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 We determine the fundamental limit of the 
microresonator field uniformity. It can be achieved in a 
specially designed microresonator, called a bat 
microresonator, fabricated at the optical fiber surface. We 
show that the relative nonuniformity of an eigenmode 
amplitude along the axial length 𝑳𝑳 of an ideal bat  
microresonator cannot be smaller than 𝟏𝟏𝟑𝟑𝝅𝝅

𝟐𝟐𝒏𝒏𝟒𝟒𝝀𝝀−𝟒𝟒𝑸𝑸−𝟐𝟐𝑳𝑳𝟒𝟒, 
where n,𝝀𝝀 and 𝑸𝑸 are its refractive index, the eigenmode 
wavelength and Q-factor. For a silica microresonator with 
𝑸𝑸 = 𝟏𝟏𝟏𝟏𝟖𝟖 this eigenmode has the axial speed ~ 10-4c, where 
c is the speed of light in vacuum, and its nonuniformity 
along the length 𝑳𝑳 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝛍𝛍𝛍𝛍 at wavelength 𝝀𝝀 = 𝟏𝟏.𝟓𝟓 µ𝒎𝒎  is 
~ 10-7. For a realistic fiber with diameter 100 µm and 
surface roughness 0.2 nm, the smallest eigenmode 
nonuniformity is ~ 0.0003. As an application, we consider 
a bat microresonator evanescently coupled to high Q-
factor silica microspheres which serves as a reference 
supporting the ultraprecise straight-line translation. © 
2021 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

A monochromatic optical field in an ideal unconfined uniform 
medium with refractive index 𝑛𝑛𝑟𝑟  can have the form of a plane wave 
𝐸𝐸 = 𝐴𝐴exp(𝑖𝑖𝑖𝑖𝑖𝑖) with propagation constant 𝑖𝑖 = 2𝜋𝜋𝑛𝑛/𝜆𝜆 and 
wavelength 𝜆𝜆. The amplitude of this field, |𝐸𝐸| = 𝐴𝐴, is independent of 
coordinates. The question if the amplitude of a confined optical field 
– e.g., an eigenmode of an optical resonator – can be uniform in a 
finite spatial area is less intuitive: this field is localized due to 
reflections which cause interference and spatial variation of its 
amplitude. For example, light confined in one dimension along axis 
𝑖𝑖 oscillates, roughly, as cos(𝑖𝑖𝑖𝑖) and the condition of its constant 
amplitude requires 𝑖𝑖 = 2𝜋𝜋𝑛𝑛/𝜆𝜆 = 0. Thus, for finite 𝑛𝑛, the 
amplitude of a confined field cannot be spatially uniform in 1D 
unless its frequency 𝜈𝜈 = 𝑐𝑐/𝜆𝜆 tends to zero, i.e., unless the field is a 
stationary electric field. 

The situation in 2D and 3D is different since then the field can rotate 
along a closed path with a finite propagation constant without reflections 
and, simultaneously, can have zero propagation constant along the 
direction transverse to this path. As an example, consider a SNAP 
(Surface Nanoscale Axial Photonics) bottle microresonator (BMR) 
introduced along the surface of an optical fiber [1]. Whispering gallery 
mode (WGM) eigenstates of such resonator with azimuthal, radial, and 
axial quantum numbers 𝑚𝑚, 𝑝𝑝, and 𝑞𝑞 are determined in cylindrical 
coordinates (𝑧𝑧, 𝜌𝜌,𝜑𝜑), as 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

(𝐵𝐵𝐵𝐵𝐵𝐵)(𝑧𝑧, 𝜌𝜌,𝜑𝜑)=𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝐹𝐹𝑚𝑚𝑚𝑚(𝜌𝜌)Ψ𝑚𝑚𝑚𝑚𝑚𝑚(𝑧𝑧). 
The eigenwavelengths 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 of this BMR are the eigenvalues of the one-
dimensional wave equation for Ψ𝑚𝑚𝑚𝑚𝑚𝑚(𝑧𝑧) [1]: 
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Here 𝛾𝛾𝑚𝑚𝑚𝑚 determines the WGM propagation loss, 𝜆𝜆𝑚𝑚𝑚𝑚
(𝑐𝑐) (𝑧𝑧) is the fiber 

cutoff wavelength depending on the axial coordinate 𝑧𝑧 and 𝑛𝑛� is the 
effective refractive index. For a fiber having refractive index 
distribution 𝑛𝑛𝑟𝑟(𝜌𝜌), function 𝐹𝐹𝑚𝑚,𝑚𝑚(𝜌𝜌) satisfies the equation [2]:  
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The effective refractive index 𝑛𝑛� in Eq. (1) is determined as 𝑛𝑛� = 
(�𝐹𝐹𝑚𝑚,𝑚𝑚(𝜌𝜌)�𝑛𝑛2(𝜌𝜌)�𝐹𝐹𝑚𝑚,𝑚𝑚(𝜌𝜌)�/�𝐹𝐹𝑚𝑚,𝑚𝑚(𝜌𝜌)�𝐹𝐹𝑚𝑚,𝑚𝑚(𝜌𝜌)�)1/2 (see, e.g., 
Supplementary Material in [3]). For the BMR having the uniform cross-
section with constant refractive index 𝑛𝑛 we have 𝑛𝑛� = 𝑛𝑛.  

In Ref. [4] we presented an analytical example of a BMR having an 
eigenmode with 𝑞𝑞 = 0 (fundamental axial eigenmode) which 
amplitude is uniform along a fraction of the resonator length 𝑧𝑧1 < 𝑧𝑧 <
𝑧𝑧2 (Fig. 1(a)). It was shown that the BMR should be uniform along this 
length and have “ears” at edges. Since the profile of this BMR resembles 
the profile of a bat, this BMR was called the bat microresonator 
(BatMR).  It is straightforward to generalize results of Ref. [4] and design 
a BatMR having an eigenmode with arbitrary 𝑞𝑞 which amplitude is 
uniform along the fiber segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2. Below, we call this 
eigenmode the bat mode. For larger quantum numbers 𝑞𝑞, the ears of 
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BatMRs should be appropriately larger. As an example, Figs. 1(a)-(c) 
show the nanoscale profile, variation of cutoff wavelength 𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧), and 
the bat mode profile determined from Eq. (1) for 𝑞𝑞 = 2. We constructed 
the profile of  𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) shown in Fig. 1(b) numerically by varying the size 
of ears at the edges of the segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2 until the 
eigenwavelength 𝜆𝜆𝑚𝑚𝑚𝑚2 becomes equal to the value of  𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) at this 
segment. Experimentally, a BatMR can be created using the SNAP 
technology [1, 5, 6, 7, 8] as follows. First, a BMR with sufficiently large 
slopes at the edges and uniform center part (e.g., a rectangular BMR [7]) 
is formed. Next, the ears at the BMR edges can be introduced by 
iterations with CO2 laser beam shots [6], so that 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 rises and, finally, 
coincides with 𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧𝐶𝐶).  
In the ideal case of no losses, 𝛾𝛾𝑚𝑚𝑚𝑚 = 0, a BatMR can have a series 

of bat modes corresponding to different azimuthal quantum numbers 𝑚𝑚, 
which amplitude is independent of axial coordinate and has zero axial 
speed (i.e., is stopped) along the segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2. For a lossy 
BatMR with an ideally uniform section along the segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2 
, the best possible WGM uniformity is determined by the value of losses 
𝛾𝛾𝑚𝑚𝑚𝑚 = 𝜆𝜆𝑚𝑚𝑚𝑚 𝑄𝑄⁄ , where 𝑄𝑄 is the BatMR Q-factor. From Eq. (1), the 
smallest possible variation of  an eigenmode Ψ𝑚𝑚𝑚𝑚𝑚𝑚(𝑧𝑧) is achieved for 
smallest possible propagation constant 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚(𝑧𝑧) ≡ 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚

(0) = 21/2(𝑖𝑖 +
1)𝜋𝜋𝑛𝑛�(𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) )−3/2(𝛾𝛾𝑚𝑚𝑚𝑚)1/2, i.e., when the cutoff wavelength 𝜆𝜆𝑚𝑚𝑚𝑚
(𝑐𝑐) (𝑧𝑧) is 

constant and equal to the eigenwavelength of this eigenmode, 
𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) ≡ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 (Figs.  1(b) and (c)). The axial speed of this bat mode, 
at the segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2 is 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = (2𝜋𝜋)−1𝑐𝑐𝜆𝜆𝑚𝑚𝑚𝑚Re�𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚

(0) � =
(2𝑄𝑄)−1/2𝑛𝑛�𝑐𝑐, where 𝑐𝑐 is the speed of light. For a silica microresonator 
with 𝑛𝑛� = 1.44 and 𝑄𝑄 = 108 this speed is ~𝑐𝑐/10000. Using Eq. (1) 
and the approximate expression for the bat mode radial dependence (see, 
e.g., [9]), we determine the evanescent WGM inside this segment 
assuming that it is symmetric with respect  to the segment center 
𝑧𝑧𝐶𝐶 = (𝑧𝑧1 + 𝑧𝑧2)/2 as  
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From Eq. (3), in a close vicinity of the BatMR surface, when  
𝜁𝜁𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌 − 𝑟𝑟0) << 1, and |𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚

(0) (𝑧𝑧 − 𝑧𝑧𝐶𝐶)| << 1, we find the 
relative variation of the amplitude of the evanescent field along the 
segment  𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2  as 
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From Eq. (4), we find the smallest possible field uniformity along the 
length 𝐿𝐿 of the BatMR surface as  𝜀𝜀 �𝐿𝐿

2
� = 1

3𝜋𝜋
2𝑛𝑛�4𝜆𝜆−4𝑄𝑄−2𝐿𝐿4. Fig. 1(g) 

shows the profiles of 𝜀𝜀(𝑧𝑧) and ∆𝜌𝜌(𝑧𝑧) for a silica BMR having the 
uniform cross-section with 𝑛𝑛� = 1.44 at wavelength 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 1.55 
µm for  different Q-factors, 𝑄𝑄 = 109, 108, 107, and 106.  

Generally, it is possible to design a BMR having an eigenmode 
which amplitude is uniform within a fraction of its surface, cross-section, 
and volume. We assume, as previously, that at the cutoff wavelength 
𝜆𝜆 = 2𝜋𝜋 𝑖𝑖0⁄ = 𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐)  the propagation constant of this mode 𝛽𝛽 = 0 and 

this WGM is uniform along the BMR segment 𝑧𝑧1 < 𝑧𝑧 < 𝑧𝑧2. Provided 
that 𝛽𝛽 = 0, it follows from Eq. (2) that oscillations along a radial 
segment  𝜌𝜌1 < 𝜌𝜌 < 𝜌𝜌2  can be suppressed if the squared effective 
refractive index, 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒2 (𝜌𝜌) = 𝑛𝑛2(𝜌𝜌) −𝑚𝑚2 (𝑖𝑖0𝜌𝜌)2⁄ , is zero at this 
segment. Analogous to the design shown in Fig. 1(a)-(c), we introduce 
two “ears” at the edges of this segment (Fig. 1(d) and (e)) and adjust their 
sizes to ensure |𝐸𝐸𝑚𝑚𝑚𝑚(𝑧𝑧,𝜌𝜌,𝜑𝜑)| = |𝐹𝐹𝑚𝑚𝑚𝑚(𝜌𝜌)| = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 for 𝜌𝜌1 < 𝜌𝜌 <
𝜌𝜌2 (Fig. 1(f)). To minimize the required modification of the refractive 
index and ensure the condition of total internal reflection, this radial 
segment should be sufficiently short and close to the fiber surface. 

 

Fig. 1. (a), (d) Illustration of an optical fiber with (b) cutoff wavelength 
distribution (solid black curve) and (e) original (dashed black curve) 
and modified (solid black curve) cross-sectional effective refractive 
index squared distribution designed to have a portion with  (c) uniform 
axial distribution and (f) uniform radial distribution of the WGM 
amplitude. Notice asymmetry of “ears” of 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒2 (𝜌𝜌) in (e) in contrast to 
symmetric ears of 𝜆𝜆𝑐𝑐(𝑧𝑧) in (b). Inset in (a) – ERV profile of a BatMR. (g) 
Relative nonuniformity 𝜀𝜀(𝑧𝑧) of an eigenmode and constant eigenmode 
amplitude profile ∆𝜌𝜌(𝑧𝑧) at the BMR surface for different Q-factors of a 
silica BatMR with 𝑛𝑛� = 1.44 at wavelength 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =1.55 µm.   

Besides the fundamental limit of the microresonator field uniformity 
caused by optical losses,  the uniformity of BMR field 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

(𝐵𝐵𝐵𝐵𝐵𝐵)(𝑧𝑧,𝜌𝜌,𝜑𝜑) 
is determined by the uniformity of the fiber. Here we are interested in the 
nanoscale effective radius variation (ERV) of an optical fiber Δ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) 
which is determined through the profile of its cutoff wavelength variation 
Δ𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) as Δ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) = 𝑟𝑟0Δ𝜆𝜆𝑚𝑚𝑚𝑚
(𝑐𝑐) (𝑧𝑧)/𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) ,  where 𝑟𝑟0 is fiber radius. 
The predetermined  Δ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) and Δ𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) can be introduced with 
subangstrom precision using fabrication methods of the SNAP 
technology (see e.g., [1, 3 - 8]). The possible measurement precision of 
Δ𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) is determined by the fiber and microresonator Q-factors. 
Assuming    𝑄𝑄 = 108 [10], 𝑟𝑟0 = 50 µm and 𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) = 1.5 µm,  we find 
that Δ𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧) can be measured with the precision better than 
𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧)/𝑄𝑄 = 0.01 pm  and the ERV Δ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) can be measured with 



the precision better than 0.3 pm. The ERV experimentally measured in 
[11] was less than 0.2 nm over the axial lengths of hundreds of microns.  

The original ERV of optical fibers is primarily caused by the frozen-
in capillary waves having the order of an angstrom [12-14]. It can be 
found from Eq. (1) and rescaling equation Δ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) = 𝑟𝑟0Δ𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) (𝑧𝑧)/
𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐)  that the perturbation  of the field along the uniform BatMR segment 
by the ERV spatial spectral component Δ𝑟𝑟𝑘𝑘(𝑧𝑧) = ∆𝑟𝑟0𝑘𝑘exp (𝑖𝑖𝑖𝑖𝑧𝑧) 
results in relative variation of the field magnitude 
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For a silica fiber with characteristic Δ𝑟𝑟0𝑘𝑘 = 0.2 nm, 𝑟𝑟0 = 50 µm, 
𝜆𝜆𝑚𝑚𝑚𝑚

(𝑐𝑐) = 1.5 µm, and frozen-in wave spatial frequency 𝑖𝑖 = 1 µm-1, 
we find the relative field nonuniformity 𝜀𝜀0𝑘𝑘 ≅ 0.0003. Suppressing 
this ERV is currently challenging for lengthy optical fibers [14]. 
However, we suggest that it can be reduced to less than 1 Å by 
surface postprocessing developed in SNAP technology [1, 5- 8]. 

The unique uniformity of the bat mode amplitude suggests the 
application of a BatMR as an angstrom-precise translation reference. 
Besides fundamental interest, reaching the angstrom and eventually 
picometer precision of translation is critical for several applications in 
nanotechnology and nanoscience. In particular, solution of this problem 
is important in semiconductor manufacturing [15], atomic-scale 
electronic engineering [16, 17] as well as for manufacturing of 
metamaterial, plasmonic and nanophotonic devices [18]. Conventional 
approaches developed for ultraprecise linear translation are based on 
capacitive and piezo sensors and optical interferometers (see [19-24] and 
references therein). The stages with 10 pm resolution enabling 
translation over distances of 10 µm are available on the market [25, 26]. 
However, to our knowledge, the problem of translation with the 
subnanometer precise straightness and flatness has not been satisfactory 
explored. The reason is presumably in the absence of the reference which 
allows to follow the straight direction along the required length and with 
the required precision. The best optical flats, including those fabricated 
of silica, have the flatness of around 1 nm over the sub-millimeter areas 
[27], and their application to support the subnanometer-precise straight-
line translation at microscale is problematic [28]. In contrast, we show 
below that a BatMR can be used as a reference for angstrom-precise 
straight-line translation along its axial segment with length L~100µm.  

The device proposed here consists of a BatMR and a set of spherical 
microresonators (SMRs), which are positioned in a submicron distance 
from the BatMR as illustrated in Fig. 2(a).  Light is coupled into SMRs 
through prisms (shown in this figure) or fiber tapers with micron 
diameter waist [29]. The output light is detected by an optical spectrum 
analyzer not shown in Fig. 2(a). Each of SMR controls one degree of the 
BMR freedom by monitoring the splitting of resonance wavelengths [30, 
31]. Therefore, in the absence of rotational BatMR symmetry (see 
below) we need five SMRs illustrated in Fig. 2(a) to fix all five BMR 
transverse degrees of freedom and enable its precise translation along a 
straight line. 
       We assume that each of the SMRs have a WGM 
𝐸𝐸𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠

(𝑆𝑆𝐵𝐵𝐵𝐵) (𝑟𝑟′,𝜃𝜃′,𝜑𝜑′� with the wavelength eigenvalue 𝜆𝜆𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠
(𝑆𝑆𝐵𝐵𝐵𝐵)  which has 

or tuned to have very small separation ΔΛ from bat mode eigenvalues 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 chosen different for different SMRs (it should have the same axial 
quantum number 𝑞𝑞 but different azimuthal quantum numbers 𝑚𝑚). 

In close proximity of a SMR to the BatMR, the bat mode eigenvalue 
splits into two eigenvalues, which separation is determined as 
(Δ𝜆𝜆2 + Δ𝛬𝛬2)1 2⁄  where [32]: 
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Here the wavenumber 𝑖𝑖0 = 2𝜋𝜋 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚⁄ , the BatRM and SMR modes 
are normalized, and the integral is taken along the plane 𝑦𝑦′ = 𝑟𝑟𝑠𝑠 + 𝑑𝑑/2  
where 𝑟𝑟𝑠𝑠 is the SMR radius and 𝑑𝑑 is the BatMR-SMR separation (Fig. 
2(b)). The refractive index 𝑛𝑛 of all microresonators is assumed to be the 
same.  

 

Fig. 2. (a) Translation of a BatMR coupled to five SMRs, 1,2,3,4, and 5. 
Inset – ERV profile of the BatMR. (b) SMR and a BatMR in coordinate 
systems. (c) Dependence of eigenwavelength splitting ∆𝜆𝜆 and splitting 
variation 𝛿𝛿𝜆𝜆 caused by 1 Å change of BatMR-SMR separation 𝑑𝑑 = 200 
nm. (d) A BatMR with asymmetric cross-section coupled to three SMR 
before and after small rotation and displacement.  

To enable the full control of the BatMR translation, below we 
explore a BatMR with an asymmetric cross-section. However, to 
estimate the SMR-BatMR coupling sensitivity, it is sufficient to use the 
axially symmetric model. We assume that the length 𝐿𝐿 of the BatMR 
segment with axially uniform 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

(𝑆𝑆𝐵𝐵𝐵𝐵)(𝑟𝑟, 𝜃𝜃,𝜑𝜑� is much greater than the 
length of bumps enabling this uniformity (see insert in Fig. 2(a)). Under 
the assumptions made, the integral in Eq. (7) is found analytically. As the 
result, the wavelength splitting for the SMR radial and axial quantum 
numbers 𝑝𝑝𝑠𝑠, 𝑞𝑞𝑠𝑠 = 0,1,2,3,4 and BMR radial quantum numbers 𝑝𝑝, 𝑞𝑞 =
0,1,2,3,4 is 
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where 𝐵𝐵 = (2.018, 1.762, 1.634, 1.552, 1.494) and 𝐶𝐶 =
(3.733, 0, 3.257, 0, 3.088). The plots of Δ𝜆𝜆 as a function of length 𝐿𝐿 
for SMR radius 𝑟𝑟𝑠𝑠 = 50 µm and BatMR radii 𝑟𝑟0 = 50, 100 and 200 
µm are shown in Fig. 2(c). The values of  Δ𝜆𝜆 are in reasonable agreement 
with the splitting between microspheres experimentally measured in 
Ref. [33] (see also Refs. [34, 35]). Fig. 2(c) shows dependencies of the 
splitting variation 𝛿𝛿𝜆𝜆 corresponding to the change of 1 Å in SMR-
BatMR separation 𝑑𝑑 = 200 nm. These variations can be measured for 
microresonators with 𝑄𝑄 ≳ 106 and SMRs having ΔΛ ≲ Δ𝜆𝜆. Then for 
𝜆𝜆𝑚𝑚𝑚𝑚 = 1.55 µm the full width half maximum of the resonance width is 
𝛾𝛾𝑚𝑚𝑚𝑚 ≲ 1 pm and variations 𝛿𝛿𝜆𝜆 can be measured with a power meter 
having smaller than 10% relative error. For precise measurement of δ𝜆𝜆, 
the free spectral range along the axial quantum number 𝑞𝑞 of the WGM 
considered should be greater than or comparable with the resonance 
width 𝛾𝛾𝑚𝑚𝑚𝑚. This condition leads to the characteristic maximum length of 



translation 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =  18𝜆𝜆𝑚𝑚𝑚𝑚𝑄𝑄
1/2𝑛𝑛−1. For example, for the same 

parameters as in Fig. 2, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ≅ 400 𝜇𝜇m for  𝑄𝑄 = 107. The splitting 
in Eq. (8) depends on the separation between a SMR and BatMR. 
Keeping it constant will force the BatMR to follow its surface profile.  

The fundamental quantum limit of the measurement precision of the 
wavelength splitting Δ𝜆𝜆 determined by Eq. (8) is [30, 31]  
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Here 𝑐𝑐 is the speed of light  ℏ is the Plank constant, 𝑊𝑊 is the power of 
light in the optical spectrum analyzer used, Δ𝜆𝜆 is determined from Eq. 
(8), and 𝜏𝜏 is the measurement time.  Setting 𝑄𝑄 = 107, Δ𝜆𝜆 = 0.1 nm, 
𝑊𝑊 = 10 mW, and 𝜏𝜏 = 1 ms, we find  𝛿𝛿𝜆𝜆𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑞𝑞~10−4pm, which is 
significantly smaller than the precision 𝛿𝛿𝜆𝜆~10−2 pm required for our 
measurements (Fig. 2(c)).  

The major deviation from the straight-line translation is caused by 
the variation of BatMR local surface height and variation of SMRs and 
BatMR dimensions in time. While the angstrom-scale surface height 
variation of an actual BatMR can be recorded and taken into account in 
the process of translation, the temperature variation affects the 
measurement precision randomly. For the microresonator radii 𝑟𝑟0, 𝑟𝑟𝑠𝑠~ 
100 µm and the temperature change ≲ 0.1℃, we find their radius 
variation ≲ 0.1Å, which insignificantly affects the angstrom-precise 
straight-line translation. 

Finally, we determine the cross-sectional asymmetry of the BMR 
required to suppress its axial rotation in the process of translation. We 
assume that the BMR cross-section has the elliptic shape with semi-
major and semi-minor axes 𝑎𝑎 and 𝑏𝑏 shown in Fig. 2(d).  We position 
SMR 1 at the vertex and co-vertex of the ellipse and determine the 
position of SMR 3 to arrive at the maximum possible separation ∆𝑑𝑑 
between it and BMR after the BMR is rotated by small angle ∆𝜑𝜑. It is 
assumed that the separations BMR and SMR 1 and between BMR and 
SMR 2 is kept constant during this rotation. Cumbersome calculations 
yield the following simple result. The maximum separation ∆𝑑𝑑 = (𝑎𝑎 −
𝑏𝑏)∆𝜑𝜑 is achieved for the SMR 3 located at angle 𝛼𝛼 = atan[(𝑏𝑏/𝑎𝑎)3/2] 
with respect to major axis of the elliptic cross-section (Fig. 2(d)). For the 
BMR with small asymmetry, 𝛼𝛼 ≅ 450 and 1Å rotational displacement 
at the BMR surface corresponds to Δ𝜑𝜑 ≅ (1 Å)/𝑎𝑎. For example, 
assuming 𝑎𝑎 − 𝑏𝑏 = 0.1𝑎𝑎 we find ∆𝑑𝑑 ≅ 10 pm. It follows from the 
above calculations that this small variation can be measured with 
microresonators having  𝑄𝑄 ≥ 106 and relative measurement precision 
error smaller than 1%. For 𝑄𝑄~107 or for BMR with a greater rotational 
asymmetry, the required measurement precision can be relaxed to 10%. 
Thus, maintaining constant values of splitting ∆𝜆𝜆 for all SMRs during 
translation allows us to use the constant-amplitude bat mode field as a 
translation reference enabling the angstrom-precise straight translation.  
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