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Abstract: In this article, we discuss a dynamical stochastic model that represents the time evolution of income
distribution of a population, where the dynamics develops from an interplay of multiple economic exchanges
in the presence of multiplicative noise. The model remit stretches beyond the conventional framework of a
Langevin-type kinetic equation in that our model dynamics is self-consistently constrained by dynamical
conservation laws emerging from population and wealth conservation. This model is numerically solved and
analysed to evaluate the inequality of income in correlation to other relevant dynamical parameters like the
mobility M and the total income 𝜇. Inequality is quantified by the Gini index G. In particular, correlations
between any two of the mobility index M and/or the total income 𝜇 with the Gini index G are investigated and
compared with the analogous quantities resulting from an additive noise model.
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1 Introduction

Statistical physics and kinetic theory approaches have been proposed in recent years for the description of
economic exchanges and market societies; see for example [1–7]. In these approaches, individuals trading with
each other are identified as particles or gas molecules which undergo collisions. The methods employed have
proved useful also in such socio-economic contexts to investigate the emergence of macroscopic features from
a whole of microscopic interactions. With this perspective, some mathematically founded market economy
models, characterized by the ability to also incorporate taxation and redistribution processes, have been
proposed and studied in [8, 9]. In these papers, society is equated to a system composed by a large number
of heterogeneous individuals who exchange money through binary and other nonlinear interactions and
are divided into a finite number n of income classes. The models are expressed by a system of n nonlinear
ordinary differential equations of the kinetic-discretized Boltzmann type, involving transition probabilities
relative to the jumps of individuals from a class to another. The specification of these probabilities and of the
parameters which define the trading rules, including the tax rates pertaining to different income classes and
other properties of the system, determines the dynamics. Collective features like the income profile and related
indicators like the Gini index – a widespread measure of economic inequality – result from the interplay of a
range of such interactions. Due to the presence of the mentioned transition probabilities, the models involve
some randomness [10], but the differential equations governing the evolution of the fractions of individuals
in the classes are deterministic.
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In real world, however, the time evolution of an economic system is governed not only by fixed rules
and parameters: it is subject to the effects of unpredictable perturbing factors as well. To consider the
influence of these factors, we recently introduced a Langevin-type kinetic model [11], incorporating an Ito-
type additive noise term into the set of dynamical equations. Some numerical simulations provided evidence
of patterns consistent with those emerging in the deterministic problem [12], also in agreement with previously
established empirical results [13–15]: in particular, they exhibited a negative correlation between economic
inequality and social mobility. With reference to the case without income conservation, they reported a positive
correlation between the Gini index and the total income. We regard this as a sign of reliability of the models.
The noise additivity is a perceived drawback though, as it allows fluctuations of the class populations which
are independent from the populations themselves, which is unrealistic, especially for the small populations
of the classes with large income.

The goal of this paper is to overcome this limitation by considering instead a multiplicative noise term.
This requires a much more subtle procedure than that proposed in [11], since we are dealing with a system
of n Langevin equations, where n can be quite large, and the stochastic variables must satisfy dynamical
constraints. In this sense, the procedure we implement has a more general technical value for the stochastic
description of complex systems, extending beyond the specific applications described here.

The paper is organized as follows. In the next section, we introduce the structure of the Langevin-
type kinetic model. Different choices for the construction of the noise term of this structure allow us to
formulate different models. Here, in particular, we define two of them: one, in the first subsection, for which
only conservation of the total population holds true, and another, in a second subsection, for which both
conservation of total population and total income hold true. The features of the evolution in time of the
solutions of these two models are discussed in Section 3. Attention is focused on the sign of the correlations
between income inequality, mobility and total income under different conditions. If the total income 𝜇 is
constant in time and not too large, the correlations between the Gini index and an indicator quantifying social
mobility is negative. When income conservation does not hold true, the sign of the correlation between the
total income and the Gini index can either be positive or negative, depending on the magnitude of 𝜇. Section 4
summarizes these facts and some directions for future research and an appendix provides the proof of a claim
contained in Subsection 2.1.

2 From a deterministic to a Langevin-type kinetic model

A simple model describing monetary exchanges between pairs of individuals in a society divided into n income
classes can be formulated through a system of differential equations of the form1

dxi
dt

(t) =
n∑

h,k=1
Ci

hkxh(t)xk(t) −
n∑

h,k=1
Ch

ikxi(t)xk(t), i = 1,… , n. (1)

Here, xi(t) denotes the fraction of individuals which at time t belong to the ith class and the constant coefficients
Ci

hk ∈ [0, 1], such that
∑n

i=1Ci
hk = 1 for any fixed h and k, expressing the probability that an individual of the

hth class will belong to the ith class after a direct interaction with an individual of the kth class. An expression
for these coefficients, valid for the case in which the average incomes of the n classes 0 < r1 < r2 < · · · < rn
are given by

r j = j ⋅ Δr, (2)

with Δr > 0, was first derived in [16] and then used also in [6, 8, 9].
In order to reproduce here this expression, we start and denote by ph,k for h, k = 1,… , n the probability

that in an encounter between an individual of the hth class and one of the kth class, the one who pays is the

1 To avoid excessive technicalities, we do not include here the taxation and redistribution terms which were considered in [8, 9].
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former one (also called an h-individual). We denote by S ≪ Δr the amount of money paid in a transaction.
Any single interaction possibly causes a slight decrease or increase in the income of the involved individuals
and, in turn, a slight variation in the class populations. In fact, these variations only affect the original and
the neighbouring classes of the involved individuals, and the only possibly nonzero elements among the Ci

hk
are easily found to be:

Ci
i+1,k = pi+1,k

S
Δr

,

Ci
i,k = 1 − pk,i

S
Δr

− pi,k
S
Δr

,

Ci
i−1,k = pk,i−1

S
Δr

. (3)

Notice that the expression for Ci
i+1,k in (3) holds true for i ≤ n − 1 and k ≤ n − 1, the second addendum of the

expression for Ci
i,k is effectively present only provided i ≤ n − 1 and k ≥ 2, while its third addendum is present

only provided i ≥ 2 and k ≤ n − 1; and the expression for Ci
i−1,k holds true for i ≥ 2 and k ≥ 2. This is functional

to the meaningfulness of the indices and reflects the fact that in this model individuals of the first class never
pay and individuals of the nth class never receive money (there are no poorer classes than the first one nor
richer classes than the nth one).

Concerning a choice for the ph,k, since also the possibility of encounters without any payment exists,
these coefficients are required to satisfy 0 ≤ ph,k ≤ 1 and ph,k + pk,h ≤ 1. As in previously quoted papers, we
take in the following

ph,k = min {rh, rk}∕4rn, (4)

with the exception of the terms pj,j = rj∕2rn for j = 2,… , n − 1, ph,1 = r1∕2rn for h = 2,… , n, pn,k = rk∕2rn for
k = 1,… , n − 1, p1,k = 0 for k = 1,… , n and phn = 0 for h = 1,… , n.

We emphasize that the choice of the coefficients (3) is forced, if conservation of total income has to hold
true for all t ≥ 0 once it holds true for t = 0 (see the proof of Theorem 4.2 in [16]). In contrast, there is a
certain degree of arbitrariness in the choice of phk. The specific formula (4) is suggested by the observation
that usually poor individuals pay and receive less than rich ones. And the special definition of the coefficients
with indices h, k = 1 or n is motivated by the same reasons given above for the Ci

hk.
To take now into account also the occurrence of random perturbations, a Langevin-type kinetic model

[17] can be constructed as a system of stochastic equations of the form

dxi = D(1)
i (x)dt +

n∑

j=1
D(2)

i j (x)𝜉 j

√
Γ dt, i = 1,… , n, (5)

in which the first term on the right hand side in Eq. (5) represents the “deterministic” contribution and the
second term corresponds to noise. The interpretation of Eq. (5) is as follows. The first term describes direct
money exchanges, ruled by norms, and behavioral attitudes which are the same for individuals belonging to
the same class. The second term represents uncertainties randomly occurring, which also affect the change
in the population distribution.

In the following, we take the operator D(1)
i as in (1),

D(1)
i (x) =

∑

h,k
Ci

hkxhxk −
∑

h,k
Ch

ikxixk,

i.e. we take D(1)
i to mimic that component of the models in [6, 8] which just describes the direct monetary

exchanges without taxation and redistribution. As for the stochastic part, the 𝜉i denote n independent
Gaussian stochastic variables and Γ denotes the noise amplitude. The form of the operator D(2)

i j depends on
the conservation requirements to which we want the model to obey.

Before specifying the announced models, we explicitly point out that births, deaths and other variations
in the total number of individuals are not significant for the problem under investigation and over the period
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of interest here. Accordingly, it is quite natural to assume that the size of the population remains constant in
time. Such constancy is guaranteed provided

n∑

i=1
dxi = 0,

and equivalently (by (5)) provided

n∑

i=1
D(1)

i (x)dt +
n∑

i=1

n∑

j=1
D(2)

i j (x)𝜉 j

√
Γ dt = 0.

2.1 Multiplicative noise with conserved total population

It is easy to check that
∑n

i=1 D(1)
i (x)dt = 0 for any x. This implies in particular that

∑n
i=1 xi(t) is constant in time

if the noise term
∑n

j=1D(2)
i j (x)𝜉 j

√
Γ dt in Eq. (5) is absent. We normalize initial conditions xi(0) for i = 1,… , n

so as to have
∑n

i=1 xi(0) = 1. Then, we have
∑n

i=1 xi(t) = 1 for all t ≥ 0 if the noise term in Eq. (5) is absent
(this conservation property together with well posedness, existence of a unique solution for any time for the
“deterministic” system has been proved in [16]).

Enforcing total population conservation for Eq. (5), we must also have
∑

i, j
D(2)

i j (x)𝜉 j = 0, (6)

for any choice of {𝜉 j}. A way to fulfill condition (6) together with a proportionality condition between the
random variations in the class populations and the population themselves is to define, starting from the
random 𝜉i, new variations 𝜉′i = xi𝜉i − xi

∑
k

xk𝜉k, or in matrix form

𝜉
′
i =

∑

j
D(2)

i j (x)𝜉 j,

with

D(2)
i j[pop−const](x) =

{
xi (1 − xi) , if i = j
−xix j, if i ≠ j.

(7)

The formula (7) provides an operator D(2)
i j[pop−const] which allows to construct, starting from random variables,

a multiplicative noise term compatible with the conservation of the total population (“pop-const”). A proof
of this, based on an iterative procedure, can be found in the Appendix. Here, we observe (see the Appendix)
that in the following, as in [6, 8, 12], the total population is normalized to 1.

On the other hand, we emphasize that allowing a variation of the total income related to noise amounts to
consider a society which also interacts in a stochastic way with the “external world”: capital inflow or outflow
is possibly thought to occur for example due to import–export of goods, incoming–outgoing of tourism,
investment and stock trading.

2.2 Multiplicative noise with conserved total population and income

Alternatively, we may consider a closed system for which we also require conservation of the total income
𝜇 =

∑
i

rixi. (Notice that, due to the normalization to 1 of the population, the total income coincides with the

average income of the population itself.) We then point out that from now on we restrict attention on values
of 𝜇 satisfying

r1 < 𝜇 < rn. (8)
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Thanks to the inequalities (8), the possible occurrence can be excluded of situations in which all individuals
belong to the poorest or to the richest income class. Similar odd cases are not of interest if one wants to deal
with realistic situations. In other words, taking 𝜇 as in (8) does not represent a strong assumption.

In addition to (6), a further condition has now to be imposed, i.e.,

∑

i, j
riD

(2)
i j (x)𝜉 j = 0 (9)

for any choice of {𝜉 j}. In order to construct a diffusion matrix satisfying both (6) and (9), we begin by observing
that, given a vector x = (x1,… , xn) with xi > 0 for all i, and n positive constants ri (n ≥ 3), from any vector
𝜂0 = (𝜂01,… , 𝜂0n) with |𝜂0i| ≤ 1 for all i, a new vector �̄� = (�̄�1,… , �̄�n) may be obtained, which satisfies the
estimates

|�̄�i| ≤ xi for i = 1,… , n

and the two conditions ∑

i
�̄�i = 0, and

∑

i
ri�̄�i = 0. (10)

What is important here is finding an algorithm for the construction of such a vector �̄�.
Toward this end, we begin by associating with 𝜂0 a vector

𝜂 = (𝜂1,… , 𝜂n) =
(x1𝜂0,1

C
,… ,

xn𝜂0,n
C

)
, (11)

where C ≥ 1 is a constant to be determined in the following. We want then to transform the vector 𝜂 to a
perturbed vector �̄� = 𝜂 + A𝜂, with components

�̄�i = 𝜂i +
n∑

j=1
ai j 𝜂 j for i = 1,… , n (12)

satisfying the conservation conditions (10). Inserting (12) in (10), we find (keeping also the arbitrariness of
𝜂0,i into account) that conditions (10) become

1 +
n∑

j=1
a ji = 0, and ri +

n∑

j=1
a ji r j = 0 (13)

for i = 1,… , n. It is convenient choosing the matrix A in the set of tridiagonal matrices. Indeed, with this choice
the variation of the ith component when passing from 𝜂 to �̄� only involves 𝜂i−1, 𝜂i, and 𝜂i+1 and conditions (13)
read2

1 +
i+1∑

j=i−1
a ji = 0, and ri +

i+1∑

j=i−1
a ji r j = 0 (14)

for i = 1,… , n. Formulas (14) express 2n constraints which the 3n − 2 elements aij of the matrix A have to
satisfy.3 We then minimize the function of the 3n − 2 variables aji,

f =
n∑

i=1

i+1∑

j=i−1
a ji

2

2 Here and henceforth only indexed terms with meaningful indices are to be considered present. For example, if i = 1, one has∑i+1
j=i−1 a ji = a11 + a21.

3 Recall that n ≥ 3 here, which is a quite natural assumption for the problem at hand.
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subject to the 2n constraints (14). To this end, we introduce Lagrange multipliers 𝜆i and 𝜇i for i = 1,… , n, and
consider the Lagrangian

L =
n∑

i=1

i+1∑

j=i−1
a ji

2 +
n∑

i=1
𝜆i

(
1 +

i+1∑

j=i−1
a ji

)
+

n∑

i=1
𝜇i

(
ri +

i+1∑

j=i−1
a ji r j

)
.

The search for critical points of L (as a function of the variables aji, 𝜆i and 𝜇i) yields in particular, after
straightforward calculations,

a ji =
Ni ri r j + Ti − Ri ri − Ri r j

R2
i − Ni Ti

, (15)

for i = 1,… , n, j = i − 1, i, i + 1 (the remaining aji being equal to zero), where

N1 = 2, Ni = 3 for i = 2,… n − 1, Nn = 2,

and

Ri =
i+1∑

k=i−1
rk and Ti =

i+1∑

k=i−1
r2

k.

In view of the linearity of rj in j as formulated in Eq. (2), it can be easily seen that the matrix A with elements
as in (15) takes the form

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

−1 −1∕3 0 0 0 … … 0 0 0 0 0
0 −1∕3 −1∕3 0 0 … … 0 0 0 0 0
0 −1∕3 −1∕3 −1∕3 0 … … 0 0 0 0 0
0 0 −1∕3 −1∕3 −1∕3 … … 0 0 0 0 0
… … … … … … … … … … … …
… … … … … … … … … … … …
0 0 0 0 0 … … −1∕3 −1∕3 −1∕3 0 0
0 0 0 0 0 … … 0 −1∕3 −1∕3 −1∕3 0
0 0 0 0 0 … … 0 0 −1∕3 −1∕3 0
0 0 0 0 0 … … 0 0 0 −1∕3 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

We observe now that applying the transformation (12) with the matrix A just found, we get

�̄�i
xi
= 𝜂i

xi
+
∑i+1

j=i−1ai j 𝜂 j

xi
for i = 1,… , n, (16)

namely,

�̄�1
x1
= − 1

3C
x2
x1

𝜂0,2,

�̄�2
x2
= 2

3C
𝜂0,2 −

1
3C

x3
x2

𝜂0,3,

�̄�i
xi
= 2

3C
𝜂0,i −

1
3C

xi−1
xi

𝜂0,i−1 −
1

3C
xi+1
xi

𝜂0,i+1, for i = 3,… , n − 2,

�̄�n−1
xn−1

= 2
3C

𝜂0,n−1 −
1

3C
xn−2
xn−1

𝜂0,n−2,

�̄�n
xn
= − 1

3C
xn−1
xn

𝜂0,n−1.

For the choice of the constant C appearing here and in (11), we first calculate

Mminus = max
i=2,…n

{
xi

xi−1

}
and Mplus = max

i=1,…n−1

{
xi

xi+1

}
, (17)
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and set
Ω = max

{
1,Mminus,Mplus

}
. (18)

Then, we fix the constant C in (11) to be equal to 4
3
Ω. Hence, according to (11), we associate to a randomly

chosen vector 𝜂0 the vector
𝜂 = (𝜂1,… 𝜂n) =

( 3
4

x1𝜂0,1
Ω

,… ,
3
4

xn𝜂0,n
Ω

)
. (19)

Now, applying to 𝜂 the transformation (12) with the a′ijs as in (15), we get

�̄�1
x1
= 3

4

(
− 1

3
x2
x1

1
Ω

𝜂0,2

)
,

�̄�2
x2
= 3

4

(
2
3

1
Ω

𝜂0,2 −
1
3

x3
x2

1
Ω

𝜂0,3

)
,

�̄�i
xi
= 3

4

(
2
3

1
Ω

𝜂0,i −
1
3

xi−1
xi

1
Ω

𝜂0,i−1 −
1
3

xi+1
xi

1
Ω

𝜂0,i+1

)
, for i = 3,… , n − 2,

�̄�n−1
xn−1

= 3
4

(
2
3

1
Ω

𝜂0,n−1 −
1
3

xn−2
xn−1

1
Ω

𝜂0,n−2

)
,

�̄�n
xn
= 3

4

(
− 1

3
xn−1
xn

1
Ω

𝜂0,n−1

)
,

which in turn implies

||||
�̄�1
x1

||||
≤

1
4
|𝜂0,2| ≤ 1,

||||
�̄�2
x2

||||
≤

2
4
|𝜂0,2| +

1
4
|𝜂0,3| ≤ 1,

||||
�̄�i
xi

||||
≤

2
4
|𝜂0,i| +

1
4
|𝜂0,i−1| +

1
4
|𝜂0,i+1| ≤ 1, for i = 3,… , n − 2,

||||
�̄�n−1
xn−1

||||
≤

2
4
|𝜂0,n−1| +

1
4
|𝜂0,n−2| ≤ 1,

||||
�̄�n
xn

||||
≤

1
4
|𝜂0,n−1| ≤ 1.

In conclusion, the vector �̄� satisfies the conservation conditions given in Eq. (10) as well as the estimates
|�̄�i| ≤ xi for i = 1,… , n.

We can now summarize all this and provide in the following proposition an expression for the sought
algorithm.

Proposition 1. Given a vector x = (x1,… , xn) with xi > 0 for all i, and n positive constants ri (n ≥ 3), from any
𝜂0 = (𝜂01,… , 𝜂0n) with |𝜂0i| ≤ 1 for all i, a new vector �̄� = (�̄�1,… , �̄�n) which satisfies |�̄�i| ≤ xi for = 1,… , n and
the two conditions (10) may be obtained as the vector with components (12), in which 𝜂 is given by (11) (and, in
turn, C = 4

3
Ω with Ω as in (18)), and the elements aji of the linear transformation matrix are as in (15).

In order to construct from the stochastic variable 𝜉 a multiplicative noise term satisfying conservation of
population and income, one can discretize time and repeatedly iterate, as illustrated below, the procedure of
Proposition 1. We emphasize that a warning as discussed in the next lines is in order here.

At each step, say at each time tk with k = 0, 1, 2,…, a vector 𝜉 is picked whose components 𝜉i for i = 1,… , n
are Gaussian random numbers ranging from −1 to 1. Here, 𝜉 plays the role of 𝜂0 in Proposition 1. The vector
x = (x1,… , xn) of Proposition 1 is given at the beginning of the process, i.e., at time t0, by a stationary
distribution xeq (reached in the long run) of the “deterministic” system (1), whereas at subsequent steps, i.e.,
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at time tk with k = 1, 2,…, it is given by the solution x(tk) of the system (5), or of the system (1), according to
the criterion described next. There are two possibilities: either xi > 0 for all i = 1,… , n or there exists at least
an index value i∗ such that xi∗ vanishes. In fact it is highly improbable that the second alternative occurs.
Nevertheless, we take it too into consideration. A control loop in the algorithm checks which of the two
possibilities holds true. Accordingly, the procedure to be applied is as follows.
1. If at time tk it is xi > 0 for all i = 1,… , n, one calculatesΩ according to Eqs. (17) and (18) and then defines,

by applying the formula (19) with this value of Ω, an “intermediate” vector 𝜂. Then, one applies to 𝜂

the transformation (12) with the a′ijs as in (15). In this way one obtains, as Proposition 1 shows, a vector
whose components are proportional to the classes populations and which, when inserted in the Eq. (5),
guarantees both population and total income conservation (“pop-inc-const”). This vector can be denoted
by

D(2)
[pop−inc−const](x)𝜉. (20)

Numerical solutions of (5) can be found by calculating (20), inserting the noise term

D(2)
i j[pop−inc−const](x)𝜉 j

√
Γ dt

into the Eq. (5) and getting the corresponding solution x(tk+1). If xi(tk+1) > 0 for all i = 1,… , n and all
k ∈ N, one repeats all this over and over again.

2. If for some integer k and some index i∗, the component xi∗ (tk) vanishes, i.e., denoting tk = t∗ one has
xi∗ (t∗) = 0, then one lets only the system (1) evolve, without adding any noise up to when xi > 0 for all
i = 1,… , n. From then on, the algorithm described in 1 has to be applied again. To give an insight as to
why the re-establishment of the situation with all xi > 0 is to be expected, we argue as follows.

First of all, we want to exclude the cases (both of which are equilibria for the system (1)), for which all
individuals belong to the poorest class or to the richest class. Since the value of the total income with which
the former case is compatible is 𝜇 = r1 whereas for the latter case it is 𝜇 = rn, the assumption (8) guarantees
that these cases cannot occur, thereby assuring “moderate income” remit.

We then observe that exploiting the fact that xi∗ (t∗) = 0 one gets from (1),

dxi∗ (t∗) =
∑

h≠i∗

∑

k≠i∗
Ci∗

hkxh(t∗)xk(t∗) dt ≥ 0. (21)

It is of course possible that other xi in addition to xi∗ vanish at time t∗. Then, let m be the smallest positive
integer such that

xi∗−m(t∗) ≠ 0 or xi∗+m(t∗) ≠ 0 (22)

holds true. Such a number certainly exists. Assume, without loss of generality, the second of the two inequal-
ities (22) to hold true. The other case can be handled similarly. Now, either i∗ +m < n or i∗ +m = n holds
true.
– If i∗ +m < n, observing that Ci−1

ii > 0 (as also Ci+1
ii > 0) provided 1 < i < n, we conclude that Ci∗+m−1

i∗+m , i∗+m > 0
and hence

dxi∗+m−1(t∗) ≥ Ci∗+m−1
i∗+m , i∗+m x2

i∗+m(t∗) dt > 0.

Consequently, xi∗+m−1(t∗ + 1) > 0. Iterating the procedure m times, one obtains

xi∗ (t∗ +m) > 0.

– If i∗ +m = n, we know, in view of (8), that there exists a positive integer p, satisfying 1 ≤ i∗ − p, such that
xi∗−p(t∗) ≠ 0. If i∗ − p > 1, then, similarly as above, one notices that d

dt
xi∗−p+1(t∗) ≥ Ci∗−p+1

i∗−p , i∗−p x2
i∗−p(t∗) > 0,

from which xi∗−p+1(t∗ + 1) > 0 and then xi∗ (t∗ + p) > 0 follows. If i∗ − p = 1, then one may exploit the fact
that C2

1n > 0 and d
dt

xi∗−p+1(t∗) ≥ C2
1n x1(t∗)xn(t∗) > 0 to be reconduced to the case just dealt with.
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By repeating, if necessary, the procedure here illustrated, one ends up with xi(tk+q) > 0 for all i = 1,… , n, for
some q ∈ N.

3 Simulation results

To investigate the stochastic processes of the two models designed in Section 2, we fixed n = 10, r1 = 10,
Δr = 10 and Γ = 0.001. We numerically solved Eq. (5) and took the average of various quantities over a large
number of stochastic realizations. Of course, no equilibria have to be expected in the present case.

Before drawing some conclusions, we need to recall the definition – more precisely, a variant of it,
suitable for the present case – of an indicator of social mobility introduced in [12]. This indicator, which
expresses the collective probability of class advancement of all classes from the 2nd to the (n − 1)th one, is
given by

M = 1
(1 − x1 − xn)

S
Δr

n−1∑

i=2

n∑

k=1
pk,ixkxi. (23)

The origin of the expression in (23) is the following one: the probability of an individual of the ith class to
move to the upper class as a consequence of encounters with the other individuals is expressed by

S
Δr

n∑

k=1
pkixk.

An averaged class probability of the ith class population for 2 ≤ i ≤ n − 1 to move to the upper class can then
be described by

1
(1 − x1 − xn)

S
Δr

n∑

k=1
pkixkxi,

where individuals of the poorest and richest classes are not counted so as to avoid possible boundary effects.
Taking the sum of these class probabilities over the indices 2 ≤ i ≤ n − 1, the collective averaged probability
in (23) is then obtained.

We calculated the value of M in a succession of equally spaced instants {t j} along the evolution in time of
several solutions of Eq. (5). As well, in correspondence to the same instants, we calculated the Gini index G.
This coefficient was introduced by the Italian statistician Corrado Gini a century ago. It takes values in [0, 1]
and it is defined as a ratio, having the numerator given by the area between the Lorenz curve of a distribution
and the uniform distribution line, and the denominator given by the area of the region under the uniform
distribution line.

A significant finding concerns the sign of the correlation between G and M, namely between economic
inequality and social mobility. For values of the total income 𝜇 which are not too large when total income is
conserved, and which are neither too large nor too small when total income is not conserved, the statistical
value of the sign of the correlation between G and M turns out to be negative.

The values of 𝜇 under consideration are reasonable in a realistic perspective (see, e.g., [18]) because they
are compatible with a distribution of individuals in which most of the population belongs to the low-middle
classes. If n = 10 and the values of ri for i = 1,… , n are linearly growing from r1 = 10 to r10 = 100, values of
𝜇 ≤ 30 in the conservative case and 𝜇 ∈ [24, 30] in the non-conservative case meet this criterion. We also
stress here that the noise amplitude Γ = 0.001 is such that the variation of the total income 𝜇 taking place
in the non-conservative case is compatible with GDP variation values occurring in real world (at least in the
countries where we live, Italy and UK).

The negativity of the correlation which we get is in agreement with a great deal of empirical data [13,
14] and provides evidence of some robustness against random perturbations of the corresponding property
established for systems without noise in [12]. A few samples of correlations RGM (Gini and mobility index) are
given in Table 1 for the case with constant total income and in Table 2 for the case with varying total income.
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The correlations were obtained as averages of 50 realizations, each over 5000 integration steps. In these
samples, three initial conditions – the same in Tables 1 and 2 – compatible with values of the total income
equal to 24.5, 27 and 29.5, respectively, are considered (Figure 1 displays the initial condition corresponding
to the asymptotic stationary distribution for the system without noise (1) with 𝜇 = 27). And for each of these
initial conditions, three different average results are reported.

We stress here that the distributions we obtain after the 5000 integration steps remain in fact quite
“close” to the distributions from which they evolve, which are equilibria if noise is absent. We measure
the “closeness” by calculating in correspondence to each realization the average of the squared difference
between 5000 values xi of each component of the distribution attained during evolution and the corresponding
initial value xi(0); in addition, we calculate the standard deviation 𝜎xi

of each component xi. We find that the
differences x̂i − xi(0) take values whose order of magnitude typically are between 10−5 and 10−7, the 𝜎xi

take
values whose order of magnitude typically oscillate between 10−4 and 10−6, whereas the values of the relative
standard variations 𝜎xi

∕xi typically are of the order of 10−4.
A further issue which one can explore in the non-conservative case is the correlation RG𝜇 between the

Gini index and the total income. A difference comes out in this respect, depending on whether the noise is
additive or multiplicative: whereas the value of RG𝜇 provided by the numerical simulations is positive in the
first case, it turns out to be sometimes negative and sometimes positive in the second one, depending on the

Table 1: Correlations RGM (Gini and mobility index) computed in nine cases in which total income 𝜇 is conserved, with noise
amplitude Γ = 0.001. Averages of 50 realizations, each of 5000 integration steps.

𝝁 RGM RGM RGM

24.5 −0.980 ± 0.002 −0.984 ± 0.001 −0.983 ± 0.002
27.0 −0.967 ± 0.003 −0.970 ± 0.003 −0.968 ± 0.003
29.5 −0.913 ± 0.007 −0.923 ± 0.008 −0.920 ± 0.007

Table 2: Correlations RGM (Gini and mobility index) and RG𝜇 (Gini index and total income) computed in nine cases in which total
income 𝜇 is not conserved, with noise amplitude Γ = 0.001. Averages of 50 realizations, each of 5000 integration steps.

𝝁(0) RGM RGM RGM

24.5 −0.150 ± 0.061 −0.204 ± 0.056 −0.220 ± 0.062
27.0 −0.276 ± 0.064 −0.475 ± 0.051 −0.450 ± 0.052
29.5 −0.610 ± 0.044 −0.611 ± 0.034 −0.605 ± 0.047

𝝁(0) RG𝝁 RG𝝁 RG𝝁

24.5 0.096 ± 0.061 0.043 ± 0.059 0.045 ± 0.063
27.0 −0.068 ± 0.067 −0.271 ± 0.059 −0.239 ± 0.058
29.5 −0.465 ± 0.052 −0.443 ± 0.043 −0.466 ± 0.054

Figure 1: The asymptotic stationary solution of the
‘‘deterministic’’ system with constant total income
𝜇 = 27. The height of each bar in the histogram rep-
resents the fraction of individuals in the corresponding
income class. As described in the text, the distribu-
tions we get after the 5000 integration steps remain in
fact quite ‘‘close’’ to the distributions from which they
evolve.
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value of the initial total income 𝜇. An intuitive argument for a possible explanation of the positive sign in the
additive case is as follows: in the presence of additive noise the variations in the rich classes are typically much
larger (with respect to those in the low and middle classes) than when the noise is multiplicative. This causes
larger variations in the total income. Since increases of 𝜇 mainly affect the richer classes, this brings about an
increase of inequality, i.e., of G. Yet, we do not have an explanation for the behavior of the correlation RG𝜇 in
the multiplicative case. It has also to be noticed that the values reported in Table 2 display a great variability
(and possibly, even no meaningfulness) of RG𝜇, when the total income is not fixed. We notice however that
a strong positive correlation RM𝜇

between mobility and total income comes out of the realizations. A few
samples of that are reported in Table 3. Also, from the three panels in Figure 2 displaying time series of G, M
and 𝜇 the negativity of the correlation between G and M and the positivity of the correlation between M and
𝜇 is clearly visible.

As can be seen in Tables 2 and 3, the correlations between G, M and 𝜇 depend on the value of 𝜇. Since
the values of 𝜇 and G at equilibrium are mutually related, the correlations can also be seen as functions of G.
(Note that in the range of 𝜇 and G considered here the relation between 𝜇 and G can be well approximated
from the deterministic solutions as G = −0.000448𝜇2 + 0.0276𝜇 − 0.0146.) In order to further check this
dependence, we ran simulations over 100 cycles varying 𝜇, the results of which are shown in Figure 3. 𝜇 is
varied approximately between 21 < 𝜇 < 28, corresponding for G to 0.36 < G < 0.41. Each simulation consists
of 50 stochastic realizations, each over 5000 steps and starting from the same equilibrium configuration; the
solid circles in the plot represent the simulation data.

Figure 3A shows that the M–G correlation is positive in the interval 0.36 < G < 0.38; for G > 0.38, the
aforementioned correlation becomes negative. Therefore, according to our model, the “Great Gatsby law”,
which states that the correlation between inequality and economic mobility is negative, strictly holds for
G > 0.38. This is actually a range representing the pre-taxation values of G that includes most industrialized
countries.

Table 3: Correlations RM𝜇
(mobility index

and total income) computed in five cases
with different values of the initial total
income 𝜇. Again, noise amplitude Γ is equal
to 0.001 and averages are taken out of 50
realizations, each of 5000 integration steps.

𝝁(0) RM𝝁

22.0 0.951 ± 0.007
24.5 0.950 ± 0.006
27.0 0.960 ± 0.006
29.5 0.972 ± 0.005
32.0 0.981 ± 0.004

Figure 2: Samples of time series of G, M and 𝜇 in three cases with 𝜇(0) equal to 24.5, 27 and 29.5, respectively. The values of M
are here multiplied by 800 and those of 𝜇 are divided by 80 so as to obtain a clearer comparison. In particular, a negative
correlation between G and M, as well as a positive correlation between M and 𝜇 are clearly visible.
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Figure 3: (a) Correlation between
the total income 𝜇 and the Gini
index G. (b) Correlation between
the mobility M and the Gini
index G.

Figure 4: Correlation between the total income 𝜇 and
the mobility M.

Figure 3b shows that the 𝜇–G correlation is positive in the interval 0.36 < G < 0.395 but gets negative
thereafter. We thus identify a window of values for G for which the influx of wealth to the system contributes
in decreasing inequality.

Finally, Figure 4 shows that the total income 𝜇 and mobility M always have a strong positive correlation
which shows a slow increase with increasing G. This could be understood from an established thermodynamic
allusion: in a canonical ensemble, for any reasonable definition of mobility, we expect a strong positive
correlation between mobility and temperature; and in turn temperature variations will be strongly correlated
with the variations in the free energy (corresponding to income in our case).

4 Conclusion

In this article, we proposed two different models to analyse the time evolution of income distribution resulting
from multiple economic exchanges, in the presence of a multiplicative noise (abiding the Ito formulation). The
presence of noise causes a continuous dynamical adjustment of the income distribution, which nevertheless
stays reasonably close to the asymptotic steady state that it would have reached in the absence of noise. By
ensemble averaging over a large set of stochastic realizations, we observed the emergence of correlations
between the Gini inequality index G and a suitably defined mobility index M. The G–M correlation is
generally negative, becoming positive only in a small range of values of G, which do not correspond to any
industrialized country (Figure 3A). The G–𝜇 correlation can be both positive or negative (Figure 3b), while the
M–𝜇 correlation is always positive and close to 1 (Figure 4). In other words, mobility and inequality are mostly
negatively correlated, mobility and total income are always positively correlated, and finally inequality and
total income are positively correlated when inequality is low, and vice versa.
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Probably, a more realistic model should involve a weighted combination of both additive and multiplica-
tive stochastic perturbation. Indeed, certain events act as additive noise, whereas others are more properly
represented by multiplicative noise. Economics modeling is replete both with examples of application of
additive noise [19, 20] and multiplicative noise [21, 22, 23].

Correlated noise like Ornstein-Uhlenbeck, see, e.g., [24], could be considered as well, which is one of
our ongoing research projects. More complicated noise structures, resembling power-law scaling have found
popular applications in cognition science [25], another possibility for future investigation.

A further extension of the models developed in [11] and here could involve studying the impact of the
coefficients Ci

hk themselves changing with the income distribution. Finally, it would be of great interest to
investigate the dependence of the entire dynamical process, both on the amplitude as also on the nature of
the noise distribution, as alluded to in some of the earlier references in other fields.
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Appendix
Proof of

∑
i, j

D(2)
i j (x)𝜉 j = 0 for D(2)

i j as in (7).

The solutions of Eq. (5) are found based on a discretization of time, i.e., considering times tk with
k = 0, 1, 2,… and

xi(tk+1) = xi(tk) + D(1)
i (x(tk)) (tk+1 − tk) +

n∑

j=1
D(2)

i j (x(tk))𝜉 j

√
Γ (tk+1 − tk),

for i = 1,… , n.
If t0 = 0 and

∑n
i=1 xi(t0) = 1, recalling that

∑n
i=1 D(1)

i (x)dt = 0 for any x we have,
n∑

i=1
xi(t1) = 1 +

n∑

i=1

n∑

j=1
D(2)

i j (x(t0))𝜉 j

√
Γ (t1 − t0).

We show next that in fact
∑n

i=1 xi(t1) = 1.
Indeed, if the operator D(2)

i j is as in (7) in Subsection 2.1, applying it to any random vector 𝜉, namely for
any choice of {𝜉 j}, we get

∑

i, j
D(2)

i j (x)𝜉 j =
∑

j

∑

i≠ j
D(2)

i j (x)𝜉 j +
∑

j
D(2)

j j (x)𝜉 j

=
∑

j

∑

i≠ j
− xix j 𝜉 j +

∑

j
x j
(

1 − x j
)
𝜉 j

= −
∑

j
x j 𝜉 j

∑

i≠ j
xi +

∑

j
x j
(

1 − x j
)
𝜉 j

= −
∑

j
x j 𝜉 j

(
∑

i
xi − x j

)
+
∑

j
x j 𝜉 j −

∑

j
x2

j 𝜉 j

= −
∑

j
x j 𝜉 j

∑

i
xi +

∑

j
x2

j 𝜉 j +
∑

j
x j 𝜉 j −

∑

j
x2

j 𝜉 j

=
∑

j
x j 𝜉 j

(
1 −

∑

i
xi

)
.
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Then, in particular,
∑

i, j
D(2)

i j (x(t0))𝜉 j =
∑

j
x j(t0) 𝜉 j

(
1 −

∑

i
xi(t0)

)
= 0,

the last equality being true because by assumption the quantity in parentheses vanishes.
At this point iteration of this procedure shows that

∑n
i=1 xi(tk) = 1 and

∑
i, j

D(2)
i j (x(tk))𝜉 j = 0 hold true for any

k = 1, 2,… too. The claim then follows in view of the arbitrariness of the t′ks.
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