed to the conception and design of the current study. VA contributed and collected 

data. JN contributed lesion masks whilst DJK and AS conceptualized the process of simulating lesions. DJK 

performed the processing of MRI data. DJK and RB conceptualized the statistical analysis. DJK performed 

the statistical analysis and wrote the first draft of the manuscript. All authors contributed to manuscript 

revision. 

3.2 Introduction 

Automated analysis to derive quantitative measures of brain structure offers significant benefit to large scale 

research endeavours that have clinical translation potential. In addition to reducing the time burden and 

potential error induced by manual methods (Bigler et al., 2010), quantitative approaches may be more 

sensitive to subtle but clinically relevant imaging biomarkers that are not apparent on routine visual 

reporting. Accordingly, successful use of these techniques has been demonstrated in disorders with 

relatively subtle global or regional changes (e.g., dementia of the Alzheimer’s type (Frisoni, Fox, Jack, 

Scheltens, & Thompson, 2010)). Recent traumatic brain injury (TBI) research has utilised segmentation and 

analysis of T1-weighted (T1w) structural magnetic resonance images (MRI) to quantify these post-injury 

morphometric changes (Dennis, Faskowitz, et al. (2017); Ryan et al. (2017); Urban et al. (2017), see King 

et al. (2019) for a review). The accuracy of these methods in the context of gross lesions/pathology, however, 

may be reduced by errors introduced during the processing of such MRI. This then makes it difficult to 

ascertain whether differences between control and patient morphology are due to an injury-related pathology 

or due to systematic error which is specific to the patient cases with gross lesions (King et al., 2019). 
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The MRI features of TBI are heterogeneous due to injury mechanisms such as white matter deformation 

and shear, Wallerian degeneration, compromised vasculature, hemosiderin deposits and encephalomalacia 

(Bigler et al., 2013; Bigler & Wilde, 2010; Bigler et al., 2016), presenting as abnormal signal within the 

image, hereto referred to as ‘lesions’. The current study investigated these lesions in a cohort of paediatric 

TBI patients. In these TBI cases, these lesions occur within the context of a still-developing brain (Wilde, 

Hunter, et al., 2012), and accurate quantification of brain-morphology will allow us to assess the effects of 

these insults on the developmental trajectory of the brain.  

In terms of prevalence, in a retrospective accidental paediatric TBI (pTBI) cohort (n=68), MRI within 2 

weeks detected intraparenchymal lesions on ~29% of cases (Buttram et al., 2015). In a study of 36 patients, 

lesions were detected on MRI (T1w, T2w or FLAIR) for ~56% of cases (n=20, Beauchamp, Ditchfield, 

Babl, et al. (2011)). However, this is likely an inflated prevalence as Beauchamp et al. (2011) specifically 

included only those patients who explicitly had been clinically referred for CT. 

These lesions are as unique between individuals as the precipitating injury, with no two individuals sharing 

the same biomechanics of injury, genetic context or experience-dependent plasticity (Saatman et al., 2008). 

This means that presentation of lesions on MR imaging is highly variable between-individuals, but also 

within-cases. The pattern of pathology varies across time post-injury: for example, white-matter shear is 

more common acutely, whilst Wallerian degeneration is a late manifestation of injury. Even for a given 

individual, lesion presentation on MRI is highly dependent on factors such as MR sequence and time post-

injury (Bigler, 2007b; Bigler et al., 2013; Bigler & Maxwell, 2011). This heterogeneity means that lesion 

characterization presents a major challenge for neuroimaging software and analysis. 

There are multiple potential sources of error in neuroimaging pipelines due to the presence of lesions. For 

instance, frank parenchymal lesions such as those seen in TBI are likely to distort the MR signal, causing 

abnormal voxel intensities (due to pathology such as gliosis and oedema), resulting in specific errors such 

as surface reconstruction errors which rely on intensity gradients for processing (Goh et al., 2014; Irimia, 

Wang, et al., 2012; Merkley et al., 2008). Poor registration is also seen in the presence of TBI lesions, 

resulting in modifying of voxel-mappings to the atlas space and thus inaccurate estimation of structural TBI 

volumetrics (Goh et al., 2014; Irimia, Wang, et al., 2012). Many of the automated approaches to 

segmentation are therefore likely to show lesion-induced error when used to process clinical populations 

where the pathology presents as lesions on MRI. Regardless of their exact origin within the processing 

pipeline, the effect of these errors is the potential to obscure or falsely identify findings of pathology-

mediated changes to the morphology of the brain. For example, the focal white matter (WM) lesions seen 

in multiple sclerosis have been shown to bias measures derived from SPM (Penny, Friston, Ashburner, 

Kiebel, & Nichols, 2011), FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011), Freesurfer (Fischl, 
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2012) and mulitatlas segmentation methods (Chard, Jackson, Miller, & Wheeler-Kingshott, 2010; 

Gonzalez-Villa et al., 2017). 

Freesurfer (Fischl, 2012) is a tool for the semi-automated segmentation of T1w structural MRI to estimate 

the morphometry of the brain. Documentation does not discuss how to approach surface-based segmentation 

of lesioned images, but does emphasize that the tool should not be used for clinical purposes. To date, little 

work has investigated Freesurfer performance in the presence of pathology-related MRI abnormalities. 

Despite these limitations, it has been used in several pTBI studies (e.g. Drijkoningen et al. (2017); Mayer et 

al. (2015); Ryan et al. (2017); Wilde, Merkley, et al. (2012); Wu et al. (2018)). The majority of the pTBI 

studies listed here report little detail on the implementation of Freesurfer in the presence of TBI-lesions, 

beyond the fact that manual-editing was performed. This paucity of detail, especially in the specific 

decisions in how manual editing was performed, restricts the ability to replicate study findings, and assess 

the effect lesions may have on the Freesurfer pipeline. 

Despite a lack of research into methodologies to approach automated segmentation in the presence of 

lesions, previous studies investigating brain morphometry in pTBI have reported and adopted strategies to 

deal with the effect of lesions on their analyses. One utilised approach is to exclude cases with focal lesions 

from analyses (Serra-Grabulosa et al., 2005), however this both reduces statistical power (through reduced 

sample size) and limits clinical applicability and generalizability of findings to the full spectrum of injuries. 

Other studies have used post-hoc procedures to ‘correct’ for the effect of lesions on their analyses by 

replicating analyses with/without patients presenting with focal lesions in the region of interest (ROI) being 

tested (Spanos et al., 2007), or excluding ROIs where the presence of a lesion caused errors to the Freesurfer 

parcellation (Drijkoningen et al., 2017). These post-hoc methods rely on the assumption that the lesion-

induced error is focal, however, it is important to consider whether this algorithmic error could be distributed 

more globally across the brain, causing error in regions not edited by these correction approaches. 

We aimed to identify and quantify this potential global lesion-induced error by investigating morphometry 

in both the lesion and contralesion hemispheres. This was to disentangle the volumetric differences due to 

injury and those due to the algorithmic error within the surface-based output of Freesurfer, likely induced 

by the erroneous signal within the lesion (Chard et al., 2010). To achieve our aim, we ‘simulated’ TBI-

lesions in a healthy paediatric cohort. Simulated lesions facilitate measurement of the effect of image 

processing in the presence of a lesion as compared to the ‘ground truth’, non-lesioned counterpart of the 

image. This is necessary in order to disentangle both the morphological changes due to algorithmic error 

and potentially ‘real’, globally-distributed pathological effects of injury. 

We predicted that the presence of lesions would result in an error in morphometric measurement by 

Freesurfer, beyond that of the spatial extent of the lesion. We had three explicit hypotheses: 
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1. that for cases where we have simulated a lesion there will be a difference in measured volume from 

ground truth in both the lesion and the contralesion hemisphere,  

2. that the magnitude of this difference will be greater in the lesion hemisphere than the contralesion 

hemisphere, 

3. that this lesion-induced error (both in the lesion and contralesion hemisphere) will vary as a function 

of lesion characteristics (hypotheses a and b were defined a priori, whereas c was exploratory in 

nature). 

3.3 Methods 

3.3.1 Participants 

The data used in the current study represent a subset of an existing dataset of paediatric TBI. This dataset 

contains a total of 157 children (patients n=114) who were recruited between 2007 and 2010 into a study on 

‘Prevention and Treatment of Social Problems Following TBI in Children and Adolescents’. Further details 

of the study including details of the recruitment strategy have recently been published elsewhere (Anderson 

et al., 2013; Anderson et al., 2017; Catroppa et al., 2017). In brief, children with TBI were recruited on 

presentation to hospital at The Royal Childrens’ Hospital, Melbourne (RCHM), Australia. Children were 

eligible for the study if on presentation they: i) were aged between five and 16 years at the time of injury, 

ii) had recorded evidence of both a closed-head injury and at least two post-concussive symptoms (such as 

headaches, dizziness, nausea, irritability, poor concentration), iii) had sufficient detail within medical 

records (Glasgow Coma Scale (GCS; Teasdale and Jennett (1974)), neurological and radiological findings) 

with which to determine the severity of the injury, iv) had no prior history of neurological or 

neurodevelopmental disorder, non-accidental injuries or previous TBI, and v) were English speaking. TD 

controls were required to meet criteria i), iv) and v). MRI scans were acquired in the acute post-injury period 

for patients (for details, refer to Table 3.1). A favourable ethical opinion was granted from Aston University 

as a site for secondary analysis of neuroimaging data. 

Control cases were selected from the overall dataset based on four criteria, to ensure that the control data 

used was of high quality: i) MRI data available, ii) no manual-editing of surfaces required after Freesurfer 

recon-all pipeline completed, iii) no MR-artefacts , and iv) no “failed”" ratings (a ‘bad’ rating on any of 

‘image sharpness’, ‘ringing’, ‘subcortical SNR’ or ‘GM + WM SNR’ scales) on a qualitative rating scale of 

T1w images (Backhausen et al. (2016); performed by DJK). Eleven (out of 36) control cases met this criteria 

for inclusion. Demographics of this group can be seen in Table 3.1. 
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Table 3.1. Demographic variables for Control cases 

Control Case Sex Age at MRI (yrs) 

1 Female 7.21 

2 Male 10.73 

3 Male 10.54 

4 Male 6.82 

5 Male 7.87 

6 Female 8.38 

7 Male 6.85 

8 Female 14.62 

9 Male 8.85 

10 Female 11.88 

11 Female 13.14 
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Patients were all investigated for visible lesions on T1w images, blind to severity ratings. Nineteen patient 

cases were identified as presenting with lesions which could be identified on these T1w images. However, 

three patients were excluded from this selection. The first was excluded due to the presence of bilateral 

lesions which therefore precludes comparison between the lesion and contralesion hemispheres. The second 

exclusion was due to the resolution of the T1w image being significantly different from the other images 

(0.8mm Isotropic). The final exclusion was due to the lesion being an incidental finding, rather than due to 

the TBI. Demographics of the lesion cases can be seen in Table 3.2. The included lesions were visualised 

as binary masks in MNI space in Figure 3.1. Lesion volumes (mm3) were calculated as a count of the number 

of non-zero voxels in the associated lesion mask multiplied by the voxel size. This was calculated in native 

space of the lesion patient space (reported in Table 3.2) and once transformed into control space as a 

simulated lesion (see below).  
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Table 3.2. Demographic variables for Lesion cases 

Study Case No. Sex 
Age at Injury 

(yrs) 

Age at MRI 

(yrs) 

Injury-MRI 

Interval (days) 
Injury Severity 

Cause of 

Injury 

Lesion 

Hemisphere 

Lesion Volume 

(mm3) 

1 Male 5.75 5.88 35 Moderate MVA lh 25.00 

2 Female 12.5 12.64 40 Moderate MVA lh 1030.00 

3 Female 12.5 12.61 19 Moderate MVA rh 3063.75 

4 Male 10.75 10.86 35 Moderate MVA lh 505.75 

5 Male 6.5 6.53 7 Moderate MVA lh 12,081.50 

6 Male 8.42 8.61 42 Mild-Complex Fall lh 60.25 

7 Male 11 11.15 29 Mild-Complex Fall rh 63.00 

8 Female 5.92 6.09 57 Severe Fall rh 35.00 

9 Female 7.83 7.95 32 Mild-Complex Fall rh 2059.25 

10 Male 10.92 11.13 71 Moderate Fall rh 8815.00 

11 Male 10.5 10.68 38 Moderate MVA lh 83.50 

12 Male 8.5 8.67 35 Severe Fall rh 3858.50 

13 Female 13.67 13.75 20 Moderate Fall rh 391.50 

14 Female 9.33 9.44 36 Moderate Fall lh 15.00 

15 Female 12.33 12.51 43 Moderate Fall rh 37.50 

16 Female 10.58 10.77 63 Moderate MVA rh 407.00 
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Figure 3.1 Visualisation of individual lesion masks in MNI space, as well as overlap of all lesions used in 

the cohort (colourbar represents number of cases). Visualisation generated with code from Whitaker, 

Notter, and Morgan (2017).  
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3.3.2 MRI Acquisition 

MRI were acquired for the patient group acutely after injury (<90 days post-injury). MRI images were 

acquired at 3T as a part of an existing research protocol on a Siemens Trio scanner (Siemens Medical 

Systems, Erlangen, Germany) using a 32-channel matrix head coil. The acquisition sequence consisted of a 

sagittal three-dimensional (3D) MPRAGE [TR = 1900 ms; TE = 2.15 ms; IR prep = 900 ms; parallel imaging 

factor (GRAPPA) 2; flip angle 9 degrees; BW 200 Hz/Px; 176 slices; resolution 1 × .5 × .5 mm], sagittal 

3D T2-w non-selective inversion preparation SPACE (Sampling Perfection with Application-optimised 

Contrast using different flip-angle Evolution) [TR = 6000 ms; TE = 405 ms; inversion time (TI) = 2100 ms; 

water excitation; GRAPPA Pat2; 176 slices; 1 × .5 × .5 mm resolution matched in alignment to the 3D T1-

weighted sequence]. 

3.3.3 Simulated Lesions 

All MRI processing was conducted on a Linux system (UBUNTU 16.04.4 LTS). The lesions described 

above were initially segmented manually (by JN) using the MRTrix (version 3.0) software package 

(Tournier, Calamante, & Connelly, 2012), producing a binary lesion mask for each patient. Lesions were 

identified in our dataset by a single rater and masks drawn where visible lesions could be identified by eye 

on the T1w image, using FLAIR MRI to support lesion identification. 

The approach in the current paper was similar to that proposed by Brett et al. (2001), and Gonzalez-Villa et 

al. (2017) using lesions from pTBI cases recruited on admission to an emergency department. The use of 

actual lesions provides distinct benefits over computer generated lesions, specifically reflecting the 

complexity of actual lesions, retaining natural characteristics such as texture and size (Seghier, 

Ramlackhansingh, Crinion, Leff, & Price, 2008). The full methodology is outlined in the supplementary 

materials (Appendix B). The resultant simulated dataset contained n = 176 cases, where every included 

lesion (n = 16) had been applied to every control image (n = 11) in all possible pairwise permutations. From 

here on, the control images with the simulated lesions applied will be referred to as the simulated lesion 

(Simlesion) cases (n = 176) and the control images without editing will be referred to as “ground truth” (GT) 

cases (n = 11). Examples of these lesion images and simulated cases can be seen in Figure 3.2. 
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Figure 3.2. Examples of original lesion cases (i-v), with (a) and without (b) lesion masks and example chimeric images, the simulated cases where the corresponding 

lesion has been applied to a control subject (in native space) with the outlined methodology. Cases ii) and iv) show two example chimeric images to demonstrate that 

(in native space) simulated lesions show both morphological and spatial variation.
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3.3.4 Automated structural segmentation using Freesurfer 

Both the Simlesion and the GT cases were processed using the standard Freesurfer recon-all pipeline, 

which has good replicability and has been histologically validated (Han et al., 2006; Rosas et al., 2002). 

Explanations of the Freesurfer pipeline for 3D tissue segmentation and measurement of morphometry 

are given elsewhere (Fischl, 2012; Fischl et al., 2004). No manual editing was performed on either the 

simulated-lesion or control cases once segmented using Freesurfer in order to prevent any potential bias 

towards manual delineation (Perlaki et al., 2017). 

Raw data was extracted using Freesurfer for both the Simlesion and GT cases pertaining to two volumetric 

measures; a) Cortex volume (left (lh) and right (rh) hemisphere) and b) Cerebral white matter (cWM) 

volume (lh and rh).  

In light of the results of the primary analyses we were interested in whether the error in both the lesion 

and contralesion hemisphere (hemilesion and hemicontra respectively) were related to the other 

characteristics of the simulated lesion. We were particularly interested in lesion size, mean intensity and 

SD of intensity values within the lesion. Due to the non-quantitative nature of T1w MR intensity values, 

the Simlesion cases were moved into a unit-variance space. Both mean intensity and SD of intensity values 

was calculated for the voxels within the brain mask, but whilst masking lesioned voxels. These values 

were used to demean and rescale the voxels within the brain mask (including the lesion) by subtracting 

the mean from all voxel intensities and then dividing by the SD. This image in unit-variance space was 

then used to calculate the mean and SD of intensity values within the lesion ROI.  

3.3.5 Statistical Analysis 

For each lesion applied to the control cases to generate the Simlesion cases, lesions masks were used to 

define whether lesions were located in the lh, rh or bilaterally. Using this information, and knowing 

which lesion is applied to each of the Simlesion cases, the raw volumetric measures for each case were 

recoded as the lesion hemisphere (hemilesion) and the contralesion hemisphere (hemicontra). This is the 

case for all metrics calculated for the study. This allowed us to see if any lesion induced error is present 

in the hemisphere where no volumetric differences should occur in comparison to GT, as no image 

manipulation has occurred in the hemicontra. For each Simlesion case, the appropriate referent GT case was 

matched and also recoded to maintain the mapping from lh/rh to hemilesion/hemicontra. Thus, each repeated 

measure ‘datapoint’ contained a measure of both cortex and cWM volume for; i) hemilesion in the Simlesion 

case, ii) hemicontra in the Simlesion case, iii) hemilesion in the referent GT case and iv) hemicontra in the referent 

GT case. 

All statistical analyses were conducted in R (R Core Team, 2016) using ‘lme4: Linear Mixed-Effects 

Models using 'Eigen' and S4’ (lme4 (Version 1.1);  Bates, Machler, Bolker, and Walker (2015)). All 

analyses utilise linear mixed effect models (using the ‘lmer’ function and restricted maximum likelihood 
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(REML) estimation) to account for the crossed random effects of both the control MRI and lesion used 

to construct the Simlesion cases (lesion used was coded as 0 for the GT cases where no lesion was applied). 

The random effects of lesion and control MRI used were defined as crossed, rather than nested. 

To test hypothesis a), cortex and cWM volumes were modelled as a function of the fixed effect of case 

(Simlesion vs GT cases) and the random effects of lesion and control MRI used to construct the Simlesion 

case. As per Barr et al.’s (2013) recommendations for best practices in mixed effect modelling, a 

maximal model was defined. Barr et al. suggest that random slopes are required for within-unit effects, 

but random intercepts are sufficient for between-unit effects. Therefore, random slopes were estimated 

for case across participant but not lesion or control. This model was tested for both the hemilesion and 

hemicontra, using the lmer ‘subset’ argument. When investigating the individual hemispheres, this 

decreased the number of observations per participant for the random effect of case across participants, 

and thus a random slope was no longer appropriate. Therefore, only a random intercept was used in the 

subset analyses. 

As the second hypothesis pertains to the magnitude of differences, the outcome variable was switched 

to percent volume difference (PVD) between the Simlesion and GT cases. Percentage volume difference 

for hemilesion and hemicontra between Simlesion and GT measurements was also calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 100 ×
|𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑃𝑃(𝐺𝐺𝐺𝐺)|
𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆) + 𝑃𝑃(𝐺𝐺𝐺𝐺)

2

 

where 𝑃𝑃 is the volume (calculated for both cortex and cWM volumes), with a greater PVD value 

representing greater volume differences between the Simlesion and GT cases (Perlaki et al., 2017). This is 

used for two reasons. Firstly, it is a well-accepted approach to segmentation comparison (Fischl et al., 

2002) and is used in multiple existing studies of segmentation errors/biases (Amann et al., 2015; 

Katuwal et al., 2016; Morey et al., 2009; Perlaki et al., 2017). Secondly, it allows us to recode what 

would be a 2 x 2 interaction (Simlesion/GT x hemilesion/hemicontra) when using raw volumes as a single 

factor (PVD of hemilesion/hemicontra), meaning that the statistical results reported here are more 

interpretable. The 20% trimmed means (𝑋𝑋𝑡𝑡) and median values for PVD are also reported. 

The mixed model was defined similarly to hypothesis a), but the fixed effect of hemisphere (hemilesion 

and hemicontra) was included rather than case. No random slope of hemisphere across participants was 

included as there were not sufficient observations per participant to warrant/enable this. Therefore, the 

maximal model in this case included only random intercepts. 

As the random effect of control image and lesion significantly improved model fit for both hypothesis 

a) and b), we therefore conducted a final, exploratory analyses to investigate how specific characteristics 

of the lesion, such as lesion size and intensity (in native space), explain variance in PVD for both the 

hemilesion and hemicontra. This was done using a linear mixed model as per hypothesis a) and b), however 
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the random effect of lesion used was not included, as this variance should be explained by the fixed 

effects of the lesion characteristics added to the model. The outcome variable was PVD and fixed effects 

were: lesion size, mean lesion intensity and the SD of lesion intensity, whilst the only random effect was 

that of control image used to generate the Simlesion case. This model was estimated in the hemilesion and 

hemicontra separately, using the lmer subset function. Therefore, the random effect of participant was not 

included as these models no longer represented repeated measures. 

For all hypotheses, the mixed model (estimated with maximum likelihood rather than REML to facilitate 

model comparison) was compared to a linear model including only the fixed effects but none of the 

random effects to assess whether the random effects were warranted and significantly improved model 

explanation. All model comparisons were conducted using a Likelihood ratio test to assess whether the 

reduction in residual sum of squares was significant. To test the significance of fixed effects in relation 

to all hypotheses, p-values were estimated using the normal distribution of t-statistics.  All results are 

presented using the ‘ggplot2’ (Wickham, 2009) and ‘ggpubr’ (Kassambara, 2018) packages.  

3.4 Results 

All models, including parameter estimates for all effects and associated lmer syntax, are described in 

supplementary materials (Appendix B). For hypothesis a) both cortex and cWM volume were predicted 

by the fixed effect of case (Simlesion and GT ). When adding random effects, for cWM volume, the 

maximal model failed to converge and thus, as per Barr et al.’s (2013) recommendations, the random 

correlations between random slope and random intercept were removed from the model, as this 

performed similarly to the maximal model in simulations (Barr et al., 2013). The addition of the random 

effects to the model significantly improved model fit for both cortex and cWM volume (χ2(5) = 2894.47, 

p < .0001; χ2(6) = 4025.22, p < .0001), and thus the inclusion of random effects in the model was 

warranted.  

For cortex volume, across both hemispheres, the fixed effect of case was non-significant (B = -942.61, 

std.Error = 531.83, t = -1.77, p = .076). When considered separately, surprisingly, the fixed effect of 

case was non-significant in the hemilesion (B = -1324.46, std.Error = 1155.34, t = -1.15, p = .25), but 

significant in the hemicontra (B = -560.76, std.Error = 136.47, t = -4.11, p < .0001). In both hemispheres, 

the parameter estimates were negative for the simulated lesion case, suggesting that the cortex volume 

was lower when a lesion was simulated. The significant difference found in the hemicontra was smaller 

than the non-significant difference in the hemilesion. For cWM volume, the effect of case was non-

significant across hemispheres (B = -161.75, std.Error = 261.88, t = -0.62, p = .54), and within the 

individual hemilesion and hemicontra respectively (B = -308.84, std.Error = 619.14, t = -0.50, p = .62; B = -

14.66, std.Error = 101.00, t = -0.15, p = .88). See Figure 3.3 for plots of these effects. 
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Figure 3.3. Plots of differences in cortex (top) and cWM volume (bottom) between Simlesion and GT cases 

across hemispheres. 
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As the second hypothesis pertains to the magnitude of differences, the outcome variable was switched 

to percent volume difference (PVD) between the Simlesion and GT cases. For cortex volume, PVD was 

slightly higher in the hemilesion (𝑋𝑋𝑡𝑡 = 0.47%, median = 0.39%) than the hemicontra (𝑋𝑋𝑡𝑡 = 0.37%, median = 

0.39%), but overall, the volume difference was minimal between Simlesion and GT cases. Only 44 cases 

showed PVD greater than 1% in the hemilesion and 27 in the hemicontra, with maximum PVD being 2.78% 

and 2.07% respectively. For cWM volume, PVD were similar between the hemilesion (𝑋𝑋𝑡𝑡 = 0.34%, 

median = 0.31%) and hemicontra (𝑋𝑋𝑡𝑡 = 0.34%, median = 0.33%). 

For hypothesis b) the baseline model (including no random effects) was defined similarly as per 

hypothesis a). No random slope of hemisphere across participants was utilised as there were not 

sufficient observations per participant to warrant/enable this. Therefore, the maximal model in this case 

included only random intercepts and represents a significant improvement over a model with just the 

fixed effect of hemisphere (cortex volume: χ2(3) = 62.19, p < .0001; cWM volume: χ2(3) = 53.71, p < 

.0001). Due to the varying scales across the fixed effect variables, these were converted to z-scores 

(centred and scaled) to facilitate model convergence. 

For PVD of cortex volume, the fixed effect of hemisphere was significant (B = .140, std.Error = .047, t 

= 2.96, p = .003), with parameter estimates suggesting that the hemicontra had a smaller PVD. However, 

the effect of hemisphere on cWM PVD was non-significant (B = -.007, std.Error = .039, t = -.18, p = 

.86). This can be seen in Figure 3.4 below. For PVD of both cortex volume and cerebral white matter 

volume, the random effect of control and lesion used significantly improved model fit. This suggested 

that there was some variance significantly attributable to the specific lesion used to generate the 

simulated lesion MRI, as can be seen in Figure 3.5 below. 
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Figure 3.4. Plots of PVD for both cortex (top) and cWM volume (bottom) across hemispheres for each 

individual subject.  
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Figure 3.5. Plots of subject-level PVD for both cortex (top) and cWM volume (bottom) across 

hemispheres plotted by lesion used. 
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Therefore, an exploratory analysis investigated the effects of certain lesion characteristics on PVD. For 

cortex volume, in the hemilesion, the fixed effects of lesion volume and SD of lesion intensity were 

significant (B = .28, std.Error = .038, t = 7.35, p < .0001; B = -.23, std.Error = .088, t = -2.60, p = .0094 

respectively). However in the hemicontra, only the fixed effect of SD of lesion intensity was marginally 

significant (B = -.16, std.Error = .080, t = -2.02, p = .044). For cWM, the only significant fixed effect 

found was the effect of volume on PVD of cWM in the hemilesion (B = .15, std.Error = .030, t = 5.08, p 

< .0001). 

3.5 Discussion 

Frank parenchymal lesions as a result of pTBI pathology result in surface reconstruction errors due to 

abnormal MRI features, such as distortions to the voxel-intensity (Goh et al., 2014; Irimia, Wang, et al., 

2012; Merkley et al., 2008). The current study investigated the accuracy of surface-based, morphometric 

measurement from T1-w images containing TBI-lesions, using a paediatric cohort of simulated lesions 

and their base control images as a referent. Specifically, we examined whether the lesion-induced error 

within the Freesurfer pipeline was globally distributed by assessing this error in both the lesion and 

contralesion hemispheres of the brain. 

Statistically significant differences were only found for cortex volume between Simlesion and GT cases 

within the hemicontra, with the simulated lesions cases having reduced volume. This suggests a significant 

measurement error introduced to the cortex volume measurement by the lesion, distal to the location of 

the pathology itself. Surprisingly, no significant differences were found in the hemilesion for either cortex 

or cWM volume suggesting that the estimated volumes did not differ when a lesion was simulated. 

However, this is likely due to the large variance in the effect seen across participants, as shown by the 

large standard error of the parameter estimates for case in these models. Overall, these findings suggest 

that there is not a reliable lesion-induced error in the hemilesion as we had predicted, however this may 

vary from case to case. It is important to consider that, within the hemilesion, differences from ground 

truth segmentations can be thought of as being due to both algorithmic error and ‘actual’ changes: for 

instance where lesioned tissue is successfully no longer included in the cortical ribbon. However, in the 

hemicontra, there has been no image manipulation of the MRI, and thus these reliable, significant 

differences from the ground truth image are attributable to the lesion-induced error. 

Despite the lack of significant differences for cWM volume, descriptive statistics of PVD values, as a 

measure of deviation of the Simlesion from GT cases, did suggest that in fact there is deviation, albeit 

relatively minimal, from the ground truth volumes seen in the cases where a lesion had been simulated. 

This is seemingly present in both the lesion and contralesion hemispheres and for both cortex volume 

and cWM. This is in line with our hypothesis of a globally distributed lesion-induced error. However, 

when comparing PVD between hemispheres to compare the magnitude of these differences, only 

significant results were found for cortex volume, suggesting that the PVD was greater in the lesion 
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hemisphere.  In terms of the magnitude of differences, we found a maximal PVD from ground truth in 

the hemispheric cortex and cWM volume of around 2.07-2.78% respectively. Whilst this represents the 

extreme cases (𝑋𝑋𝑡𝑡 and median values were in the order of around 0.5%), this maximal magnitude of 

difference is comparable to that seen for the error induced by minor motion in adult MRI (Reuter et al., 

2015).  

Overall, the pattern of results we report suggest that, whilst the lesion produces large magnitudes of 

PVD across subjects (PVD was significantly larger in the lesion hemisphere), this is not consistent across 

subjects (non-significant differences in cortex volume for the lesion hemisphere between Simlesion and 

GT) whilst in the contralesion hemisphere, the magnitude of PVD is smaller but is seen consistently 

across subjects (significant differences in cortex volume for the contralesion hemisphere between 

Simlesion and GT). This holds true for cortex, but not cWM volume. 

We also investigated how MR characteristics of the lesion explained variance in the PVD of our 

morphometric measures in both the hemilesion and hemicontra. We found that cortex and cWM PVD 

variance was significantly explained by lesion volume in the hemilesion, and this was expected as a large 

lesion will deform the surface to a greater extent, causing greater differences in morphometric 

measurements. However, more interestingly, we found that in both the hemilesion and hemicontra, there was 

a significant effect of SD of voxel intensities within the lesion on cortex PVD. Specifically, there was a 

greater difference in cortex volume for lesions with a lower SD of voxel intensities. 

One plausible mechanism by which this may be the case is that, where the SD of voxels intensities is 

high within the lesion, the number of any given ‘outlier’ intensities is low and thus doesn’t exceed the 

noise in the dispersion of voxel intensities across the entire T1w image. However when the SD is low, 

there is a higher concentration of potentially ‘outlier’ intensities (especially in lesions of greater 

volume), and thus these intensities within the lesion may be enough to affect and bias any of Freesurfer’s 

operations which rely on the dispersion of voxel intensities across the image. One example of this may 

be in the intensity normalisation step. Therefore, it is not necessarily the heterogenous-appearing lesions 

that would induce the greatest lesion-induced error in both the affected (hemilesion) and unaffected 

(hemicontra) hemispheres, but in fact those lesions which are more homogenous in intensity. However, 

given the exploratory nature of these correlations, it will be important to perform confirmatory tests on 

these within an independent pTBI dataset.  

Given that Freesurfer processes the two hemispheres separately for a vast proportion of its later pipeline 

(especially in processing cortical thickness measures), the fact that we see these lesion induced errors in 

the hemisphere where there has been no image manipulation of the MRI, suggests that the bias due to 

lesion-induced error is early in the pipeline. This is in keeping with our findings that the SD of voxel 

intensities within the lesion effects cortex PVD in both hemispheres, as it is in these early pipeline stages 
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that multiple intensity normalisation and correction steps (including an Non-parametric Non-uniform 

intensity Normalization (N3) correction (Sled, Zijdenbos, & Evans, 1998)).  

The global lesion-induced error was detected in the current study using very coarse measures of brain 

volume, looking at the entire volume of each hemisphere. It may in fact be the case that our estimates 

of the ‘error’ are conservative overall, and individual ROIs in the hemicontra may experience greater error, 

in differing directions of over- and under- estimations. The current investigation precluded ROI analysis 

of the lesion-induced error across hemispheres due to the fact that the hemilesion varies between left and 

right hemispheres for differing lesions. Thus, because many atlases, including those used by Freesurfer 

do not parcellate the hemispheres with identical homologues, it would be difficult to compare all ROIs 

between the hemilesion and hemicontra. Also, in the presence of gross pathology, probabilistic labelling 

(such as that performed by Freesurfer to produce ROI volumes) may fail and produce inaccurate 

registration between the individual and the atlas.  

It is important to consider how this may affect previous and future investigations of case/control 

differences at the group level. Within previous investigations of the pTBI cohort used in the current 

study, group means for total grey matter differed between specific severities of pTBI patients and 

typically developing controls by a PVD value of a similar order of magnitude to the current findings 

(mild .38%, mild-complex 4.8%, moderate 2.7% and severe TBI .77% (Ryan, Catroppa, et al., 2016); 

mild 3.1%, mild-complex .93%, moderate .66% and severe TBI 8.1% (Ryan et al., 2017)). No 

differences between controls and any TBI severity groups were significant (Ryan et al., 2017). Due to 

the similar magnitude of changes seen in both real and error based cases, group-level differences may 

be contaminated by this error and may erroneously be attributed to pathology-related changes.  

It is also important to consider the dynamic state of these lesions in the brain. It is likely that lesioned 

tissue within the MRI will change in appearance as a function of time, due to effects such as the 

stabilising of pathological mechanisms after the acute period, but also potential recovery mechanisms 

over time. As the lesion changes over time (lesion presentation on MRI is highly dependent on time 

post-injury (Bigler & Maxwell, 2012), this will result in differences in the lesion-induced error we have 

detected in the Freesurfer pipeline. These errors may then be misattributed to longitudinal changes to 

the morphometry of the brain post-pTBI, confounding therapy effects, or “real” recovery measures. 

However, it is important to note that not all patients within pTBI studies will present with pathological 

lesions on T1w MRI and thus the cumulative error from these cases may not exceed the typical ‘noise’ 

in group-level comparisons. The lesion-induced error therefore poses the greatest threat to group-level 

analysis in those cases where there are small sample sizes, such as can be seen in the existing literature 

of pathology-related morphometric change to the brain post-pTBI (n=12 (Krawczyk et al., 2010),  and 

n=13 (Urban et al., 2017)), and the relatively few lesion-cases will have a greater artefactual effect on 
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the findings due to limited power to detect true group-differences above and beyond this additional 

‘noise’. 

These ideas can be seen in (Spanos et al., 2007), who found that group-level reductions in cerebral white 

matter in a pTBI group compared to typically developing controls were still apparent when excluding 

those cases where there was a focal lesion. This is an example where, at the group-level, the lesion-

induced error we have quantified in this paper seemingly has little effect. We therefore recommend that 

for all group analyses where there are MR lesions present, that a robustness check where lesion-cases 

are removed and analyses rerun, would be a prudent step to take in assessing the impact of this lesion-

induced error on findings. This would be relatively easy to adopt across the field as standard practice, 

the only difficulty being in those studies where sample sizes are small, and the reduction of statistical 

power would be too great if these cases were removed. 

Of greater concern however, is the impact of this error on individual-level prediction. Prognostication 

of outcome at the individual level is a key goal of many studies investigating TBI, attempting to 

understand how brain pathology give rise to changes in functional behaviour (Bigler, 2016)  and 

therefore aid prediction of long-term outcomes for individuals. However, as noted by Irimia, Wang, et 

al. (2012), and subsequently supported by the results of the current study, lesions inappropriately bias 

the morphometric measurements from automated software packages, thus leading to erroneous 

measurements of potentially useful biomarkers. In terms of recent methods in medical prognostication 

using machine learning approaches, this could bias training data in a way which leads to unsuccessful 

prediction and/or classification of cases. Therefore, the current lesion-induced error renders the subset 

of pTBI cases which present with pathological lesions on MRI unreachable in terms of prognostication 

using morphometric measurements of the brain. 

Devising a solution to allow for the correction of these individual-level errors in segmentation due to 

the presence of lesions is non-trivial. Foulon et al. (2017) proposed an approach to study cortical 

thickness in patients with stroke lesions. They took an approach whereby they enantiomorphically fill 

the lesion (Nachev, Coulthard, Jager, Kennard, & Husain, 2008) followed by masking cortical thickness 

within the lesion. Briefly, the enantiomorphic filling is based on the assumption of hemispheric 

structural symmetry, a chimeric image is produced with the corresponding reflected section of the non-

lesion hemisphere overlaid on the lesion hemisphere, essentially ‘filling’ the lesion (Nachev et al., 2008). 

This image is used for calculating the solution to the cost-function in the normalisation process, 

producing a transformation or warp which can later be applied to the non-manipulated T1w image. Thus, 

the lesion can be transformed without it influencing the spatial normalization process (see (Brett et al., 

2001)  for a further investigation of the effect of lesions on spatial normalisation). Finally, voxels within 

the lesioned tissue were removed from maps of cortical thickness, thus preventing this ‘contamination’ 

of measurements. This means that, for an ROI where 50% is covered by lesion tissue, there is still 50% 

of non-lesioned tissue by which to estimate a mean cortical thickness value for the region. Whilst this 
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was a different software package to Freesurfer, it is important to consider that, within the context of the 

findings presented here, this approach is unlikely to deal with the global lesion-induced error seen across 

the brain. 

We therefore recommend a Freesurfer pre-processing approach, similar to the approach by Foulon et 

al. (2017), whereby the lesioned T1w image is enantiomorphically-filled and this is the image which is 

processed by Freesurfer. Given our finding that the hemicontra lesion-induced error seems to be associated 

with the SD of voxel intensities within the lesion region, it is prudent to think that, by replacing the 

intensities of this region with homologous intensities from the normal-appearing voxel intensities from 

within the contralesion regions of the brain, the conteralesion lesion-induced error would be mitigated. 

Therefore, dependent on the quality of the lesion-filling, this would ensure more biologically-

meaningful morphometric measurements of the whole-brain to be calculated. As a further Freesurfer 

post-processing step, individual-subject level atlas parcellations could then be masked as per Foulon et 

al.’s (2017) approach, whereby region labels which are completely or partially occluded by lesion tissue 

will be edited. Morphometric measures (such as cortical thickness, volume etc.) could be calculated 

using the standard Freesurfer approaches but due to this masking, the output of this pipeline would be 

cortical morphology measurements which are not contaminated by a) lesion-tissue within the original 

image or b) filled with estimated/imputed voxel intensities in the enantiomorphically filled T1w images. 

Future studies should investigate the potential of such an approach. 

3.6 Limitations 

One particular limitation was the drawing of lesion masks. Lesions were identified in our dataset by a 

single-rater and masks drawn by hand (as is the typical ‘gold standard’ for lesion segmentation of MR 

images) where visible lesions could be identified by eye using T1w and FLAIR images (by JN). It may 

in fact be the case that some smaller, more subtle lesions were missed and therefore not used in the 

simulated cases. This, alongside the fact that the array of lesions used as source material for the 

simulated dataset was small in size (n=16), we cannot ascertain for certain that this effect is ubiquitous 

to all pTBI cases which present with lesions. However, the purpose of these lesion masks were to allow 

the extraction of lesion tissue for use in the simulated dataset. Therefore, the issue of false-negatives in 

the binary voxel masks are less of a concern as lesion tissue was still able to be extracted. Although, it 

must be acknowledged that potential false-positive identification of lesion voxels in the binary lesion 

mask is a potential cause for concern, especially as we did not conduct inter- or intra-rater reliability 

tests. 

We aimed to provide a specific commentary on the types of lesions observed in TBI, specifically in our 

paediatric population. The idea of a ‘lesion-induced error’ to structural segmentation and measurement 

of morphometry is neither new nor specific to the field of pTBI, and we therefore accept that the specific 

quantification of error presented here is only generalisable to the current population. 
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Despite this, the fact that we have utilised ‘real’ lesion cases is beneficial in the sense that it provides us 

a lesion which retains those characteristics which may be harder to replicate artificially such as texture 

and the complexity of the distribution of lesions (Seghier et al., 2008). Multilevel models presented in 

the current study showed greater model fit on the inclusion of a random effect of the ID of the lesion 

used to generate the simulated case. This suggests that the effect of lesions on volume vary across 

specific lesions. However, the use of these ‘real’ lesions does mean we are limited in the ability to 

systematically investigate specific lesion characteristics (Chard et al., 2010), such as locale (GM vs WM 

vs Both), size or number (focal vs multifocal) in comparisons to artificially generated lesions. Figure 

3.1 shows that the spatial distribution of the lesions was in the expected regions (fronto/temporal (Bigler 

et al., 2016)) but was still varied. There was also large variation in size of lesion also. This in turn makes 

it difficult to assess which types of lesion are characteristic of this lesion-induced error, or whether 

location of the lesion is of any consequence. 

3.7 Conclusion 

Many previous studies investigating morphometric differences in the brain post-TBI have reported very 

little information as to how Freesurfer manual-edits have been performed to deal with lesion tissue in 

some TBI cases. Of those that did, the methods used were post-processing approaches, which dealt with 

potential error considering only focal errors in the Freesurfer algorithm (Drijkoningen et al., 2017; 

Spanos et al., 2007). The current study is the first empirical investigation to show that, for cortex volume 

in particular, these approaches may not be sufficient, with a small, but consistent lesion-induced error 

being found in the contralesion hemisphere. Thus, this may call into question previous work which has 

found group differences in brain morphometry, with lesion-induced error being misattributed to 

pathology-related changes. Future work investigating TBI using morphometric investigations of the 

brain should be aware of the potential for lesion-induced errors beyond the lesion and be more robust in 

the reporting of their methods.  
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Chapter 4. Structural Covariance Identifies Altered Network Topology in Children with 
Persistent Executive Function Impairments after Traumatic Brain Injury 

4.1 Overview 

This chapter marks the beginning of three experimental investigations implementing network-level 

analyses of sMRI data in those children who experienced a pTBI. The experimental investigations 

described in this chapter utilise structural covariance approaches at the group-level to investigate the 

multivariate relationship between sMRI measures across the cortex and its relationship with later 

executive functioning. In doing so, this chapter proposes a plausible topological mechanism by which 

is associated with the transition to poor executive functioning outcome post-injury. In Chapter 3, the 

potential error that lesions may have on the Freesurfer processing pipeline was emphasised. The current 

chapter addresses this and utilises an approach similar to that suggested in the previous chapter, to enable 

a greater number of participants to be included in the current analysis. Overall, the changes to brain-

morphometry post-injury are spatially patterned with regard to the normal network structure of the 

typically developing brain in those cases where executive functioning shows long-term impairment. A 

version of the current work is currently being prepared for publication as follows; 

King, D. J., Seri, S., Catroppa, C., Anderson, V. A. & Wood, A. G. (In Prep.) Structural 

Covariance Identifies Altered Network Topology in Children with Persistent Executive 

Function Impairments after Traumatic Brain Injury. 

DJK and AW contributed to the conception and design of the current study. VA and CC contributed and 

collected data. DJK performed the processing of MRI data, conceptualized and performed the statistical 

analysis and wrote the first draft of the manuscript. All authors contributed to manuscript revision. 

4.2 Introduction 

Traumatic brain injury (TBI) in childhood and adolescence is a leading cause of disability (World Health 

Organization, 2006), with these injuries occurring in the individual-context of a still-developing brain  

(Wilde, Hunter, et al., 2012). Paediatric TBI (pTBI) has a reported incidence between 1.10-1.85 cases 

per hundred for the 0-15 age range (McKinlay et al., 2008) and has specific adverse effects on 

neurodevelopment. When the brain is exposed to a traumatic, external force, this can result in pathology 

at a micro and macroscopic level, leading to both transient and permanent impairments (Bigler, 2007b, 

2016; Maxwell, 2012). Damage can be realised as trauma-related, developmentally inappropriate 

atrophy (Bigler, 2013; Urban et al., 2017; Wilde et al., 2005) which, when imaged using techniques such 

as structural magnetic resonance imaging (sMRI), can appear as relative changes in both brain volume 

(Bigler, 2016) and cortical thickness (CT, Urban et al. (2017)).  However, in pTBI, these negative 

consequences of injury occur during a period of ongoing age- and development-dependent changes to 

the brain (Bigler, 2016; Maxwell, 2012)  
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Previous sMRI studies have shown that, from early to post-chronic timepoints post-injury, the 

morphometry of the injured brain differs from that of typically developing children (see King et al. 

(2019) for a systematic review of findings). These cross-sectional differences are found even up to 10 

years post-injury (Beauchamp, Catroppa, et al., 2011; Serra-Grabulosa et al., 2005) suggesting 

alterations that are non-transient, neither recovering nor being compensated for over time. These cross-

sectional differences are evidence of a long-term effect of TBI on the morphometry of the brain.  

Previous studies have suggested that, from the perspective of clinical characteristics, two TBI’s can 

superficially appear similar but result in vastly different outcomes (Bigler, 2007a; Schneider et al., 

2014). Whilst MRI has been used to try to elucidate the reasoning for this disparity in outcomes, the 

location and extent of focal lesions to the brain following a pTBI are seemingly insufficient to fully 

explain post-injury neuropsychological deficits (Bigler, 2001). There is also limited evidence of brain-

behaviour relationships between brain morphometry differences and functional outcomes (King et al., 

2019). The paucity of reliable relationships between brain structural biomarkers and long-term outcomes 

of neuropsychological functions may be explained in part by the fact morphometric changes can be 

highly distributed across the cortex even within a single patient, and these changes vary across 

individuals (Bigler, 2007a; Bigler et al., 2013; Bigler & Maxwell, 2011). This spatial heterogeneity of 

damage and post-injury changes may limit the potential of univariate investigations of morphometry, 

which are therefore unable to tell us about the subtleties of the more diffuse effects of an injury. 

Therefore, looking more widely at the global effects of injury and how focal damage can change the 

wider ‘system’ of the brain may explain greater variance in functional outcomes post-injury. One way 

to explore this hypothesis is to investigate changes to the global neural-network following injury due to 

pTBI, in keeping with recent characterizations of TBI as a disorder of brain connectivity (Hannawi & 

Stevens, 2016; Hayes et al., 2016), utilising a graph-theory framework to quantitatively describe these 

networks. This will capture the multifaceted nature by which the brain can experience pathological 

change post-injury. 

Patterns of grey matter morphometry across the cortex can be captured as a biologically-meaningful 

brain network. This structural covariance (SC) network models the degree to which the morphology 

(measured with CT) of brain regions statistically co-varies across all possible pairs of ROIs (Alexander-

Bloch, Giedd, et al., 2013; Alexander-Bloch, Raznahan, et al., 2013; Evans, 2013; Mechelli et al., 2005), 

capturing meso-scale organisation of brain structure. These networks are sensitive to 

neurodevelopmental and age-related change (Alexander-Bloch, Raznahan, et al., 2013; Fan et al., 2011; 

Khundrakpam et al., 2017; Khundrakpam, Lewis, Zhao, Chouinard-Decorte, & Evans, 2016; 

Khundrakpam et al., 2013; Raznahan, Lerch, et al., 2011; Váša et al., 2017), with regions showing 

similar/shared developmental trajectories being more similar in morphometry (Alexander-Bloch, 

Raznahan, et al., 2013), likely driven by the gene-controlled patterning of CT and SC across the cortex 

(Romero-Garcia et al., 2018; Yee et al., 2017).  
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Given this highly coordinated, genetically programmed developmental ‘blueprint’ of brain 

development, neurological disruption to the structure of the brain during this period, is likely to have a 

significant impact on the ongoing development of the brain, and it is unsurprising that this would be 

detectable as an abnormality in SC across the cortex. For instance, SC has been investigated in other 

forms of paediatric brain insult, including malformations of cortical development and cortico-genesis 

disruption in neonates, with degree of differences changing as a function of the specific gestational-

timing of disruption (Hong et al., 2017). Therefore, the SC approach may be a biologically meaningful 

phenotype with which to investigate functional outcomes, sensitive to the effects of pTBI on the 

developmental trajectory of the brain, whilst respecting the complex organisation of the GM across the 

whole cortex, rather than univariate ROIs.  

Previous papers have adopted such an approach and investigated the correlational structure of regional-

level morphometry post-pTBI in comparison to controls. Spanos et al. (2007) investigated volumetric 

correlations across cerebro-cerebellar regions and found a significant positive relationship between 

DLPFC/cerebellum was found in the TD but not in the TBI group. Drijkoningen et al. (2017) adopted a 

similar approach by estimating the correlational structure of atrophy scores between regions. Moderate 

to very strong positive correlations were found for these relationships. These interrelations between 

regional morphology/atrophy support the hypothesis of a diffuse pattern of pathology post-injury. The 

current paper attempts to expand on these previous findings by investigating these relationships across 

the whole brain utilising SC which is novel to the field of TBI. 

The topology of brain networks ordinarily makes them inherently robust to insult (Hillary & Grafman, 

2017). However, targeted damage to topologically central regions may have a disproportionate impact 

on the network and is more likely to be behaviourally symptomatic (Crossley et al., 2014; Hillary & 

Grafman, 2017). In the clinical setting, neurological and psychiatric disorders which may have 

aetiologies during the childhood period may also be linked to abnormal development of hub regions 

(Morgan, White, Bullmore, & Vertes, 2018). During development, there is very early formation of hubs 

in the structural network (a stable scaffold to build-upon during subsequent development). Later, 

maturational change is focussed upon hub regions, with hub locations becoming more adult-like across 

childhood (Csermely, London, Wu, & Uzzi, 2013; Morgan, White, et al., 2018; Oldham & Fornito, 

2019). The protracted development of SC hubs over childhood and adolescence, with those responsible 

for higher integrative functions developing most slowly (Khundrakpam et al., 2013; Whitaker et al., 

2016), may put them at greatest risk to pathology which may result in delayed or disrupted development 

(Morgan, White, et al., 2018). Integral to the development of the brain, damage to regions central to the 

network during this period, therefore, may result in behaviourally-relevant changes to the developmental 

trajectory of the brain. 

Across multiple neurologic disorders, the probability of a region showing case-control differences in 

grey matter morphology is significantly related to the degree, the summation of the number of 
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connections, of the node (based on DTI-derived networks, (Crossley et al., 2014)). Similarly, voxels 

with significant case-control differences in grey matter volume/density, indicative of potential atrophy, 

belonged to regions with a greater median degree than ‘undamaged’ voxels (Crossley et al., 2014). In 

adult TBI specifically, reductions in ‘hubness’ of nodes (betweenness and eigenvector centrality) 

derived from a tractography network were related to greater cognitive impairment, including executive 

functions (Fagerholm, Hellyer, Scott, Leech, & Sharp, 2015). These results highlight the fact that the 

behavioural consequences of damage to the brain are highly dependent on the topological position of 

the damage within, and the organization of, neural networks (Aerts, Fias, Caeyenberghs, & Marinazzo, 

2016; Hillary & Grafman, 2017). 

The aims of the current study were twofold; 1) to capture global, diffuse nature of the effects of TBI on 

the still-developing brain using multivariate-network methodologies, and 2) to investigate whether the 

cortical topography of post-pTBI neurodegeneration/atrophy (as indexed by CT reductions) in relation 

to the typical topology of the brain is related to poor cognitive functioning at two year follow-up. 

We examined three hypotheses: 

1. Patient groups (including those subgroups with good/poor executive function (EF) outcome) 

would show significant CT reductions in comparison to healthy controls, 

2. Patient groups would show differences in SC compared to controls, 

3. For those patients who exhibited poor EF outcomes at 2 years post-injury, CT reductions would 

have occurred in regions that have higher SC than randomly selected regions. We predicted that 

this relationship would not be observed in patients who exhibited good EF outcomes at 2 years 

post-injury. 

4.3 Methods 

4.3.1 Ethics statement 

Data from the TBI cohort in the current study was obtained under a material transfer agreement between 

the Murdoch Children’s Research Institute and Aston University originally acquired for a study that had 

previously received ethical approval via the Human Research and Ethics Committee of Royal Children’s 

Hospital, Melbourne, Australia. We also acquired additional control data through the public Autism 

Brain Imaging Data Exchange (ABIDE) database, as shared by the Preprocessed Connectome Project 

(PCP). A favourable opinion was granted by Aston University ethics panel for the secondary analysis 

of both the TBI and ABIDE datasets. 

4.3.2 Participants 

4.3.2.1 TBI Cohort 
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The data used in the current experiment are a subset of an existing dataset of children who have 

experienced a TBI between the ages of five and 16 years of age. 157 children (patients n=114) were 

recruited between 2007 and 2010 into a study on ‘Prevention and Treatment of Social Problems 

Following TBI in Children and Adolescents’. Further details have recently been published elsewhere 

(Anderson et al., 2013; Anderson et al., 2017; Catroppa et al., 2017). In brief, children with TBI were 

recruited on presentation to the emergency department at the Royal Childrens’ Hospital, Melbourne, 

Australia. Eligibility for the study was determined if they: i) were aged between five and 16 years at the 

time of injury, ii) had recorded evidence of both a closed-head injury and also two post-concussive 

symptoms (such as headaches, dizziness, nausea, irritability, poor concentration), iii) had sufficient 

detail within medical records (Glasgow Coma Scale (GCS; Teasdale and Jennett (1974)), neurological 

and radiological findings) with which to determine the severity of the injury, iv) had no prior history of 

neurological or neurodevelopmental disorder, non-accidental injuries or previous TBI, and v) were 

English speaking. TD controls were also recruited and were required to meet criteria i), iv) and v).  

MRI images were acquired at 3T as a part of an existing research protocol on a Siemens Trio scanner 

(Siemens Medical Systems, Erlangen, Germany) using a 32-channel matrix head coil. The standard 

acquisition included a sagittal three-dimensional (3D) MPRAGE [TR = 1900 ms; TE = 2.15 ms; IR prep 

= 900 ms; parallel imaging factor (GRAPPA) 2; flip angle 9 degrees; BW 200 Hz/Px; 176 slices; 

resolution 1 × .5 × .5 mm] and sagittal 3D T2-w non-selective inversion preparation SPACE (Sampling 

Perfection with Application-optimised Contrast using different flip-angle Evolution) [TR = 6000 ms; 

TE = 405 ms; inversion time (TI) = 2100 ms; water excitation; GRAPPA Pat2; 176 slices; 1 × .5 × .5 

mm resolution matched in alignment to the 3D T1-weighted sequence]. 

We applied a number of inclusion criteria to the dataset, only including subjects who; a) met strict quality 

control criteria of Freesurfer outputs (see supplementary materials (Appendix C) for further details), and 

b) had MRI data available and were scanned <90 days post-injury. This resulted in a subset of n = 116 

subjects (TBI patients (n =  83) and healthy controls (n = 33)), with patients who had MRI acquired 

acutely after injury (range = 1-88 days). Group demographics can be seen in Table 4.1. 

4.3.2.2 ABIDE dataset 

In order to provide a second healthy reference group for validation of findings, we employed the open-

access data from the Autism Brain Imaging Data Exchange (ABIDE, Di Martino et al. (2014)), 

specifically the pre-processed version of the dataset made available by the Preprocessed Connectome 

Project (PCP, Bellec et al. (2013), for full details see http://preprocessed-connectomes-project.org/). The 

ABIDE dataset consists of a large sample of 532 individuals with autism spectrum disorders and 573 

typical controls, composed of MRI (functional and structural) and phenotypic information for each 

subject, accumulated across 17 independent sites. The scan procedures and parameters are described in 

more detail elsewhere (http://fcon_1000.projects.nitrc.org/indi/abide/). 

http://preprocessed-connectomes-project.org/
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We applied similar inclusion criteria to this dataset, only including subjects who; a) passed a strict MRI 

quality control criteria of raw structural MRI (see supplementary materials, Appendix C), b) were 

recorded as controls within the ABIDE database, c) at time of scan were aged < 17 years and d) had pre-

processed Freesurfer data available as part of the PCP release. This resulted in a final reference group 

of n = 327 (M/F = 259/68, median age (yrs) = 12.49, age range (yrs) = 6.47 – 16.93). The list of IDs for 

ABIDE subjects included in these analyses can be found in supplementary materials (Appendix C), as 

per ABIDE’s recommendations. 

Both controls in the experimental cohort and the ABIDE cohort had qualitatively similar mean IQ (M = 

105.4 and M = 109.8) as measured across multiple age-appropriate IQ tests (in the experimental cohort 

IQ was assessed by WASI 2-scale IQ whereas the measures used by the ABIDE dataset were varied, 

see ABIDE documentation for details).  
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Table 4.1 Demographics for patients and controls 

Group pTBI Controls Comparison 

N 83 33 - 

M/F 54/29 20/13 OR= .83, p=.67a 

Age at Scanning (median, yrs) 10.92 9.99 F(1,114)= .262, p=.61b 

(range, yrs) 6.09-14.82 6.53-15.47 - 

Age at Injury (median, yrs) 10.92 - - 

(range, yrs) 5.92-14.67 - - 

Injury-Scan Interval (median, days) 34 - - 

Note. a Fisher’s exact test (OR = odds-ratio), b One-Way ANOVA  
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4.3.3 MRI Processing 

3D tissue segmentation and estimation of cortical thickness (CT) and estimated total intracranial volume 

(eTIV) from T1-weighted (T1w) MR images were conducted using an established pipeline (Freesurfer 

version 6.0; see Fischl (2012) for review). The steps involved are documented elsewhere (Fischl et al., 

2004) but briefly, T1w images were stripped of non-brain tissues (Segonne et al., 2004), grey matter 

(GM) / white-matter (WM) boundaries were tessellated and topology was automatically corrected 

(Fischl, Liu, & Dale, 2001; Segonne, Pacheco, & Fischl, 2007). Finally, deformation of this surface was 

performed, to optimally define the pial (Cerebro-spinal fluid/GM) and white (GM/WM) surfaces using 

intensity gradients to estimate where intensity maximally shifts to define boundaries of these tissue 

classes (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl & Dale, 2000). Where available, 3D 

T2-weighted (T2w) FLAIR MRI were used to refine the boundary between the pial surface and dura. In 

this study, Freesurfer was used to estimate the cortical volume/thickness for 34 regions-of-interest per 

hemisphere, based upon the cortical parcellation of the Desikan-Killiany atlas (Desikan et al., 2006). 

This parcellation was chosen over a more fine-grained parcellation scheme due to concerns over 

statistical power if a greater number of ROIs were analysed.  

The quality of Freesurfer outputs was assessed using Qoala-T (Klapwijk, van de Kamp, van der Meulen, 

Peters, & Wierenga, 2019) as a decision support tool to guide the systematic and replicable selection of 

which cases required manual editing. Multiple cases within the original TBI cohort also had frank 

parenchymal lesions to the grey matter ribbon. For these cases, Freesurfer has limited applicability with 

its standard processing pipeline and thus an adjusted pipeline was utilised and is described in 

Supplementary Materials (Appendix C). Eight lesion cases were retained for analysis using this pipeline. 

Processing using the Freesurfer pipeline had already been done for the ABIDE dataset within the PCP, 

using the standard pipeline as described above (however using an older version of Freesurfer (version 

5.1). Details of quality assurance of the anatomical processing using Freeurfer for the ABIDE data, and 

steps to control for ABIDE site effects, can be found in Supplementary materials (Appendix C). 

4.3.4 Executive Functions (EF) 

EF was assessed for patients in the TBI cohort (patients and controls) at 24-months post 

injury/recruitment using performance-based neuropsychological testing. Several standard, age-

appropriate neuropsychological tests were administered to participants to index EF skills, and these were 

from three typical, age-appropriate test batteries; i) Tests of Everyday Attention – Children (TEA-Ch; 

(Manly et al., 1999)), ii) Delis-Kaplan Executive Function System (D-KEFS, (Delis et al., 2001)), and 

iii) Wechsler Intelligence Scale for Children (WISC-IV, (Wechsler, 2003)). These measures were 

selected from a wider battery of administered neuropsychological tests as part of the wider study. 

Specific subtests used in the current study were selected to represent components of a three-factor EF 

model (Miyake et al., 2000) and can be found in Table 4.2. 
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An approach to define those individuals exhibiting clinically relevant cognitive impairment was selected 

(a-priori) to group patients in terms of executive (dys)function at 2 years post-injury. The current study 

adopted the neuropsychological impairment (NPI) rule proposed by Beauchamp et al. (2015). This rule 

has previously been shown to be sensitive to TBI with an increase in identification of impaired 

individuals (Beauchamp et al., 2015), and has been used to detect behavioural impairment (Donders & 

DeWit, 2017), and cognitive inefficiency (Beauchamp et al., 2018) following paediatric TBI and 

concussion respectively. 

Briefly, performance scores for the neuropsychological test batteries were converted to age-scaled 

scores (M=10, SD=3). To identify those with a clinically relevant impairment in executive functioning 

a cut-off of 1 SD outside ‘average’ functioning in the direction of worse performance. To be assigned 

to the group who were experiencing clinically relevant cognitive impairment (poor EF outcome 

(EFPoor)), participants had to have shown impaired functioning on two or more individual EF measures, 

whereas those who were impaired less than two measures were assigned to the without cognitive 

impairment group (good EF outcome (EFGood)). A minimum of two cases of impairment identifies a 

pattern of deficit, unlikely to be due to typical variability due to individual differences or measurement 

error for instance. We only calculated the NPI rule for those cases that had the full battery of EF tests. 

The demographics of these two subgroups (EFPoor and EFGood) are shown in Table 4.3. 
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Table 4.2. Neuropsychological tests and subtests used to group patients on EF outcome 2 years post-injury 

EF Domain Battery Subtest Measure 

Set Shifting TEA-Ch Creature counting  Accuracy (no. correct) 

 TEA-Ch Creature counting  Time taken 

Inhibition D-KEFS Colour-word interference – condition 3  Time Taken 

 D-KEFS Colour-word interference – condition 4  Time Taken 

 TEA-Ch Walk-don’t-walk Score 

 TEA-Ch Skysearch Attention Score 

Working Memory WISC-IV Digit span backwards Score 

 

Table 4.3. Demographics for patient subgroups 

Group Control EFGood EFPoor Statistical comparison 

N 33 42 17 - 

M/F 20/13 27/15 12/5 p=.78a 

Age at Scanning (median, yrs) 9.99 10.95 11.13 F(2,89)= .366, p=.70b 

(range, yrs) 6.53-15.47 6.69-14.82 6.09-14.17 - 

Age at Injury (median, yrs) - 10.75 11.00 F(1,57)= .027, p=.87b 

(range, yrs) - 6.58-14.67 5.92-14.00 - 

Injury-Scan Interval (median, 

days) 

- 35.5 30.0 F(1,57)= 1.971, p=.17b 

Injury Severity       

Mild - 23 10 p= .58a 

Mild-Complicated - 4 3  

Moderate - 11 4  

Severe - 4 0  

Note. a Fisher’s exact test, b One-Way ANOVA 
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4.3.5 Statistical analysis 

The analysis plan of the current study was inspired by that of Wannan et al. (2019). All analyses were 

conducted with a series of packages in R (R Core Team, 2016), with network analyses being specifically 

conducted using ‘brainGraph’ version 2.2 (Watson, 2016b), which is an expansion of the iGraph 

package (Csardi & Nepusz, 2006). All analyses were conducted over three group-contrasts; i) pTBI 

patients vs. controls, ii) pTBI EF intact vs. controls and iii) pTBI EF impaired vs. controls. These 

contrasts specifically only represent case-control differences, rather than within-patient analyses. This 

is because we specifically wanted to investigate pathological deviations to the typical development of 

the brain. 

4.3.5.1 Differences in CT between pTBI and Controls 

Firstly, we investigated cross-sectional differences in CT between patients and our experimental 

controls. For each ROI (n=68) a general linear model (GLM) was generated to test the effect of group 

(patient vs control) on CT, whilst controlling for the effects of age at scanning, sex, and estimated total 

intracranial volume (eTIV). A t-test was used to test the directional hypothesis of cortical thickness 

reductions in the patient group compared to controls. When calculating p-values, the false discovery rate 

was maintained at αfdr = 0.05 using the Benjamini and Hochberg (1995) correction to control for multiple 

comparisons across all ROIs. The effect size was reported as Hedges’ g (Hedges & Olkin, 2014) 

corrected for unequal sample sizes as per Rosnow, Rosenthal, and Rubin (2000). This was repeated for 

the three pairwise contrasts. 

4.3.5.2 Differences in SC between pTBI and Controls  

Structural covariance networks were generated using the Freesurfer-derived structural parcellation as 

the nodes (n=68) and the edges of the network the similarity of cortical thickness between as pairs of 

ROIs. As is common in the SCN literature, CT was used as the dependant variable for general linear 

models run across all ROIs with covariates of age at scanning, sex, and estimated total intracranial 

volume. This is to control for the fact that CT has been shown to decrease with age (Magnotta, 1999), 

and increase with total intracranial volume (Im et al., 2008) and to differ across genders (Sowell et al., 

2007). The studentised residuals were then retained for analysis and used to generate graphs of structural 

covariance. Pearson’s correlations between residuals of each ROI generated a single 68 x 68 adjacency 

matrix data. This will represent an undirected, unthresholded, weighted network, with ROIs as the nodes 

and correlation coefficients as the edge-weights between nodes. This network represents age-invariant 

structural covariance (Váša et al., 2017) with age at scanning controlled for in the model. 

For each graph/network, the ‘magnitude’ of structural covariance for each node was measured as node 

strength. For node i, this is the sum of the connectivity weights of all edges connected to node I (Fornito 

et al., 2016). We did not normalize these measures based on number of edges as we utilised the fully-
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connected, unthresholded networks and thus the number of edges connected to each node was equal 

across all nodes. To calculate an estimate of graph-level strength, we calculated the average nodal 

strength over all nodes. To generate confidence intervals for each group, these measures were 

bootstrapped over 5000 resamplings. In order to assess significant differences in structural covariance, 

permutation testing (5000 permutations) generated a null distribution of differences (t-values) in graph 

metrics between two groups with a two-tailed α-level of .05. These comparisons were conducted for 

each of the three pair-wise contrasts and were conducted at the graph-level (mean graph strength) and 

at the nodal level. p-values for nodal-level comparisons were also FDR-corrected over the 68 nodes, 

whilst the graph level comparisons were FDR-corrected over the three comparisons. 

4.3.5.3 SC between regions with CT reductions in pTBI 

To assess whether SC was significantly greater between regions with cortical thickness reductions in 

pTBI compared to randomly selected regions, we conducted permutation testing. Briefly, for each 

contrast, ROIs were ranked in terms of the effect size of CT reductions in the patient group compared 

to controls. For the top n-regions in terms of effect size, mean nodal strength was calculated (where n = 

2,3,4…68) based on the SC graph calculated for the control group only. A null distribution of this mean 

nodal strength was generated by calculating mean SC for 5000 sets of randomly selected sets of n-nodes 

(without replacement). For each value of n, a one-tailed p-value was calculated as the proportion of 

permutation cases where the mean nodal strength of randomly selected nodes exceeded that of the 

observed mean nodal strength. p-values were corrected across values of n using the FDR-correction. A 

significant result suggests that SC of regions where CT reductions exist is significantly greater than 

expected for randomly selected regions. We also repeated this analysis using the larger ABIDE cohort 

with which to provide an estimate of age-invariant structural covariance across a larger, more 

representative dataset compared to the experimental controls. 

4.4 Results 

4.4.1 Differences in CT between pTBI and Controls 

When comparing pTBI patients to experimental controls, adjusted mean differences (meanadj (pTBI 

minus control), adjusted for age at scanning, sex, and eTIV) in CT across regions ranged from -.104 in 

rTP to .077 in lcACC. When comparing EFGood and EFPoor to experimental controls, meanadj difference 

ranged from -.109 in rrACC to .084 in liCC and -.285 in lTP to .123 in lcACC respectively. However, 

across all contrasts, no regional CT reductions in the TBI group were significant (after FDR correction).  

4.4.2 Differences in SC between pTBI and Controls  

Mean graph strength for each of the groups and subgroups can be found in Table 4.4. No significant 

difference in mean graph strength was found between patients and our experimental controls (observed 
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difference (ObsDiff) = -10.9, pfdr = .062). When investigating subgroups, significant differences were 

found between experimental controls and EFpoor but not EFGood (ObsDiff = -20.0, pfdr = .008, and ObsDiff 

= -10.9, pfdr = .062 respectively). After fdr correction, no nodal differences remained significant between 

control and the whole pTBI group or EFGood subgroups. However, when comparing the EFPoor group to 

controls, multiple regions (44/68) showed significantly greater nodal strength in the patient group. These 

regions can be found in Table 4.5. These regions were widely distributed across the cortex, yet a high 

proportion of these significant regions were found in the frontal lobe (41% frontal lobe, 25% temporal 

lobe, 20% parietal lobe, 9% cingulate, 5% occipital lobe). However, it is important to note that, whilst 

the observed between-group difference between EFPoor and experimental controls was significant in 

comparison to the permuted-distribution, the confidence intervals of the differences all crossed zero. 

  



 

104 
 

Table 4.4. Mean graph strength and bootstrappeda 95% confidence intervals 

Group Graph Strength CILow CIHigh ObsDiffb pfdr
b 

Controls 17.1 11.8 22.6 NA NA 

pTBI 28.0 21.9 34.8 -10.9 .062 

EFGood 28.0 19.5 37.5 -10.9 .062 

EFPoor 37.1 27.9 48.1 -20.0 .008 

Note. a 5000 resamplings, bcompared to experimental controls.   

 

Table 4.5. Regions with significant permutationa differences in nodal 
strength between experimental controls and EFPoor groups 

Region ObsDiffb pfdr  Region ObsDiffb pfdr 

lcMFG -25.3 0.025  rpORB -19.2 0.025 

lIPL -21.9 0.025  rpostC -38.9 0.025 

lLOF -24.7 0.025  rpreC -27.1 0.025 

lMOF -21.1 0.025  rpTRI -24.1 0.025 

lMTG -29.9 0.025  rSFG -21.6 0.025 

lPCUN -21.8 0.025  rSMAR -22.9 0.025 

lpOPER -26.3 0.025  rSTG -26.3 0.025 

lpostC -30.4 0.025  lpreC -22.2 0.025 

lSFG -23.5 0.025  lpTRI -22.9 0.025 

lSMAR -23.9 0.025  lLOG -21.8 0.031 

lSPL -19.1 0.025  lSTG -25.9 0.031 

lTP -22.1 0.025  rSPL -18.5 0.031 

rBSTS -29.4 0.025  rTT -26.4 0.031 

rcMFG -23.9 0.025  lpORB -25.6 0.031 

rFUS -23.1 0.025  lrACC -23.2 0.031 

riCC -32.2 0.025  liCC -25.8 0.032 

rIPL -20.8 0.025  rparaC -12.5 0.032 

rLOF -24.8 0.025  lPARH -19.7 0.034 

rMOF -25.9 0.025  rLOG -20.4 0.037 

rMTG -31.7 0.025  lFUS -19.9 0.041 

rPCC -29.0 0.025  lparaC -15.2 0.042 

rpOPER -22.2 0.025  lITG -23.6 0.043 

Note. a 5000 permutations, b Control minus EFPoor 
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4.4.3 SC between regions with CT reductions in pTBI 

We conducted permutation testing to estimate whether, for either the whole group or either of the two 

subgroups, regions which showed cortical thickness reductions compared to controls were those regions 

which, in the typically developing population (i.e. using the experimental controls or ABIDE data 

controls), show higher levels of SC. When considering the whole group of pTBI patients, for no value 

of n number of regions with greatest CT reductions was the mean strength of regions in the experimental 

control group significantly greater than that of n randomly selected regions. This was also true of the 

EFGood subgroup.  

However, for the EFPoor group, the mean strength in the experimental controls of the greatest n nodes 

with cortical thickness reductions was significantly greater than the mean strength of n randomly 

selected regions for 59/67 values of n (n = 8, 10 – 67, pfdr all < .05). This can be seen in Figure 4.1. 

When repeating the analysis using the ABIDE dataset to estimate mean strength of nodes in the typically 

developing brain, these results were largely replicated; mean node strength was significantly greater 

than that of n randomly selected regions for multiple values of n in the EFPoor group (n = 19 – 65, 67, 

pfdr all < .05), but neither the whole pTBI sample or the EFGood subgroup. 
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Figure 4.1. Observed mean strength (in the experimental control group (top row) and the ABIDE control group (bottom row)) across n nodes (n = 2-68) with 

greatest CT reductions in the whole pTBI group and both the EFGood and EFPoor subgroups, grey region represents the mean nodal strength for 5000 permutations 

of n randomly selected nodes.  
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4.4.3 Lesion Cases 

To examine whether the results were driven by a bias towards cases with cortical grey matter lesions 

who were processed using our custom Freesurfer pipeline, we repeated all analyses excluding the lesion 

cases. The results can be seen in supplementary materials (Appendix C) but, briefly, these were 

qualitatively the same as the results presented above, with effects seen in the EFPoor group but not the 

whole group or the EFGood group. 

4.5 Discussion 

The location and extent of focal brain lesions, as well as post-injury brain morphometry, are seemingly 

insufficient to fully explain the neuropsychological deficits that persist post-injury (Bigler, 2001; King 

et al., 2019). Thus, the current paper presents an entirely novel analysis to the pTBI literature, 

investigating the structural covariance (SC) network of the brain post-pTBI, in order to better capture 

the diffuse, global effects of injury on the brain. 

4.5.1 Differences in CT between pTBI and Controls 

We predicted that patient groups (including those subgroups with good/poor EF outcome) would show 

significant CT reductions in comparison to healthy controls, replicating previous findings at this acute 

time-point post injury (McCauley et al., 2010; Urban et al., 2017; Wilde, Merkley, et al., 2012). Whilst 

cortical thickness was, on average, reduced in patients compared to controls across a large proportion 

of regions of the brain, no singular region showed differences deemed to be statistically significant after 

correction for multiple comparisons. This was true of comparisons between our experimental controls 

and those patients with or without EF impairments.  

This challenges previous research suggesting that cortical thickness differences from controls are seen 

both acutely and chronically post-injury (King et al., 2019), with the post-injury cortical thickness being 

specifically related to executive functioning (Wilde, Merkley, et al., 2012). Observed differences were 

generally in the direction expected for pathology-related tissue loss, with patients having thinner 

cortices, but effect sizes were very small across regions. It may, in fact, the case that the atrophic changes 

seen this acutely post-injury are too subtle to detect at these sample sizes, especially over multiple ROIs. 

However, the only two studies to report CT reductions in patients compared to controls at a similarly 

acute timepoint post injury conducted vertex-wise analyses (McCauley et al., 2010; Urban et al., 2017). 

It may in fact that the univariate atrophy is highly focal and averaging these changes over the rest of a 

region for ROI-based analyses makes these harder to detect.  

CT reductions as measured with MRI aim to assess the potential atrophic effects of the cascade of 

mechanisms that occur post-injury (Bigler, 2013). However, it is important to note that, due to the cross 

sectional, rather than longitudinal, nature of the sampling in the current study, it is hard to ascertain 
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whether these changes are in fact due to atrophy. These types of longitudinal analyses will inform us as 

to whether any thinning of cortex is beyond that of typical thinning due to cortical development. 

4.5.2 Differences in SC between pTBI and Controls  

Despite the non-significance of these univariate tests, we hypothesised that the cumulative effect of all 

the subtle differences across individual regions could still have a functionally meaningful effect on the 

developing brain post-injury. Hence, in a novel set of analyses, we investigated the structural covariance 

network as a method to investigate the multivariate relationships between cortical thicknesses across the 

cortex. We found that differences in the mean graph strength, the average magnitude of SC across all 

nodes, was not different when comparing pTBI patients to our experimental controls, however, when 

stratifying based on EF outcome, significant differences from controls were found for the EFPoor but not 

the EFGood group. This suggests that the SCN is only ‘abnormal’ in the impaired group, with the non-

impaired group showing a network structure similar to controls. This pattern was repeated for the nodal-

level findings and, interestingly, the significant differences in the EFPoor group were overly represented 

by nodes in the frontal and temporal lobes, regions commonly implicated in brain morphometry 

differences post-pTBI (King et al., 2019).  

At both the nodal and graph level, the magnitude of SC was greater in the impaired patient group than 

our experimental groups. This would suggest that, in these patients, the morphometry of regions across 

the cortex was less differentiated. Whilst it remains unclear how this may translate into changes to the 

underlying cytoarchitecture of the brain, this represents a marked change from the gene-controlled 

patterning of SC across the cortex (Romero-Garcia et al., 2018; Yee et al., 2017). Given the acute timing 

of the MRI in this study, it is unclear how this may alter the ongoing development of the morphometry 

of the brain after the injury, however future longitudinal research would be well positioned to answer 

this. 

4.5.3 SC between regions with CT reductions in pTBI 

For those patients who exhibited poor EF outcomes, we predicted that CT reductions would be localised 

to regions that have higher SC than randomly selected regions in the healthy population. The findings 

supported this hypothesis. In other words, we found that, at the group-level, for cases where long term 

executive function outcome is poor, cortical damage (measured as cortical thickness reductions) is 

seemingly preferentially loaded onto regions high in structural covariance in the typically developing 

population, but not when EF is spared.  

Executive functions are supported by widely distributed neural networks (Beauchamp, Catroppa, et al., 

2011; Collette et al., 2006; Nowrangi et al., 2014; Slomine et al., 2002) and are therefore particularly 

vulnerable to the distributed, multifocal mechanisms of TBI (Treble-Barna et al., 2017). Thus, our 
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findings were specific to those patients with ongoing EF impairment is strong evidence that early 

biomarkers at network-level are sensitive to functionally relevant brain changes.  

Although no one region showed significant cortical thickness reductions, on average the largest of these 

smaller, more subtle differences are loaded onto high structural covariance regions in healthy controls. 

This, therefore, suggests that rather than the topography (the physical distribution across cortex) of 

specific alterations being important to functional outcomes, it is the topology (the connectivity of a node) 

of these regions in the wider cortical network which is important. There is spatial inconsistency in 

alterations to brain morphometry associated both between and within clinical manifestations of 

neurologic disorders (Cauda, Mancuso, Nani, & Costa, 2019), and this is also true of pTBI (King et al., 

2019). This may be because spatially-disparate lesions and/or atrophy may occupy similar topological 

positions in the network and in these cases result in a similar neuropsychological profile. Damage to 

topologically central regions likely has a disproportionate impact on the broader network than if the 

damage occurred in other regions, and this in turn renders it more likely to be behaviourally symptomatic 

(Crossley et al., 2014; Hillary & Grafman, 2017), as seen in our results. Also, given that regional nodes 

which are topologically central are particularly relevant to the development of the brain (Csermely et 

al., 2013; Morgan, White, et al., 2018; Oldham & Fornito, 2019) and that damage loading onto these 

regions is more likely to result in EF impairment, it is unsurprising that divergence from the typically 

developing SCN is related to EF abilities (King et al., 2020). 

The connectivity of the brain is underpinned by white matter fibre bundles which are specifically 

vulnerable to the effects of pTBI, specifically due to diffuse axonal injury. Diffusion MRI (DWI) is the 

current standard for estimating this structural white matter connectivity between brain regions (Batalle 

et al., 2018). DTI-based connectivity studies have also shown topological differences after injury, 

compared to controls acutely after mild pTBI (Yuan, Wade, & Babcock, 2015) but also across wider 

injury severities chronically after injury (Caeyenberghs et al., 2012; Konigs et al., 2017; Yuan, Treble-

Barna, Sohlberg, Harn, & Wade, 2016). However, high quality DWI sequences have long acquisition 

lengths and thus may not be suitable for paediatric populations (Batalle et al., 2013). Previous research 

has also highlighted the potential role of WM connectivity as a driver of structural covariance between 

regions (Gong et al., 2012; Reid, Lewis, et al., 2016) as regions which are similar in cytoarchitectural 

organisation are more likely to be anatomically connected (Goulas, Uylings, & Hilgetag, 2017; Wei, 

Scholtens, Turk, & van den Heuvel, 2019). Therefore, the current study highlights the SCN as a potential 

alternative to studying structural network phenotypes after pTBI, which may in fact capture not only 

pathological grey-matter atrophy, but also the effects of DAI. Future studies may combine these 

methodologies in multimodal studies of the cortex post-injury to better understand how they capture 

injury mechanisms 

4.6 Limitations 
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One key strength of the current study is the fact we were able to validate the relationship between CT 

reductions in the patient group and the SC network of healthy controls. The SCN is limited to the 

application to population-level covariance in neuroanatomy (Alexander-Bloch, Raznahan, et al., 2013). 

We specifically investigate the age-invariant SCN (Váša et al., 2017), since the analysis combines data 

across childhood and adolescence, modelling the common network structure across development. The 

limited numbers in our experimental control group could result in limited accuracy of the estimation of 

this age-invariant SCN. Utilising the ABIDE reference group allowed us to replicate the results using a 

more reliable estimate of the age-invariant SCN due to the much larger sample size. However, it is 

important to note that hubs of the SCN have distinct developmental trajectories over the timecourse of 

childhood and adolescence (Khundrakpam et al., 2013; Whitaker et al., 2016). Therefore, future research 

should try to resolve the relationship between CT reductions post-TBI and SC across age-matched SCN. 

We focused on nodes with high topological strength in the network, namely regions that have high 

summed structural covariance with all other regions of the brain. This metric is a relatively simplistic, 

although intuitive, measure of ‘hubness’ but may not capture the more nuanced aspects of the centrality 

of a node in a network (Oldham & Fornito, 2019; van den Heuvel & Sporns, 2013). However, due to 

the fact that the SC networks do not adhere to typical assumptions of networks (edges representing 

definitive real connections) we utilised strength as a simpler metric which makes fewer assumptions 

about the underlying neurophysiology of the network. Once a more complete understanding of 

communication dynamics throughout the SCN has been understood, future studies may investigate 

other, more nuanced measures of nodal centrality, which may capture greater information about their 

role in the wider network. 

4.7 Conclusion 

There is strong theoretical support for future studies of brain insults to focus on generating hypotheses 

about underlying pathophysiology to the neural network biology (Aerts et al., 2016). Here we provide a 

novel methodological advance in support of this goal, offering an analysis of the SCN post-TBI in which 

we specifically proposed that the topology of nodes which were damaged would be important for 

understanding which children go on to experience functionally relevant impairment post-injury. Given 

disparity in outcomes after a pTBI, these results have specific implications for predicting which children 

go on to experience significant impairment post-injury as opposed to those who will recover well. Future 

research needs to expand these findings to investigate the causal nature of these relationships, and to see 

whether these patterns expand beyond the SC network of the brain (i.e. DTI).  This network-based 

approach of covariance between disparate regions is in keeping with recent characterizations of TBI as 

a disorder of brain connectivity (Hannawi & Stevens, 2016; Hayes et al., 2016; Wilde, Hunter, et al., 

2012).  
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Chapter 5. Developmental Divergence of Structural Brain Networks as an Indicator of Future 
Cognitive Impairments in Childhood Brain Injury 

5.1 Overview 

The current chapter addresses a potential limitation of the SCN approach, the fact that it can only make 

inference at the group level, as seen in Chapter 4. In Chapter 2, it was highlighted that the brain 

‘diverges’ from the normal developmental trajectory post-injury. Therefore, the current chapter proposes 

a developmental divergence index (DDI) which is used to relate individual-level divergence from the 

SC of typically developing children to better understand the neuroanatomical correlates of executive 

dysfunction post-injury. The DDI represents a potential measure of injury ‘magnitude’ in regard to 

meso-scale changes to the cortex post-injury, a tool that may be useful across the field. The results of 

this chapter suggest that distance of the network structure of the morphometry of the brain post-TBI 

from that of typically developing controls, as a proxy measure for developmental divergence, is a useful 

predictor of executive functioning post-injury. A version of the work presented in this chapter has been 

submitted for publication as follows; 

King, D. J., Seri, S., Beare, R. Catroppa, C., Anderson, V. A., Wood, A.G. (Submitted). 

Developmental Divergence of Structural Brain Networks as an Indicator of Future 

Cognitive Impairments in Childhood Brain Injury: Executive Functions. 

Developmental Cognitive Neuroscience. 

DJK and AW contributed to the conception and design of the current study. DJK wrote and performed 

analyses and then wrote the first draft of the manuscript. VA and CC contributed and collected data. All 

other authors contributed to the critical review and revision of the manuscript. 

5.2 Introduction 

The pathological effects of neurological conditions occurring during childhood, necessarily interact with 

the highly-programmed maturation of the brain, perturbing the trajectory of normal brain development, 

which is in itself non-linear (Gogtay et al., 2004; Shaw et al., 2008). Previous research has suggested 

that deviations from the developmental trajectory of the brain may act as a marker of brain health, 

neurological disorders and cognitive functioning (Bigler, 2013; Cole & Franke, 2017; Erus et al., 2015). 

Thus, the degree to which the injury alters normal development may be an important factor to consider 

when trying to understand subsequent cognitive sequalae post-insult including impairments to 

intellectual and executive functioning, as well as attention and processing speed (Crowe et al., 2015). 

The current study investigates this idea using a measure of divergence of the structural network to 

investigate levels of post-insult cognitive impairment, with a focus on executive functioning. 

Specifically, the current study focuses on traumatic brain injury (TBI) in childhood and adolescence, a 

leading cause of disability (World Health Organization, 2006). Many injuries occur in the context of a 
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still-developing brain  (Wilde, Hunter, et al., 2012), with an incidence between 1.10-1.85 cases per 

hundred for the 0-15 age range (McKinlay et al., 2008). Paediatric TBI (pTBI) has specific adverse 

effects on neurodevelopment. The traumatic, external force to the brain can result in pathology at both 

a cellular and tissue level, leading to transient or even permanent impairment (Bigler, 2007b, 2016; 

Maxwell, 2012). Some damage is realised as trauma-related, developmentally inappropriate atrophy 

(Bigler, 2013; Urban et al., 2017; Wilde et al., 2005) which, when imaged using techniques such as 

structural magnetic resonance imaging (sMRI), can appear as relative decreases to both brain volume 

(Bigler, 2016) and cortical thickness (CT) measures (Urban et al., 2017).  However, in pTBI, these 

negative consequences of injury occur against a backdrop of ongoing age- and development-dependent 

changes to the brain (Bigler, 2016; Maxwell, 2012) leading to differential vulnerability to TBI depending 

on the developmental stage at which injury occurs (Anderson et al., 2011; Goldstrohm & Arffa, 2005; 

McCrory et al., 2004). For example, the state of development of myelinated axons at the time of injury 

influences the magnitude of degeneration of nerve fibres (Adelson & Kochanek, 1998; Kochanek et al., 

2000; Maxwell, 2012; Staal & Vickers, 2011). Thus, disruption at different ‘critical’ periods of the 

developmental trajectory could result in very different functional outcomes long term (Anderson et al., 

2011; Resch et al., 2019). 

Previous sMRI studies have shown that, from early to post-chronic timepoints post-injury, the 

morphometry of the injured brain differs from that of typically developing children (see King et al. 

(2019) for a systematic review of findings). These cross-sectional differences are found even up to 10 

years post-injury (Beauchamp, Catroppa, et al., 2011; Serra-Grabulosa et al., 2005) suggesting 

alterations which are non-transient, neither recovering nor being compensated for over time. These 

cross-sectional differences are evidence of a long-term effect of TBI on the morphometry of the brain.  

Whilst these cross-sectional studies can provide evidence that differences exist, longitudinal studies are 

needed to provide explanation of the basis of these changes (ie whether pathologic-injury related change 

or developmental change) and if they resolve over time. Longitudinal morphometric studies of paediatric 

cohorts have investigated changes between patients and controls across multiple timepoints post-injury 

(Dennis, Faskowitz, et al., 2017; Dennis et al., 2016; Mayer et al., 2015; Wilde, Merkley, et al., 2012; 

Wu et al., 2018; Wu et al., 2010). The majority of these studies show a reduction in volume or cortical 

thinning over time in the TBI group, as well as cross-sectional differences from controls. Interestingly 

however, they also show an interaction between group (patient vs. controls) and time post-injury on CT 

measures (Mayer et al., 2015; Wilde, Merkley, et al., 2012) and corpus callosum volumes (Wu et al., 

2010), with greater atrophy over time seen post pTBI. Dennis, Faskowitz, et al. (2017) also found 

differences in longitudinal morphometric change between a TBI patient group who experienced slowed 

inter-hemispheric communication, compared to those with a normal inter-hemispheric transfer time, 

suggesting that these structural differences are not only a result of an injury, but also relevant to post-

injury functioning of the brain. Due to the highly programmed trajectories of white matter (WM) and 
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grey matter (GM) development during childhood and adolescence (Batalle et al., 2018; Mills et al., 

2016; Raznahan, Shaw, et al., 2011; Shaw et al., 2008), these group differences in longitudinal change 

(between TBI patients and controls) suggest that the developmental trajectory of the brain is in fact 

altered to some degree by a TBI. However, previous research has not investigated the magnitude to 

which a pTBI interferes with the developmental trajectory at an individual level or how this may change 

as a function of age at which the injury occurs. Overall, these studies suggest that pTBI has potentially 

lifelong consequences, owing to the persistent and ongoing differences to the structural development of 

the cortex post-injury. 

The effects of a pTBI on the brain are highly diffuse with morphometric differences found across 

widespread brain regions (in both cortex and subcortically) even within a single individual (Bigler, 

2007b; Bigler et al., 2013; Bigler & Maxwell, 2011). This diffuse (rather than focal) injury can also vary 

in location across individuals, samples and studies, although commonly fronto-temporal regions are 

affected (King et al., 2019). Thus, previous studies investigating regions of interest (ROIs) with a 

univariate approach, may not capture the multivariate and heterogeneous nature of injury. One way to 

interrogate the multivariate structure of the brain is the structural covariance (SC) network approach 

(Bigler, 2016; Lerch et al., 2017), modelling the degree to which the morphology of brain regions 

statistically co-varies across all possible pairs of ROIs (Alexander-Bloch, Giedd, et al., 2013; Alexander-

Bloch, Raznahan, et al., 2013; Evans, 2013; Mechelli et al., 2005).  

These whole-brain, network approaches to morphometric data, within a graph theoretic framework 

(Bullmore & Sporns, 2009), will allow us to investigate additional information beyond that which is 

offered by univariate, local approaches (Bullmore & Sporns, 2009; Pagani et al., 2016). 

SC is both biologically meaningful and sensitive to changes to the developing-brain. The topological 

organization of these networks are quantifiably non-random and complex (Alexander-Bloch, Giedd, et 

al., 2013; Evans, 2013), similarly to brain connectivity networks estimated from both resting-state fMRI 

and diffusion-weighted imaging (DWI). SC across the cortex changes as a function of 

neurodevelopment, age and maturational change (Alexander-Bloch, Raznahan, et al., 2013; Fan et al., 

2011; Khundrakpam et al., 2017; Khundrakpam et al., 2016; Khundrakpam et al., 2013; Raznahan, 

Lerch, et al., 2011; Váša et al., 2017) and may be related to shared expression of genes related to 

controlling cortical development between ROIs (Romero-Garcia et al., 2018). Age-related change in SC 

captures variation in changes to the brain beyond that of neurodevelopmental processes such as thinning 

and myelination (Váša et al., 2017). These networks are also sensitive to differences due to other types 

of paediatric brain insult, including malformations of cortical development and cortico-genesis 

disruption in neonates, with degree of differences changing as a function of the specific gestational-

timing of disruption (Hong et al., 2017), suggesting that SC can index divergence of the typical 

maturational trajectory of the cortex. Thus, these approaches may allow us to capture the developmental-
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divergence of morphology after a pTBI and investigate its relationship to functional outcomes post-

injury. 

However, as multiple participants are required to sample enough cortical measurements to generate a 

correlation between all possible regional-pairs (each participant can only contribute a single 

measurement per region), this SC network approach can only generate group-level brain networks, 

expressing population-level covariance in neuroanatomy (Alexander-Bloch, Raznahan, et al., 2013). 

Thus, studies have tried to develop methods that can translate this information to the individual-subject 

level (for example Seidlitz et al. (2018) or Tijms, Series, Willshaw, and Lawrie (2012)). We specifically 

utilise the individual contribution metric (proposed by Saggar et al. (2015)), as a potential solution to 

this problem, which allows us to estimate distance of a patient from a group-level, reference SC network.  

We aimed to measure subject-level divergence of the SC network following brain insult and potential 

perturbation of brain development. Specifically, we investigate deviation in a cohort of paediatric TBI 

patients from a reference network of typically developing control participants by leveraging a large-

scale, open-access MRI database. Our approach adopts a novel analytic framework of a sliding-window 

approach to calculate these developmentally-appropriate reference networks. We predict that there will 

be greater divergence of structural networks for cases with a pTBI compared to control cases. We also 

aimed to use these divergence metrics as a proxy of perturbations in brain development and as a predictor 

of long-term functional outcome, specifically hypothesising that greater structural divergence will be 

associated with greater executive dysfunction. The current study focused upon executive functioning 

(EF) because cognitive-skills are more vulnerable to damage occurring during the period of skill-

maturation (Ewing-Cobbs et al., 2004; Krasny-Pacini et al., 2017), thus the protracted period of EF 

development (Diamond, 2013; Friedman et al., 2016; Perone et al., 2018) means EF is likely to have an 

extended window of vulnerability (Krasny-Pacini et al., 2017). 

We also hypothesised that stronger associations would be found between structural divergence and 

executive dysfunction when investigating a sub-graph of the whole-brain SC network, which consists 

of regions known to subserve core executive function skills. 

5.3 Methods 

5.3.1 Ethics statement 

Data from the TBI cohort in the current study was obtained under a material transfer agreement between 

the Murdoch Children’s Research Institute and Aston University for a study which had previously 

received ethical approval via the Human Research and Ethics Committee of Royal Children’s Hospital, 

Melbourne, Australia. The reference data used in this research was acquired through the public Autism 

Brain Imaging Data Exchange (ABIDE) database, as shared by the Preprocessed Connectome Project 

(PCP). The database has de-identified all the patient health information associated with the data. A 
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favourable ethical opinion was granted by Aston University for the secondary analysis of both the TBI 

and ABIDE datasets. 

5.3.2 Participants 

5.3.2.1 TBI Cohort 

The data used in the current experiment are a subset of an existing dataset of children who have 

experienced a TBI between the ages of five and 16 years of age. 157 children (patients n=114, controls 

n=43) were recruited between 2007 and 2010 into a study on ‘Prevention and Treatment of Social 

Problems Following TBI in Children and Adolescents’. Further details have recently been published 

elsewhere (Anderson et al., 2013; Anderson et al., 2017; Catroppa et al., 2017). In brief, children with 

TBI were recruited on presentation to the emergency department at the Royal Childrens’ Hospital, 

Melbourne, Australia. Eligibility for the study was determined if they: i) were aged between five and 16 

years at the time of injury, ii) had recorded evidence of both a closed-head injury and also two post-

concussive symptoms (such as headaches, dizziness, nausea, irritability, poor concentration), iii) had 

sufficient detail within medical records (Glasgow Coma Scale (GCS; (Teasdale & Jennett, 1974)), 

neurological and radiological findings) with which to determine the severity of the injury, iv) had no 

prior history of neurological or neurodevelopmental disorder, non-accidental injuries or previous TBI, 

and v) were English speaking. TD controls were also recruited and were required to meet criteria i), iv) 

and v).  

TBI severity was categorized as follows: mild TBI: GCS 13 to 15 on hospital presentation, no evidence 

of mass lesion on CT or clinical MRI and no neurologic deficits (if there was evidence of intra-cranial 

pathology, these were classified as mild complicated); moderate TBI: GCS 9 to 12 on hospital 

presentation, and/or mass lesion or other evidence of specific injury on CT/MRI, and/or neurological 

impairment; and, severe TBI: GCS 3 to 8 on hospital presentation, and/or mass lesion or other evidence 

of specific injury on CT/MRI, and/or neurological impairment.. Due to small group sizes in relevant 

analyses, the mild-complicated, moderate and severe groups were collapsed for analyses.  

MR-Images were acquired for the patient group acutely after injury (<90 days post-injury, range = 1-88 

days). MRI images were acquired at 3T as a part of an existing research protocol on a Siemens Trio 

scanner (Siemens Medical Systems, Erlangen, Germany) using a 32-channel matrix head coil. The 

standard acquisition included a sagittal three-dimensional (3D) MPRAGE [TR = 1900 ms; TE = 2.15 

ms; IR prep = 900 ms; parallel imaging factor (GRAPPA) 2; flip angle 9 degrees; BW 200 Hz/Px; 176 

slices; resolution 1 × .5 × .5 mm] and sagittal 3D T2-w non-selective inversion preparation SPACE 

(Sampling Perfection with Application-optimised Contrast using different flip-angle Evolution) [TR = 

6000 ms; TE = 405 ms; inversion time (TI) = 2100 ms; water excitation; GRAPPA Pat2; 176 slices; 1 

× .5 × .5 mm resolution matched in alignment to the 3D T1-weighted sequence]. 
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We applied a number of inclusion criteria to the dataset, only including subjects who; a) met strict quality 

control criteria of Freesurfer outputs, b) had no gross/frank pathology/lesions identified within the grey 

matter ribbon (as this may bias image processing with Freesurfer (Chapter 3))(King et al., In prep.), c) 

had available MRI data and were scanned <90 days post-injury. This resulted in a subset of n=108 

subjects (TBI patients (n=75) and healthy controls (n=33)). Group demographics can be seen in Table 

5.1. 

5.3.2.2 ABIDE dataset 

In order to provide a healthy reference group for the calculation of our divergence metric, we employed 

the open-access data from the Autism Brain Imaging Data Exchange (ABIDE, Di Martino et al. (2014)), 

specifically the pre-processed version of the dataset made available by the Preprocessed Connectome 

Project (PCP, Bellec et al. (2013), for full details see Pre-processed Connectome Project website 

http://preprocessed-connectomes-project.org/). The ABIDE dataset consists of a large sample of 532 

individuals with autism spectrum disorders and 573 typical controls, composed of MRI (functional and 

structural) and phenotypic information for each subject, accumulated across 17 independent sites. The 

scan procedures and parameters are described in more detail on the ABIDE website 

(http://fcon_1000.projects.nitrc.org/indi/abide/). 

We applied similar inclusion criteria to this dataset, only including subjects who; a) passed a strict MRI 

quality control criteria of raw sMRI (see supplementary materials (Appendix D) for further details), b) 

were recorded as controls within the ABIDE database, c) at time of scan were aged < 17 years and d) 

had pre-processed Freesurfer data available as part of the PCP release. This resulted in a final reference 

group of n = 327. As per ABIDE’s recommendations to share the data ID list used for primary analyses, 

this can be found in supplementary materials (Appendix D). Group demographics can be seen in Table 

5.1. 

Both controls in the experimental cohort and the ABIDE cohort had similar mean IQ (M = 105.4 and M 

= 109.8 respectively) as measured across multiple age-appropriate IQ tests (in the experimental cohort 

IQ was assessed by WASI 2-scale IQ (Wechler, 1999) whereas the measures used by the ABIDE dataset 

were varied, see ABIDE documentation for details).  

  

http://preprocessed-connectomes-project.org/
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Table 5.1. Demographics for each cohort by group 

Cohort/Group TBI Cohort -Patients TBI Cohort - Controls ABIDE 

N n = 75 n = 33 n = 327 

M/F 51/24 20/13 259/68 

Age at MRI (median, yrs) 10.81 9.99 12.49 

(range, yrs) 6.18-14.91 6.53-15.47 6.47-16.93 

Age at Injury (median, yrs) 10.58 - - 

(range, yrs) 6.08-14.67   

Injury-MRI interval (median, days) 34   

(range, days) 1-88   

Injury Severity      

Mild 47 - - 

Moderate/Severe a 28 - - 

Note. a Mild Complicated TBI + Moderate TBI + Severe TBI 
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5.3.3 MRI Processing 

3D tissue segmentation and estimation of CT from T1-weighted (T1w) MR images was conducted using 

an established pipeline (Freesurfer version 6.0; see Fischl (2012) for review). The steps involved are 

documented elsewhere (Fischl et al., 2004) but briefly, T1w images were stripped of non-brain tissues 

(Segonne et al., 2004), GM/WM boundaries were tessellated and topology was automatically corrected 

(Fischl et al., 2001; Segonne et al., 2007). Finally, deformation of this surface was performed, to 

optimally define the pial (Cerebro-spinal fluid/GM) and white (GM/WM) surfaces using intensity 

gradients to estimate where intensity maximally shifts to define boundaries of these tissue classes (Dale 

et al., 1999; Dale & Sereno, 1993; Fischl & Dale, 2000). Where available, 3D T2-weighted (T2w) 

FLAIR MRI were used to refine the boundary between the pial surface and dura. In this study, Freesurfer 

was used to estimate the cortical volume/thickness for 34 regions-of-interest per hemisphere, based upon 

the cortical parcellation of the Desikan-Killiany atlas (Desikan et al., 2006). The quality of Freesurfer 

outputs was assessed using Qoala-T (Klapwijk et al., 2019) as a decision support tool to guide systematic 

and replicable selection of which cases required manual editing. Processing using the Freesurfer pipeline 

had already been done for the ABIDE dataset within the PCP, using the standard pipeline as described 

above (however using an older version of Freesurfer (version 5.1). Details of quality assurance of the 

anatomical processing using Freeurfer for the ABIDE data, and steps to control for ABIDE site and 

cohort effects (TBI cohort vs ABIDE), can be found in Supplementary materials (Appendix D). 

5.3.4 Graphs of Structural Covariance (SC) 

All network analysis were conducted with a series of packages in R version 3.5.0 (R Core Team, 2016), 

specifically brainGraph version 2.2.0 (Watson, 2016b), which is an expansion of the iGraph package 

(Csardi & Nepusz, 2006).  

As is common in the SC literature, CT was used as the dependant variable for general linear models 

(GLM) run across all ROIs with covariates of age at scanning, sex and estimated total intracranial 

volume. This is to control for the fact that CT has been shown to decrease with age (Magnotta, 1999), 

and increase with total intracranial volume (Im et al., 2008) and to differ across genders (Sowell et al., 

2007). The studentised residuals were then retained for analysis and used to generate graphs of structural 

covariance. Pearson’s correlations between residuals of each ROI generated a single 68 x 68 adjacency 

matrix for the ABIDE reference data. This will represent an undirected, unthresholded, weighted 

network, with ROIs as the nodes and correlation coefficients as the edge-weights between nodes.  

5.3.4.1 Divergence Metrics 

Since SC networks are derived from correlations between regions within participants, graphs are 

compiled at a group level. Our hypotheses suggest that the individual deviation from ‘typical’ maturation 

will be an important variable in the prediction of executive function. Therefore, it is important to identify 
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methods by which to extract estimates of this deviation at the individual subject level as a proxy of 

perturbations in brain development. A developmental-divergence index (DDI) is therefore generated for 

each patient using the ‘Add-One-Patient’ (AOP) approach (Saggar et al., 2015). This measure is further 

outlined below. Saggar et al. (2015) term this ‘individual contribution’ to the group-level network. From 

our perspective, those that are most different from the group/reference network will be those whose 

development is furthest from typical, expected trajectories. Hence, we refer to this ‘individual 

contribution’ metric as a (developmental) divergence index. 

The AOP approach allows the direct comparison of the weighted SC network by assessing the matrix of 

CT residuals. The approach compares the structural network of a reference group and a second matrix 

comprising of the reference group, plus a single patient (hence AOP). This means that the existing 

correlation matrix for a reference control group, denoted Rcont, will be combined with each patient 

individually, to generate a new matrix, denoted Rcont + Pi (where i is the individual patients, i = 1, 2, ..n). 

Subsequently, a normalized Mantel test (Mantel, 1967) is conducted to assess similarity of these 

matrices calculated as; 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀 𝑟𝑟(𝑋𝑋,𝑌𝑌) =
1
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Where X and Y represent Rcont  and Rcont + Pi respectively, 𝑥𝑥 and 𝑦𝑦 are elements of these matrices, 𝑆𝑆𝑥𝑥 and 

𝑆𝑆𝑦𝑦 are the  standard deviations for the matrices and n is the number of nodes (in the case of this study, 

68 ROIs) for each correlation matrix (Saggar et al., 2015). This metric of similarity (whereas r increases 

this represents two matrices with higher similarity) is subtracted from one to compute the divergence 

from the reference group matrix where; 

𝑃𝑃𝑃𝑃𝐷𝐷(𝑃𝑃𝑖𝑖) = 1− 𝑟𝑟(Rcont, Rcont + Pi) 

These divergence metrics will provide individual-level distance (at the level of the whole graph) from 

the reference group. If Rcont  and Rcont + Pi are similar (Mantel test trending toward 1), subj(i) has not 

altered the group-level network, and therefore Subj(i) does not show divergent morphology, thus DDI 

will be low. If highly dissimilar (Mantel test trending toward 0), addition of subj(i) has significantly 

altered the group-level network, thus subj(i) is different from typically developing peers (and DDI is 

greater). Essentially, if the patient exhibits developmentally-appropriate morphometry, the reference-

plus-patient network will be similar to that of the reference group alone. Therefore, the less similar the 

networks, the more developmentally divergent the patient’s morphometry. Thus, for each patient the 

analysis will output a single DDI to estimate divergence across the whole cortex. 

5.3.4.2 Reference Networks 
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In order to calculate developmental divergence for both the control and TBI cases from the TBI cohort, 

we used the ABIDE dataset as a reference group to generate the Rcont SC network. We calculated 

developmental divergence from the typically-developing SC network using two approaches, an age-

invariant SC network and an age-matched SC network. For the age-invariant network, the all participants 

selected for our ABIDE cohort were utilised as a reference group. Similarly to Váša et al. (2017), we 

termed this the age-invariant SC network since the analysis combines data across childhood and 

adolescence, with participants of all ages in the ABIDE sample included. Age-invariant DDI (DDIinv.) 

was therefore calculated for each subject in the TBI cohort (both patients and controls) from this whole-

group reference. Previous studies have adopted this approach of using a single reference group to 

calculate Saggar et al.’s (2015) ‘individual contribution’ metric. A single reference group combines a 

wide range of ages and thus ignores known variations in developmental changes of grey and white 

matter across childhood and into adolescence (Gogtay et al., 2004; Sowell et al., 2004). Thus, we also 

adopted a novel analytic framework in which developmentally-appropriate reference networks to 

calculate an age-matched DDI (DDIage) were generated from control participants from the ABIDE 

dataset using a sliding-window approach (outlined below). 

5.3.4.3 Sliding-Window 

Similarly to Váša et al. (2017), we used a sliding window approach in order to calculate developmentally 

appropriate, age-matched reference SC networks. In brief, subjects form the ABIDE dataset were 

ordered by age at scanning. Subject-level CT residuals were then correlated within equal-sized windows 

of participants, with the window being ‘slid’ across the age-range of participants (Váša et al., 2017). A 

window-size of 26 participants and a step-size of 15 participants was selected, subsequently 21 half-

overlapping windows across the ABIDE cohort were selected, resulting in a single reference SC network 

per window.  

Window-size was selected against a number of criteria: a) based on recommendations by  Saggar et al. 

(2015) in relation to stability of their AOP metric, b) maximised the difference-statistic for control vs 

TBI differences in DDIage measure, and c) which resulted in an nth window (where number of windows 

is 1: n) which was as close to the defined window size as possible (due to the remainder from the 

calculation of: 

𝑀𝑀𝑛𝑛. 𝑛𝑛𝑜𝑜 𝑤𝑤𝑆𝑆𝑀𝑀𝑤𝑤𝑛𝑛𝑤𝑤𝑡𝑡 =
𝑀𝑀𝑛𝑛. 𝑛𝑛𝑜𝑜 𝐴𝐴𝐴𝐴𝐷𝐷𝑃𝑃𝐴𝐴(𝐷𝐷)𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑀𝑀𝑡𝑡

𝑤𝑤𝑆𝑆𝑀𝑀𝑤𝑤𝑛𝑛𝑤𝑤 𝑡𝑡𝑆𝑆𝑠𝑠𝑀𝑀
 

the final window was not guaranteed to have the full number of subjects). Details of this window-size 

selection process can be found in supplementary materials (Appendix D). 

Once reference SC networks for each window were generated, the median age of participants within the 

window were calculated. Each participant within the TBI cohort (patients and controls) was 
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individually-matched to the reference window which minimised the difference between their age at 

scanning and the median-age of the reference-window. This matched reference window was then used 

to calculate the DDIage for that individual.  

5.3.5 Executive Functions (EF) 

We investigate EFs as they are commonly impaired, both acutely and chronically post-injury, but also 

because they show a protracted period of maturation and development (Diamond, 2013; Friedman et al., 

2016; Perone et al., 2018) and are therefore likely to have an extended window of vulnerability to the 

effects of injury (Krasny-Pacini et al., 2017). EF was assessed for pTBI patients  at approximately 24-

months post injury (M(SD) = 754(80) days post-injury). EF was assessed in controls relative to their 

MRI scan (M(SD) = 367(135) days post-MRI). EF was assessed both using performance-based 

neuropsychological testing and a parent-reported measure.  

Several standard neuropsychological tests were administered to participants to index EF skills, and these 

were from three typical, age-appropriate test batteries; i) Tests of Everyday Attention – Children (TEA-

Ch; Manly et al. (1999)), ii) Delis-Kaplan Executive Function System (D-KEFS,Delis et al. (2001)), and 

iii) Wechsler Intelligence Scale for Children (WISC-IV, (Wechsler, 2003)). These measures were 

selected from a wider battery of administered neuropsychological tests as part of the wider study. 

Specific subtests used in the current study were selected to represent components of a three-factor EF 

model (Miyake et al., 2000) and can be found in Table 5.2. 

Performance scores for the neuropsychological test batteries were converted to age-scaled scores 

(M=10, SD=3). To provide a summary score for common EF performance, we summed these age-scaled 

scores across subtests, with higher scores representing better performance. The EF summary score was 

calculated for 80 subjects (TBI n = 52, controls n = 28) who had data for all subtests available, as well 

as sufficient data to calculate the DDI. This summary score was used for two main reasons; firstly, due 

to a limited sample size and the use of correlational analyses, we have limited power to look at each 

domain separately. Secondly, due to the fact we are using a whole-brain measure of developmental–

divergence, it is likely that the measure is too coarse to capture the nuances across multiple sub-domains 

of executive functioning. 
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Table 5.2. Neuropsychological tests and subtests used to calculate EF scores 

EF Domain Battery Subtest Measure 

Set Shifting TEA-Ch Creature counting,  Accuracy (no. correct) 

 TEA-Ch Creature counting  Time taken 

Inhibition D-KEFS Colour-word interference – condition 3  Time Taken 

 D-KEFS Colour-word interference – condition 4  Time Taken 

 TEA-Ch Walk-don’t-walk Score 

 TEA-Ch Skysearch Attention Score 

Working Memory WISC-IV Digit span backwards Score 
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The Behaviour Rating Inventory of Executive Function (BRIEF, Gioia et al. (2000)) measures EF in 

daily life, using purposeful, goal-directed behaviours to solve and adapt to problems (Donders & DeWit, 

2017). The current study specifically uses the ‘Global Executive Composite’ T-score (GEC; M=50, 

SD=10), with higher scores representing greater difficulties in behavioural EF (measured in TBI n = 52, 

controls n = 32). By using two differing measures of EF (performance-based vs behavioural/parent 

report) we are able to assess concordance of our results across multiple measures.  

5.3.5.1 Central Executive Network (CEN) 

The DDI represents the divergence of a subject’s morphology from the typical SC network across all 

cortical nodes/ROIs. However, this may reduce the signal to noise ratio when looking at associations 

between DDI and EF, as not all regions may be relevant to subsuming EF. Thus, we also investigated 

DDIinv. and DDIage across a subgraph of the SCN, specifically regions within the CEN. The CEN is a 

neural network that shows heightened activity during typical tasks of EF (Seeley et al., 2007; Sherman 

et al., 2014; Thomason et al., 2011). We defined the CEN anatomically as per the Desikan-Killany 

(Desikan et al., 2006) atlas regions identified in Ryan et al. (2017), which comprised regions of 

dorsolateral pre-frontal cortex and posterior parietal cortex. Specifically, regions were bilateral caudal 

and rostral middle frontal gyrus, inferior and superior parietal lobule, precuneus and superior frontal 

gyrus. These regions have been identified (amongst others) as supporting common EF activation in 

adolescence and childhood (Horowitz-Kraus, Holland, & Freund, 2016; McKenna et al., 2017) and 

adulthood (Niendam et al., 2012). 

5.3.6 Statistical analysis 

All analysis were performed in R (R Core Team, 2016) using the ‘stats’ packages. Analyses were 

planned a-priori as follows. Due to the non-normal distribution of the DDI metrics, both DDIinv. and 

DDIage were compared between patients and controls from the TBI cohort using a one-tail Mann-

Whitney test (with the alternative hypothesis of the location shift of mean DDI from controls to the 

patient group is greater than 0). Pearson’s correlations were calculated between DDI measures (both 

DDIinv and DDIage) and each EF measure EF (EF score and BRIEF). This was calculated for both DDI 

calculated on the whole network and calculated on the CEN sub-graph. Correlations were calculated for 

the whole sample, and independently for patient and control groups. The sample sizes for the current 

study were larger than many current pTBI MRI studies (King et al., 2019) however, we acknowledge 

that this could still influence statistical analyses. Thus, both resampling approaches and false discovery 

rate (FDR) correction were used to mitigate these risks. The bootstrapped (100 iterations) 95% 

confidence intervals (CIs) were calculated for all point estimates of correlation coefficients. Raw p-

values calculated using a permutation resampling approach (5000 permutations, calculated using the 

jmuOutlier package in R version 2.2) are reported. Significance was assessed using an FDR correction 
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(Benjamini & Hochberg, 1995). Results are presented using the ‘ggplot2’ (Wickham, 2009) and 

‘ggpubr’ (Kassambara, 2018) packages. 

5.3.6.1 Post-Hoc Analyses 

A number of analyses were conducted post-hoc to assess the robustness of the approach. Firstly, split-

half analyses were conducted to assess the internal reliability off the DDIinv across different subsets of 

the normative reference group. Briefly, the ABIDE dataset was randomly split into two groups (n=164 

& 163) and DDIinv was calculated for all pTBI patients using both the 1st and 2nd halves of the ABIDE 

sample and the Pearson’s correlation between these is reported. This was repeated for 500 random split 

halves. Additional comparisons investigated whether DDIinv and DDIage differed as a function of injury 

severity. To maintain statistical power, mild-complex, moderate and severe injury classifications were 

grouped into a ‘Moderate/Severe’ group for comparisons. Clinical presentation between injury severities 

is very different and thus treating the patient group as a single cohort in patient vs control analyses of 

the divergence index may miss clinically meaningful differences. Finally, partial correlations 

(Pearson’s) were conducted between whole-brain DDIinv/DDIage and EF/BRIEF whilst controlling for 

age at scanning (yrs), to control for potential age-related biases in these measures and also 

simultaneously controlling for both age at scanning (yrs) and the interval between MRI and EF 

assessment (days).  

5.4 Results 

5.4.1 Age-invariant Network and DDIinv. 

Median DDIinv. for the TBI and control group were 5.16e-05 (min = 1.08e-05, max = 8.47e-04) and 

3.97e-5 (min = 1.37e-05, max = 1.90e-04), respectively. Violin plots of DDIinv.  for each group can be 

seen in Figure 5.1a. The difference of DDIinv. from the TBI group compared to the control group was 

not significantly greater than zero (W = 1046, p = .890). Given that divergence from the whole-group 

reference SC network may be due to the difference between age of subjects and the median age of the 

reference network, we plotted this absolute difference against DDIinv. No apparent relationship was 

found (in the TBI or control group), as can be seen in Figure 5.1b. No significant association was found 

between DDIinv. and age at injury in the patient group. In terms of association with EF at two years post-

injury, DDIinv. was significantly negatively correlated with EF performance across the whole sample (r 

= -.300, p = .009), but specifically in the TBI population (r = -.319, p = .024), and not controls. DDIinv. 

was significantly, positively correlated with BRIEF GEC in the whole sample (r = .277, p = .021). No 

significant relationships were found with the BRIEF GEC in the TBI group (see Figures 5.1c and d). 
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Figure 5.1. a) Violin plots of DDIinv. for both TBI and control groups, b) correlation between age at 

injury and DDIinv., and correlations between EF and DDIinv., specifically c) executive function score 

and d) BRIEF GEC, for both the TBI and control groups.  

  

a) b) 

c) d) 
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5.4.2 Age-matched Network and DDIage 

Median DDIage for the TBI and control group were 4.583e-03 (min = 9.75e-04, max = 7.33e-02)_and 

4.14e-03 (min = 1.38e-03, max = 1.56e-02), respectively. Mean absolute difference between age at 

scanning of the subject and the median age of the window that they were matched to was .30 yrs for 

both TBI (SD = .50) and control (SD = .43) groups. Violin plots of DDIage  for each group can be seen 

in Figure 5.2a. The difference between DDIage from the TBI group and the control group was not 

significantly greater than zero (W = 1181, p = .648). No significant association was found between 

DDIage and age at injury in the patient group. In terms of association with EF at two years post-injury, 

DDIage was significantly negatively correlated with EF performance across the sample (r = -.308, p = 

.007), and in the TBI population (r = -.330, p = .021), but not controls. Significant positive relationships 

were found with the BRIEF GEC (r = .277, p = .021) but not the TBI or control populations (see Figures 

5.2c and 5.2d).  

Due to the non-normal distribution of our DDI measures, for visualisation purposes, Figure 5.3 displays 

the relationship between our DDI measures and the indexes of EF where the log of the DDI variables 

are plotted, rather than the observed values. 
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Figure 5.2. a) Violin plots of DDIage for both TBI and control groups, b) correlation between age at 

injury and DDIage, and correlations between EF and DDIage, specifically c) executive function score 

and d) BRIEF GEC, for both the TBI and control groups. 

a) b) 

c) d) 
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Figure 5.3. Scatter plots of the log of the DDI measures (top row DDIinv, bottom row DDIage) plotted 

against the EF measures (first column EF score, second column BRIEF) 

a) b) 

c) d) 

DDIinv. 

DDIage 

BRIEF EF 
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Figure 5.4. Correlation between DDIinv. of the CEN, and a) EF and b) BRIEF, and correlation between 

DDIage of the CEN, and c) EF and d) BRIEF for both TBI and control groups. 

  

a) b) 

c) d) 

DDIinv. 

DDIage 
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5.4.3 DDI of the CEN 

When investigating DDI calculated from a subgraph consisting of regions of the CEN, the difference of 

DDIinv. from the TBI group compared to the control group was not significantly greater than zero (W = 

1146, p = .730). The difference of DDIage from the TBI group compared to the control group was not 

significantly greater than zero (W = 1302, p = .335). For the CEN, across DDIinv and DDIage, no tested 

association with EF was found to be significant, as seen in Figure 5.4.  

5.4.4 Post-hoc exploratory analyses 

We conducted post-hoc analyses to assess robustness of these findings. When the DDIinv was calculated 

using 500 random split halves from the ABIDE data, there was considerable agreement between DDI 

calculated from the first and second halves of the sample (DDIinv mean pearson’s r = .988, mean 

spearman’s rho = .981). 

For both DDIinv and DDIage, we compared our DDI measure between controls and injury severity groups 

(mild and moderate/severe). Across the DDIinv and DDIage calculated for both the whole brain and CEN, 

no significant differences are reported. These results are seen in the supplementary materials (Appendix 

D). Partial correlations between whole-brain DDIinv/DDIage and EF/BRIEF controlled for multiple 

factors that may have biased analyses. When controlling for age at MRI, correlation coefficients 

remained qualitatively similar to those found previously. This was also true when simultaneously 

controlling for age at injury and interval between MRI and EF assessment. These results are seen in the 

supplementary materials (Appendix D). 
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Table 5.3. Pearson’s correlation coefficients (r), 95% bootstrapped confidence intervals and associated permutation-based p-values for each group and the sample as a whole 

DDI Measure DV Regions 

TBI Patients  Controls  Whole Sample 

r 
Lower 

CI 

Upper 

CI 
p  r 

Lower 

CI 

Upper 

CI 
p  r 

Lower 

CI 

Upper 

CI 
p 

DDIinv Age at Injurya Whole Brain .007 -.203 .168 .956  - - - -  - - - - 

  CEN .054 -.206 .261 .659  - - - -  - - - - 

. EFb Whole Brain -.319 -.589 .085 .024*  -.040 -.388 .322 .839  -.300 -.565 .081 .009* 

  CEN -.011 -.371 .241 .939  -.003 -.428 .337 .987  -.037 -.246 .187 .746 

 BRIEFc Whole Brain .272 -.221 .623 .053  .421 .155 .631 .020*  .299 -.130 .635 .013* 

  CEN .111 -.089 .384 .418  -.004 -.261 .280 .981  .108 -.093 .336 .316 

DDIage Age at Injurya Whole Brain .041 -.198 .202 .730  - - - -  - - - - 

  CEN .093 -.137 .259 .426  - - - -  - - - - 

 EFb Whole Brain -.330 -.604 .203 .021*  -.054 -.426 .304 .786  -.308 -.563 .082 .007* 

  CEN .077 -.178 .363 .586  -.027 -.564 .339 .893  .035 -.147 .217 .764 

 BRIEFc Whole Brain .260 -.309 .648 .058  .309 .035 .622 .083  .277 -.144 .661 .021* 

  CEN -.023 -.276 .219 .878  .138 -.045 .426 .418  .018 -.150 .206 .865 

a. Cases for correlation is n = 75, b. complete cases for correlation are n = 52 for TBI group and n = 28 for controls, c. complete cases for correlation are n = 52 for TBI group and n = 32 for 

controls. Upper and lower 95% confidence intervals for the correlation coefficients are calculated using a bootstrap approach with 100 iterations, CIs which do not cross zero are highlighted in 

bold. p values are raw, uncorrected values calculated using a permutation approach with 5000 resamplings.  
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5.5 Discussion 

Previous research suggests a TBI during childhood can result in the deviation of the brain from the 

typical developmental trajectory (Dennis, Faskowitz, et al., 2017; King et al., 2019; Mayer et al., 2015; 

Wilde, Merkley, et al., 2012; Wu et al., 2010) and that these deviations may act as a marker of brain 

health, neurological disorders and cognitive functioning (Cole & Franke, 2017; Erus et al., 2015). We 

aimed to quantify.  The current study utilises a modified version of Saggar et al. (2015) add-one-patient 

approach, termed the developmental divergence index, to calculate individual-level divergence from the 

typical SC network (estimated from a large paediatric dataset) for a cohort of patients who have 

experienced a TBI during childhood. This was a proxy measure of the level of divergence, with greater 

divergence hypothesised to be associated with poorer functional outcome. For the first time, the current 

study combined both this measure of divergence with a ‘sliding-window’ approach to generate 

developmentally-appropriate, age-matched, reference networks.  

The current study found significant correlations between an index of divergence, calculated both against 

a general paediatric reference group but also an age-matched reference group, and executive functioning, 

measured with both performance and behavioural measures. These were in the expected direction; 

greater distance from a typical reference network was related to worse executive function skills and 

increased behavioural-problems related to poor EF. We found these relationships in both the whole 

sample and the subgroup of TBI patients only and not the control group. These results are in spite of the 

considerable heterogeneity in the neuropathology which occurs as a result of TBI (Dennis, Babikian, et 

al., 2017), and the global, whole brain nature of the DDI metric. This may highlight the benefit of 

considering the broader impact of the injury and subsequent development beyond the individual regions.  

The greater strength of association seen in the TBI group is somewhat unsurprising. Whilst in the patient 

group developmental divergence due to injury is likely to explain much of the variation in EF outcomes, 

in the control sample, it is likely that other individual differences explain a greater proportion of 

variance. The magnitude of these relationships between the DDI and EF are small. However, due to the 

limited sample size, estimating accurate point estimates of the correlation coefficients is difficult, as 

seen in the confidence intervals listed in Table 5.3. These wide confidence intervals also prohibited 

investigating whether the correlational relationships were significantly different between controls and 

TBI patients. Given the brain-behaviour relationships being seen in the whole sample, it is important to 

tease apart whether the DDI measure represents ‘normative’ development in the TBI group, rather than 

informing us how neuropathological effects (such as developmental divergence) are potentially 

disrupting the development of cognitive skills.  

However, no significant differences were found between controls and patients within the TBI cohort in 

estimated DDI, across DDIinv. and DDIage for both whole brain and in the CEN. This was despite 

optimising our window-size to maximise between group differences (Supplementary materials, 
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Appendix D). The sample of pTBI patients used for the current study was recruited across all injury 

severities, from mild to severe, with the majority of cases falling within mild injury. Whilst there is 

evidence for morphometric change due to injury across moderate to severe injury classifications (King 

et al., 2019) there is less evidence for this difference in mild injury cases (i.e. Ryan et al. (2017)). We 

therefore compared DDI metrics between injury severity groups in a post-hoc analyses, and yet no 

differences were found. Whilst there are no significant group differences in DDI, even at this very early 

stage post-injury, the DDI measure showed predictive validity with regard to executive functions. It is 

important to note the timings of both the MRI (<90 days post-injury) and neuropsychological assessment 

(24 months post-injury). The existing literature shows that neuroanatomical changes that occur post-

injury persist over time (King et al., 2019).  Given this, and the fact that we are still able to find these 

significant relationships (despite their weak magnitude) between relatively acute neuroanatomy and 

chronic functional outcome, one explanation is that these acute changes to the brain in response to injury, 

seemingly have a persistent effect which may guide the subsequent neurodevelopment required to 

subsume these executive functions. However, it is important to remember the evidence presented here 

is not causal in nature, but it does provide strong grounds upon which to further explore these 

relationships in independent cohorts. Overall, the current study shows that early imaging can assist in 

prognosis for cognition and therefore guide early intervention planning. 

Cognitive-skills are particularly vulnerable to dysfunction due to damage during the period of skill-

maturation (Ewing-Cobbs et al., 2004; Krasny-Pacini et al., 2017). Thus, the protracted development of 

EF (Diamond, 2013; Friedman et al., 2016; Perone et al., 2018) is likely to result in an extended window 

of vulnerability of EF to brain insult (Krasny-Pacini et al., 2017). Mechanistically, this vulnerability is 

likely due to damage within still-developing brain networks that subsume EF development 

(Khundrakpam et al., 2013). Essentially, a key principle is that, developmental processes happening at 

the time of insult are those which are the most vulnerable (Spencer-Smith & Anderson, 2009).  

SC has an ongoing developmental trajectory throughout the neonatal period, childhood and adolescence 

(Alexander-Bloch, Raznahan, et al., 2013; Fan et al., 2011; Khundrakpam et al., 2016; Khundrakpam et 

al., 2013; Raznahan, Lerch, et al., 2011; Váša et al., 2017), and SC across association-cortex networks 

such as those supporting EF has a yet more protracted development (Khundrakpam et al., 2013). Thus, 

we investigated whether deviation of SC across regions of the CEN (which are commonly reported as 

supporting common EF activation in adolescence and childhood (Horowitz-Kraus et al., 2016; McKenna 

et al., 2017)), was related to executive dysfunction. The fronto-parietal regions included in the CEN are 

commonly affected by pTBI (King et al., 2019; Wilde et al., 2005), likely due to unique biomechanics 

of injury in the context of the paediatric brain (Pinto et al., 2012). Also, cross-sectional differences in 

cortical CT with significant correlations between CT of frontal brain regions and BRIEF (Wilde et al., 

2012). Despite these findings, divergence from the age-appropriate SC in the CEN was not associated 

with later EF. Overall, our findings support previous conclusions that the integrity of development in 
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the entire brain is necessary for achieving age-appropriate, intact EF (Anderson et al., 2010), rather than 

early vulnerability due to specific damage to the networks that subsume EF development (Anderson, 

2002). Taken together, these findings underscore the importance of considering metrics of connectivity 

when attempting to understand how brain insults impact on functional outcomes in a developmental 

context.  

We used a composite measure of EF scores to explore structure-function relationships and this may 

contribute to the patterns of results reported. We adopted this approach to mitigate the relatively small 

sample size and the need to preserve statistical power. Thus, we were unable to investigate these skills 

with more granularity by examining discrete sub-components of EF. Such an approach would enable us 

to uncover whether regional / network deviations explain variance in specific EF impairments and future 

research should consider these more complex relationships. This is especially important given the 

variability in the age at which these different sub-domains of functioning (i.e. inhibitory control) come 

on-line during childhood (Miyake et al., 2000)  and thus may differentially ‘react’ at different ages at 

which the injury occurs. 

If we make the assumption that there are critical periods of vulnerability to the mechanical and 

pathological effects of injury then we might assume that greater divergence may be seen at one age 

versus another (Anderson et al., 2011; King et al., 2019). This may be due to the effects of injury 

differentially interacting with the myriad of developmental process that occur at different points 

throughout childhood brain development. Interestingly however, we found no linear relationship 

between age at injury and our proxy measure of brain perturbation. This is inconsistent with the idea of 

critical-periods of vulnerability, with no age at injury showing greater propensity to greater 

developmental divergence. Previous research investigating potential ‘age at injury’ effects post-TBI, do 

not primarily consider the magnitude of the perturbation the brain post injury (i.e. Resch et al. (2019)). 

Thus, the current research opens up new opportunities in this area, offering a quantitative measure of 

brain perturbation (the DDI) by which we can investigate the individual and potentially interactive 

effects of both age at injury and magnitude of injury. This will better inform our understanding of 

critical-periods of vulnerability to TBI. 

Generating an SC network allows the investigation of population-level covariance in neuroanatomy 

(Alexander-Bloch, Raznahan, et al., 2013). The individual contribution metric (proposed by Saggar et 

al. (2015)), enables an estimate of the distance of a patient from a group-level, reference SC network, to 

allow subject-level analyses. Previous studies show that greater divergence from the ‘typical’ SC 

network is related to worse neuropsychological performance (Saggar et al., 2015; Watson, 2016a).  

In the context of the current study of pTBI, we ‘rebrand’ this metric as a measure of ‘developmental 

divergence’. This focus is primarily based upon our approach adopting a novel analytic framework 

whereby we use developmentally-appropriate control groups to calculate a reference network for the 
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typically-developing SC network, using a sliding window approach. With the advent of large-scale, 

publicly-accessible neurodevelopmental studies such as ABIDE (Di Martino et al., 2014), ABCD (Casey 

et al., 2018) and HCP-development (Somerville et al., 2018) we are able to better understand the 

normative variation in brain development across age. The current study capitalised on this by calculating 

age-appropriate reference networks using MRI of typically-developing children from the ABIDE 

dataset.  

The benefits of this are two-fold. Firstly, the variance of age within the window still allows us to better 

capture typical developmental variance within age bands, which here means that our reference groups 

from the ABIDE data captures variation due to individual differences in morphometry. By using discrete 

windows, which act similarly to age-bins, we also account for non-linearity in the changes to the SC 

network over time, as opposed fitting a continuous/linear reference trajectory. Previous studies have 

used a single control group to calculate Saggar et al.’s (2015) individual contribution metric, potentially 

conflating ‘normal’ differences due to discrepancies in age between the participant and the reference 

network with what is proposed to be pathologically-related divergence.  

However, there is a limited number of cases at much younger ages in ABIDE. Thus, estimation of the 

DDI at these younger ages may be less reliable. A further limitation of the window-based approach is 

the small number of subjects with which each window was constructed (n = 26), given the size of the 

correlation matrix being estimated (68x68). The size of this window was selected empirically, based on 

maximising the between group-difference and the recommendations of Saggar et al. (2015). Future 

research could use a larger reference group to allow ‘denser’ age-windows to be generated with more 

subjects. However, this could result in the ‘mean’ network generated from the age-matched window 

being highly robust to the addition of new participants, and thus, based on the addition of the patient 

(AOP), the distance between Rcont and Rcont + Pi would be minimal, and the DDI measure is therefore likely 

to scale with the size of the reference group. This makes between study comparisons difficult. 

We posited that deviation from a developmentally-appropriate reference group represents 

developmental-divergence and that in the context of a preceding brain injury, this reflects a negative 

perturbation or abnormality of expected brain development at a macroscopic-level. However, 

compensatory responses to brain injuries may also contribute to observed measurements of 

developmental divergence. The potential capability of the brain to experience adaptive or compensatory 

morphometric change, due to mechanisms such as neural plasticity, could potentially lead to restitution 

of function (Anderson et al., 2011; Bigler & Wilde, 2010). Therefore, one potential limitation of the 

DDI methodology is that it fails to disentangle change due to pathology and that which is compensatory 

and assists in recovery. Because MRI scans were conducted acutely (<90 days post-injury), divergence 

from typical morphometry, at this stage post-injury, is likely to be related to injury mechanisms, rather 

than recovery mechanisms. However, previous research observes both a persistent morphometric 

difference from controls, even at 10 years post-injury (Beauchamp, Catroppa, et al., 2011), but also an 
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ongoing neurodegenerative effect of injury (Keightley et al., 2014), typically related to worse cognitive 

performance (King et al., 2019). Therefore, we believe that the majority of variance in DDI is due to 

injury-related change. Future research may also investigate DDI pre- and post- neurorehabilitation, in 

order to investigate the role of divergence from typically-developing reference groups as a potential 

indicator of positive divergence supporting recovery of function.  Differences in pre-processing steps 

used in our own experimental sample and that of the ABIDE reference group may influence the pattern 

of findings we observed. The ABIDE data was pre-processed using Freesurfer version 5.1 whilst our 

data was processed using the newer 6.0 release. Previous studies (and the Freesurfer developer 

community) recommend not comparing morphometric results between versions, with significant 

differences in measures being found for the same MRI scans (Chepkoech, Walhovd, Grydeland, Fjell, 

& Neuroimaging, 2016; Gronenschild et al., 2012). However, these differences will be systematic across 

all participants, in which case the DDI measure will comprise of a combination of systematic version-

error and the ‘true’ divergence. Also, no direct comparisons have occurred between the morphometric 

measures calculated on different versions. The SC networks were produced from the inter-correlations 

of these measures and then these SC networks are then compared, rather than the raw data. Future 

research may wish to consider this as a potential area of concern needing greater study. 

5.6 Conclusions 

We calculated individual-level divergence from the SC network (estimated from a large paediatric 

dataset) for a cohort of pTBI patients and found an association whereby greater divergence from the 

normative SC network was related to poorer executive functioning two years later. By investigating the 

CEN we took a neural-systems perspective to cognitive dysfunction, on the assumption that ‘damage’ 

to the network of regions supporting EF will relate to executive dysfunction (Anderson, 2002). However, 

the lack of correlation between CEN DDI and executive dysfunction in the TBI group highlights the 

nuanced role of immature networks subsuming neuropsychological functioning in childhood and that 

whole-brain integrity is required for age-appropriate EF abilities. 

We propose that the DDI of the whole cortex may provide unique insights into the effects of brain injury 

on typical neurodevelopmental outcomes following early life brain injuries, and could be used in 

predictive models that seek to identify more accurately those children at greatest risk of long-term 

difficulties.   

  



 

137 
 

Chapter 6. Clinically-Feasible Brain Morphometric Similarity Network Construction 
Approaches with Restricted Magnetic Resonance Imaging Acquisitions and their Relationship 

with Cognition 

6.1 Overview 

In Chapters 4 & 5, structural covariance methodologies were utilised to model sMRI data post-TBI as 

a complex network, allowing the inference of potential network-level, neuropathological mechanisms 

related to executive dysfunction post-injury. However, these methodologies operate at the group level, 

and the individual-level DDI metric is limited to a more global understanding of the network. In the 

current chapter morphometric similarity networks were adopted as a potential individual-level 

equivalent to structural covariance. The current chapter conducts a validation of this approach, 

specifically investigating an adaption where only sMRI data is utilised and assess the MSN methodology 

for use within a pTBI cohort, where multiple sequences, with long acquisition times are unfeasible. 

Overall, it is concluded that methodologies to generate morphometric brain networks at the individual 

level are still suitable when only T1w MRI images are used to index brain morphometry. A version of 

the current work has been submitted to a journal as follows; 

King, D. J. & Wood, A. G. (Submitted). Clinically-Feasible Brain Morphometric Similarity 

Network Construction Approaches with Restricted Magnetic Resonance Imaging 

Acquisitions and their Relationship with Cognition. Network Neuroscience. 

and a preprint is already available here; 

King, D. J., & Wood, A. (2019). Clinically-Feasible Brain Morphometric Similarity Network 

Construction Approaches with Restricted Magnetic Resonance Imaging Acquisitions 

and their Relationship with Cognition. https://doi.org/10.31234/osf.io/vks3u. 

DJK and AW contributed to the conception and design of the current study. DJK wrote and performed 

analyses and then wrote the first draft of the manuscript. Both authors contributed to the revision and 

review of the manuscript. 

6.2 Introduction 

Cortical grey-matter (GM) structural covariance (SC) networks model the degree to which the 

morphology of brain regions (measured by a single morphometric feature, cortical thickness (CT) or 

volume for instance) statistically co-varies across all possible pairs of regions of interest (ROIs; 

(Alexander-Bloch, Giedd, et al., 2013; Alexander-Bloch, Raznahan, et al., 2013; Evans, 2013; Mechelli 

et al., 2005). Whilst these types of networks represent region to region similarity of GM region metrics 

rather than causal interactions or tracked anatomical connections (Zheng et al., 2019), they are built on 

the premise that regions which are morphometrically similar across these structural features are more 

likely to be anatomically connected (Goulas et al., 2017; Wei et al., 2019). These whole-brain network 
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approaches to morphometric data, within a graph theoretic framework (Bullmore & Sporns, 2009), allow 

us to investigate additional information beyond that which is offered by univariate, local approaches 

(Bullmore & Sporns, 2009; Pagani et al., 2016). 

The potential role of disruption to the SCN to understanding functional outcomes has been explored 

within a graph theoretic framework in relation to a range of conditions. These include broad psychiatric 

diagnoses such as bulimia, depression and schizophrenia (Chen et al., 2017; Mak, Colloby, Thomas, & 

O'Brien, 2016; Palaniyappan, Park, Balain, Dangi, & Liddle, 2015; Tijms et al., 2015; Westwater, 

Seidlitz, Diederen, Fischer, & Thompson, 2017), neurodegenerative disorders, such as Alzheimer’s 

disease (AD) and multiple sclerosis (Kim et al., 2016; Pereira et al., 2015; Pereira et al., 2016; Raamana, 

Weiner, Wang, Beg, & Alzheimer's Disease Neuroimaging, 2015; Tewarie et al., 2014), epilepsies 

(Garcia-Ramos et al., 2017; Sone et al., 2016; Yasuda et al., 2015) and autism spectrum disorders 

(Balardin et al., 2015). In all of these studies, the methodology requires multiple participants to sample 

enough cortical measurements to generate a correlation between all possible regional pairs. Thus, this 

framework approach generates group-level brain networks, expressing population-level covariance in 

neuroanatomy (Alexander-Bloch, Raznahan, et al., 2013). This limits the ability of these approaches to 

quantify network- and system- level deficits within individual patients, which would benefit stratified 

diagnosis and prognosis (Zheng, Yao, Xie, Fan, & Hu, 2018). 

Existing methodological approaches have attempted to investigate these structural relationships between 

regions at the individual-patient level (i.e. (Kim et al., 2016; Kong et al., 2015; Kong et al., 2014; Tijms 

et al., 2012; Yu, Wang, et al., 2018)). The majority of these methodologies have two major limitations; 

they either divide ROIs into sub regions that do not respect the underlying structure and convolutions of 

the cortex (Tijms et al., 2012), or the edge weights are defined as the simple subtraction of the feature 

in region A minus region B, rather than covariance. Both of these methodological deviations represent 

marked changes to the SC paradigm under which many of the previous SC network validation studies 

have operated, potentially limiting the validity of these studies. 

An alternative approach to investigate the covariance structure between multiple morphometric features 

can provide individual-level networks of covariance. Morphometric Similarity Networks (MSNs; 

Seidlitz et al. (2018)) estimate meso-scale organisation of the cortex as a biologically meaningful set of 

similarities between anatomical properties at both the macro- and micro- structural level (Morgan, 

Seidlitz, et al., 2018). This is achieved through combination of features derived from a large set of 

imaging sequences, which may not always be possible in clinical settings. Data include morphometry 

measurements (such as CT, volume, curvature etc from T1w structural MRI), tissue diffusion properties 

(such as fractional anisotropy (FA) and mean diffusivity (MD) from diffusion-weighted images) and 

myelination indices (i.e. magnetization transfer from a multi-parameter mapping sequence or T1w/T2w 

ratio).  
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MSNs have been shown to be clinically useful, predicting ~40% variance in IQ, as well as being 

biologically meaningful, with edges of the MSN highly aligned with gene co-expression between 

regions in human data and with axonal tract tracing data in the rhesus macaque (Seidlitz et al., 2018). 

These findings likely reflect the fact that cortical regions that are less cortically differentiated from one 

another (that is, more anatomically similar) are more likely to also be anatomically connected (Goulas 

et al., 2017; Wei et al., 2019). Given the alignment between MSNs and other biological networks, these 

networks represent a new imaging phenotype that may provide additional biologically relevant 

information beyond existing network approaches. 

MSNs have already been utilised in a small number of studies in clinical populations. For example,  

Morgan, Seidlitz, et al. (2018) used the multi-feature (GM volume, surface area, CT, Gaussian curvature, 

mean curvature, FA, and mean diffusivity) network approach using both T1w and DWI MRI and found 

a robust and replicable pattern of  differences in cortical grey-matter networks for patients with 

psychosis compared to controls. Galdi et al. (2018) used a similar multi-feature model with 

macrostructural (volume and T1/T2 ratio) and multiple microstructural features (diffusion tensor-

derived metrics and Neurite Orientation Dispersion and Density Imaging (NODDI) parameters). They 

trained a model to predict the post-menstrual age of infants born at term or pre-term. This model was 

able to detect a dysmaturation of the brain in the preterm infants, consistent with previous findings in 

similar cohorts. Seidlitz et al. (2019) also used MSNs to empirically test a ‘transcriptional vulnerability 

model’ of neurodevelopmental disorders of known genetic origin, with anatomical disruptions being 

spatially associated with regional gene expression within the region of the causal copy number variant. 

Overall, these findings seem to suggest that MSNs appear to offer a useful and clinically-relevant, 

individualised imaging phenotype.  

Despite these existing clinical applications, it is important to note that multiple, high quality MRI 

sequences are required to recreate such methodologies. These may not be feasible for all research 

requirements and/or settings. For instance, in large existing clinical (‘legacy’) cohorts, the availability 

of this ‘advanced’ imaging may be limited or only a minimal number being consistent across multiple 

sites for instance. Also, due to the longer acquisition time of these MRI scans (especially DWI), the risk 

is that these MRI are more vulnerable to being of lower quality due to potential of movement artefacts 

over time for instance, especially in some paediatric or clinical applications where movement is more 

prevalent (Rosen et al., 2018).  

Subsequently, estimating meso-scale organisation across the cortex based on metrics from a single T1w 

3D anatomical MRI, which is quickly and commonly acquired in clinical settings, is attractive to the 

fields of clinical and developmental neuroscience (Batalle et al., 2018). Both Seidlitz et al. (2018) and 

Li et al. (2017) estimated morphometric similarity in this way and found the edge weights of these 

networks to be similar to the multi-modal MSNs (r = .68, Seidlitz et al. (2018)), with ‘good’ test-retest 

reliability in terms of network topology (ICC = .60, Li et al. (2017)). However, these networks had 
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reduced precision in their estimation with greater standard deviation of edge-level weights seen across 

participants (Seidlitz et al., 2018). Of these previous studies, limited assessment has been conducted of 

the performance of these methods across characteristics of reliability, consistency with group-networks, 

biological validity and predictive ability. However, very little attention has been given to directly 

comparing the performance of models with a reduced number of structural features with which the 

network is estimated. No previous study has conducted an assessment of the reliability and performance 

of models across a number of models, each using reduced number of structural features indicative of a 

more restricted MRI acquisition sequence. These networks using only T1w MRI have already been seen 

in clinical applications. Zheng et al. (2019) generated networks using seven morphological features from 

T1w MRI. These networks were used to predict classification of ASD and controls. A machine learning 

approach using individual morphological features produced near-chance prediction accuracy, however, 

utilising only connection-weights from multi-feature networks there was a significant improvement in 

the model’s prediction. Zheng et al. (2018) conducted a similar classification task and found that multi-

feature MSNs classify patients with AD and mild cognitive impairment against controls, with a very 

high accuracy (~96%).  

However, without an evidence-based comparison of MSNs constructed from only T1w MRI features 

and those constructed from a wider selection of MRI acquisitions, it is unclear as to whether the addition 

of added MRI sequences would necessarily lead to more reliable estimates of the network. If this were 

the case, then one would also posit that the increased reliability of morphometric similarity estimation 

would better position MSNs as a biomarker of brain structure, with less measurement error, and thus 

provide better prediction than simpler, T1w only models such as those in Zheng et al. (2019) and Zheng 

et al. (2018). 

Recent research has shown that multi-feature MSNs are biologically meaningful and have potential 

clinical applicability, but MSNs generated with T1w features may be more amenable to certain patient 

groups/samples. The current study aimed to determine whether reduced-feature approaches approximate 

the ‘original’ MSN model as a potential tool to investigate brain structure. We extended previous 

investigations of reduced-feature MSNs by comparing not only T1w-derived networks, but additional 

MSNs generated with fewer MR sequences to their full-acquisition counterparts. No previous work has 

specifically investigated three MSN models, each using fewer metrics from a reduced number of specific 

MRI scan acquisitions, assessing a number of replication properties. These models were hierarchically 

organised, with reduced acquisition complexity from model a) to c) seen below; 

a) MSN (T1w + T1w/T2w ratio + DWI; ten-features (MSN10-feat.)), 

b) MSN (T1w + T1w/T2w ratio; eight-features (MSN8-feat.)), 

c) MSN (T1w; seven-features (MSN7-feat.)) 
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Model a), hereto referred to as MSN10-feat., is the best approximation of the Siedlitz (2018) approach, 

with magnetization transfer replaced with T1w/T2w ratio mapping (Glasser & Van Essen, 2011) in the 

current study. Thus, for each participant, three connectivity matrices (one per model) were estimated, 

across multiple thresholds. We predicted that, for each measure of reliability/replicability, performance 

would be ordered in a hierarchical fashion, with MSN10-feat. outperforming MSN8-feat. which subsequently 

outperforms MSN7-feat.. However, we also predicted that between model comparisons would suggest that 

the models themselves were highly similar. We also predicted that we would conceptually replicate 

previously found associations between cognition and MSN organisation (Seidlitz et al., 2018) and that 

we could generalise this finding to a novel domain of cognition, specifically executive functioning. 

6.3 Materials and Methods 

6.3.1 Participants - HCP data 

The current study uses open access, 3T MRI data provided by the Human Connectome Project (Van 

Essen et al., 2013), shared via ConnectomeDB (https://db.humanconnectome.org) under the HCP1200 

and HCP Test-retest release. Favourable ethical approval for the secondary analysis of this data was 

granted by the Aston University ethics panel. 

6.3.1.1 HCP 1200 Release 

The HCP 1200 release contains data from n = 1206 subjects (550 Males, 656 Females). Subjects are 

grouped into age bins from ‘22-25’ to ‘36+’ (median age = 26-30). Whilst n = 1206 subjects provided 

behavioural data, only 1113 subjects had MRI data available. These were the subjects for which data 

was accessed and downloaded from ConnectomeDB for the current study.  

6.3.1.2 HCP Test-Retest Release 

For 46 subjects from the HCP-1200 release, a second ‘retest’ dataset is available to assess test-retest 

reliability of analyses. These second MRI visits occurred within time bins from ‘1-2 months’ to ’11 

months’ post initial scanning session. The median retest-interval bin was ‘5 months’. Of these subject 

45 had available MRI data, and these were the subjects used for subsequent analyses. 

6.3.2 Methods 

6.3.2.1 Data Quality Control 

Subjects were selected for inclusion if, in the 1200-subject HCP release, they had T1w, T2w and 

diffusion data uploaded. This led to exclusion of n = 76 cases. 

Also, utilising QC data shared by the HCP project, any data labelled as with QC issue code B (which 

flags cases as having focal segmentation and surface errors when the corresponding Freesurfer outputs 
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were checked) was further excluded from the current study (n = 33). The final dataset consisted of n = 

1004 subjects. In the test-retest cohort, only one subject was excluded as flagged with QC issue B by 

the HCP project. 

6.3.2.1 MRI Processing 

The current study utilises data shared in its pre-processed format, including the output of the HCP 

Freesurfer pipeline (Fischl et al., 2002; Glasser et al., 2013; Jenkinson, Bannister, Brady, & Smith, 2002; 

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), processed DWI (gradient non-linearity, 

eddy-current and EPI distortion corrected (Andersson, Skare, & Ashburner, 2003; Andersson & 

Sotiropoulos, 2015, 2016), and calculated T1/T2w ratio myelin maps (Glasser & Van Essen, 2011). For 

further details of HCP processing pipelines see Glasser et al. (2013). 

Once cases were selected, measures indexing underlying neuroanatomical structure were derived from 

multiple imaging modalities (see Table 6.1). Seidlitz et al. (2018) leverage near-identical MRI-derived 

metrics for the construction of the MSN network. However, we are using the T1/T2 ratio as a proxy for 

myelin content, rather than the magnetization transfer scan used by Seidlitz et al. (2018). The rationale 

for this modification was both pragmatic and clinically-driven; i) the T1/T2w ratio maps are already 

implemented by the HCP project and thus this data is available for use with the rest of the high-quality 

HCP acquisition data and ii) in clinical populations, for which the methods may provide greatest benefit, 

multi-parameter mapping MRI sequences may not be acquired as part of a clinical protocol, whereas 

T1w and T2w sequences are. 
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Table 6.1. Morphometric measures and the modality of MRI from which they were derived 

Modality Metrics 

T1w Cortical thickness (CT), surface area (SA), mean (extrinsic) curvature (MC), Gaussian 

(intrinsic) curvature (GC), folding index (FI), curvature index (CI) and grey matter 

volume (GMV) 

 T2w Myelination (T1/T2w ratio) 

DWI Fractional Anisotropy (FA), Mean Diffusivity (MD) 
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Preprocessed DWI (b = 1000) in T1w space were fitted to a tensor model using FMRIB’s ‘dtifit’ 

function, and the subsequent FA and MD maps were mapped to the individual subject’s Freesurfer 

generated surface model in MNI space, using the connectome workbench (Marcus et al., 2011) function 

‘volume-to-surface-mapping’. These, and the Tw1/T2w ratio myelin maps, were parcellated based on 

the Desikan-Killany atlas (Desikan et al., 2006), by generating a dense-cifti (using the ‘cifti-create-

dense-from-template’ function) and parcellating the output (using ‘cifti-parcellate’). Freesurfer metrics 

were also extracted for each parcellated region using the ‘aparcstats2table’ function. 

6.3.2.2 MSN Construction 

To generate MSNs we apply the methods of Seidlitz et al. (2018) to the HCP data. The Desikan-Killany 

atlas was mapped to the individual subjects with a surface-based registration, using the Freesurfer 

pipeline. The Desikan-Killany atlas ROIs were used as the nodes for all network construction (Desikan 

et al., 2006). 

Morphometric features (parcellated to the Desikan-Killany atlas) for each participant can be expressed 

as a set of n vectors of length 10, with each vector as a different anatomical region (n = 68), and each 

element of the vector a different morphometric measure. However, these features are not all measured 

at the same magnitude of scale. For instance, volume (mm3) is measured at the order of 103, whereas 

folding index is measured to the order of 101. Thus, to normalize within this length 10 vector, each of 

these morphometric features is normalized across the 68 regions, using Z-scores (demeaned and SD 

scaled). This brings the measures across the feature vector into a comparable range. 

Using the normalized features, a correlation matrix is generated for each participant, where each element 

of the matrix is the correlation between the feature vectors for every possible pairwise combinations of 

regions. Because each feature is zero-centred, the resultant distribution of correlation coefficients is 

normally distributed about zero. This correlation matrix represents the MSN-estimated connectivity for 

each participant. This procedure was repeated across the three MSN models (MSN10-feat., MSN8-feat., and 

MSN7-feat.), each using fewer metrics from a reduced number of scan acquisitions. 

6.3.3 Demographic and Behavioural Data 

Demographic variables were selected from the unrestricted data table accessed via ‘ConnectomeDB’. 

These included age bin, sex recorded at birth and recorded quality control issues. Behavioural data were 

also extracted to assess the relationship between the MSNs and both general cognitive ability (measured 

with both fluid and crystallized intelligence measures) and executive functioning. These 

neuropsychological assessments were conducted contemporaneously in relation to the MRI scans. 

Further details of the tasks and measures acquired in the HCP dataset can be found in (Barch et al., 

2013).  
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6.3.3.1 General Cognitive Ability 

General cognitive functioning is measured with the Cognitive Function Composite (CogComp) score 

(Heaton et al., 2014), derived from the average of the normalized, scaled scores of Fluid and Crystallized 

cognition measures, then subsequently age-adjusted, and scaled. The Fluid Cognition Composite score 

is derived by averaging the normalized scores of each of the fluid ability measures in the NIH-toolbox 

(Flanker, Dimensional Change Card Sort, Picture Sequence Memory, List Sorting and Pattern 

Comparison), whilst the Crystallized Cognition Composite score is derived by averaging the normalized 

scores of each of the crystallized measures in the NIH-toolbox (Picture Vocabulary and Reading Tests). 

Higher Cognitive Function Composite scores indicate higher levels of cognitive functioning.  

6.3.3.2 Executive Functioning 

Behavioural executive function (EF) measures were selected based on an evidence-based, 3-factor 

model of executive function (Karr et al., 2018); measures selected from the HCP cognitive battery to 

model EF were  the same as previous studies of EF utilising the HCP data (Lerman-Sinkoff et al., 2017; 

Nomi et al., 2017). These tests assessed multiple cognitive aspects of executive functioning including 

cognitive flexibility/shifting (Dimensional Change Card Sort test, (Zelazo, 2006; Zelazo et al., 2014)), 

inhibition (Flanker Inhibitory Control and Attention task, (Zelazo et al., 2014)), working memory (List 

Sorting task, (Tulsky et al., 2013)). Age-adjusted scores were used for all behavioural data.  

Due to the fact we have only one neuropsychological measure per sub-domain of EF and there is 

therefore potential risk of measurement error, a principal component analysis (using the ‘prcomp’ 

function in the R ‘stats’ base package (R Core Team, 2016)) was used to find a common EF component 

across all three EF measures. This produced a single principal component with an eigenvalue above 1, 

upon which all measures positively loaded onto, and thus this component was used as a ‘summary’ score 

of EF (see supplementary materials (Appendix E) for further details). Higher summary EF scores reflect 

greater EF functioning.  

6.3.4 Statistical comparison 

When comparing weighted networks produced by each model, we use multiple metrics to assess the 

(dis)similarity of the subsequent covariance matrices.  

To reduce number of comparisons and, based on our premise that the MSN10-feat. is the most precise 

estimation of the MSN network  (as shown by Seidlitz et al. (2018)), all inter-model comparisons were 

done in a hierarchical fashion in comparison to this ‘gold-standard’ network. That is to say that model 

MSN10-feat. was compared to the MSN8-feat. and then the MSN10-feat. was subsequently compared to the 

MSN7-feat.. 
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In order to test differences in the topological organisation of the networks produced by each model, we 

calculate average nodal strength for each graph. Nodal strength is the ‘magnitude’ of structural 

covariance for each node, this is the sum of the connectivity weights of all edges connected to node i 

(Fornito et al., 2016). We did not normalize this measure based on number of edges as we averaged the 

nodal measures over the graph, where the number of edges was consistent across models due to density 

thresholding. This metric was calculated per subject, per density for each MSN model. For each 

comparison, we calculate the difference in distributions of graph strength using a paired t-test test. Due 

to the large number of comparisons (across densities, and contrasts) we do not report p-values, but 

instead report the effect sizes for comparisons. 

We also calculate the Pearson correlation coefficient between all edge weights for both models (as per 

Seidlitz et al. (2018)), and also specifically between all non-zero edge weights (those elements where a 

zero is present in the correlation matrix for each model are excluded). However, because of the 

symmetric, undirected nature of the correlation matrix, this correlation coefficient may inflate/bias the 

supposed ‘similarity’ between the sets of edge weights. Thus, we also employed the Mantel test, which 

calculates the Pearson correlation on either half of the off-diagonal elements of the correlation matrix 

(Mantel, 1967).  

To compare the binary networks produced by each model at each density (where edges retained after 

thresholding are set to 1 and those excluded are set to zero), we assessed the number of edges in the 

reduced model which replicated as a proportion of the fuller model, as per the following formula: 

∑(𝑥𝑥𝑖𝑖 ≠ 0 & 𝑦𝑦𝑖𝑖 ≠ 0)
∑(𝑥𝑥𝑖𝑖 ≠ 0)

 

where xi and yi represent the correlation matrices estimated from two of the MSN models for a given 

subject i. 

Secondly, we calculate these similarity measures between the subject-level network and the group 

average network, across all densities and models. This allows the assessment of the inter-subject 

reliability of the networks being constructed by each model. Thirdly, we similarly test the intra-subject 

reliability of the produced networks, based on test-retest data from a subset of the overall dataset. Due 

to the categorical and inaccurate nature of the ‘binned’ measurement of time between initial and retest 

scan, this was not controlled for in this analysis. 

In order to assess the functional relevance of these networks, we assess their ability to predict CogComp 

and EF scores using a supervised-learning approach, namely partial least squares (PLS) regression 

(similarly to Seidlitz et al. (2018)) using the ‘plsRglm’ package in R (Bertrand & Maumy-Bertrand, 

2018). This multivariate approach finds the optimal low dimensional relationship between a high 

dimensional set of predictors (in this case the MSN networks) and a univariate predictor variable (either 
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CogComp or EF). This approach is commonly use when the number of predictors exceeds the number 

of observations (Krishnan, Williams, McIntosh, & Abdi, 2011).  

A PLS regression was used to find the maximal low-dimensional covariance between components 

derived from the MSN and cognitive outcomes. The PLS regression was used to decompose the 

predictor variables into latent variables (components) which simultaneously model the predictors and 

predict the response variable (Krishnan et al., 2011). The predictor matrix consisted of either the degree 

or strength of each node of the MSN, for each participant. Using a linear model, the potential 

confounding effect of age, gender and age*gender interaction was regressed out of values for nodal 

degree/strength (but not our cognitive outcome variable as these were already age-adjusted within the 

HCP dataset). For each model (at each threshold), a PLS regression model was fitted between principal 

components derived from the resultant predictor matrix (68 x 991) and the outcome variable. This was 

repeated across 100 instances of 9-fold cross-validation.   

Cross-validated R2 (R2
CV) otherwise known as the Q2 statistic (Consonni, Ballabio, & Todeschini, 2010; 

Stone, 1974), was used to select the number of components to retain in the predictor matrix. Q2 was 

defined as: 

𝑄𝑄2 = 𝑅𝑅𝐶𝐶𝐶𝐶2 = 1−
𝑃𝑃𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆
𝐺𝐺𝑆𝑆𝑆𝑆

= 1 −
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

  

where PRESS is the predictive residual error sum of squares and TSS is the total sum of squares.  

The number of components to retain in the predictive model was selected as the number of components 

which resulted in the greatest Q2 value. This was repeated over the cross-validations and resulted in a 

count measure of the number of times a model with a given number of components were selected. Hence 

the final model was the given number of components which was most commonly selected as having the 

greatest Q2 statistic. Given the model with the retained number of components, we report the variance 

explained by the model and the bias corrected and accelerated bootstrapped (Bastien, Vinzi, & 

Tenenhaus, 2005) weightings of each predictor. This allows us to assess which brain regions are 

contributing most to the prediction.  

Due to the normal distribution of the cognitive measures (CogComp and EF) data, there may be an issue 

of class-imbalance for more ‘extreme’ cases (Torgo, Branco, Ribeiro, & Pfahringer, 2015). As there are 

fewer subjects who fall within the tails of the continuous distribution on our cognition measures, the 

cross-validation approach may lead to training samples where there are too few ‘extreme’ cases (those 

with particularly high/low cognitive abilities) to ‘learn’ from. This may result in a model where there is 

accurate prediction around the mean but not at the tail ends of the distribution. To ensure the training 

samples contain subjects from stratified sampling approach, we repeated the analyses discretizing the 

performance on cognitive measures into four discrete bins across the distribution and training a model 

based on equally-sized, random samples from each bin.  
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6.4 Results 

6.4.1 Inter-model comparisons 

6.4.1.1 Magnitude of morphometric similarity: graph-level strength 

In terms of the topology of the networks, global graph strength for each model, across densities, can be 

seen in Figure 6.1. This plot shows the similar trajectories across densities for all models tested, however 

the observed average graph strength was different between models, with lower strength being see in the 

MSN models with greater features. The effect size of differences (estimated with a paired t-test) between 

MSN10-feat. vs MSN8-feat. and MSN10-feat. vs MSN7-feat. can be also be seen in Figure 6.1. Effect sizes (r) 

were extremely large, especially between MSN10-feat. vs MSN7-feat..  
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Figure 6.1 Left: Graph metrics describing average network strength for each MSN model, across all densities. Right: Effect sizes of differences between a) 

MSN10-feat. vs MSN8-feat.  and b) MSN10-feat. vs MSN7-feat.. for differing graph metrics, across densities. 
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6.4.1.2 Edge Weights 

Figure 6.2 shows the inter-model comparisons between MSN10-feat. and MSN8-feat., and between MSN10-

feat. and MSN7-feat.. There is a gradual increase in correlation of edge weights across densities with the 

peak mean correlation being found between MSN10-feat. and MSN8-feat. at a 40% threshold (r(M±SD) = 

.849 (± .025)), with slightly weaker correlations found between MSN10-feat. and MSN7-feat. (r(M±SD) = 

.736 (± .031)). When considering only the non-zero edge weights (only edge weights remaining after 

thresholding), a slightly weaker peak correlation was found for both contrasts at 5% threshold (MSN10-

feat. vs MSN8-feat.  r(M±SD) = .738 (± .053); MSN10-feat. vs MSN7-feat.  r(M±SD) = .670 (± .066)). However, 

as the threshold increased, the dispersion of individual level non-zero edge correlation decreases, 

especially in the MSN10-feat. vs MSN7-feat. contrast.  

When considering correlation coefficients calculated using the Mantel test, similarly strong correlations 

were found between edge weights across all models however, as predicted, the MSN10-feat. vs MSN8-feat. 

were most similar (At 40% threshold: MSN10-feat. vs MSN8-feat. Mantel r(M±SD) = .835 (± .028); MSN10-

feat. vs MSN7-feat. Mantel r(M±SD) = .715, (± .034)). For the binarized networks, the proportion of edges 

replicated also peaked at 40% threshold (MSN10-feat. vs MSN8-feat. proportion of replicated edges = 85%, 

(± 2%); MSN10-feat. vs MSN7-feat. proportion of replicated edges = 77%, (± 2%;).  
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Figure 6.2 Violin plot of correlation of edgeweights between a) MSN10-feat. vs MSN8-feat.  and b) MSN10-

feat. vs MSN7-feat.. Midline of the box-plot component of the violin represents the mean of all correlation 

coefficients, with the box itself representing the SD of this mean. Individual data points are also plotted. 

 

 

Figure 6.3 Model comparisons across thresholds using a) Mantel-test correlation coefficient and b) 

proportion of edges replicated as measures of model similarities. Midline of the box-plot component of 

the violin represents the mean whilst the box itself representing the SD 
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6.4.2 Intra-model comparisons 

6.4.2.1 Test-retest reliability of MSN models 

We compared the MSN models at the initial scan with those calculated from test-retest scans acquired 

between 1 and 11 months after the initial MRI. All models showed high test-retest reliability of the MSN 

(correlation of all edge weights at 40% threshold: MSN10-feat. r(M±SD) = .902 (± .032); MSN8-feat.  

r(M±SD) = .881 (± .040), MSN7-feat.  r(M±SD) = .857 (± .043)). This high test-retest reliability of 

networks held even when networks were binarized (At 40% threshold: MSN10-feat. proportion of 

replicated edges = 87 % (± 3%); MSN8-feat.  proportion of replicated edges = 87% (± 3%), MSN7-feat.  

proportion of replicated edges = 86% (± 3%)). See Figure 6.3 for plots. 

6.4.2.2 Similarity with average MSN 

For each model, at each threshold, a group-level network was produced as the mean of the correlation 

matrices for all subjects. Across all models (MSN10-feat., MSN8-feat., and MSN7-feat.), regardless of 

similarity metric used, the individual-level MSNs were highly similar to the group-mean network (see 

Figure 6.4). Interestingly, the MSN8-feat. model showed greatest correlation between edge weights (At 

40% threshold: MSN10-feat. r(M±SD) = .843 (± .032); MSN8-feat.  r(M±SD) = .875 (± .029), MSN7-feat.  

r(M±SD) = .850, (± .031)). Similar to the inter-model analyses, correlation peaked at the highest 

threshold tested (40%) for all models. 
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Figure 6.4 Plots showing MSN similarity (across thresholds, with multiple similarity measures) between 

a,b,c) individual MSNs generated with test-retest MRI scans and d,e,f) individual-level MSNs and the 

group-average MSN network. 
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6.4.3 Relationship with cognitive scores 

Only participants who had available a full dataset comprising of the three EF subtests and the CogComp 

measure were included in the following analyses (n = 991). For both cognitive variables, using 100 

instances of 9-fold cross validation, the greatest Q2 was found most frequently when zero-components 

were retained and thus no models were built. 

This suggests that no PLS-derived components of nodal degree, strength or normalised strength of the 

MSN provided greater explanation than the intercept alone. After the stratified sampling of the training 

cohort, there was no improvement in the result outlined above; cross-validation still recommended 

retention of zero components for all MSN models.  

6.5 Discussion 

Within the morphometric similarity network model, we assume that those regions which are high in 

morphometric similarity have high concordance of cyto- and myelo- architectural features at a resolution 

unobservable in-vivo with current MRI capabilities (Morgan, Seidlitz, et al., 2018). These cortico-

cortico regions which are less cortically differentiated from one another are more likely to be 

anatomically connected (Goulas et al., 2017; Wei et al., 2019). However, the methods presented here 

are not causal, they represent the region to region similarity in terms of the GM morphology of the 

cortex (Zheng et al., 2019).  Whilst Seidlitz et al. (2018) and Li et al. (2017) performed some assessment 

of T1w MSNs, the current study is the first to formally investigate the potential for generation of multiple 

MSNs based on a reduced number of macro- and micro- structural features dependant on the complexity 

of the MRI acquisition sequence. We found that the weighted networks generated from these models 

are highly similar, across a number of correlation measures investigating edge weightings. Overall our 

results suggest that these meso-scale relationships can be captured (to a considerable degree) within a 

more limited number of features from a lesser number of MR-sequences. 

Seidlitz et al. (2018) investigated the similarity of a T1w MSN (using only 5 morphometric features 

compared to our 7) with the full MSN10-feat. model and found a high level of similarity, although the 

MSN10-feat. model had a greater level of precision with a lower standard deviation of edge weights. 

Seidlitz et al. (2018) also did not systematically investigate the consequences of removing MRI 

acquisitions from the features with which to estimate the MSN model.   

In the current study we expanded previous comparisons of T1w MSNs to the ‘original’ MSN model to 

include multiple MSN models. We found that the between-model similarity was nearly always 

hierarchical between models, with greater similarity seen between MSN10-feat. and MSN8-feat. compared 

to that between MSN10-feat. and MSN7-feat.. Weaker similarity was found for sparser networks at a much 

lower density (i.e. .05). Even when binarized (that is to say the edge weightings were ignored) the 

replication rates were high, suggesting that the models are sensitive to specific edges within the network.  
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However, our results show that, in terms of average network strength, the three models differed 

significantly in their topology. Whilst previous studies had investigated the correlation between nodal 

similarity for full and reduced models of MSN estimation (Seidlitz et al., 2018), this is the first study to 

investigate differences in this topology. On average, the magnitude of morphometric covariance across 

the nodes of the graph are higher when fewer features are used to generate the network. The topology 

of networks generated from different MSN models is fundamentally different and, dependant on metric 

used, this difference can be of a large effect size. Hence, as more cytoarchitectural features are added to 

the MSN, specifically estimated myelin content (T1w/T2w ratio) and macro-structural diffusion 

properties (FA & MD), regions appear less similar and more differentiated, hence the lower average 

graph strength. This may because these features index structural properties which show greater variation, 

and are more discriminatory between regions, across the cortex. This difference in network topology is 

important to consider, as it means that network topology between these models is not comparable across 

studies. 

Each model seemed to achieve high-levels of congruence with the group average network, suggesting 

that we are able to use these methods to index individual differences from a relatively consistent meso-

scale phenotype of the structure of the brain. Li et al. (2017) found high levels of test-retest reliability 

of the T1w MSN, we replicated this and found that each of the reduced-feature MSNs seemingly had 

similar reproducibility in terms of test-retest MRI. 

It is important to consider that none of the models tested in the current manuscript showed perfect or 

even near-perfect concordance across these measures of performance. These between-model differences 

may be due to the fact that these models are generated with less features, rather than being specific to 

the modality of feature being dropped. Beyond the scope of the current paper but could look at this in 

future by generating MSN with 10, 8 and 7 randomly selected features, irrespective of modality of MRI 

sequence used to derive said feature. If this is the case, then the ‘gap’ between the MSN10-feat. and MSN7-

feat. models could potentially be rectified using software such as ‘mindboggle’ to generate/sample a larger 

number of morphometric features from the T1w image. 

Overall, our findings suggest that, even with a reduced number of structural features, the MSN seems to 

capture a group-level phenotype of the structure of the brain which shows a reasonable level test-retest 

reliability. However, whilst these models may capture enough shared variance to be meaningful in a 

number of fields, it must be considered that the loss of information due to a reduced number of MR-

acquisitions may result in a ‘noisier’ measure of the connectivity phenotype being indexed by the MSN 

approach. This will inherently limit generalisability across findings utilising these methods.  

However, the main benefit of the reduced MR-acquisition approaches (specifically the MSN7-feat. model) 

is the applicability to those populations where multiple MR sequence acquisition is more challenging or 

difficult. For instance, in clinical populations where research MRI are acquired alongside routine 
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examination and therefore time is limited, or in developmental populations where acquisition time needs 

to be kept short in order to ensure child participants can remain still for the length of the scan to ensure 

the images are free of motion artefact. Estimating morphometric similarity based on metrics from a 

single T1w 3D anatomical MRI, which is commonly and quickly acquired clinically, is therefore 

particularly attractive to the field of clinical and developmental neuroscience (Batalle et al., 2018). It 

also validates these models for use in legacy datasets for instance, where the full array of MRI 

acquisition sequences required to estimate the ‘original’ MSN were not acquired and are therefore not 

available. Overall, the current study validates the use of these reduced-feature networks in recent studies 

estimating cytoarchitectural similarity utilising the MSN (Galdi et al., 2018; Li et al., 2017; Morgan, 

Seidlitz, et al., 2018; Seidlitz et al., 2019; Zheng et al., 2019; Zheng et al., 2018). 

One could argue that one-acquisition connectivity is already available in the form of DWI tractography, 

or even fMRI resting state connectivity. However, these are still much longer sequences compared to a 

3D T1w MPRAGE for instance and therefore face inherent difficulties in the face of clinical realities of 

restricted time and potentially greater motion. Also, both fMRI and DTI inevitably suffer from a lower 

signal-to-noise ratio and a greater sensitivity to motion artefacts compared to anatomical MRI (Wang, 

Jin, Zhang, & Wang, 2016). It could also be argued that, in terms of legacy/existing datasets, it is more 

likely that a high quality, 3D T1w MRI has been acquired than the specific DWI/fMRI protocol required. 

Overall, this therefore positions MSNs as a useful in-vivo connectivity phenotype for studying both 

clinical and developmental populations, with the T1w-only model potentially being of greatest potential 

benefit. 

These approaches have potential utility in these fields of research, with one use being assessing 

relationships between brain structure and neuropsychological functioning. The current zeitgeist in the 

field of cognitive neuroscience is that the topological organization of the brain networks (across multiple 

MR modalities), as quantified within a graph theoretic framework, captures physiologically relevant 

information (Bullmore & Sporns, 2009; Fornito, Zalesky, & Breakspear, 2013; Hahn, Lanzenberger, & 

Kasper, 2019). However, a recent study failed to replicate one of the most prominent findings for the 

field relating resting-state fMRI connectivity to fluid and crystallized intelligence in the HCP dataset 

(Kruschwitz, Waller, Daedelow, Walter, & Veer, 2018). The current study investigated this by assessing 

the relationships between cognition and organisation of the MSN models. 

We assessed the predictive validity of the MSN models in the current study by comparing the predictive 

validity of the three MSN models in relation to general intelligence, with previous research suggesting 

the organization of the MSN network (modelled similarly to the MSN10-feat.) was able to predict ~40% 

variance in WASI IQ (verbal and non-verbal, (Seidlitz et al., 2018)). We were unable to replicate the 

predictive validity of the MSN with regard to general cognitive functioning or generalize previous 

relationships to a novel domain of cognitive functioning (in this case executive functioning). Our results 
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showed that, when using 9- fold cross-validation, no model (at any density) recommended retention of 

any PLS components.  

One important strength of the current study is the fact that we used a quantitative methodology of cross-

validation to validate retained number of components whereas previous studies have retained either a 

single or two components which explains the greatest amount of variance (Seidlitz et al., 2019; Seidlitz 

et al., 2018). This may mean that previous findings are less generalizable to new datasets, hence why 

we were unable to replicate findings of Seidlitz et al. (2018), and instead found that nodal topological 

characteristics (i.e. strength) did not predict cognitive abilities in the current sample. 

However, there are several other potential hypotheses as to why we were unable to replicate the previous 

findings. Most importantly, there were developmental differences between our sample and that of 

Seidlitz et al. (2018). The current study investigated a healthy young adult population between the 3rd 

and 4th decades of life whereas Seidlitz et al. (2018) studied a late adolescent (15-25yrs) sample. The 

brain undergoes substantial structural change over development with this adolescent period being a time 

of peak maturation (Gogtay et al., 2004; Sowell et al., 2004) It is across these years in which some of 

the neurocognitive skills investigated in the current study, executive functioning for instance, are fully 

established. For instance, the NIH-toolbox total cognition composite highlights this quite clearly with a 

greater magnitude of age effects seen in childhood compared to adulthood (Akshoomoff et al., 2013; 

Heaton et al., 2014). This is likely because, throughout childhood, the regions subsuming these functions 

are reaching structural maturity. Therefore, it is reasonable to believe that, it is within the 

child/adolescent period where the most variance in these neurocognitive skills can be explained by 

structural networks (as seen by the ~40% variance in IQ explained by the MSN in Seidlitz et al. (2018)). 

In the age-range that the current study has sampled, the brain should have reached structural maturity 

(with only mild age related effects in this age-group) and so there is likely less between-individual 

variance in the MSN. This was seen in the fact that there was greater congruence between individual 

MSNs and the group-average MSN in the current study compared to previous adolescent MSNs 

(correlation of all edge weights: mean r = .60, (Seidlitz et al., 2018)). Therefore, the limited variance in 

the MSN within this age group may mean that there is not enough variance to relate to cognitive 

functioning, hence our current findings. 

We therefore propose that the MSN may in fact be a useful phenotype for assessing neuropsychological 

functioning, but only in populations where there is sufficient variation in the structure of the brain. This 

may be populations in the infant/child/adolescent period where structural networks are likely to see 

greatest variability due to developmentally-mediated change (such as Galdi et al. (2018) & Seidlitz et 

al. (2018)) or clinical populations where atypical brain structure is seen in the pathophysiology of the 

disorder (such as Seidlitz et al. (2019), Morgan, Seidlitz, et al. (2018) & Zheng et al. (2019)). It may be 

the case that these networks hold utility in populations such as these, rather than healthy, matured 
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populations (where measures of brain structure are likely to heavily regress to the mean), where these 

methodologies may be of much lesser utility in explaining cognitive functioning. 

However, it is also important to consider that the variation in our results could be due to other variations 

in analysis. Firstly, differences may be driven as an artefact of using differing measures of general 

intelligence, with Seidlitz et al. (2018) utilising the Weschler Abbreviated Scale of Intelligence (WASI; 

(Wechler, 1999)), whilst we used the NIH Toolbox Cognition composite scores (Heaton et al., 2014). 

However, it is important to remember that the composite score shows high convergent validity with 

other Weschler assessments of general intelligence (with the Weschler Adult Intelligence Scale (WAIS-

IV, (Wechler, 2008)) r = .89 (Heaton et al., 2014), and with the Weschler Intelligence Scale for Children 

(WISC-IV; (Wechsler, 2003)) r = .88 (Akshoomoff et al., 2013).  

Also, we calculated the MSN at a much lower spatial scale (68 ROIs) compared to this previous work 

(308 ROIs). This lower spatial resolution may result in more regionally specific effects being difficult 

to detect, however it may also have allowed us to detect more subtle effects due to increased power. Yet 

it is important to note that the 308 ROIs are derived by subdividing the 68 ROI atlas used in the current 

study into equally sized ‘patches’ and thus still respects the anatomy of the brain in the same way. 

Therefore, it is highly unlikely that this would explain our non-replication of previous findings. 

One potential issue with these metrics is that these similarity measures only investigate graph properties 

which only partially describe the whole network (Schieber et al., 2017). By using correlational measures 

of ‘replicability’ we only consider edge-weightings, rather than the structure of the network, hence why 

we also included comparisons of network strength to begin to investigate this in terms of network 

topology. We could have investigated additional metrics which characterize network topology (i.e. 

global efficiency) however, due to the fact that the SC networks do not adhere to typical assumptions of 

networks (edges representing definitive real connections) we utilised strength as a simpler metric which 

makes less assumptions about the underlying neurophysiology of the network. Thus, we have taken the 

assumption that SC represents a graph of higher-order inter-relationships between morphometry and not 

necessarily ‘connectivity’. 

6.6 Conclusion 

We have demonstrated that, when we generate the MSN based on a reduced/limited number of MR 

features, we produce correlation matrices which are highly similar to those generated with multi-modal 

imaging. However, the networks generated are differentially, topologically organised based on the 

number of features. We also find that, regardless of number of features, these networks have limited 

predictive validity of generalised cognitive ability scores, although this may be specific to the current 

age range under study. Overall, our study recommends that, in situations where multi-modal imaging is 

not available or clinically/developmentally inappropriate, T1w-restricted MSN construction may give a 
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useful estimate of the MSN, however between model comparisons should be aware of potentially 

methodologically-driven changes to network topology.  
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Chapter 7. Morphometric Similarity Networks of the Brain in Children Post-TBI Predict long-
term Executive Functioning after Insult 

7.1 Overview 

Chapter 6 highlights the potential use of morphometric similarity as an individual-level methodology 

for investigating sMRI data. This final experimental chapter utilised such a methodology to investigate 

the neuroanatomical correlates of executive functioning at an individual level. Given that there is a large 

number of predictors able to be extracted from such networks, the current chapter adopts a data-driven 

approach to analysis, investigating the neuroanatomical correlates of later executive dysfunction using 

supervised-learning. Using this approach it was found that the MSN is able to predict later executive 

functioning in daily living, with a relatively good performance and thus it is concluded that the MSN 

may be a useful tool for investigating these neuroanatomical correlates. 

King, D. J., Seri, S., Catroppa, C., Anderson, V. A. & Wood, A. G. (In Prep.) Morphometric 

Similarity Networks of the Brain in Children Post-TBI Predict long-term Executive 

Functioning after Insult. 

DJK and AW contributed to the conception and design of the current study. VA and CC contributed and 

collected data. DJK performed the processing of MRI data, conceptualized and performed the statistical 

analysis and wrote the first draft of the manuscript. All authors contributed to manuscript revision. 

7.2 Introduction 

Executive dysfunction is a common and persistent impairment following a paediatric traumatic brain 

injury (pTBI), even at longer periods post-injury (Babikian & Asarnow, 2009; Sesma et al., 2008). 

Executive functions (EF) can be conceptualised of comprising three core skills; working memory, 

behavioural inhibition and cognitive flexibility (Karr et al., 2018) and from these arise higher-order EFs 

such as planning and novel problem solving (Krasny-Pacini et al., 2017). The executive dysfunction 

seen in children after TBI is not only evidenced by impairments to performance-based EF measures 

(Babikian & Asarnow, 2009; Resch et al., 2019; Roncadin, Guger, Archibald, Barnes, & Dennis, 2004; 

Sesma et al., 2008; Urban et al., 2017) but also on measures of higher-order, everyday EF (Krasny-

Pacini et al., 2017; Mangeot et al., 2002; Vander Linden, Verhelst, Verleysen, et al., 2019) that can be 

indexed via parental report. This ecologically-relevant impairment in daily-living persists over time 

(Keenan et al., 2018; Krasny-Pacini et al., 2017; Vander Linden et al., 2018) despite improvements in 

scores on performance-based EF skills (Anderson & Catroppa, 2005; Krasny-Pacini et al., 2017; Levin 

et al., 1997). However, there still exist distinct, inter-individual trajectories of executive dysfunction 

after injury (Anderson & Catroppa, 2005; Catroppa & Anderson, 2009; Konigs et al., 2018; Polinder et 

al., 2015; Ringdahl et al., 2019). Executive dysfunction has significant links to impairments in the 

attainment of other, linked skills, thus setting the scene for long-term poor developmental outcomes 

(Gaines & Soper, 2018; Perone et al., 2018).  Given this, and the importance of early intervention to 
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promote best-attainable outcomes, it is important to investigate models by which we can predict the 

children and adolescents who go on to experience EF-related difficulties. 

MRI is a potential biomarker of brain health and level of damage following a TBI (Bigler, 2013). 

Morphometric analyses of structural T1w MRI show that the brains of children and adolescents who 

have experienced a pTBI are different to that of typically developing controls, with evidence of differing 

trajectories from normative brain maturation (King et al., 2019). EFs require intact frontal-striatal 

circuits (Giedd et al., 1999; Luciana & Nelson, 1998), with the maturation of a cortical-subcortical 

network needed for the appropriate unfolding of EF skills over the childhood and adolescent period 

(Bettcher et al., 2016). Therefore, EFs are particularly vulnerable to the damage that occurs in pTBI, 

because those same brain networks are still undergoing maturational changes necessary to subsume 

these developing skills. Therefore, MRI ‘biomarkers’ of these networks should provide insight into the 

degree of executive dysfunction experienced post-injury at the individual-level. However, the current 

literature shows mixed findings of the association, and predictive utility, between structural brain 

imaging and EF in pTBI. For instance, in a group with mild pTBI, thinner cortical thickness (CT) of the 

dorsolateral prefrontal cortex was associated with slower reaction times in a high cognitive load working 

memory dual-task (Urban et al., 2017). Smaller parietal and cingulate volumes were related to longer 

reaction times in a working memory task (Wilde et al., 2011) and parent-reported working memory 

problems were significantly associated with the CT of temporal and parietal regions-of-interest (ROIs 

Merkley et al. (2008)). Whole brain white-matter (WM) volume predicted long-term 

inhibition/cognitive flexibility outcomes at 16 years post injury (Yu, Seal, et al., 2018). Despite these 

findings, others have found no relationship between total grey-matter (GM) volume or frontal pole CT 

and performance measures of working memory and cognitive flexibility (Konigs et al., 2018; Levan et 

al., 2016). Morphometric changes are not associated with the improvement of EF following cognitive 

training (Vander Linden, Verhelst, Deschepper, et al., 2019) or parent-reports of executive dysfunction 

(Vander Linden, Verhelst, Verleysen, et al., 2019). These results highlight the high variability in the 

purported relationship between indexes of post-injury brain morphometry and EF.  

A number of limitations may account for inconsistencies in these findings.  Existing literature utilises 

limited sample sizes (Levan et al., 2016; Merkley et al., 2008; Urban et al., 2017; Vander Linden, 

Verhelst, Deschepper, et al., 2019; Vander Linden, Verhelst, Verleysen, et al., 2019), and either highly 

reductionist measures of brain morphology across multiple regions/hemispheres (Konigs et al., 2018; 

Vander Linden, Verhelst, Verleysen, et al., 2019; Yu, Seal, et al., 2018) or a limited number of ROIs 

that are tested (Levan et al., 2016; Vander Linden, Verhelst, Deschepper, et al., 2019) These factors are 

likely due to the restricted statistical power with which to test more complex or a greater number of 

brain regions, given the small sample sizes in the field of pTBI. 

A key limitation of this previous work is the abundance of univariate analyses that treat the morphometry 

of multiple ROIs as distinct, independent features, rather than interconnected components of a 
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multivariate whole. A promising technique to establish a link between TBI related changes to the 

complex organization of morphometry of the brain and later executive functioning outcomes is 

Morphometric Similarity (MS, Seidlitz et al. (2018)). These networks quantify the meso-scale 

organisation of the cortex as a biologically meaningful set of statistical similarities between the macro 

and microstructural architectural properties of all regions of the brain, which can be measured in-vivo, 

using MRI (Morgan, Seidlitz, et al., 2018). Approaching the morphometry of the cortex as a complex 

network allows us to investigate additional information beyond that of univariate, local approaches to 

brain structure (Bullmore & Sporns, 2009; Pagani et al., 2016). These approaches have produced 

meaningful networks of meso-scale cortical organisation, which are able to discriminate between 

controls and patients with autism spectrum disorder (Zheng et al., 2019), Alzheimer's disease (Zheng et 

al., 2018) and early psychosis (Morgan, Seidlitz, et al., 2018). These networks have also successfully 

been applied to neurodevelopmental cohorts, detecting structural brain dysmaturation in premature 

infants (Galdi et al., 2018), and anatomical disruptions due to regional expression of the abnormal copy 

number variants (CNVs) in a number of neurodevelopmental disorders (Seidlitz et al., 2019). Whilst 

these networks have been used to predict variance in IQ (Seidlitz et al., 2018), no previous work has 

used these networks to predict clinically-relevant, neuropsychological outcome. However, recent 

research has highlighted that individual differences in morphometric similarity, specifically levels of 

similarity of regions in the prefrontal cortex, were able to predict inhibitory control more accurately than 

any individual morphometric features in a large sample of adults (He, Rolls, Zhao, & Guo, 2019). This 

highlights the potential use of this method in both paediatric populations with pathological changes to 

the brain and investigating the neuroanatomical basis of executive functioning. 

Given recent characterisations of TBI as a diffuse disorder of brain connectivity, and the limited findings 

of local, univariate approaches to brain structure function relationships post-injury, we utilised 

morphometric similarity as a novel tool with which to investigate executive dysfunction post pTBI. We 

predicted that, in children who have experienced a pTBI, due to the additive effects of both pathology-

related abnormalities and disrupted neural development, that the highly controlled morphometric 

similarity of cortical regions will be different compared to controls. We also predicted these differences 

would be primarily found in fronto-temporal regions which are most commonly found to be abnormal 

following pTBI (King et al., 2019). We also predicted that quantitative measures of morphometric 

similarity in patients would be related to later functioning and predict later EF outcomes beyond that of 

any one feature alone. 

The specific hypotheses were that: 

1. the magnitude of morphometric similarity in patients would be different from that of controls 

and this difference would be regionally focussed in the fronto-temporal regions, 
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2. the magnitude of morphometric similarity of regions will predict later executive dysfunction at 

two years post-injury in pTBI patients, 

3. the morphometric similarity of regions will provide greater information than any one individual 

morphometric feature and thus will generate a more accurate prediction than that with individual 

features. 

7.3 Methods 

7.3.1 Ethics statement 

Data from the TBI cohort in the current study was obtained under a material transfer agreement between 

the Murdoch Children’s Research Institute and Aston University originally acquired for a study which 

had previously received ethical approval via the Human Research and Ethics Committee of Royal 

Children’s Hospital, Melbourne, Australia. A favourable opinion was granted by Aston University ethics 

panel for the secondary analysis of this dataset. 

7.3.2 Participants 

The data used in the current experiment are a subset of an existing dataset of children who have 

experienced a TBI between the ages of five and 16 years of age. 157 children (patients n=114) were 

recruited between 2007 and 2010 into a study on ‘Prevention and Treatment of Social Problems 

Following TBI in Children and Adolescents’. More detailed descriptions have been published elsewhere 

(Anderson et al., 2013; Anderson et al., 2017; Catroppa et al., 2017). In brief, children with TBI were 

recruited on presentation to the Melbourne Royal Childrens’ Hospital’s emergency department. Patients 

were eligible if they: i) were aged between five and 16 years at the time of injury, ii) had recorded 

evidence of both a closed-head injury and also two post-concussive symptoms (such as headaches, 

dizziness, nausea, irritability, poor concentration), iii) had sufficient detail within medical records 

(Glasgow Coma Scale (GCS; (Teasdale & Jennett, 1974)), neurological and radiological findings) with 

which to determine the severity of the injury, iv) had no prior history of neurological or 

neurodevelopmental disorder, non-accidental injuries or previous TBI, and v) were English speaking. 

TD controls were also recruited and were required to meet criteria i), iv) and v).  

MRI images were acquired at 3T as a part of an existing research protocol on a Siemens Trio scanner 

(Siemens Medical Systems, Erlangen, Germany) using a 32-channel matrix head coil. The acquisitions 

pertinent to the current study included a sagittal three-dimensional (3D) MPRAGE [TR = 1900 ms; TE 

= 2.15 ms; IR prep = 900 ms; parallel imaging factor (GRAPPA) 2; flip angle 9 degrees; BW 200 Hz/Px; 

176 slices; resolution 1 × .5 × .5 mm] and sagittal 3D T2-w non-selective inversion preparation SPACE 

(Sampling Perfection with Application-optimised Contrast using different flip-angle Evolution) [TR = 

6000 ms; TE = 405 ms; inversion time (TI) = 2100 ms; water excitation; GRAPPA Pat2; 176 slices; 1 

× .5 × .5 mm resolution matched in alignment to the 3D T1-weighted sequence]. 
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We only included subjects who; a) met strict quality control criteria of Freesurfer outputs (see later), 

and b) underwent MRI scanning <90 days post-injury. This resulted in a subset of n = 116 subjects (TBI 

patients (n =  83) and healthy controls (n = 33)). Group demographics can be seen in Table 7.1.  
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Table 7.1. Demographics for patients and controls 

Group pTBI Controls Comparison 

N 83 33 - 

M/F 54/29 20/13 OR= 1.21, p=.67a 

Age at Scanning (median, yrs) 11.07 9.99 F(1,114)=.262 , p=.61b 

(range, yrs) 6.09-14.82 6.53-15.47 - 

Age at Injury (median, yrs) 10.92 NA - 

(range, yrs) 5.92-14.67 NA - 

Injury-Scan Interval (median, days) 34 NA - 

(range, days) 1-88 NA - 

Injury Severity      

Mild 47 NA - 

Moderate/Severe c 36 NA - 

Note. a Fisher’s exact test (OR = odds-ratio), b One-Way ANOVA, c Mild Complicated TBI + 
Moderate TBI + Severe TBI  
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7.3.3 MRI Processing 

3D tissue segmentation and estimation of brain morphometry from T1-weighted (T1w) MR images were 

conducted using an established pipeline (Freesurfer version 6.0; see Fischl (2012) for review). The steps 

involved are documented elsewhere (Fischl et al., 2004) but briefly, T1w images were stripped of non-

brain tissues (Segonne et al., 2004), GM/WM boundaries were tessellated and topology was 

automatically corrected (Fischl et al., 2001; Segonne et al., 2007). Finally, deformation of this surface 

was performed, to optimally define tissue boundaries using intensity gradients (Dale et al., 1999; Dale 

& Sereno, 1993; Fischl & Dale, 2000). Where available, 3D T2-weighted (T2w) FLAIR MRI were used 

to refine the boundary between the pial surface and dura within the Freesurfer algorithm, to good effect. 

In this study, Freesurfer was used to estimate multiple morphometric features for 34 ROIs per 

hemisphere, based upon the cortical parcellation of the Desikan-Killiany atlas (Desikan et al., 2006). 

This parcellation was chosen over a more fine-grained parcellation scheme due to concerns over 

statistical power if a greater number of ROIs were analysed. This allowed us to estimate seven metrics 

with which to estimate the morphometry and shape of the cortex. This included surface area, curvature 

index, folding index, Gaussian curvature, mean curvature, cortical thickness, and cortical volume. The 

quality of Freesurfer outputs was assessed using Qoala-T (Klapwijk et al., 2019) as a decision support 

tool to guide systematic and replicable selection of which cases required manual editing. Multiple cases 

within the original TBI cohort also had frank parenchymal lesions to the grey matter ribbon. For these 

cases, Freesurfer has limited applicability with its standard processing pipeline and thus an adjusted 

pipeline was utilised as used in our previous studies of this dataset (Chapter 4). Eight cases with lesions 

were retained for analysis using this pipeline. 

7.3.4 Morphometric Similarity Network Construction 

In the initial validation experiments of morphometric similarity, Seidlitz et al. (2018) estimated networks 

from morphometric features measured in vivo by both structural and diffusion. However, in previous 

work, we highlighted significant correspondence between this morphometric similarity and that 

estimated with only features obtainable from a T1w MRI (King & Wood, 2019) and recent papers have 

similarly adopted this T1w-only approach (He et al., 2019). Therefore, the current study adopts this 

approach. 

To estimate morphometric similarity, the nodes for network construction were the ROIs from the 

Desikan-Killany atlas. At an individual-level, the seven morphometric features estimated for each node 

can be expressed as a set of n vectors of length 10, with each vector as a different anatomical region (n 

= 68), and each element of the vector a different morphometric measure. To normalize measures within 

this length 10 vector, each morphometric feature is demeaned and SD scaled across the 68 regions, using 

Z-scores. A correlation matrix was generated for each participant, where each element of the matrix is 

the correlation between the feature vectors for every possible pairwise combination of regions. This 



 

167 
 

correlation matrix represents the morphometric similarity derived meso-scale cortical organisation for 

each participant. These were thresholded across multiple network density thresholds (x = 5 to 40 in 

increments of 5), retaining only x % strongest absolute values of morphometric similarity across the 

graph. We also investigated the unthresholded graph. This has the effect of removing potential false-

positive estimates of morphometric similarity. 

For each node/ROI, we calculated both nodal degree and nodal strength. Nodal degree was the number 

of edges that had survived thresholding for each node. Normalised nodal strength was calculated as the 

‘magnitude’ of morphometric similarity for each node. This is defined as the sum of the morphometric 

similarity weights of all of the edges of node i (Fornito et al., 2016), normalised by the degree of the 

node (nodes with a higher number of edges will by definition have a greater magnitude of morphometric 

similarity). We also calculated the average nodal strength across the network to provide a global measure 

of the magnitude of morphometric similarity. 

7.3.5 Executive Functions (EF) 

EF was assessed for patients in the TBI cohort (patients and controls) at approximately 24-months post 

injury (M(SD) = 754(80) days post injury) using performance-based neuropsychological testing. Several 

standard, age-appropriate neuropsychological tests were administered to participants to index EF skills, 

and these were from three typical, age-appropriate test batteries; i) Tests of Everyday Attention – 

Children (TEA-Ch; (Manly et al., 1999)), ii) Delis-Kaplan Executive Function System (D-KEFS, (Delis 

et al., 2001)), and iii) Wechsler Intelligence Scale for Children (WISC-IV, (Wechsler, 2003)). These 

measures were selected from a wider battery of administered neuropsychological tests as part of the 

wider study. Specific subtests used in the current study were selected to represent components of a three-

factor EF model (Miyake et al., 2000) and can be found in Table 7.2. Performance scores for the 

neuropsychological test batteries were converted to age-scaled scores (M=10, SD=3). To provide a 

summary score for common EF performance, we summed these age-scaled scores across subtests, with 

higher scores representing better performance. The Behaviour Rating Inventory of Executive Function 

(BRIEF, Gioia et al. (2000)) measures EF in daily life, using purposeful, goal-directed behaviours to 

solve and adapt to problems (Donders & DeWit, 2017). The current study specifically uses the ‘Global 

Executive Composite’ T-score (GEC; M=50, SD=10), with higher scores representing greater 

difficulties in behavioural EF. Fifty-nine participants had completed neuropsychological testing to 

calculate EF summary scores and 59 (not identical) participants had BRIEF-GEC scores available. By 

using two differing measures of EF (performance-based vs behavioural/parent report) we are able to 

assess the concordance of our results across multiple measures.  
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Table 7.2. Neuropsychological tests and subtests used to group patients on executive functioning outcome 

2 years post-injury 

EF Domain Battery Subtest Measure 

Set Shifting TEA-Ch Creature counting  Accuracy (no. correct) 

 TEA-Ch Creature counting  Time taken 

Inhibition D-KEFS Colour-word interference – condition 3  Time Taken 

 D-KEFS Colour-word interference – condition 4  Time Taken 

 TEA-Ch Walk-don’t-walk Score 

 TEA-Ch Skysearch Attention Score 

Working Memory WISC-IV Digit span backwards Score 
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7.3.6 Statistical analysis 

7.3.6.1 Between-group differences in the magnitude of morphometric similarity 

Firstly, we investigated differences in the magnitude of morphometric similarity between patients and 

controls. For each threshold, we conducted a GLM to test the effect of group (TBI vs Controls) on 

average nodal strength, whilst controlling for age at scanning, sex, age*sex, and estimated total 

intracranial volume (eTIV). This was repeated for all ROIs of the unthresholded network to investigate 

the effect of group on nodal strength. For all GLM analyses, the t-statistic for the estimated effect of 

group on was used to estimate the effect size using Hedge’s g (reference) corrected for unequal sample 

sizes (Rosnow et al., 2000). All p-values reported are FDR-corrected (Benjamini & Hochberg, 1995) 

across the number of thresholds or the number of ROIs.  

7.3.6.2 Predicting EF outcome using MS in pTBI 

To assess whether MS was related to later function EF outcomes in the patient group, we utilised a 

supervised learning approach using partial least squares regression (‘plsRglm’ package in R, Bertrand 

and Maumy-Bertrand (2018)). This multivariate approach finds the maximal low-dimensional 

covariance between components derived from a high dimensional set of predictors (in this case 

morphometric similarity across ROIs) and a univariate predictor variable (either EF score or BRIEF). 

This approach is commonly used when the number of predictors exceeds the number of observations 

(Krishnan et al., 2011) and has previously been used to examine the relationship of brain structural 

changes and behaviour (Phan et al., 2010).  

Firstly, we decompose the predictor variables into latent variables (components) which simultaneously 

model the predictors and predict the response variable (Krishnan et al., 2011). The predictor matrix 

consisted of either the degree or normalised strength of each node of the morphometric similarity 

network, for each participant. Using a linear model, the potential confounding effect of eTIV, age, 

gender and age*gender interaction was regressed out of values for nodal degree/strength. Then, at each 

network threshold, a PLS regression model was fitted between principal components derived from the 

resultant predictor matrix and the outcome variable. Components were derived and the number of 

components to retain in the final model was decided based upon the local minima of AIC, calculated 

using corrected degrees of freedom of the model (Krämer & Sugiyama, 2011). Given the model with 

the retained number of components, we report the variance explained by the model, and both the Pearson 

correlation and mean absolute error (MAE) between actual and predicted outcome scores. We also 

calculate the bias corrected and accelerated bootstrapped (Bastien et al., 2005) weightings of each 

predictor by conducting 1000 bootstraps of the model. This allows us to assess which brain regions most 

consistently load onto the components and are therefore are contributing most to the explanation of 

variance in the final model.  
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In order to validate the model, we carried out leave-one-out cross validation. The PLS regression was 

applied once for each patient, using all other patients as a training set and using the selected patient as a 

single-item test set. This results in a numerical prediction of outcome for each participant, which is 

independent of the supervised learning procedure. The performance was again assessed with Pearson 

correlation and MAE between actual and predicted outcome scores. 

Following these analyses, we conducted similar predictions using the individual morphometric features 

at each region as the predictors, to determine whether morphometric similarity provided greater 

information for prediction than the features alone. 

7.4 Results 

7.4.1 Patient-control differences in the magnitude of morphometric similarity 

When comparing pTBI patients against controls, mean difference in the magnitude of morphometric 

similarity (adjusted for age at scanning, sex, age*sex, and eTIV) across the brain was not significant 

following FDR correction, across all network thresholds tested (all pfdr > .05). This non-significant 

difference was echoed when looking at the nodal strength across the 68 regions in the unthresholded 

network. These results can be seen in supplementary materials (Appendix F). 

We posited that these lack of significant differences were potentially due to the inhomogeneity of the 

patient group and thus we conducted exploratory, post-hoc analyses of multiple patient-control 

differences, specifically across groups of clinically relevant EF impairment and injury severity groups. 

Still, no significant differences were found. These results can also be seen in supplementary materials 

(Appendix F). 

7.4.2 Predicting EF outcome using morphometric similarity in pTBI 

Qualitatively, there appeared to be a range of performance on our indexes of EF, for both EF summary 

scores (M = 70, SD = 12, range = 34 – 97) and BRIEF GEC (M = 48, SD = 11, range = 35 – 83) across 

the pTBI group. We conducted PLS regression to separately predict these scores from the ROI-level 

magnitude of morphometric similarity estimated across all nine network thresholds tested.  

For EF, across all thresholds, the AIC indicated the retention of zero predictor components in the model, 

thus no models were generated. This suggests that morphometric similarity is unrelated to later 

performance EF. 

However, for BRIEF scores, AIC suggested retention of 1 component, across network densities of .25, 

.30, .35, & .40. In these models, highly significant positive correlations were found between actual and 

predicted BRIEF scores, with the PLS models explaining around 40% variance in BRIEF scores (R2 = 

.36 - .42), with a relatively low error between predicted and actual scores (MAE = 6.08-6.49). When 

validated using a LOO-CV approach, there were significant positive correlations between predicted and 
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actual outcomes (see Table 7.2) and error was still low (MAE = 7.85-8.25). Figure 7.1 highlights these 

predictions graphically. When predictor weightings were bootstrapped to a provide CIs of weightings, 

the CIs appeared narrow but some overlap between regions was present. Figure 7.2 illustrates, across 

network densities, a consistent set of regions that were most highly weighted in the generation of 

components, therefore explaining the greatest proportion of variance in BRIEF outcome. 

7.4.3 Predicting EF outcome using individual morphometric features in pTBI 

Table 7.3 shows the results of PLS models using individual morphometric features to predict both EF 

summary and BRIEF GEC scores. Unlike for morphometric similarity, PLS models were generated for 

curvature index, Gaussian curvature and cortical volume in predicting EF score. There was a large 

variation in performance of these models across the structural features when internally validated with 

LOO-CV across evaluations of variance of EF score explained and MAE (R2 = .03 - .13, MAE = 9.67 - 

10.56). In predicting BRIEF-GEC curvature index, folding index, Gaussian curvature, cortical thickness 

and cortical volume produced models where components were retained. For these models, training 

produced models which explained less variance than the morphometric similarity models, with weaker 

correlations between observed and predicted outcomes and slightly higher MAE (R2 = .10 - .19, MAE 

= 6.99 – 7.61, See Table 7.3 for more details). The LOO-CV generated predictions from these models 

also explained less variance than the morphometric similarity model (R2 = .02 - .04). As shown in the 

supplementary materials (Appendix F), the bootstrapped CIs for regional predictors for all individual 

features were much wider than those in the morphometric similarity PLS model. 
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Table 7.2. Description of models where components were retained when predicting executive dysfunction from the morphometric similarity of those 

following a pTBI 

Outcome Graph Metric Network Density N. Comp. 
Full Dataset  LOO-CV 

R2 Model r(ypred., yactual) MAE  R2 Model r(ypred., yactual) MAE 

BRIEF-GEC Degree .25 1 .42 r = .65, p < .0001 6.12  .07 r = .27, p = .038 8.15 

  .30 1 .41 r = .64, p < .0001 6.08  .09 r = .30, p = .021 7.97 

  .35 1 .38 r = .62, p < .0001 6.30  .12 r = .35, p = .006 7.85 

  .40 1 .36 r = .60, p < .0001 6.49  .08 r = .28, p = .033 8.25 

Note. N. Comp. = Number of components retained in the model, LOO-CV = Leave-one-out cross-validation, MAE = Mean Absolute Error between 

predicted values and actual values 
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Table 7.3. Description of models where components were retained when predicting executive dysfunction from individual morphometric features of those 

following a pTBI 

Outcome Morphometric Feature N. Comp. 
Full Dataset  LOO-CV 

R2 Model r(ypred., yactual) MAE  R2 Model r(ypred., yactual) MAE 

EF Score Curvature index 1 .17 r = .41, p = .001 8.71  .13 r = -.37, p = .004 10.56 

 Gaussian Curvature 1 .17 r = .41, p = .001 8.98  .03 r = .24, p = .066 9.67 

 Cortical Volume 1 .20 r = .45, p < .001 8.79  .05 r = .23, p = .073 9.79 

BRIEF-GEC Curvature index 1 .14 r = .37, p = .004 7.61  .04 r = -.21, p = .11 8.62 

 Folding Index 1 .18 r = .43, p < .001 7.48  .03 r = -.16, p = .22 8.78 

 Gaussian Curvature 1 .15 r = .39, p = .002 7.50  .04 r = .20, p = .14 8.09 

 Cortical Thickness 1 .10 r = .32, p = .013 7.57  .02 r = .14, p = .30 8.03 

 Cortical Volume 1 .19 r = .43, p < .001 6.99  .03 r = .17, p = .20 7.82 

Note. N. Comp. = Number of components retained in the model, LOO-CV = Leave-one-out cross-validation, MAE = Mean Absolute Error between 

predicted values and actual values 
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Figure 7.1. Continued overleaf 
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Figure 7.1. Results of PLS regression. Results are shown across network density thresholds as follows; a) .25, b) .30, c) .35, d) .40. i) The correlation 

between actual and predicted BRIEF scores based upon the PLS regression model, ii) the correlation between actual and predicted BRIEF scores based 

upon leave-one-out cross-validation of the PLS regression model. For i) and ii) the line represents x = y, indicative of perfect prediction of a model. iii) 

The bootstrapped (bias-corrected and accelerated) CI for PLS weightings for each ROI. 
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Figure 7.2. Plot of top five positive/negative weighted predictors (degree of ROIs) of BRIEF GEC across 

network thresholds from .25 density to .40. (r = right hemisphere, l = left hemisphere, pTRI = pars 

triangularis, INS = r insula, TP = temporal pole, PARH = parahippocampal gyrus, MOF = middle 

orbitofrontal, pORB = pars orbitalis, pOPER = pars opercularis, ENT = entorhinal, TT = transverse 

temporal, cACC = caudal anterior cingulate, ITG = inferior temporal gyrus, SFG = superior frontal 

gyrus, FP = frontal pole, rMFG = rostral middle frontal gyrus, iCC = isthmus cingulate, STG = 

superior temporal gyrus, IPL = inferior parietal lobule, PCUN = precuneus, preC = precentral sulcus) 
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7.5 Discussion 

7.5.1 Patient-control differences in the magnitude of morphometric similarity 

The current study adopts a morphometric similarity network approach (Seidlitz et al., 2018) to the 

investigation of the neuroanatomical correlates of later executive dysfunction following pTBI. However, 

we found no differences, across any of the morphometric similarity network thresholds tested. This was 

true at both the graph and ROI-level, between pTBI patients and controls. For these analyses, the entire 

patient group were considered as a single, homogenous group. However, we know that there are large 

heterogeneities in terms of structural damage post-pTBI (King et al., 2019), and in executive dysfunction 

outcomes (Ringdahl et al., 2019). In a previous study of the current dataset, we also showed that 

structural covariance derived from only cortical thickness measures, differed between patients and 

controls when patients were stratified based on an EF neuropsychological impairment rule (Beauchamp 

et al., 2015), with differences only being seen in those patients showing an impairment in EF (Chapter 

4). Therefore, we compared morphometric similarity between groups derived from those with clinically 

relevant impairment or groups based on injury severity. We still found no significant group differences 

in the magnitude of morphometric similarity averaged across the cortex. 

7.5.2 Predicting EF outcome using morphometric similarity in pTBI 

Despite finding no group differences in the magnitude of morphometric similarity, we were able to 

predict later executive dysfunction in pTBI patients. We successfully built models that predicted BRIEF 

– GEC from the nodal degree of ROIs. This was across a collection of network densities across the 

middle of the range tested. This is unsurprising, given that at lower network densities the network would 

become sparse and contain much less information with which to predict outcome whilst at higher 

densities, there is a much greater propensity to the inclusion of false-positive edges, introducing error 

into the prediction algorithm. Our models performed relatively well, the correlation between actual and 

predicted scores, both in the training and LOO-CV sets were moderate.  

Bootstrapping the predictor weightings highlighted strongest predictive utility (both positive and 

negatively weighted) across fronto-temporal regions. Of note were the high loadings across regions of 

the prefrontal cortex (inferior, superior and medial orbito- frontal gyri) which are particularly important 

for typical development of EFs (see Fiske and Holmboe (2019), for a review). The regions highlighted 

here consist of those that are commonly found to be smaller or reduced post pTBI compared to controls 

in terms of regional CT and GM volume, indicative of susceptibility to the pathologic effects of injury 

(Wilde et al. (2011), Merkley et al. (2008), Mayer et al. (2015), Wilde, Merkley, et al. (2012), Dennis, 

Faskowitz, et al. (2017), Dennis et al. (2016); see King et al. (2019) for a systematic review). Previous 

work investigating neuroanatomical correlates of the BRIEF-GEC post pTBI found no correlations with 

mean cortical thickness over multiple ROIs that were chosen a-priori due to their involvement in 
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mediating EFs (Vander Linden, Verhelst, Verleysen, et al., 2019). Our multivariate methodology, 

however, was able to identify a moderate relationship between patterns of morphometric similarity 

across the cortex and later EF. This suggests that not only has the current methodology replicated 

previous neuroanatomical differences post-TBI, but also the method is sensitive enough to functionally 

relevant morphometric variation. 

Our results show convergence with previous work utilising multivariate methodologies to investigate 

the neuroanatomical correlates of EF. Ziegler, Dahnke, Winkler, and Gaser (2013) found that, in a child 

and adolescent cohort, a latent cognitive variable (onto which the BRIEF heavily loaded) was related to 

voxel-based morphometry of regions similar to those found in the current study, across regions of 

inferior frontal gyrus, insula, medial orbitofrontal, anterior cingulate cortices. DTI-derived connectivity 

of the anterior cingulate and superior frontal regions also distinguished a cluster of children characterised 

by a profile of elevated inattention, hyperactivity and EF symptoms, who also measured this using the 

BRIEF (Bathelt, Holmes, Astle, Centre for Attention, & Memory, 2018). Only one previous study has 

investigated the neuroanatomical correlates of executive functions utilising the morphometric similarity 

approach. He et al. (2019) specifically highlighted the role of right medial orbitofrontal cortex as a node 

of the morphometric similarity network specifically related to predicting inhibitory control performance 

in healthy adults. Overall, the neuroanatomical specificity of our predictions seems to be plausible in 

terms of EF maturation, correlates of EF problems in childhood and consistent with previous 

investigations using morphometric similarity. However, the current study expands these findings beyond 

the meso-scale architecture of individual regions and suggests that the meso-scale organisation of the 

cortex (indexed using morphometric similarity) in relation to these specific regions is important for 

subsuming later executive functioning.  

EF measurements typically capture information about the performance of cognitive processing skills 

inherent to EFs, or the functional/behavioural manifestation of executive dysfunction. In the current 

study, an interesting pattern of findings emerged, along these lines. Specifically, whilst we show that 

morphometric similarity predicts BRIEF ratings of EF, which ascertain the functional consequences of 

executive impairments that manifest in everyday life, the same was not true for directly-measured, or 

performance-based, scores. The latter measures instead assess the cognitive aspects of executive 

impairments. Thus, the pattern of results reported here is perhaps unsurprising, given that the BRIEF 

has been shown to index different components of EF to typical performance-based measures (McCauley 

et al., 2010; Ten Eycke & Dewey, 2016) and has been shown to have differential neuroanatomical 

correlates (for instance Faridi et al. (2015) showed differences in neuroanatomical correlations of both 

performance-based and BRIEF measures of working memory). pTBI is also thought to be characterised 

by differential trajectories in terms of BRIEF and performance indexes of EF, although this may be due 

to practice effects (Anderson & Catroppa, 2005; Krasny-Pacini et al., 2017).  
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Another potential explanation for this pattern of results is that the BRIEF scores index a higher order, 

functional/behavioural manifestation of executive dysfunction in daily living, beyond that of individual 

EF skills. It is the common executive functions (working memory, inhibitory control & cognitive 

flexibility) that give rise to the more complex executive behaviours necessary for daily living, such as 

planning and reasoning. Therefore, it is likely that these complex behaviours recruit a diverse network 

of brain regions, beyond that of any one of the unitary executive skills that give rise to these higher order 

functions. It is therefore unsurprising that morphometric similarity, a model that investigates the 

integrative, interrelated nature of the structure of the cortex, is able to predict executive dysfunction 

related to daily living tasks, but not a measure of multiple performance-based EF skills. 

Overall, these findings provide further evidence that the degree to which regions that typically play a 

role in supporting the acquisition of executive function skills are left-intact is associated with later 

executive dysfunction following pTBI (Anderson & Catroppa, 2005; Bettcher et al., 2016; Wilde et al., 

2011). The current study expands these findings, suggesting that, not only is the post-injury structure of 

these regions prognostically important, but also how this structure is interrelated across all areas of the 

cortex. This further highlights the functional relevance of this cortex-wide organization of morphometric 

similarity. Nevertheless, there is no current understanding as to the ‘normative’ values for morphometric 

similarity across the developmental period and thus it is unclear if these inter-individual differences in 

this metric represent ‘damage’ or ‘abnormalities’ post-injury. Future research should be conducted to 

properly characterise the developmental trajectories of morphometric similarity across the 

developmental period. 

The predictive validity of morphometric similarity occurred despite the lack of significant group 

differences across multiple comparisons of morphometric similarity outlined above. This may highlight 

the fact that damage following a pTBI is unlikely to occur to a single region in isolation. That is to say, 

the pathological effects of injury are diffuse in nature (Bigler, 2016; Bigler et al., 2010).  One benefit of 

the PLS regression approach is that it allows us to better understand the multivariate pattern of the subtle 

changes that happen in the brain, beyond that of univariate approaches such as voxel-based 

morphometry that are biased towards detection of more spatially localized effects and neglect 

interactions between neuroanatomical features (Davatzikos, 2004; Levine et al., 2013; Sepehrband et 

al., 2018). However, it is important to note that accuracy of prediction based on supervised learning 

models does not necessarily confer evidence of causality; the predictive variables may carry 

intermediate ‘signal’ that is relevant to the measure of interest but is not directly related (Bzdok & 

Ioannidis, 2019). This is especially true in relation to models using morphometric similarity as predictive 

variables, as this is based on indirect measures of meso-scale features of the brain. Thus, inference from 

these models need to be considered with caution and tested within inferential statistical models. 

7.5.3 Predicting EF outcome using individual morphometric features in pTBI 
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The current study expanded previous studies of neuroanatomical correlates of EF following pTBI by 

investigating previously unstudied structural features (i.e. curvature) but also using multivariate, rather 

than univariate approaches to structure. We generated models to predict both EF scores and BRIEF GEC 

from individual morphometric features to some success. Interestingly, despite previous work finding no 

significant neuroanatomical correlations between the BRIEF GEC and mean cortical thickness over 

multiple EF-subsuming ROIs post-pTBI (Vander Linden, Verhelst, Verleysen, et al., 2019), the PLS 

model was able to detect a meaningful, multivariate pattern of regional CT which was predictive of EF 

functioning. These predictions were despite an inability to predict EF scores from the morphometric 

similarity model. 

We show a marked difference in the predictive performance of models using morphometric similarity 

vs. the individual morphometric features used to estimate morphometric similarity. For the BRIEF GEC, 

the morphometric similarity model explained a greater proportion of variance than the curvature index, 

folding index, CT and cortical volume models. However, across both morphometric similarity and 

individual feature models, the prediction error was similar in terms of MAE (difference in this error was 

less than a single point on the BRIEF measure). In addition, when we generated bootstrapped CIs of 

weightings of individual ROIs in terms of the PLS components, we found that these were wide, 

suggesting two things. Firstly the PLS model for these individual features is highly unstable and 

secondly, that there is little regional specificity of damage (as indexed by individual structural features) 

on the prediction of outcome, especially given the high overlap in CIs between regions. Overall, these 

findings are first evidence that morphometric similarity of regions may be more sensitive to the clinically 

relevant structural damage post-neurologic insult, compared to standard structural measures. 

7.5.4 Limitations 

One major strength in the current study is that, at the time of writing, it is the first study to investigate 

morphometric similarity in pTBI. However, it is also the first study to utilise PLS regression to 

investigate the neuroanatomical correlates of post-injury functioning in this clinical group. PLS is a 

powerful exploratory tool for such a task, allowing us to model even collinear or near-linearly dependant 

predictors as well as generating coefficients that are more stable and easier to interpret than other 

multivariate approaches such as canonical correlation analysis (Wegelin, 2000).  

One potential limitation of the morphometric similarity approach is the evidence here which suggests 

that edge weights of the network based on morphometric similarity are not reliably estimated. It is 

important to note that the PLS regression only found models when utilising nodal degree to predict 

outcome. This binarises the network, thus removing a large amount of information from the network in 

the form of edge weights. Given that these edge weights did not result in a model with which to predict 

EF, it may be pertinent to assume that these edge weights contain more noise than predictive signal; 

potentially as the edge weights themselves cannot be reliably estimated. This may be because the edge 
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weighting is estimated from a correlation between seven morphometric features, a small number of 

observations with which to reliably estimate a correlation coefficient. This is further evidenced by the 

high SD of edge weights found by Seidlitz et al. (2018). However, some edge weighting information 

will inherently be retained in the binarised network, with retained edges (by definition) being those with 

a greater edge weight than the edges that were removed from the graph. More reliable estimation of 

morphometric similarity could result in more accurate predictive models. One potential solution for 

future research may be to generate/sample a larger number of morphometric, meso-scale features from 

the T1w image with which to estimate morphometric similarity (i.e. Klein et al. (2017)). 

There are also some difficulties in testing the degree to which morphometric similarity predicts EF 

beyond individual structural features. Whilst our PLS models show that morphometric similarity 

seemingly contains prognostic information beyond individual features, this is a limited comparison.  

Morphometric similarity may only lead to greater prediction due to the fact it contains ‘signal’ from all 

features whilst we compared it a single individual feature at a time. A more sincere comparison for this 

hypothesis would be to compare the morphometric similarity model against a model that contains all 

features for all regions. This would allow us to assess whether the covariation structure between these 

features (as is represented by morphometric similarity) contains greater prognostic information than the 

features alone. However, this would result in a 7*68 predictor matrix, which far outstrips the number of 

observations we have, and may result in unstable and non-generalizable prediction models due to limited 

sample sizes. This in fact highlights a potential advantage to the use of morphometric similarity in 

research settings such as this, in populations where sample sizes are known to be limited (such as pTBI 

(King et al., 2019)). Morphometric similarity represents a low dimensional representation of the 7*68 

matrix of individual features, and may in fact contain greater information than the individual features 

alone, and so is more appropriate for these populations where observation-predictor ratios would 

otherwise be suboptimal (such as clinical populations where larger sample sizes are harder to obtain). 

 

7.6 Conclusion 

The morphometric similarity approach is a methodology with which we can capture information about 

the brain’s complex structural organisation. We posit this methodology can capture the disruption to the 

highly programmed organisation of the cortex in populations in which the normal developmental 

trajectories may be divergent. We have expanded the previous univariate investigations of the 

neuroanatomical correlates of executive functioning (which are inherently limited in detecting the 

diffuse effects of injury), utilising MS and PLS methods which are novel to the field of neuroimaging 

post pTBI. The current study shows that the complex, meso-scale organization of the morphometry of 

the cortex, namely the morphometric similarity between regions, not only provides additional insights 
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to brain morphometry compared to previous approaches but also possesses the potential to predict more 

accurately these clinically relevant, functional outcomes.  
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Chapter 8. General Discussion 

8.1 Overview 

There is a high prevalence of traumatic brain injuries in the paediatric population, and recent years have 

seen dramatic increases in survival rates. There has therefore, been a progressive move towards reducing 

the uncertainty surrounding the sequelae of an insult for children who have experienced a TBI, 

specifically in terms of later cognitive functioning. The current thesis used state-of-the-art, network-

level analyses to investigate how the multivariate structural organisation of the brain post-injury relates 

to later cognitive function. This chapter discusses these findings within a wider context, and highlights 

potential directions for future research. 

8.2 Findings and Thesis Aims 

8.2.1 Current State of Morphometric Research in pTBI and Univariate Analyses of 
Morphometry 

The first aim of the current thesis was to assess the current state of the field in regard to changes to brain 

morphometry post-pTBI and the subsequent neuroanatomical correlates of later executive functioning. 

In Chapter 2, a systematic review of the literature suggested that there is evidence of persistent, 

neuroanatomical consequences of pTBI. These changes are apparent cross-sectionally and 

longitudinally, suggesting these changes are long lasting. The systematic review also identified a lack 

of consensus on the relationship between morphometry and cognition. Specifically, in terms of executive 

functioning, there is little robust evidence of neuroanatomical relationships between sMRI measures and 

EF abilities. This thesis consolidated these previous findings; Chapter 4 investigated comparisons of CT 

between controls and patients who do or do not experience executive dysfunction at two years post 

injury and no significant differences were observed across the regions tested.  

One key strength of this finding is that the current analyses account for frank parenchymal lesions which 

are present on T1w image for a subset of TBI cases. As highlighted in the systematic review, there is 

potential bias in previous pTBI research with many studies not acknowledging the potential effect of 

lesions on neuroimaging software used to analyse sMRI data. Chapter 3 provided evidence of a bias 

introduced to morphometric measures in the presence of frank parenchymal lesions, beyond the extent 

of the lesion. In analyses of CT data, these effects are controlled for using an adapted Freesurfer pipeline 

to reduce the impact of these biases. Previous studies do not seemingly account for these potential biases 

and therefore differences between patients and controls may specifically be misattributed to the effect 

of pTBI when in fact the differences are primarily error-driven due to this lesion-induced error. In the 

case of neuroanatomical correlates of cognition post-injury, this bias could have resulted in significant 

correlations between anatomy and function that were purely driven by the presence of these frank 

parenchymal lesions. Whilst this error was corrected for in these analyses, the approach in the current 
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thesis subsequently followed the advice given in the systematic review and repeated analyses whilst 

excluding lesion cases, to ensure results are not biased by these cases. 

However, whilst CT at the ROI-level was not associated with executive dysfunction, Chapter 7 

highlights the predictive utility of a multivariate pattern of morphometry across the cortex in predicting 

later executive functioning. The current thesis adopted such an approach because of the spatial 

heterogeneity of damage and post-injury changes highlighted in the systematic review, as this may limit 

the potential of univariate approaches to morphometry to tell us about the subtleties of the more diffuse 

effects of an injury. Therefore, looking more widely at the global effects of injury may explain greater 

variance in functional outcomes post-injury. 

In the existing pTBI literature, no previous studies have used such a multivariate approach to whole-

brain anatomy. Some previous studies have adopted a voxel-based morphometry approach to capture 

the more diffuse effects of injury utilising a univariate approach (i.e. Bigler et al. (2013), Yeates et al. 

(2013)). However, it is important to note that these approaches have multiple limitations that make them 

unsuited to these research questions; they a) are biased towards detection of localized rather than 

spatially-complex group differences (Davatzikos, 2004), and b) are univariate in nature and therefore 

neglect interactions between neuroanatomical features across the cortex (Davatzikos, 2004; Sepehrband 

et al., 2018). Supervised learning approaches, such as partial least squares regression (utilised in the 

current thesis), is more suited to the investigation of diffuse effects of injury on the anatomy of the brain, 

especially since it allows for the high dimensional modelling of brain anatomy with significantly fewer 

observations than are required for more data-hungry approaches such as general linear modelling 

(Davatzikos, 2019; Sepehrband et al., 2018). In the adult TBI literature, PLS approaches to whole-brain 

neuroimaging have been utilised to successfully relate a pattern of brain volumetric changes to multiple 

domains of cognitive functioning (Esopenko & Levine, 2015, 2017; Fujiwara et al., 2008; Levine et al., 

2013). In the paediatric TBI literature, no previous study has utilised supervised learning, multivariate 

approaches to capture the variance between regional-level structural indices and long term cognitive-

behavioural outcome. One recent study utilised a support vector machine to predict change in post-

concussive symptoms over four weeks for children in the acute stages of a mild-TBI however, they 

specifically focused on only two ROIs, rather than whole-brain morphometry data (Iyer, Zalesky, 

Barlow, & Cocchi, 2019). Other studies have harnessed the potential of multivariate PLS approaches in 

regard to brain and protein serum biomarkers and outcome (Wilkinson et al., 2017). The results of the 

current thesis, the complex pattern of morphometry found to be predictive of later executive functioning, 

and findings of no significant differences in cortical thickness at any one specific ROI, not only 

emphasise the subtle yet diffuse effect of pTBI on the brain but also indicate their relevance to 

uncovering the basis of poor functional outcomes. 

One of the key goals for neuropsychological research of those children, who have experienced 

neurological insult, is to disentangle the effects of injury from normative maturational processes 
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between brain structure and cognitive functioning. It is important to note that, given the limited sample 

size of controls in the experimental cohort, it was not possible to test whether the predictive relationship 

between this multivariate pattern of injury and cognitive outcome differed in patients compared to 

controls. As highlighted previously, it is therefore difficult to ascertain definitively whether these 

relationships are the result of injury-related pathology or patterns of expected, developmental maturation 

between structure and function that occurs during the paediatric period.  

The results of the current thesis make clear that the adopted multivariate approaches to neuroanatomical 

correlations between brain and behaviour post-injury (which are novel to the field of pTBI) are more 

sensitive at detecting the diffuse morphometric changes seen in acute phase of pTBI. Whilst univariate 

approaches have provided useful insights into the role brain structure plays in the subsuming of cognitive 

and behavioural functioning, these multivariate approaches may supersede these investigations in the 

field of pTBI and thus future studies in the field should begin to investigate how multivariate patterns 

of atrophy and damage across the cortex relate to post-injury functioning. 

8.2.2 Network approaches to Neuroanatomical Correlates of EF post-pTBI 

Previous evidence has highlighted disparate and inconsistent neuroanatomical correlates of executive 

dysfunction post-pTBI, potentially due to the vast heterogeneity of injury (Bigler et al., 2013). The 

assumption of the current thesis was that therefore the topography (the physical distribution across 

cortex) of morphometric insult or change being less sensitive to the relationships with functional 

outcomes. 

The major aim of the current thesis was to validate and conduct novel experimental analyses of sMRI, 

investigating network-level, neuroanatomical correlates of future executive dysfunction in a pTBI 

population. Approaching the morphometry of the cortex as a complex network allows us to investigate 

additional information beyond that of univariate, local approaches to brain structure (Bullmore & 

Sporns, 2009; Pagani et al., 2016). Development of typical organisational principles of the healthy brain 

is likely genetically-mediated, and these enable the efficient, flexible and robust transmission of 

information (Lydon-Staley & Bassett, 2018). Given this highly coordinated development, there is strong 

theoretical support for the hypothesis that any neurological perturbation to the network-level 

organisation of the brain is likely to result in functionally-relevant and behaviourally-symptomatic 

phenotypes across neurological disorders (Aerts et al., 2016).  

Given this, the current thesis takes the position that the topology, rather than the topography, of 

morphometric change post-injury, is more likely to be sensitive to detecting the neuroanatomical 

correlates of later executive functioning. At the level of the macroscopic cortical morphometry, as 

indexed with sMRI, the network-level organisation can be expressed as structural covariance (SC) or 

morphometric similarity (MS), and this organisation is likely driven by regional gene expression 

(Romero-Garcia et al., 2018; Seidlitz et al., 2018; Yee et al., 2017), and even axonal connectivity 
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(Goulas et al., 2017; Seidlitz et al., 2018; Wei et al., 2019). The current thesis expanded previous studies 

of pTBI that had begun to investigate interregional correlations of morphometry and atrophy 

(Drijkoningen et al., 2017; Spanos et al., 2007), by investigating the whole-brain SC and MSNs.  

The current thesis highlights three key insights; i) pathology-related changes to neuroanatomy after 

pTBI load onto topologically important regions in those patients who experience executive dysfunction, 

ii) the magnitude to which the topology of the morphometric network differs from controls is related to 

the degree of dysfunction and iii) the topology of these morphometric networks is predictive of later 

executive dysfunction. Current network models of neurologic insult highlight the fact that the 

behavioural consequences of damage to the brain are highly dependent on the topological position of 

the damage within, and the organization of neural networks (Aerts et al., 2016; Hillary & Grafman, 

2017). Overall, the results of the current thesis are in keeping with these models. 

One potential reason for the increased sensitivity of these network level approaches to sMRI in detecting 

the neuroanatomical correlates of later cognition is change in how the approach models the effects of 

neurologic insult. In typical, whole-brain, ROI-level approaches to morphometry, only regions that 

experience insult (due to effects such as atrophy) are likely to show clinically-meaningful differences 

that are related to later functional outcome. Across a whole cohort where sites of primary insult are 

heterogeneous and diffuse effects of injury are subtle, it is unsurprising that neuroanatomical correlates 

of EF are not robustly found.  In utilising the network-level approaches to sMRI, the insult is modelled 

in relation to the rest of the cortex, including tissue that remains undamaged. This therefore models the 

insult more diffusely across cortical ROIs. For instance, damage to region i will result in altered 

covariance between i and all other regions, thus the influence of this insult will be indexed in nodal 

metrics at all ROIs. This means that, because the effects of injury are measured at all nodes, there is 

greater spatial congruence of the effects of injury between patients with highly heterogeneous pathology. 

This makes network-level approaches to sMRI a highly useful approach for studying the 

neuroanatomical substrates of neurologic insult. 

The benefits of these network-level approaches to sMRI are not only academic but also in relation to 

our theoretical understanding of neurological insult. There is a need to generate hypotheses about the 

mechanistic effects of neurological insult on the neural network biology, to improve clinically-relevant 

prognostic models (Aerts et al., 2016). The network-level structural changes in the current thesis provide 

observational support for these. 

Neurologic insult during development is likely to divert the subsequent development of the cortex over 

the rest of the paediatric period (i.e. in pTBI King et al. (2019)) which can be observed as apparent 

change to the meso-scale organisation of morphometry across the cortex. This is evidenced by the fact 

that deviation of structural covariance varies as a function of the timing of insult in patients that 

experience malformations of cortical development (Hong et al., 2017). Developmental timing of this 
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divergence is likely to result in the biological and behavioural phenotypes seen in neurologic and 

neurodevelopmental disorders (Morgan, White, et al., 2018; Seidlitz et al., 2019). 

Morgan, White, et al. (2018) highlights the importance of hub regions during development and their 

specific vulnerability during this period. Thus, atypical development of these hub regions is 

subsequently observed across multiple psychiatric and neurodevelopmental disorders (Morgan, White, 

et al., 2018). There is a very deliberate unfolding of morphometric covariance across the cortex (Váša 

et al., 2017), with hub regions experiencing fastest rates of cortical shrinkage and intracortical 

myelination (Whitaker et al., 2016). Overall, the results of the current thesis show that differences in the 

complex organization of the morphometry of the cortex, namely the SC and MS between regions, at the 

acute stage post injury is a potential substrate of later impaired functioning, and possesses the potential 

to better predict clinically-relevant functional outcomes than previous univariate approaches.  

The network-level approaches to sMRI outlined in the current thesis are an exciting development in the 

field of developmental neuroscience. In a recent position piece, Dennis and colleagues (Dennis et al., 

2019) highlighted the difficulty in MRI scanning of children with pTBI and made two recommendations 

to alleviate potential concerns regarding movement artefact and image quality; a) behavioural 

interventions such as mock scanning and b) optimized acquisitions for simultaneous multi-modal 

acquisition. The current thesis proposed an alternative approach, prioritising the advanced modelling 

and analysis of T1w sMRI, rather than utilising DTI or fMRI sequences that are standard approaches to 

estimate organisational principals across the cortex. The T1w acquisition sequence has reduced acoustic 

noise and a faster acquisition times. These factors make these scans more tolerable for vulnerable 

paediatric and clinical populations, making it easier to acquire high-quality, motion free images. Due to 

the quick acquisition times, these T1w MRI can also be repeated during a single acquisition session if 

necessary. These movement issues are not restricted to pTBI, in-scanner movement and quality concerns 

are common for both developing and clinical populations. The current thesis shows that, by analysing 

the meso-scale organisation of the morphometry of the cortex, there is additional prognostic information 

to be leveraged from the T1w sMRI, beyond that of commonly used current sMRI analysis approaches 

(such as univariate ROI analyses or even the multivariate approaches to standard morphometric 

measurements). Therefore, the SC and MSN methodologies are an attractive framework for future 

developmental neuroimaging studies of clinical populations where limitations to data quality (such as 

those outlined above) are common (Batalle et al., 2018), and are therefore generalizable beyond the 

analysis of pTBI presented in this thesis. 

8.3. Strengths, Limitations and Open Questions in pTBI 

8.3.1 Sample Size, Open Data and Normative Development 

Sample sizes in the current thesis represent some of the largest in the field of neuroimaging of pTBI 

(King et al., 2019). This drives confidence in these findings compared to those studies with much more 



 

188 
 

limited/restricted sample sizes. However, for analyses such as whole-cortex ROI-level comparisons of 

CT such as those seen in Chapter 7, there remains limited statistical power, owing to the high number 

of multiple comparisons that have to be controlled for. Limited sample sizes are an even greater concern 

for network-level analyses compared to ROI-level approaches. Brain networks, irrespective of modality, 

are usually inferred from neuroimaging datasets where there are fewer participants than the number of 

cortical regions into which the cortex is parcellated. Therefore, the number of parameters to be estimated 

in the network model are greater than the number of independent observations; this is characterized as 

the ‘small n, large p’ problem (Romero-Garcia, Atienza, & Cantero, 2014; Romero-Garcia, Atienza, 

Clemmensen, & Cantero, 2012).  This leads to the unreliable estimation of the network due to the 

overfitting of statistical models (Peng, Wang, Zhou, & Zhu, 2009; Romero-Garcia et al., 2014; Romero-

Garcia et al., 2012). This may limit the inferences to be made from such models.The consequence of 

these small sample sizes in the field has more than academic consequences. The use of sMRI as a 

biomarker of injury is highly dependent on the discovery of robust effects across samples (Wilde, 

Dennis, & Tate, 2019) However, findings derived from small sample sizes are less likely to generalise 

beyond the sample under study. Reliable and reproducible biomarkers are most likely to have the 

potential to improve clinical assessment and guide intervention (Olsen et al., 2019).  

One way to solve such an issue would be increased data-sharing within the field. With increased data-

sharing within the field, a greater number of experimental hypotheses could be explored and be validated 

in independent, existing datasets. This is especially key if the field adopts the supervised, multivariate 

learning approaches (such as PLS regression) recommended by this thesis, in order to ascertain whether 

results are due to overfitting on the training data, rather than capturing a legitimate signal of interest in 

the data. Whilst the current thesis combats the effects of overfitting using leave-one-out cross validation 

approaches, testing on an independent dataset would offer much greater confidence in the resultant 

findings. 

Many neuroimaging studies of pTBI have not sufficiently powered control groups to the same level as 

patient groups. Insufficiently powered control groups are a feature of many pTBI studies (Mayer et al., 

2018). In the current thesis, robustness analyses using a large, open-access dataset (the ABIDE cohort 

(Di Martino et al., 2014)) were used to ensure that the studies included robust and reliable estimates of 

normative development, whilst still capturing variation due to individual differences. Multiple large-

scale studies of normative development have provided critical data for comparison to development after 

brain-injury (Dennis et al., 2019) and additional, even larger, open-access datasets are also on the 

horizon (i.e. ABCD study (Casey et al., 2018) and HCP-Dev (Somerville et al., 2018)). Future studies 

should continue to use these larger datasets in a similar approach to that adopted by the current thesis, 

enabling dense phenotyping of the development of the brain over the paediatric period. 

A criticism of this approach reflects the ‘super normal’ characteristics in such cohorts of normative 

development. Potential bias in sample recruitment may therefore mean that it is not possible to account 
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for many of the premorbid confounding factors that predispose individuals to injury (See Dennis et al 

2019 for a brief commentary on this). This is one reason why many previous studies of TBI adopt 

orthopaedic-injury controls, in order to control for pre-morbid characteristics that may predispose a child 

to an injury requiring hospitalization (i.e. levels of impulsivity) but also ongoing environmental factors 

which may influence outcome (i.e. absence from school, family stress). This may be a concern when 

adopting analyses that utilise comparisons to these large, open-access control datasets, were differences 

between patients and these controls due to these predisposing characteristics, rather than due to 

pathological mechanisms. In spite of these issues, the magnitude of these cohorts offers unique 

opportunities to explore novel methods for indexing how the developmental trajectory of the brain 

changes post-insult, and the results of the current thesis highlight the prognostic utility of such 

approaches. 

Another key benefit of some of these open access datasets is their focus on acquisition of large but high 

quality datasets. In a child-population, it is important to consider that children of a younger age 

seemingly exhibit greater motion, with ratings of motion significantly related to age at scan (Blumenthal, 

Zijdenbos, Molloy, & Giedd, 2002). This is echoed in Pardoe, Kucharsky Hiess, and Kuzniecky (2016) 

where an inverted-U relationship was seen between age and in-scanner motion with both children and 

over 40’s exhibiting greater movement. These factors are likely to result in worse quality MRI however, 

these datasets have emphasised acquiring high-quality datasets, using behavioural techniques such as 

mock scanning to improve scan quality. The emphasis on sMRI and analysis quality in these open-

access datasets is particularly pertinent given the disproportionate effect this may have on covariance 

approaches proposed by the current thesis. In a VBM or QDEC analysis, if motion systematically bias 

the estimations of two ROIs then the statistical results pertaining to those two regions are erroneous 

however, other regions can still be correctly interpreted in terms of statistical analyses. In the case of 

SCNs the effects of error-biased ROIs can propagate further through the analyses. For instance, the 

systematic bias would affect the entire vector of the correlation-matrix related to those ROIs. This 

example would invalidate the majority of network-derived metrics that either a) calculate an average 

network-level metric (i.e. global efficiency), b) nodal metrics derived from the biased-ROIs (i.e. degree, 

nodal efficiency) or c) those nodal metrics which, despite being calculated for a non-biased ROI, rely 

upon the path lengths of the entire network to be calculated (i.e. betweeness centrality). This is the major 

reason for stringent quality control mechanisms implemented in the current thesis. Therefore, whilst 

data-sharing and open datasets should be monopolised, this should not be at the expense of the age-old 

adage of ‘junk in, junk out’.  

Overall, given the limited sample sizes in the field of pTBI and the need to assess post-injury change in 

relation to normative developmental processes, it is highly recommended that future studies begin to 

utilise these open-access datasets. Neurological insult during development represents an acute deviation 

from the typically developing trajectory of the structure of the brain (King et al., 2019). These structural 
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changes and deviations are likely to be related to subsequent behavioural and cognitive sequelae. Thus, 

approaches such as those in the current thesis, which compare structure of brains post-insult to large 

healthy reference groups, are likely to have ongoing benefits to the fields of pTBI but also developmental 

neurology as a whole. 

8.3.2 ‘Trajectories’ of development - beyond cross-sectional imaging 

The current thesis rests on the assumption that cross-sectional difference in brain morphometry is due 

to some form of developmentally inappropriate atrophy or divergence from the typical developmental 

blueprint. Evidence derived from cross-sectional analyses limits the ability to disentangle whether the 

differences shown between patients and controls are in fact due to neurodevelopmental differences or 

age-related differences between samples (Kraemer et al., 2000; Vijayakumar et al., 2017). Cross-

sectional approaches are also limited in their ability to capture the known variability in and dynamic 

evolution of pathology from the acute to chronic post-injury periods (Bigler, 2016). Conversely, truly 

developmental neuroimaging holds a central tenet of “the journey as well as the destination” (Giedd & 

Rapoport, 2010). Specifically, in adolescents, trajectories of CT over age are more relevant to explaining 

variation in IQ than absolute differences in CT (Shaw et al., 2006). This is especially important in the 

field of pTBI where changes to morphometry can be representative of both insult-related pathology but 

also due to later secondary pathology (i.e. Wallerian degeneration). There is evidence to suggest that 

maturational change of individual brain regions is different after injury, compared to controls (King et 

al., 2019). Longitudinal morphometric studies of paediatric cohorts have investigated morphometric 

change for both patients and controls across multiple time points post-injury (Dennis, Faskowitz, et al., 

2017; Dennis et al., 2016; Mayer et al., 2015; Wilde, Merkley, et al., 2012; Wu et al., 2018; Wu et al., 

2010). The majority of these studies show a reduction in volume or cortical thinning over time in the 

TBI group, as well as cross-sectional differences from controls. Interestingly however, they also show 

an interaction between group (patient vs. controls) and time post-injury on cortical thickness (CT) 

measures (Mayer et al., 2015; Wilde, Merkley, et al., 2012) and corpus callosum volumes (Wu et al., 

2010), with greater atrophy over time seen post pTBI. This, alongside evidence of functionally-relevant 

developmental divergence in pTBI patients, suggests that there is developmental divergence from the 

normative developmental trajectory, and this is likely to be related to subsequent cognitive functioning. 

However, whilst longitudinal imaging is likely to tell us a great deal about the dynamic and evolving 

pathology due to injury, the current thesis did not take this approach, as it is in fundamental opposition 

to the aim at hand, early prediction of later cognitive functioning. In order to ensure the clinical benefit 

and applicability of such research, the focus of such longitudinal research should be to generate 

hypotheses about how spared networks and neuroanatomy at the time of injury seemingly still allow the 

unfolding of normative maturation of the brain to subsume healthy development and therefore recovery 
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from symptoms. This will give us a biological basis with which a priori prognostic models can be 

generated to effectively predict long-term outcome. 

8.3.3 Graph Theory as a ‘language’ of opportunity? 

No existing single imaging modality or diagnostic tool is sufficient for the prognostication and 

phenotyping of TBI (Amyot et al., 2015; Olsen et al., 2019). Chapters in the current thesis highlighted 

a novel network methodology with which to further interrogate the brain post-pTBI, however there is 

still a large proportion of variance in post-injury outcome which remains unexplained. Future work 

should investigate the potential for the integration of multiple modalities of MRI data, and graph theory 

may provide the ideal framework with which to interrogate this. One of the greatest strengths of the 

graph-theoretic framework outlined in the thesis is that it provides a common mathematical language 

with which to describe inter-relationships, irrespective of modality. This has been leveraged to analyse 

multi-modal, structure-function coupling, modelling sMRI, dMRI and fMRI within a common 

framework (Reid, Bzdok, et al., 2016; Reid, Lewis, et al., 2016). Other studies have been able to 

integrate extensive genomic expression data into analyses of the MSN (Seidlitz et al., 2019) due to this 

commonality of the network approach. This will provide multiple avenues of future discovery for the 

field of pTBI.  

Such approaches may yield valuable insights into the role of structure-function decoupling, investigating 

how injury-mediated changes to the structural organisation of the brain has observable effects on the 

functional connectivity of the brain. This was first addressed in adult TBI by (Caeyenberghs, Leemans, 

Leunissen, Michiels, & Swinnen, 2013), but has not been addressed in the pTBI population. Further 

studies of structure-functional coupling in adult acquired brain injury (ABI) have shown that network 

propagation-time, a measure of how much of the structural network is utilised for the spread of 

functional activation, was greater in those with better recovery of consciousness (Kuceyeski et al., 2016). 

The two different connectivity modalities represented different phenotypes for recovery; with increased 

DTI-connectivity segregation and increased functional integration being related to better recovery in 

adult ABI (Kuceyeski, Jamison, Owen, Raj, & Mukherjee, 2019). Stam (2014) proposed a hub ‘overload 

and failure’ theory of neurological disease. Under this model, ‘functional hubs’ are regions which are 

particularly susceptible to damage. When a hub experiences structural damage then its incoming 

structural projections require functional redirection of information to hubs higher in the hierarchical 

organization of the brain network. Over time, these hubs higher in the functional hierarchy experience 

functional overload. 

Given that functional activation between regions drives a proportion of the morphometric covariation 

between regions, likely due to the reciprocal effects of functional co-activation. and cortical structure 

constraining functional activity, the approaches in the current thesis may represent a novel substrate 

with which to investigate these functional changes. 
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Alternatively, by investigating the coupling between DTI-structural connectivity and SC between 

cortical regions it is possible to investigate how volume/cortical thickness changes distal to primary 

injury post-TBI may be due to the loss of connectivity between regions, with the connection dropout 

affecting the morphometry of once connected regions (Bigler, 2016). This highlights how the network-

level approaches to brain morphometry may be further utilised for hypothesis testing within the field of 

pTBI. 

A range of other medical and environmental factors also play a role in recovery and eventual 

impairments. That is to say, these injuries do not exist in a vacuum, and there are many factors, which 

may mediate outcome. For instance, family environment, such as socioeconomic status and parenting 

style, mediates some variation in behavioural outcomes for children post-TBI (see Li and Liu (2013) for 

a review). In regards to specifically EF outcomes, when aspects of the home environment, which are 

key for development, were of lower quality, long term EF skills were poorer (Durish et al., 2018).  In 

the field of neuroimaging of pTBI, there is no current evidence that these clinical and environmental 

factors mediate injury-related changes in neuroanatomy as a substrate of later cognitive functioning. 

The post-injury factors may be key from a therapeutic standpoint, these are potential targets for 

intervention to improve outcome (Dennis et al., 2019). These types of variables are not investigated in 

the current thesis, as they were beyond the scope of the initial exploration of the appropriateness of 

network-level sMRI methodologies. A limited number of studies has examined how environmental 

factors can influence network-level changes in the brain, at the level of both structural and functional 

organisation (Lydon-Staley & Bassett, 2018), in pTBI or otherwise, especially within the context of 

SCN and MSN. Previous evidence suggests that CT in the neonatal period is associated with 

environmental maternal ethnicity and paternal education (Jha et al., 2018) there is also emerging 

evidence on the role of traffic-related air pollution on development and ageing-related changes to the 

morphometry of the brain (de Prado Bert, Mercader, Pujol, Sunyer, & Mortamais, 2018). Using SC 

approaches such as those highlighted in an earlier chapter, it has also been found that, in healthy adults, 

socioeconomic deprivation modulates covariance of brain morphometry, with the most deprived having 

a less modular organization of the SC network (Krishnadas et al., 2013). However, it is important to 

know whether changes to SC due to environmental factors are in fact functionally relevant. Given more 

powerful sample sizes with which to estimate these effects, this is an area which warrants further study. 

8.4 Conclusion 

Traumatic brain injury (TBI) is a common leading cause of disability for children and young adults. 

Such an insult during development leads to a cognitive-behavioural syndrome of impairments post-

injury however, the trajectory and magnitude of this syndrome at an individual-patient level are 

unknown. The current thesis investigated novel network-level analyses of neuroanatomy, specifically 

whole-brain structural covariance and morphometric similarity approaches, and its relationship with 
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neuropsychological functioning, with a focus on executive functioning (EF) at 2 years post-injury. The 

current thesis further emphasised the role of deviation from the normative organisation of the 

morphometry of the brain post-insult, and its relationship with long term functioning, developing novel 

approaches to this important question.  

The current thesis concludes that, regarding the neuropsychological sequalae post-neurological insult, 

quantification of the complex organisation of neuroanatomy across the cortex is a useful biomarker. The 

current results further motivate the use of neuroimaging and quantification of brain structure to 

supplement clinical evaluations in order to fully harness the prognostic value of these brain imaging 

approaches. Future investigations integrating neuropsychology and neuroimaging to understand brain 

structure-function relationships should continue to utilise modern network approaches which capture 

the diffuse, nature of injury. 

Two major frontiers exist in the developmental neuroimaging fields; a) moving from the group to 

individual level, there is still large amounts of within group variation to account for (Giedd & Rapoport, 

2010; Giedd et al., 2015) and b) moving from papers to people, ensuring that the vast numbers of 

publications can begin to have an impact on clinical practice (Giedd et al., 2015). The current thesis has 

addressed the first of these two points, specifically using methods to probe the network-level structure 

of the brain at the individual level, using large normative samples to estimate how a pTBI can influence 

the brain during development. The current thesis has also begun to address the second of these two 

points, the application of developmental neuroimaging to clinical practice, utilising these network-level 

approaches to morphometry as a biomarker of later cognitive functioning. Future work will be needed 

to validate these findings in independent cohorts and potentially monopolise on longitudinal imaging to 

understand how these measures of network-level organisation change over the post-injury period, both 

in terms of cognitive recovery, and decline. Overall, the network approaches in this thesis are a 

contemporary approach that appear to be a valuable addition to the toolbox of neuropsychologists, to 

quantitatively investigate symptomatic changes to neuroanatomy at the network-level post-brain insult. 
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Appendices 

Appendix A – Supplementary Materials for Chapter 2 

Visualisation of study characteristics 

Visualisation of dispersion of studies based upon sample characteristics of age at injury and injury-scan 

interval was achieved with the ggplot2 package in R (Wickham, 2009). Level of measurement across 

these two variables was standardized as years for both age at injury and injury-scan interval. Those 

studies using different levels of measurement (months and/or days) were converted (divided by 12 and 

365 respectively). For studies reporting only ranges, the middle value was used. 

Both mean values and standard deviations were used for visualisation. For studies that reported mean 

and standard deviation of these variables separately across injury severities, pooled mean and standard 

deviation were calculated. These were calculated in line with guidelines from the Cochrane handbook 

(Higgins & Green, 2011, Table 7.7.a) using the following formulae; 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑁𝑁1𝑀𝑀1 +𝑁𝑁2𝑀𝑀2

𝑁𝑁1 + 𝑁𝑁2
 

𝑆𝑆𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
(𝑁𝑁1 − 1)𝑆𝑆𝑃𝑃12 + (𝑁𝑁2 − 1)𝑆𝑆𝑃𝑃22 + 𝑁𝑁1𝑁𝑁2

𝑁𝑁1 +𝑁𝑁2
(𝑀𝑀1

2 + 𝑀𝑀2
2 − 2𝑀𝑀1𝑀𝑀2)

𝑁𝑁1 + 𝑁𝑁2 − 1
 

where 𝑁𝑁𝑥𝑥 is the sample size of the subgroup, 𝑀𝑀𝑥𝑥  is the value and 𝑆𝑆𝑃𝑃𝑥𝑥  is the standard deviation of that 

mean. It is important to note that the pooled SD gives an approximation which is known to be a slight 

underestimation of the true SD however, for the purposes of visualisation, this is unlikely to be an issue.  

All data used in the visualisation of studies are listed in the table below. It is important acknowledge 

that the use of multiple methods of imputation may slightly misrepresent the true data for studies. 

However, imputations and inferences made are fully transparent and are listed in the appendix (Table 

A.1), whilst the data actually reported in each paper can be seen in Table 2.2. Despite these caveats, 

Figure 2.2 provides a useful visualisation with which to grasp the extent of the current research in the 

field. 

 

  



 

229 
 

Table A.1 Imputed data used for visualization of cross sectional studies 

Reference 

Age at injury Injury – MRI interval Patient 
sample 
size (n) 

Data-
set Mean 

(years) SD 
Mean 
(years) SD 

Beauchamp (2011) 6.58 a 3.19 a 10.40 a 1.45 a 49 NA 
Dennis (2013) 7.80 2.00 2.60 1.20 82 4 
Yeates (2014) 7.83 1.94 3.13 b, c NA 82 4 
Bigler (2013) 7.92 a, e 1.90 a, e 2.53 a, e 1.24 a, e 72 4 
Bigler (2016) 7.92 f NA 2.70 NA 72 4 
Serra-Grabulosa (2005) 8.18 3.65 9.68 1.88 16 NA 
Drijkoningen (2015) 9.30 b NA 3.83 c 3.25 c 18 NA 
Bigler (2010) 9.75 3.00 3.10 2.40 16 3 
Wilde (2005) 9.75 3.00 3.10 2.40 16 3 
Fearing (2008) 9.75 3.00 3.10 2.40 16 3 
Wilde (2006) 9.75 3.00 3.10 2.40 16 3 
Merkley (2008) 9.75 3.00 3.10 2.40 16 3 g 
Wilde (2007) 9.75 f NA 3.00 c 2.42 c 16 3 
Spanos (2007) 9.75 f NA 3.10 2.40 16 3 
Ryan (2016, Cortex) 10.37 a 2.51 a 0.12 d 0.08 d 103 5 
Ryan (2016, SCAN) 10.44 a 2.48 a 0.11 a, d 0.06 a, d 76 5 
McCauley (2010) 12.00 b NA 0.34 d 0.08 d 40 1 
Wilde (2011) 12.00 f NA 0.01 d 0.00 d 40 1 
Max (2012) 13.40 3.00 0.25 NA 44 NA 
Hanten (2011) 13.43 2.35 3.23 c 0.87 c 15 2 
Cook (2013) 13.43 2.35 3.23 c 0.87 c 15 2 
Krawczyk (2010) 13.86 h NA 2.65 0.76 12 NA 
Juranek (2012) 11.84 h NA 0.24 a, d 0.11 a, d 21 NA 
Konings (2017) 7.38 a 2.13 a 2.89 a 1.23 a 37 NA 
Drijkoningen (2017) 10.08 c 3.40 c 3.67 c 3.40 c 19 NA 
Urban (2017) 11.87 h NA 0.33 d 0.01 d 13 NA 
Ryan (2017) 10.31 a 2.50 a 0.12 f NA 112 5 
Note.  
a. Pooled mean and SD from sub groups 
b. Not available, middle value from reported range used for visualisation 
c. Converted from months 
d. Converted from days 
e. Demographics refer to all participants in paper, not just those used for morphometry analyses 
f. Inferred from other papers utilising dataset  
g. Inferred from overlapping demographics with other papers from similar authors 
h. Mean age imputed as the mean age at testing minus mean injury-MRI interval 
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Table A.2 Characteristics for all studies investigating relationship between cognition and morphometry included in the review by domain of cognitive functioning 

Cognitive 
Domain 

Reference Measures 
Administered 

Between-group performance Design Statistical 
Approach 

Brain 
regions 
tested 

Findings 

IQ Konigs et 
al (2017) 

WISC-III short 
form FS-IQ 

FS-IQ lower in Mild RF+ TBI 
and Moderate/severe TBI 
compared to controls. 

 

Correlational Pearsons 
correlations 
(only 
investigated in 
TBI group)  

WM volume 
of ’affected’ 
tracts 

No significant relationships found between test 
and volume of WM regions 

Executive 
Functioning 

Wilde et 
al (2012)  

BRIEF Behavioural 
regulation and 
emotional control 
indexes (at the 18 
month timepoint) 

Children with TBI were rated 
significantly more highly for 
both subscales than the OI 
group, suggesting greater 
behavioural problems for the 
patient group at 18 months 
post-injury. 

Correlational Vertex-wise 
correlations 
(only 
investigated in 
TBI group) 

Vertex-wise 
longitudinal 
cortical 
thickness 
change 

Emotional control index showed significant 
correlation with longitudinal cortical thickness 
change in right MFG and right anterior cingulate 
gyrus. The behavioral regulation index showed 
similar significant correlations but instead with 
the medial aspect of the left frontal lobe. 

Processing 
Speed 

Wu et al 
(2010) 

Arrow-flanker task 
(baseline condition) 

No differences were found 
between OI and TBI groups 
for processing speed at 3 or 18 
months. However, the OI 
group saw a significant 
improvement with timepoint 
(from 3 to 18 months) but the 
TBI group did not 

Cross-
sectional 

(comparative) 

Pearsons partial 
correlations 
(age at injury 
and SCI 

Total corpus 
callosum 
and sub-
regions of 
corpus 
callosum 

No significant relationship between processing 
speed and corpus callosum sub region volume at 
3 or 18 months post injury for either group. 

Working 
Memory 

Konigs et 
al (2017) 

WISC-III Digit 
Span test  

Digit span scores lower Mild 
RF+ TBI and Moderate/severe 
TBI compared to controls. 

Correlational Pearsons 
correlations 
(only 
investigated in 
TBI group)  

WM volume 
of ’affected’ 
tracts 

No significant relationships found between test 
and volume of WM regions 

 Urban et 
al (2017) 

N-back task and 
dual n-back task 
(with motor-task 
component) 

Accuracy on n-back tasks in 
both conditions was not 
different between groups, 
however for reaction times 
there was an interaction of 
group and single vs dual task 
condition, with the mTBI 
group being slower for the 
dual task condition. 

Cross-
sectional 

(comparative) 

Pearsons 
correlations (in 
both groups) 

DLPFC and 
parietal 
cortices 

In controls, better accuracy during single task 
condition 0-back, was associated with increased 
left DLPFC thickness and faster reaction times 
for single task 1-back was related to thicker 
anterior and posterior IPL. In patients, thicker 
DLPFC was related to poorer accuracy for 1-back 
single task condition. However, during the dual 
condition, thinner left DLPFC resulted in slower 
RT for all three n-back conditions. Also, thinner 



 

231 
 

anterior IPL was associated with slower 
performance in 2-back dual-task condition. 

 Wilde et 
al (2011) 

SIRT Only significant group 
difference (covarying for age) 
was found on the interaction of 
interference and on accuracy 
and reaction time, with the OI 
group showing a more 
negative effect of interference 
than the TBI group. No group 
differences in errors 

Cross-
sectional 

(comparative) 

Pearsons 
correlations (in 
both groups) 

Frontal and 
parietal 
lobes, 
middle 
frontal gyrus 
and 
cingulate 
gyrus 

Significant negative correlations between right 
and left cingulate volumes as well as left parietal 
lobe volume with the non-interference condition 
reaction times in the TBI group, where smaller 
volume was associated with a longer RT. These 
relationships were not replicated, or new 
relationships found, in the OI group. Cortical 
thickness of bilateral caudal MFG, left SFG, SPG, 
and cuneas regions and right rostral MFG, preC, 
PCC, and PCUN regions was positively 
correlated with task errors in the OI group, 
whereas in the TBI group thickness of left parietal 
and inferior temporal regions and the right 
frontal, paracentral, rostral MFG and SPG regions 
was related to task errors. This difference in 
brain-cognition relationships was despite no 
differences in errors being found. 

 

 Merkley 
et al 
(2008) 

BRIEF working 
memory scale 

Not reported Correlational Pearsons 
correlations 
(unclear 
whether TBI 
group or whole 
sample) 

Not reported Significant correlations (no direction given) were 
found between working memory subscale and 
cortical thickness of bilateral inferior temporal, 
superior and inferior parietal as well as thickness 
of left FFG. 

 Fearing et 
al (2008) 

SIRT Not reported Cross-
sectional 

(statistical) 

GLM 
(correcting for 
age and TIV) 
across groups  

Total 
midbrain, 
total 
brainstem, 
total 
thalamus 

Significant relation between decreased baseline 
(memory testing set of 1) reaction time and total 
brainstem volume. There was a significant 
interaction effect of group on the relationship 
between higher memory load (memory testing set 
of 6) reaction time and total midbrain, but total 
brainstem volume was marginally outside the 
alpha limit. Post-hoc tests for the total midbrain 
showed that only TBI children showed a 
significant relationship with higher memory load 
reaction time. This relationship persisted when 
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total lesion volume was also controlled for. No 
relationships were found for Thalamic volumes. 

 

Memory McCauley 
et al 
(2010) 

Event-based 
prospective memory 
task 

OI group significantly 
outperformed the TBI group 
on overall performance  

Cross-
sectional 

(statistical) 

QDEC general 
linear model 
(controlling for 
age) across 
groups 

Vertex-wise Thinning of bilateral regions in middle and IFG, 
MTG and ITG, PARH and cingulate gyri 
contributed to group differences in performance 

Overall 
Functioning 
(composite 
score) 

Dennis et 
al (2017) 

Composite score of 
WISC-IV 
processing speed 
index, WISC-IV 
working memory 
index, Trials 1-5 
CVLT-C/II and 
Trails 4 DKEFS 
trail-making test 

Not reported Cross-
sectional 

(comparative) 

Voxel-wise 
linear regression 
(TBI and OI 
group 
investigated 
separately) of 
volume change 
against 
cognitive 
performance 
change 

Voxel-wise 
analysis 

Voxel-wise linear regression showed no 
relationship between longitudinal volume change 
and changes in cognition in the control group. In 
the TBI group (both IHTT slow and normal) there 
were a considerable number of diffuse clusters 
where morphometric change related to 
differences in the cognitive summary score. More 
generally, clusters which were positively 
associated with cognitive change (where greater 
volume was associated with better performance) 
were found across GM and WM tissues (n=18 
clusters), whereas clusters where reduced volume 
was related to increased cognition were largely 
found in only GM regions (n=33 clusters). 

 Dennis et 
al (2016) 

Composite score of 
WISC-IV 
processing speed 
index, WISC-IV 
working memory 
index, Trials 1-5 
CVLT-C/II and 
Trails 4 DKEFS 
trail-making test 

Not reported Cross-
sectional 

(comparative) 

Voxel-wise 
linear regression 
(TBI and OI 
group 
investigated 
separately) 

Voxel-wise 
analysis 

At timepoint 1, across all participants, there were 
significant regions of positive correlation 
between cognitive summary score and volume 
(bilateralITG, OG, FFG and left STG) and 
multiple regions of negative correlation (lateral 
ventricles, left OG, left MTG and right cingulate 
gyrus. Correlations specific to the TBI-only 
analysis found specific regions of positive 
correlation between volume and performance 
(bilateral SFG, bilateral FFG, right OG, right 
SPL, right PCUN, right preC, left ITG and MFG) 
with less negative correlations found (lateral 
ventricles, the left OG, and left transverse 
temporal gyrus). At timepoint 2, positive 
correlations across all participants were found in 
bilateral postC, bilateral insula, right middle 
cerebellar peduncle, and left ITG, with TBI 
specific correlations being found in right middle 
cerebellar peduncle, right OrbG, and bilateral 
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FFG. Negative correlations were also found in 
lateral ventricles, left entorhinal cortex, left STG 
and IFG and specific TBI relationships found in 
bilateral MFG, right hippocampus, right STG, left 
amygdala, left fornix, left ITG, left supramarginal 
gyrus, left STG and IFG. 

 

Theory of 
Mind (ToM) 

Ryan et al 
(2017) 

Jack and Jill task, 
Emotional and 
emotive faces task, 
Ironic criticism and 
empathic praise task 
(cognitive, affective 
and conative ToM) 

No significant effect of group 
on Jack and Jill cognitive 
ToM, but for affective and 
conative ToM there was a 
main effect of severity group; 
for affective ToM the mild 
complicated group performed 
significantly worse than 
controls and severe injury, for 
conative ToM mild 
complicated TBI performed 
worse than control, mild and 
moderately injured groups. 

Correlational Multivariate 
regression 
(covarying for 
age, ICV, pre-
injury ABAS, 
sex, SES, ToM 
control trial 
performance, 
and injury 
severity) Only 
investigated in 
TBI group. 

CCMN, SN, 
MNEN, 
CEN and 
DMN 
network 
volumes 
(summed 
from ROIS) 

For volumes of the networks hypothesized to be 
important for the different aspects of ToM, each 
regression model was significant. For cognitive 
ToM, the CCMN network volume was the only 
significant regressor, where reduced volume was 
associated with worse performance. Similar 
patterns were found for affective ToM and the 
SN, as well as conative ToM and the MNEN.  

 

 Yeates et 
al (2014) 

Jack and Jill task, 
Emotional and 
emotive faces task, 
Ironic criticism and 
empathic praise task 
(cognitive, affective 
and conative ToM) 

Not reported Cross-
sectional 

(comparative) 

Pearsons 
correlations 
controlling for 
age and group 
membership 
across all 
participants, 
only TBI and 
only controls, 
VBM 

Global WM 
and GM 
volumes and 
voxel-wise 

Conative ToM across groups was positively 
correlated with GM and WM volumes and 
negatively correlated with VBR when controlling 
for group. Conative ToM was positively 
correlated with GM in both groups but WM 
volume only in the TBI group. Cognitive and 
affective ToM was correlated positively with GM 
volume and negatively with VBR respectively. 
VBM identified significant clusters associated 
with ToM but only in the OI group, not TBI 
patients.  

 Dennis et 
al (2013) 

Jack and Jill task, 
Emotional and 
emotive faces task, 
Ironic criticism and 
empathic praise task 
(cognitive, affective 
and conative ToM) 

Main effect of group on ToM 
performance, post-hoc tests 
showing that the OI group 
performed significantly better 
than severe TBI. 

Cross-
sectional 

(statistical) 

MANOVA with 
group 
membership 
(TBI vs OI) as a 
between 
subjects and 
networks as 
within-subjects 
factor  

CCMN, SN, 
MNEN, 
CEN and 
DMN 
network 
volumes 
(summed 
from ROIs) 

Regression models were non-significant for 
cognitive or affective ToM but were significant 
for conative ToM. Individual predictors of the 
DMN, CEN and MNEN network were not 
individually significant, even though the overall 
model was. When these network volumes were 
decomposed, 8 out of 12 regions were 
significantly related to conative ToM outcome, 
with greater volume related to greater 
performance. After multiple correction, only 
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posterior cingulate/retrosplenial cortex and 
hippocampal formation survived. 

Miscellaneous Konigs et 
al (2017) 

RAVLT Only encoding (not retrieval or 
consolidation subscores) was 
lower for Mild RF+ TBI and 
Moderate/severe TBI 
compared to controls 

Correlational Pearsons 
correlations 
(only 
investigated in 
TBI group)  

WM volume 
of ’affected’ 
tracts 

No significant relationships found between test 
and volume of WM regions 

 Cook et al 
(2013) 

Anticipating 
consequences VR-
task 

The TBI group performed 
significantly worse on 
predicting long term outcomes 
compared to controls, but not 
short term consequences 

Cross-
sectional 

(Statistical) 

QDEC general 
linear model 
(controlling for 
age) across 
groups 

Vertex-wise Between-group differences in performance of the 
overall measure were found to be significantly 
related to the CT of the medial PFC/FP region and 
bilateral PCUN. Stronger brain-behaviour 
relationships were found for the control group. 

 Hanten et 
al 2011) 

Social problem 
solving VR-task 

Adolescents with TBI 
performed significantly poorer 
on the summary score of his 
task, across all processing load 
conditions, compared to 
controls 

Cross-
sectional 

(Statistical) 

QDEC general 
linear model 
(controlling for 
age) across 
groups 

Vertex-wise There was a significant group difference in 
relationship between cortical thickness and 
performance measured by the task summary score 
in the right orbitomedial frontal cortex and 
cuneus. This showed a positive relationship 
(greater thickness related to greater performance) 
for the control group only. For the ‘defining 
problem’ step there was a significant group 
difference in relationship between cortical 
thickness and performance with decreased 
cortical thickness in temporal areas related to 
better performance. There were also group 
differences for the ‘evaluate outcome’ step, with 
better performance related to decreased cortical 
thickness in the bilateral medial prefrontal 
regions. 

 Krawczyk 
et al 
(2010) 

Picture analogy task TD controls performed 
significantly better at 
reasoning analogous roles in 
scenes than the TBI patient 
group. 

Cross-
sectional 

(Statistical) 

QDEC general 
linear model 
across groups 

Vertex-wise The strongest correlations were found in the 
control group, and inverse relationships between 
cortical thickness and accuracy on analogical 
reasoning tasks in anterior PFC, bilateral anterior 
and posterior lateral PFC, bilateral superior and 
inferior temporal gyri, and medial PFC. 
Relationships in the TBI group were less clear, 
but inverse relationships were seen in left medial 
OFC, and left SFG. Accuracy on trials with a 
distractor showed similar inverse relationships 
with clusters in the left STG and left MTG, right 
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IFG, and left PCC but additionally the anterior 
left dorsal PFC and right OFC in the TBI group. 

 

Note. WISC=Wechsler Intelligence Scale for Children, FS-IQ=Full scale IQ, WASI=Wechsler abbreviated scale of Intelligence-, BRIEF=Behaviour rating inventory of executive functioning, 
CVLT-C/II= California verbal learning test, VR=Virtual reality, RAVLT= Rey auditory verbal learning test, DKEFS=Delis-Kaplan Executive Function System, SCI=Social composite index, 
SIRT=Sternberg item recognition task, ICV=Total intracranial volume, SES=Socio-economic status, ABAS=Adaptive Behaviour Assessment System, VBM=Voxel based morphometry 
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Appendix B – Supplementary Materials for Chapter 3 

Generating simulated lesion cases 

Lesions were simulated in control cases from real patient lesions as per previous methods (Brett et al., 2001; 

Gonzalez-Villa et al., 2017). Simulation approaches have been used to investigate the effectiveness of 

spatial normalization (Andersen, Rapcsak, & Beeson, 2010; Brett et al., 2001; Crinion et al., 2007) and 

segmentation (Seghier et al., 2008) using focal infarct, vascular event and atrophic lesions. 

After initially skullstripping all cases (using FSL’s (Jenkinson et al., 2012) BET, (Smith, 2002)), non-linear 

warps from native space in the skullstripped control and patient cases to MNI-152 space were calculated 

using FSL’s FNIRT tool ((Jenkinson et al., 2012), initialised with an initial 12-DOF linear registration using 

FLIRT (Jenkinson & Smith, 2001) on the non-skullstripped T1w). For the lesioned cases, this was achieved 

using cost-function masking, using the inverse of the binary lesion mask (weighting the lesion as zero and 

the non-lesioned tissue as ones) in order to restrict the warp to being calculated using only healthy tissue. 

The warp from native control to MNI-152 space was then inverted to produce the warp necessary to move 

from MNI to control-case native space. 

Using the mrcalc function within the MRTrix software, the binary lesion mask was multiplied by the lesioned 

T1w MRI, resulting in an image which included the lesion tissue only as an ROI. This “patch” was then 

moved into the native space of every control image, via the MNI-152 space, using the lesioned T1w to MNI-

152 warp, followed by the inverse of the control T1w to MNI-152 warp as per below, 

𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑅𝑅𝑙𝑙𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 = 𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑅𝑅𝑙𝑙𝐷𝐷𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 × 𝑤𝑤𝑀𝑀𝑟𝑟𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝−−𝑀𝑀𝑀𝑀𝑀𝑀 × 

where the source image is the patient T1w and the target is the control T1w. In order to ensure that the 

lesions are realistic in intensities, we apply a simple intensity normalization procedure between the source 

and target T1w images. This involved calculation of a scaling factor (SF; as per (Brett et al., 2001)) as the 

ratio between the mean intensity of the target image and the source image (masked to avoid abnormal signal 

intensity due to the lesion), which was then applied to the lesion ROI as follows, 

𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑅𝑅𝑙𝑙𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑅𝑅𝑙𝑙𝐷𝐷𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ×
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡
 

Once the lesion ROI has been normalized to the target intensity and space, a binarized and inverted mask 

of this ROI is generated using mrcalc (where the lesion is zeros and the rest of the image is ones). The target 

control T1w image is then multiplied by this mask to remove the signal in the target location and then the 

lesioned ROI in target space and intensity is added to this image (similarly to Gonzalez-Villa et al. (2017)) 

as per below, and this final image is the simulated lesion case referred to in the rest of the paper; 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑤𝑤𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑆𝑆𝑀𝑀𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 × 𝐺𝐺1𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑡𝑡𝑆𝑆𝑛𝑛𝑀𝑀𝑅𝑅𝑙𝑙𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡⁄  

The resultant simulated dataset contained n = 176 cases, where every included lesion (n = 16) had been 

applied to every control image (n = 11) in all possible pairwise permutations. From here on, the control 

images with the simulated lesions applied will be referred to as the simulated lesion (Simlesion) cases (n = 

176) and the control images without editing will be referred to as “ground truth” (GT) cases (n = 11). The 

entire pipeline is visualised in the below figure. 
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Figure B.1 Workflow for generating simulated lesions. Method adapted from Brett et al. (2001) and 

Gonzalez-Villa et al. (2017) 
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Results of Mixed Models 

Table B.1. Outputs from linear mixed-models testing whether the difference in cortex volume between Simlesion and GT cases is significant across 
each hemisphere 

 Cortex Volume 

  Both Hemispheresa Hemilesion
b Hemicontra

c 

Predictors Estimates std. Error Estimates std. Error Estimates std. Error 

(Intercept) 299261.29 *** 
(288172.71 – 310349.88) 

5657.55 299243.61 *** 
(287965.38 – 310521.84) 

5754.30 299278.98 *** 
(288250.11 – 310307.84) 

5627.08 

Simulated Lesion -942.61  
(-1984.98 – 99.76) 

531.83 -1324.46  
(-3588.88 – 939.96) 

1155.34 -560.76 *** 
(-828.23 – -293.29) 

136.47 

Random Effects 
σ2 4544617.35 1772686.02 1638835.43 

τ00 0.00 Participant 2938645.92 Participant 2404899.27 Participant 

 241905.00 Lesion 1237325.29 Lesion 0.00 Lesion 

 349283191.51 Control_Image 350327135.17 Control_Image 348051258.85 Control_Image 

τ11 0.00 Participant.LesionstatusSimulatedLesion     

ρ01       

ICC 0.00 Participant 0.01 Participant 0.01 Participant 

 0.00 Lesion 0.00 Lesion 0.00 Lesion 

 0.99 Control_Image 0.98 Control_Image 0.99 Control_Image 

Observations 704 352 352 

Marginal R2 / Conditional R2 NA 0.001 / 0.995 NA 
Note. *p<0.05   ** p<0.01   *** p<0.001, a CortexVol ~ Lesionstatus + (Lesionstatus|Participant) + (1|Lesion) + (1|Control_Image), b CortexVol ~ Lesionstatus + (1|Participant) + 
(1|Lesion) + (1|Control_Image), subset = (Hemi=='Lesion'), c CortexVol ~ Lesionstatus + (1|Participant) + (1|Lesion) + (1|Control_Image), subset = (Hemi=='Contralesion'). 
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Table B.2. Outputs from linear mixed-models testing whether the difference in cortical white matter volume between Simlesion and GT cases is 
significant across each hemisphere 

 cWM Volume 

  Both Hemispheresa Hemilesion
b Hemicontra

c 

Predictors Estimates std. Error Estimates std. Error Estimates std. Error 

(Intercept) 220026.04 *** 
(205476.56 – 234575.53) 

7423.34 219983.31 *** 
(205388.05 – 234578.58) 

7446.70 220068.77 *** 
(205511.02 – 234626.52) 

7427.56 

Simulated Lesion -161.75  
(-675.03 – 351.52) 

261.88 -308.84  
(-1522.33 – 904.65) 

619.14 -14.66  
(-212.62 – 183.29) 

101.00 

Random Effects 
σ2 1463696.35 756656.02 897671.31 

τ00 0.00 Participant 721818.41 Participant 606868.17 Participant 

 4521.04 Participant.1 352691.35 Lesion 0.00 Lesion 

 55625.95 Lesion 606014889.39 Control_Image 606761167.60 Control_Image 

 605508377.50 Control_Image     

τ11 148203.23 Participant.1.LesionstatusSimulatedLesion     

ρ01 -1.00 Participant.1     

ICC 0.00 Participant 0.00 Participant 0.00 Participant 

 0.00 Participant.1 0.00 Lesion 0.00 Lesion 

 0.00 Lesion 1.00 Control_Image 1.00 Control_Image 

 1.00 Control_Image     

Observations 704 352 352 

Marginal R2 / 
Conditional R2 

NA 0.000 / 0.999 NA 

Note. *p<0.05   ** p<0.01   *** p<0.001, a cWMVol ~ Lesionstatus + (1|Participant) + (0 + Lesionstatus|Participant) + (1|Lesion) + (1|Control_Image), b cWMVol ~ Lesionstatus 
+ (1|Participant) + (1|Lesion) + (1|Control_Image), subset = (Hemi=='Lesion'), c cWMVol ~ Lesionstatus + (1|Participant) + (1|Lesion) + (1|Control_Image), subset = 
(Hemi=='Contralesion'). 
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Table B.3. Outputs from linear mixed-models testing whether the magnitude of PVD is significantly different between hemilesion and hemicontra  

  Cortex PVD a cWM PVD b 

Predictors Estimates std. Error Estimates std. Error 

(Intercept) 0.48 *** 
(0.31 – 0.65) 

0.09 0.44 *** 
(0.31 – 0.58) 

0.07 

Lesion 0.14 ** 
(0.05 – 0.23) 

0.05 -0.01  
(-0.08 – 0.07) 

0.04 

Random Effects 
σ2 0.20 0.14 

τ00 0.02 Participant 0.02 Participant 

 0.02 Lesion 0.01 Lesion 

 0.06 Control_Image 0.04 Control_Image 

ICC 0.06 Participant 0.08 Participant 

 0.08 Lesion 0.06 Lesion 

 0.19 Control_Image 0.18 Control_Image 

Observations 352 352 

Marginal R2 / Conditional R2 0.017 / 0.335 0.000 / 0.319 
Note. *p<0.05   ** p<0.01   *** p<0.001, a Cortex PVD ~ hemi + (1|Participant) + (1|Lesion) + (1|Control_Image), b cWM PVD ~ hemi + (1|Participant) + (1|Lesion) + 
(1|Control_Image). 
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Table B.4. Outputs from linear mixed-models testing whether lesion characteristics can significantly exaplain variance in PVD across hemilesion 
and hemicontra 

 Cortex PVD cWM PVD 

  Hemilesion
a Hemilesion

b Hemicontra
c Hemicontra

d 

Predictors Estimates std. Error Estimates std. Error Estimates std. Error Estimates std. Error 
(Intercept) 0.62 *** 

(0.48 – 0.76) 
0.07 0.48 *** 

(0.36 – 0.60) 
0.06 0.44 *** 

(0.31 – 0.56) 
0.06 0.44 *** 

(0.31 – 0.57) 
0.07 

Mean Intensity -0.14  
(-0.31 – 0.04) 

0.09 -0.01  
(-0.17 – 0.15) 

0.08 0.03  
(-0.12 – 0.19) 

0.08 0.02  
(-0.14 – 0.19) 

0.08 

SD Intensity -0.23 ** 
(-0.40 – -0.06) 

0.09 -0.16 * 
(-0.32 – -0.00) 

0.08 -0.00  
(-0.16 – 0.15) 

0.08 -0.11  
(-0.28 – 0.05) 

0.08 

Volume 0.28 *** 
(0.20 – 0.35) 

0.04 -0.00  
(-0.06 – 0.06) 

0.03 0.15 *** 
(0.09 – 0.21) 

0.03 0.05  
(-0.01 – 0.10) 

0.03 

Random Effects 
σ2 0.25 0.14 0.15 0.15 

τ00 0.04 Control_Image 0.04 Control_Image 0.03 Control_Image 0.04 Control_Image 

ICC 0.13 Control_Image 0.20 Control_Image 0.18 Control_Image 0.20 Control_Image 

Observations 176 176 176 176 

Marginal R2 / Conditional 
R2 

0.274 / 0.370 0.121 / 0.294 0.112 / 0.269 0.085 / 0.271 

Note. *p<0.05   ** p<0.01   *** p<0.001, a Cortex PVD ~ Mean_Intensity + SD_Intensity + Volume + (1|Control_Image) , subset = (hemi=='Lesion'), b Cortex PVD ~ Mean_Intensity 
+ SD_Intensity + Volume + (1|Control_Image) , subset = (hemi=='Contralesion'), c cWM PVD ~ Mean_Intensity + SD_Intensity + Volume + (1|Control_Image) , subset = 
(hemi=='Lesion'), d cWM PVD ~ Mean_Intensity + SD_Intensity + Volume + (1|Control_Image) , subset = (hemi=='Contralesion'), 
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Appendix C - Supplementary Materials for Chapter 4 

Freesurfer Lesion Pipeline 

We adapted the Freesurfer pipeline to mitigate some of the Issues surrounding surface-based 

parcellations in the presence of traumatic lesions, particularly the effect of lesions on the surface 

placement of contralateral region. The current paper utilises a new approach to Freesurfer segmentation 

in the presence of focal lesions. Lesions were identified in our dataset by a single rater and masks drawn 

where visible lesions could be identified by eye using T1w. Lesions were segmented manually (by JN) 

using the MRTrix (Tournier et al., 2012) software package, producing a binary lesion mask for each 

patient. These were used to enantiomorphically fill the lesions using the approach of Nachev et al. 

(2008). Briefly, this approach robustly registers the lesioned hemisphere to the non-lesioned hemisphere 

and fills the lesioned voxels (indicated by the lesion-mask) with healthy appearing signal intensities 

from the contra-lesional hemisphere. The output is an image with approximately-typical T1w voxel 

intensities in place of the lesioned tissue. This enanteomorphically generated T1w image was then 

processed using the Freesurfer cortical surface segmentation pipeline (with both -3T and –mprage flags). 

By processing this image rather than the original T1w MRI, we mitigate potential contrast-induced 

errors which may contribute to the lesion-induced error, even in the contralesional hemisphere. 

As lesion masks were drawn in the native space directly into the T1w images, these could be projected 

onto the cortical surface vertices on the corresponding patient's Freesurfer surface model. This projected 

lesion ROI was filled (to avoid holes due to voxel-vertex mismatches) and was used as an ROI label for 

further analyses. 

Individual-subject level atlas parcellations were then masked using the surface projected lesion masks. 

Thus, region labels that are completely or partially occluded by lesion tissue will be overwritten with 

the lesion label. Morphometric measures (such as cortical thickness, volume, etc) will be calculated 

using the standard Freesurfer approaches but due to this relabelling, no measures will be taken from 

tissue which is a) lesioned within the original image and b) filled with estimated voxel intensities in the 

enanteomorphically filled T1w images.  

The output of this pipeline is cortical morphology measurements which are not contaminated by lesion 

tissue or the wider error associated with the processing of lesioned T1w images. For those regions which 

are completely occluded by the lesion label, morphological measures will be reported as zero. These 

will be recoded as NaN to ensure that when generating the covariance matrix we do not estimate 

covariance with this region. 

ABIDE Dataset Quality Control 

Quality assurance (QA) of ABIDE Imaging Data 
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The ABIDE pre-processed data provided by the PCP includes QA metrics as calculated using the Quality 

Assessment Protocol software (QAP, Shehzad et al. (2015)). We used the six spatial anatomical QA 

measures provided, to perform QA on the included data. Given that the ABIDE dataset includes data 

from 17 recruitment sites, there is potential for a ‘batch effect’ on QA seen between sites (Esteban et al., 

2017). Hence, all QA metrics were centred (mean subtracted) and scaled (divided by Standard deviation) 

within-site. This results in metrics that are standardised and can be compared between sites. All metrics 

were also coded to ensure higher scores represented higher quality. We then calculated, per subject, how 

many of the QA metrics had a Zscore of below -1.5 (indicating quality which was 1.5SD below the 

mean). We included subjects if they had zero or one QA metric that fell below this quality metric. Of 

the ABIDE cases who were recorded as a) controls and b) being younger than 17 years of age at scanning 

(n=361), 14 subjects were removed due to having greater than one QA metric fall below the 1.5SD cut 

off (20 participants also had no Freesufer data available, resulting in the final ABIDE dataset of n = 

327). Further details of the automated QA measures which are included can be found here: 

http://preprocessed-connectomes-project.org/abide/quality_assessment.html and http://preprocessed-

connectomes-project.org/quality-assessment-protocol. 

Site effects on cortical thickness within the ABIDE cohort 

Given the control cases from the ABIDE dataset were recruited from multiple sites, it is important to 

control for potential site-effects on the cortical thickness measurements (Fortin et al., 2018). To account 

for these we adopt the residuals harmonization approach used by Fortin et al. (2018). Briefly, for each 

ROI, a linear model was defined with the site as a predictor and cortical thickness as the dependant 

measure. The vector of coefficients for each level of the site predictor was estimated, with the coefficient 

representing the site effects. For each site, this coefficient was subtracted from the individual subject’s 

cortical thickness values. This was done for each ROI independently.  

Results when Lesion Cases (n=8) Excluded 

Of the eight lesion cases removed five were assigned to the EFGood subgroup, two to the EFPoor and one 

had no EF data available. Analyses were repeated with these cases removed and results are outlined 

below. 

Differences in CT between pTBI and Controls 

Across all contrasts, no regional CT reductions in the TBI group compared to controls were significant 

(after FDR correction).  

Differences in SC between pTBI and Controls  

http://preprocessed-connectomes-project.org/abide/quality_assessment.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol
http://preprocessed-connectomes-project.org/quality-assessment-protocol
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No significant difference in mean graph strength was found between patients and controls (observed 

difference (ObsDiff) = -11.5, pfdr = .063). When investigating subgroups, significant differences were 

found between controls and EFpoor but not EFGood (ObsDiff = -21.3, pfdr = . 006, and ObsDiff = -11.6, pfdr 

= .063 respectively). After fdr correction no nodal differences remained significant between control and 

the whole pTBI group or EFGood subgroups. However, when comparing the EFPoor group to controls, 

multiple regions (50/68) showed significantly greater nodal strength in the patient group.  

SC between regions with CT reductions in pTBI 

When considering the whole group of pTBI patients, for no value of n number of regions was the mean 

strength of regions significantly greater than that of n randomly selected regions. This was also true of 

the EFGood subgroup.  

However, for the EFPoor group, the mean strength of the greatest n nodes with cortical thickness 

reductions was significantly greater than the mean strength of n randomly selected regions for 36/67 

values of n (n = 10-11, 28-29, 31, 33-63, pfdr all < .05). When using the ABIDE dataset these results 

were largely repeated, with mean node strength being significantly greater than n randomly selected 

regions for multiple values of n (43/67) in the EFPoor group (n = 23-24, 26-65, 67, pfdr all < .05), but 

neither the whole pTBI sample or the EFGood subgroup. 
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List of ABIDE subject IDs included in the current study 

Study.ID 
KKI_0050772 
KKI_0050773 
KKI_0050774 
KKI_0050775 
KKI_0050776 
KKI_0050777 
KKI_0050778 
KKI_0050779 
KKI_0050780 
KKI_0050781 
KKI_0050782 
KKI_0050783 
KKI_0050784 
KKI_0050785 
KKI_0050786 
KKI_0050788 
KKI_0050789 
KKI_0050790 
KKI_0050812 
KKI_0050814 
KKI_0050816 
KKI_0050817 
KKI_0050818 
KKI_0050819 
KKI_0050820 
KKI_0050821 
KKI_0050822 
Leuven_2_0050722 
Leuven_2_0050723 
Leuven_2_0050724 
Leuven_2_0050725 
Leuven_2_0050726 
Leuven_2_0050727 
Leuven_2_0050728 
Leuven_2_0050730 
Leuven_2_0050731 
Leuven_2_0050732 
Leuven_2_0050733 
Leuven_2_0050735 
Leuven_2_0050736 
Leuven_2_0050737 
Leuven_2_0050738 
Leuven_2_0050739 
Leuven_2_0050740 
Leuven_2_0050741 
Leuven_2_0050742 

MaxMun_d_0051356 
MaxMun_d_0051357 
MaxMun_d_0051358 
MaxMun_d_0051359 
MaxMun_d_0051360 
MaxMun_d_0051361 
NYU_0051036 
NYU_0051038 
NYU_0051039 
NYU_0051040 
NYU_0051041 
NYU_0051042 
NYU_0051044 
NYU_0051045 
NYU_0051046 
NYU_0051047 
NYU_0051048 
NYU_0051049 
NYU_0051050 
NYU_0051051 
NYU_0051052 
NYU_0051053 
NYU_0051054 
NYU_0051055 
NYU_0051064 
NYU_0051065 
NYU_0051069 
NYU_0051070 
NYU_0051071 
NYU_0051072 
NYU_0051073 
NYU_0051074 
NYU_0051075 
NYU_0051076 
NYU_0051078 
NYU_0051079 
NYU_0051080 
NYU_0051081 
NYU_0051082 
NYU_0051083 
NYU_0051084 
NYU_0051085 
NYU_0051086 
NYU_0051087 
NYU_0051088 
NYU_0051089 
NYU_0051090 

NYU_0051091 
NYU_0051093 
NYU_0051094 
NYU_0051095 
NYU_0051096 
NYU_0051097 
NYU_0051098 
NYU_0051099 
NYU_0051100 
NYU_0051101 
NYU_0051102 
NYU_0051103 
NYU_0051104 
NYU_0051105 
NYU_0051106 
NYU_0051107 
NYU_0051109 
NYU_0051110 
NYU_0051111 
NYU_0051121 
NYU_0051122 
NYU_0051123 
NYU_0051124 
NYU_0051126 
NYU_0051127 
NYU_0051128 
NYU_0051159 
OHSU_0050157 
OHSU_0050158 
OHSU_0050159 
OHSU_0050160 
OHSU_0050161 
OHSU_0050162 
OHSU_0050163 
OHSU_0050164 
OHSU_0050166 
OHSU_0050167 
OHSU_0050168 
OHSU_0050169 
OHSU_0050170 
OHSU_0050171 
Olin_0050102 
Olin_0050103 
Olin_0050104 
Olin_0050106 
Olin_0050110 
Olin_0050111 

Olin_0050113 
Olin_0050116 
Pitt_0050031 
Pitt_0050033 
Pitt_0050034 
Pitt_0050036 
Pitt_0050038 
Pitt_0050043 
Pitt_0050045 
Pitt_0050047 
Pitt_0050048 
Pitt_0050049 
Pitt_0050050 
Pitt_0050051 
Pitt_0050054 
SDSU_0050193 
SDSU_0050194 
SDSU_0050195 
SDSU_0050196 
SDSU_0050198 
SDSU_0050199 
SDSU_0050200 
SDSU_0050201 
SDSU_0050202 
SDSU_0050203 
SDSU_0050204 
SDSU_0050205 
SDSU_0050206 
SDSU_0050208 
SDSU_0050209 
SDSU_0050210 
SDSU_0050211 
SDSU_0050213 
SDSU_0050214 
SDSU_0050215 
SDSU_0050217 
Stanford_0051180 
Stanford_0051181 
Stanford_0051182 
Stanford_0051183 
Stanford_0051184 
Stanford_0051185 
Stanford_0051186 
Stanford_0051187 
Stanford_0051188 
Stanford_0051189 
Stanford_0051190 
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Stanford_0051191 
Stanford_0051192 
Stanford_0051193 
Stanford_0051194 
Stanford_0051195 
Stanford_0051196 
Stanford_0051197 
Stanford_0051198 
Stanford_0051199 
Trinity_0050257 
Trinity_0050265 
Trinity_0050266 
Trinity_0050268 
Trinity_0050269 
Trinity_0051133 
Trinity_0051134 
Trinity_0051136 
Trinity_0051137 
Trinity_0051138 
Trinity_0051140 
Trinity_0051141 
Trinity_0051142 
UCLA_1_0051250 
UCLA_1_0051251 
UCLA_1_0051252 
UCLA_1_0051253 
UCLA_1_0051254 
UCLA_1_0051255 
UCLA_1_0051256 
UCLA_1_0051257 
UCLA_1_0051258 
UCLA_1_0051260 
UCLA_1_0051262 
UCLA_1_0051263 
UCLA_1_0051264 
UCLA_1_0051265 
UCLA_1_0051266 
UCLA_1_0051267 
UCLA_1_0051269 
UCLA_1_0051271 
UCLA_1_0051272 
UCLA_1_0051273 
UCLA_1_0051274 
UCLA_1_0051275 
UCLA_1_0051276 
UCLA_1_0051277 
UCLA_1_0051278 
UCLA_1_0051279 

UCLA_1_0051280 
UCLA_1_0051281 
UCLA_1_0051282 
UCLA_2_0051303 
UCLA_2_0051304 
UCLA_2_0051305 
UCLA_2_0051306 
UCLA_2_0051307 
UCLA_2_0051308 
UCLA_2_0051309 
UCLA_2_0051311 
UCLA_2_0051312 
UCLA_2_0051313 
UCLA_2_0051314 
UCLA_2_0051315 
UCLA_2_0051316 
UM_1_0050327 
UM_1_0050330 
UM_1_0050332 
UM_1_0050333 
UM_1_0050334 
UM_1_0050336 
UM_1_0050337 
UM_1_0050338 
UM_1_0050340 
UM_1_0050342 
UM_1_0050343 
UM_1_0050347 
UM_1_0050350 
UM_1_0050351 
UM_1_0050352 
UM_1_0050353 
UM_1_0050354 
UM_1_0050355 
UM_1_0050357 
UM_1_0050358 
UM_1_0050359 
UM_1_0050360 
UM_1_0050362 
UM_1_0050363 
UM_1_0050364 
UM_1_0050365 
UM_1_0050366 
UM_1_0050367 
UM_1_0050369 
UM_1_0050370 
UM_1_0050371 
UM_1_0050372 

UM_1_0050374 
UM_1_0050375 
UM_1_0050376 
UM_1_0050377 
UM_1_0050379 
UM_1_0050381 
UM_2_0050383 
UM_2_0050387 
UM_2_0050390 
UM_2_0050414 
UM_2_0050416 
UM_2_0050417 
UM_2_0050418 
UM_2_0050419 
UM_2_0050421 
UM_2_0050422 
UM_2_0050425 
UM_2_0050426 
UM_2_0050427 
UM_2_0050428 
USM_0050435 
USM_0050436 
USM_0050437 
USM_0050438 
USM_0050447 
USM_0050448 
USM_0050453 
USM_0050470 
Yale_0050551 
Yale_0050552 
Yale_0050556 
Yale_0050559 
Yale_0050563 
Yale_0050564 
Yale_0050565 
Yale_0050566 
Yale_0050568 
Yale_0050569 
Yale_0050571 
Yale_0050572 
Yale_0050573 
Yale_0050574 
Yale_0050576 
Yale_0050577 
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Appendix D - Supplementary Materials for Chapter 5 

List of ABIDE subject IDs included in the current study 

 
Study.ID 
KKI_0050772 
KKI_0050773 
KKI_0050774 
KKI_0050775 
KKI_0050776 
KKI_0050777 
KKI_0050778 
KKI_0050779 
KKI_0050780 
KKI_0050781 
KKI_0050782 
KKI_0050783 
KKI_0050784 
KKI_0050785 
KKI_0050786 
KKI_0050788 
KKI_0050789 
KKI_0050790 
KKI_0050812 
KKI_0050814 
KKI_0050816 
KKI_0050817 
KKI_0050818 
KKI_0050819 
KKI_0050820 
KKI_0050821 
KKI_0050822 
Leuven_2_0050722 
Leuven_2_0050723 
Leuven_2_0050724 
Leuven_2_0050725 
Leuven_2_0050726 
Leuven_2_0050727 
Leuven_2_0050728 
Leuven_2_0050730 
Leuven_2_0050731 
Leuven_2_0050732 
Leuven_2_0050733 
Leuven_2_0050735 
Leuven_2_0050736 
Leuven_2_0050737 
Leuven_2_0050738 

Leuven_2_0050739 
Leuven_2_0050740 
Leuven_2_0050741 
Leuven_2_0050742 
MaxMun_d_005135
6 
MaxMun_d_005135
7 
MaxMun_d_005135
8 
MaxMun_d_005135
9 
MaxMun_d_005136
0 
MaxMun_d_005136
1 
NYU_0051036 
NYU_0051038 
NYU_0051039 
NYU_0051040 
NYU_0051041 
NYU_0051042 
NYU_0051044 
NYU_0051045 
NYU_0051046 
NYU_0051047 
NYU_0051048 
NYU_0051049 
NYU_0051050 
NYU_0051051 
NYU_0051052 
NYU_0051053 
NYU_0051054 
NYU_0051055 
NYU_0051064 
NYU_0051065 
NYU_0051069 
NYU_0051070 
NYU_0051071 
NYU_0051072 
NYU_0051073 
NYU_0051074 
NYU_0051075 
NYU_0051076 
NYU_0051078 

NYU_0051079 
NYU_0051080 
NYU_0051081 
NYU_0051082 
NYU_0051083 
NYU_0051084 
NYU_0051085 
NYU_0051086 
NYU_0051087 
NYU_0051088 
NYU_0051089 
NYU_0051090 
NYU_0051091 
NYU_0051093 
NYU_0051094 
NYU_0051095 
NYU_0051096 
NYU_0051097 
NYU_0051098 
NYU_0051099 
NYU_0051100 
NYU_0051101 
NYU_0051102 
NYU_0051103 
NYU_0051104 
NYU_0051105 
NYU_0051106 
NYU_0051107 
NYU_0051109 
NYU_0051110 
NYU_0051111 
NYU_0051121 
NYU_0051122 
NYU_0051123 
NYU_0051124 
NYU_0051126 
NYU_0051127 
NYU_0051128 
NYU_0051159 
OHSU_0050157 
OHSU_0050158 
OHSU_0050159 
OHSU_0050160 

OHSU_0050161 
OHSU_0050162 
OHSU_0050163 
OHSU_0050164 
OHSU_0050166 
OHSU_0050167 
OHSU_0050168 
OHSU_0050169 
OHSU_0050170 
OHSU_0050171 
Olin_0050102 
Olin_0050103 
Olin_0050104 
Olin_0050106 
Olin_0050110 
Olin_0050111 
Olin_0050113 
Olin_0050116 
Pitt_0050031 
Pitt_0050033 
Pitt_0050034 
Pitt_0050036 
Pitt_0050038 
Pitt_0050043 
Pitt_0050045 
Pitt_0050047 
Pitt_0050048 
Pitt_0050049 
Pitt_0050050 
Pitt_0050051 
Pitt_0050054 
SDSU_0050193 
SDSU_0050194 
SDSU_0050195 
SDSU_0050196 
SDSU_0050198 
SDSU_0050199 
SDSU_0050200 
SDSU_0050201 
SDSU_0050202 
SDSU_0050203 
SDSU_0050204 
SDSU_0050205 
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SDSU_0050206 
SDSU_0050208 
SDSU_0050209 
SDSU_0050210 
SDSU_0050211 
SDSU_0050213 
SDSU_0050214 
SDSU_0050215 
SDSU_0050217 
Stanford_0051180 
Stanford_0051181 
Stanford_0051182 
Stanford_0051183 
Stanford_0051184 
Stanford_0051185 
Stanford_0051186 
Stanford_0051187 
Stanford_0051188 
Stanford_0051189 
Stanford_0051190 
Stanford_0051191 
Stanford_0051192 
Stanford_0051193 
Stanford_0051194 
Stanford_0051195 
Stanford_0051196 
Stanford_0051197 
Stanford_0051198 
Stanford_0051199 
Trinity_0050257 
Trinity_0050265 
Trinity_0050266 
Trinity_0050268 
Trinity_0050269 
Trinity_0051133 
Trinity_0051134 
Trinity_0051136 
Trinity_0051137 
Trinity_0051138 
Trinity_0051140 
Trinity_0051141 

Trinity_0051142 
UCLA_1_0051250 
UCLA_1_0051251 
UCLA_1_0051252 
UCLA_1_0051253 
UCLA_1_0051254 
UCLA_1_0051255 
UCLA_1_0051256 
UCLA_1_0051257 
UCLA_1_0051258 
UCLA_1_0051260 
UCLA_1_0051262 
UCLA_1_0051263 
UCLA_1_0051264 
UCLA_1_0051265 
UCLA_1_0051266 
UCLA_1_0051267 
UCLA_1_0051269 
UCLA_1_0051271 
UCLA_1_0051272 
UCLA_1_0051273 
UCLA_1_0051274 
UCLA_1_0051275 
UCLA_1_0051276 
UCLA_1_0051277 
UCLA_1_0051278 
UCLA_1_0051279 
UCLA_1_0051280 
UCLA_1_0051281 
UCLA_1_0051282 
UCLA_2_0051303 
UCLA_2_0051304 
UCLA_2_0051305 
UCLA_2_0051306 
UCLA_2_0051307 
UCLA_2_0051308 
UCLA_2_0051309 
UCLA_2_0051311 
UCLA_2_0051312 
UCLA_2_0051313 
UCLA_2_0051314 

UCLA_2_0051315 
UCLA_2_0051316 
UM_1_0050327 
UM_1_0050330 
UM_1_0050332 
UM_1_0050333 
UM_1_0050334 
UM_1_0050336 
UM_1_0050337 
UM_1_0050338 
UM_1_0050340 
UM_1_0050342 
UM_1_0050343 
UM_1_0050347 
UM_1_0050350 
UM_1_0050351 
UM_1_0050352 
UM_1_0050353 
UM_1_0050354 
UM_1_0050355 
UM_1_0050357 
UM_1_0050358 
UM_1_0050359 
UM_1_0050360 
UM_1_0050362 
UM_1_0050363 
UM_1_0050364 
UM_1_0050365 
UM_1_0050366 
UM_1_0050367 
UM_1_0050369 
UM_1_0050370 
UM_1_0050371 
UM_1_0050372 
UM_1_0050374 
UM_1_0050375 
UM_1_0050376 
UM_1_0050377 
UM_1_0050379 
UM_1_0050381 
UM_2_0050383 

UM_2_0050387 
UM_2_0050390 
UM_2_0050414 
UM_2_0050416 
UM_2_0050417 
UM_2_0050418 
UM_2_0050419 
UM_2_0050421 
UM_2_0050422 
UM_2_0050425 
UM_2_0050426 
UM_2_0050427 
UM_2_0050428 
USM_0050435 
USM_0050436 
USM_0050437 
USM_0050438 
USM_0050447 
USM_0050448 
USM_0050453 
USM_0050470 
Yale_0050551 
Yale_0050552 
Yale_0050556 
Yale_0050559 
Yale_0050563 
Yale_0050564 
Yale_0050565 
Yale_0050566 
Yale_0050568 
Yale_0050569 
Yale_0050571 
Yale_0050572 
Yale_0050573 
Yale_0050574 
Yale_0050576 
Yale_0050577 
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Quality assurance (QA) of ABIDE Imaging Data 

The ABIDE pre-processed data provided by the PCP includes QA metrics as calculated using the Quality 

Assessment Protocol software (QAP, Shehzad et al. (2015)). We used the six spatial anatomical QA 

measures provided, to perform QA on the included data. Given that the ABIDE dataset includes data 

from 17 recruitment sites, there is potential for a ‘batch effect’ on QA seen between sites (Esteban et al., 

2017). Hence, all QA metrics were centred (mean subtracted) and scaled (divided by Standard deviation) 

within site. This results in metrics which are standardised and can be compared between sites. All 

metrics were also coded to ensure higher scores represented higher quality. We then calculated, per 

subject, how many of the QA metric had a Zscore of below -1.5 (indicating quality which was 1.5SD 

below the mean). Subjects were excluded if they had more than one QA metric that fell below this 

quality metric. Of the ABIDE cases who were recorded as a) controls and b) being younger than 17 

years of age at scanning (n=361), 14 subjects were removed due to having greater than one QA metric 

fall below the 1.5SD cut off (20 participants also had no Freesufer data available, resulting in the final 

ABIDE dataset of n = 327). Further details of the automated QA measures which are included can be 

found here: http://preprocessed-connectomes-project.org/abide/quality_assessment.html and 

http://preprocessed-connectomes-project.org/quality-assessment-protocol. 

Site effects on cortical thickness within the ABIDE cohort and between cohorts 

Given the control cases from the ABIDE dataset were recruited from multiple sites, it is important to 

control for potential site-effects on the cortical thickness measurements (Fortin et al., 2018). To account 

for these we adopt the residuals harmonization approach used by Fortin et al. (2018). Briefly, for each 

ROI, a linear model was defined with site as a predictor and cortical thickness as the dependant measure. 

The vector of coefficients for each level of the site predictor was estimated, with the coefficient 

representing the site effects. For each site, this coefficient was subtracted from the individual subject’s 

cortical thickness values. This was done for each ROI independently. Subsequently, this was repeated 

for the whole cohort to account for cohort effects (ABIDE cohort vs TBI cohort). The residuals 

harmonization approach was used to estimate the effect of cohort between control participants in the 

ABIDE and TBI cohorts (excluding TBI patients to ensure that this estimate is not confounded by the 

effect of injury). This estimate of cohort effect was subtracted from TBI cohort subject’s (patients and 

controls) cortical thickness values.  

Selection of Appropriate Window-size for age-matched DDI 

Optimal window-size was selected against a number of criteria: a) based on recommendations by  Saggar 

et al. (2015) in relation to stability of their AOP metric, b) maximised the Mann-Whitney statistic for 

control vs TBI differences in DDI measure, and c) which resulted in an nth window (where number of 

http://preprocessed-connectomes-project.org/abide/quality_assessment.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol
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windows is 1 : n) which was as close to the defined window size as possible. Saggar et al. (2015) 

investigated the stability of their AOP metric and found that a reference group of between 25 and 30 

subjects ensured that there was a stable a) estimate of the AOP metric for the patient group, b) estimate 

of the correlation between AOP metric and behavioural measures and c) estimate of the correlation 

between AOP metric and behavioural measures in an external dataset. 

Therefore we investigated 5 potential window sizes of varying number of subjects; n = 22, 26, 30, 34, 

and 38. We did not vary step size, these windows remained half overlapping. We calculated the age-

matched DDI for all subjects within this studies cohort and compared them between patients and controls 

using a Mann-Whitney test, due to the non-normal distribution of the data. Based on these given window 

sizes, we also calculated the size of the final sliding window. Both the Mann-Whitney statistics and final 

window sizes can be seen in Table D1 

Post-hoc Exploratory Analyses 

Differences in DDI over Severity 

We investigated whether DDIinv and DDIage differed as a function of injury severity. To maintain 

statistical power, mild-complex, moderate and severe injury classifications were grouped into a 

‘Moderate/Severe’ group for comparisons. Clinical presentation between injury severities is very 

different and thus treating the patient group as a single cohort in patient vs control analyses of the 

divergence index may miss clinically meaningful differences.  

As can be seen in Table D2. across DDIinv and DDIage, for both the whole brain and CEN, non-parametric 

Kruskal-Wallis rank sum tests showed that the DDI measure did not change as a function of injury 

severity. This is further shown in Figure D1. 
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Table D1. Details from analyses assessing appropriate window-size for primary analyses 

Window Size Mann-Whitney Statistic No. of windows Final Window Size 

22 1177 29 19 

26 1237 25 15 

30 1201 21 27 

34 1210 20 21 

38 1176 17 23 

 

Table D2. Differences in DDI between injury severity groups across whole-brain and CEN 

DDI Measure 

Median Value 

Difference b 
Controls 

(n = 33) 
 

Mild TBI 

(n = 47) 
 

Moderate/ 

Severe  

TBI a 

(n = 28) 

DDIinv. Whole-brain 3.97e-05  4.85e-05  5.2e-05 χ2(2) = 1.96, p = .375 

 CEN 1.04e-05  1.39e-05  1.5e-05 χ2(2) = .632, p = .729 

DDIage Whole-brain 4.14e-03  4.41e-03  5.01e-03 χ2(2) = .991, p = .609 

 CEN 1.52e-03  1.12e-03  1.40e-03 χ2(2) = .211, p = .900 

a. Mild complicated TBI + Moderate TBI + Severe TBI, b. Kruskal-Wallis rank sum test. p values are 
uncorrected values.  
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Figure D1. Differences in DDIinv. (top-row) and DDIage (bottom-row) for both the whole brain (first 

column) and only the CEN (second column) across injury severities. 

  

a) b) 

c) d) 

DDIinv. 

DDIage 

CEN Whole-Brain 
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Partial correlations between DDI and EF 

Partial correlations (Pearson’s) were computed using the jmuOutlier (version 2.2) package in R (Garren, 

2019) between whole-brain DDIinv/DDIage and EF/BRIEF whilst controlling for a) age at scanning (yrs), 

and b) both age at scanning (yrs) and the interval between MRI and EF assessment (days). This was to 

investigate whether the relationship between DDIinv/DDIage and EF/BRIEF was maintained whilst 

controlling for potentially confounding factors. As shown in Table S3. the results of these analyses were 

qualitatively the same, with very little changes to correlation coefficients. It is important to note that the 

p values reported in the table are uncorrected, parametric p values and therefore should be interpreted 

with caution. 
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Table D3. Pearson’s partial correlation coefficients (r) between DDI and EF outcomes, controlling for age at MRI and interval between MRI 
and EF neuropsychological assessment with associated parametric p-values 

DDI Measure DV 

Controlling for Age at MRI (yrs)  Controlling for Age at MRI (yrs) and MRI-EF 
assessment interval (days) 

TBI Patients  Controls  Whole 
Sample  TBI Patients  Controls  Whole 

Sample 

r p  r p  r p  r p  r p  r p 

DDIinv. EFa -.321 .021  -.064 .752  -.299 .007  -.321 .023  -.262 .196  -.273 .016 

 BRIEFb .272 .054  .413 .021  .296 .007  .270 .058  .447 .013  .284 .010 

DDIage EFa -.326 .020  -.084 .676  -.307 .006  -.326 .021  -219 .283  -.288 .010 

 BRIEFb .254 .072  .314 .086  .270 .014  .254 .075  .325 .079  .263 .017 

a. Complete cases for correlation are n = 52 for TBI group and n = 28 for controls, b. complete cases for correlation are n = 52 for TBI group and 
n = 32 for controls. p values are raw, uncorrected values calculated using a parametric partial correlation approach.  
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Appendix E - Supplementary Materials for Chapter 6 

Dimension reduction of Executive functioning task performance 

A principal component analysis (PCA, using the ‘prcomp’ function in the base R ‘stats’ package (R 

Core Team, 2016)) was used to find a common EF component across all three EF measures. Data 

reduction using the PCA was done for two main reasons; a) to reduce dimensionality, and the number 

of multiple predictor models being built and b) to ensure that we were predicting (a latent variable of) 

executive functioning ability, rather than ability linked to task-specific performance.  

The PCA suggested a three-component solution, however only the first component had an eigen-value 

> 1 (eigenvalue=1.607) and so only this component was retained. This component explained ~54% 

variance across our measures. All three measures; list-sort, card-sort and flanker, positively loaded onto 

this component (rotated sums of squares loading = .362, .673 and .646 respectively). 
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Appendix F - Supplementary Materials for Chapter 7 

Differences in graph-level morphometric similarity across ROIs 

When comparing pTBI patients against controls, mean difference in the magnitude of morphometric 

similarity (adjusted for age at scanning, sex, age*sex, and eTIV) across the brain was not significant 

following FDR correction, across all network thresholds tested (all pfdr > .05). These can be seen below 

in Table F1. This was repeated for all ROIs of the unthresholded network to investigate the effect of 

group on nodal strength, and similar null results were found (all pfdr > .05), which can be seen in Table 

F2. 
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Table F.1. Results of GLM to test the effect of group (TBI vs Controls) on average nodal strength, 

whilst controlling for age at scanning, sex, age*sex, and estimated total intracranial volume (eTIV). 

Density 
Threshold 

Mean Normalised Strength a pfdr 
b Hedges g c 

Patient Control 
0.05 3.23 3.23 0.75 0.09 
0.1 6.25 6.25 0.98 0.01 

0.15 9.02 9.03 0.75 -0.09 
0.2 11.50 11.53 0.54 -0.20 

0.25 13.64 13.71 0.37 -0.29 
0.3 15.42 15.53 0.24 -0.36 

0.35 16.81 16.98 0.22 -0.41 
0.4 17.81 18.01 0.22 -0.44 
1 -0.20 -0.13 0.54 -0.19 

Note. a Mean values adjusted for covariates (age, sex, age*sex and eTIV), b False discovery rate 
corrected p values, c Corrected for unequal sample sizes 
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Table F.2. Results of GLM to test the effect of group (TBI vs Controls) on nodal strength, whilst 

controlling for covariates across all ROIs for the unthresholded network 

ROI pfdr 
a Hedges g b  ROI pfdr 

a Hedges g b 
lBSTS 0.46 -0.47  rBSTS 0.55 -0.27 
lcACC 1.00 0.00  rcACC 0.76 -0.14 
lcMFG 0.94 0.04  rcMFG 0.55 -0.24 
lCUN 0.46 0.39  rCUN 0.46 0.40 
lENT 0.55 0.26  rENT 0.55 0.23 
lFUS 0.99 -0.01  rFUS 0.76 -0.15 
lIPL 0.76 -0.13  rIPL 0.68 -0.19 
lITG 0.50 -0.34  rITG 0.53 -0.30 
liCC 0.94 -0.03  riCC 0.55 0.26 
lLOG 0.90 -0.07  rLOG 0.90 0.09 
lLOF 0.90 0.08  rLOF 0.94 -0.03 
lLING 0.55 0.26  rLING 0.51 0.32 
lMOF 0.94 0.03  rMOF 0.78 -0.12 
lMTG 0.46 -0.39  rMTG 0.55 -0.23 
lPARH 1.00 0.00  rPARH 0.55 -0.30 
lparaC 0.90 -0.07  rparaC 0.51 0.32 

lpOPER 0.68 -0.19  rpOPER 0.78 0.12 
lpORB 0.46 0.42  rpORB 0.46 0.42 
lpTRI 0.55 -0.27  rpTRI 0.55 0.28 

lperiCAL 0.70 0.17  rperiCAL 0.51 0.32 
lpostC 0.90 0.06  rpostC 0.46 -0.39 
lPCC 0.90 0.09  rPCC 0.55 0.24 
lpreC 0.70 -0.17  rpreC 0.50 -0.36 

lPCUN 0.90 -0.06  rPCUN 0.46 -0.53 
lrACC 0.50 -0.34  rrACC 0.90 0.06 
lrMFG 0.55 -0.25  rrMFG 0.76 -0.14 
lSFG 0.55 -0.25  rSFG 0.55 -0.23 
lSPL 0.90 0.06  rSPL 0.90 0.06 
lSTG 0.50 -0.36  rSTG 0.46 -0.44 

lSMAR 0.94 -0.03  rSMAR 0.55 -0.26 
lFP 0.50 0.34  rFP 0.55 0.23 
lTP 0.76 0.14  rTP 0.74 0.16 
lTT 0.99 0.01  rTT 0.70 0.17 
lINS 0.55 -0.22  rINS 0.77 -0.13 

Note. a False discovery rate corrected p values, b Corrected for unequal sample sizes 
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Exploratory Tests of Differences in graph-level morphometric similarity across multiple 
groupings 

Given we found no significant differences between patients and controls for morphometric similarity, 

we post-hoc hypothesised that this may be due to the level inhomogeneous nature of the patient group. 

Thus, we conducted exploratory, post-hoc analyses of potential differences when splitting the patient 

group based on both outcome and clinical ratings of injury severity. 

We firstly compared groups derived from injury severity. Injury severity was derived as described in 

previous publications of the current dataset (Anderson et al., 2013; Anderson et al., 2017; Catroppa et 

al., 2017), across severities of mild, mild-complex, moderate and severe. In order to reduce multiple 

comparisons and maintain reasonable group sample sizes, we divided the patients in to a mild group (n= 

47) and then a second group comprising all other severities (mild-complex, moderate and severe, n = 

36). We then conducted three-way comparisons between each of these groups and controls. We still 

found no significant differences in graph-level morphometric similarity across all network thresholds 

(all pfdr > .05). These can be seen in Table F3. 

We then divided the patient group based upon those exhibiting clinically relevant cognitive impairment 

in terms of executive (dys)function at 2 years post-injury. The current study adopted the 

neuropsychological impairment (NPI) rule proposed by Beauchamp et al. (2015) which has previously 

been used in regards to TBI (Beauchamp et al., 2015; Donders & DeWit, 2017; Beauchamp et al., 2018). 

Briefly, performance scores for the neuropsychological test batteries were converted to age-scaled 

scores (M=10, SD=3) and those assigned to the clinically impaired group were those who performed 

more than 1SD below average functioning on two or more individual EF measures (EFpoor, n = 17), 

whereas those who were impaired on less than two measures were assigned to the without cognitive 

impairment group (EFgood, n = 42). We only assigned group membership on the basis of the NPI rule for 

those cases who had the full battery of EF tests. When comparing morphometric similarity between 

those with and without impairment and those with controls again, we found no significant differences, 

and this can be seen in table F4. However, these results may be due to limited power due to the reduction 

in sample sizes.  
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Table F.3. Results of GLM to test differences across injury severity in average nodal strength, whilst controlling for age at scanning, sex, age*sex, and 

estimated total intracranial volume (eTIV). 

Density Threshold 

 Mean Normalised  
Strength a pfdr 

b Hedges g c 

 Mean Normalised  
Strength a pfdr 

b Hedges g c Mild 
(n=47) 

Control 
(n=33) 

Mod/Sev 
(n=36) 

Control 
(n=33) 

0.05 3.23 3.23 0.95 -0.02 3.23 3.23 0.71 -0.18 
0.1 6.25 6.24 0.72 0.11 6.25 6.25 0.78 -0.13 
0.15 9.03 9.01 0.61 0.19 9.03 9.03 0.94 -0.02 
0.2 11.53 11.48 0.32 0.31 11.53 11.51 0.81 0.09 
0.25 13.71 13.62 0.17 0.41 13.70 13.66 0.71 0.17 
0.3 15.54 15.40 0.11 0.48 15.53 15.45 0.71 0.24 
0.35 16.99 16.79 0.11 0.52 16.96 16.84 0.66 0.30 
0.4 18.02 17.78 0.11 0.53 18.00 17.84 0.66 0.34 
1 -0.11 -0.17 0.70 0.14 -0.15 -0.26 0.66 0.33 

Note. a Mean values adjusted for covariates (age, sex, age*sex and eTIV), b False discovery rate corrected p values, c Corrected for unequal sample sizes 
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Table F.4. Results of GLM to test differences across EF impairment groups in average nodal strength, whilst controlling for age at scanning, sex, age*sex, 

and estimated total intracranial volume (eTIV). 

Density Threshold 

 Mean Normalised  
Strength a pfdr 

b Hedges g c 

 Mean Normalised  
Strength a pfdr 

b Hedges g c EFpoor 
d 

(n=17) 
Control 
(n=33) 

EFgood 
d 

(n=42) 
Control 
(n=33) 

0.05 3.23 3.23 0.65 -0.28 3.23 3.23 0.64 -0.14 
0.1 6.25 6.25 0.67 -0.19 6.25 6.25 0.97 0.01 

0.15 9.02 9.02 0.89 0.04 9.03 9.01 0.64 0.13 
0.2 11.53 11.50 0.67 0.20 11.53 11.49 0.37 0.27 

0.25 13.71 13.64 0.65 0.29 13.70 13.62 0.24 0.38 
0.3 15.53 15.43 0.65 0.35 15.53 15.39 0.17 0.45 

0.35 16.97 16.83 0.65 0.37 16.97 16.78 0.17 0.49 
0.4 18.01 17.83 0.65 0.39 18.00 17.78 0.17 0.50 
1 -0.13 -0.09 0.78 -0.12 -0.14 -0.24 0.37 0.29 

Note. a Mean values adjusted for covariates (age, sex, age*sex and eTIV), b False discovery rate corrected p values, c Corrected for unequal sample sizes, d 

Based on NPI rule where EFpoor represents those with clinically-relevant impairment 
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Figure F1. Continued overleaf 
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Figure F1. The bootstrapped (bias-corrected and accelerated) CI for PLS weightings for each ROI using 

individual morphometric features to predict BRIEF-GEC scores. 
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Figure F2. The bootstrapped (bias-corrected and accelerated) CI for PLS weightings for each ROI using 

individual morphometric features to predict EF scores. 
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