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Abstract: 

Ageing infrastructure, such as masonry railway bridges, suffers from structural deterioration due to 

fatigue loading. This paper presents an experimental study of brick masonry deterioration under 

gradually increasing cyclic loading with the aid of Acoustic Emission (AE) sensors. Two masonry beams 

were tested in the laboratory under similar stress conditions that masonry arches experience during 

train loading. An in-house AE monitoring system was developed for this study allowing both feature-

based and waveform-based AE analysis. In the lab tests, different modes of damage were activated, 

such as tensile bond failure, brick and mortar crushing, diagonal shear failure and joint sliding. Feature-

based AE analysis shows an increase in cracking rate before brittle failure events that is not necessarily 

accompanied by an increase in deformation rate. Statistical analysis reveals clear trends in AE results 

that correlate to different damage stages. The paper discusses how these findings can be leveraged 

to develop real-time structural alert systems that could provide early warning of damage before a 

significant increase in dynamic deformation occurs. 
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1. Introduction 

Rail infrastructure deteriorates with time due to many factors, including material fatigue, overloading, 

ground movement and environmental effects. At the same time, traditional inspection practices and 

fragmented monitoring can be inadequate to ensure adequate maintenance on a national scale. 

Digitisation of infrastructure networks emerges today as an essential next step to address this 

challenge for secure and resilient societies. Enhancing our understanding of the structural 

deterioration mechanisms is an indispensable part of this process in order to develop decision making 

tools for the maintenance of infrastructure networks.  

Ageing masonry bridges comprise around 50-60% of the UK and European rail stock [1, 2] and their 

structural assessment is particularly challenging. The majority of these structures were built more than 

a century ago, before the enforcement of building codes. Masonry is a non-uniform, composite 

material, with low tensile strength and an inherently discontinuous nature, which makes structural 

modelling challenging. At the same time, due to the absence of monitoring data, there is usually a lack 

of information on the deformation and loading history of the structure.  

In the UK, the overall structural performance of masonry railway bridges is commonly assessed by 

measuring the vertical deflection of arches at various locations (most commonly at the keystone) with 

the use of displacement gauges mounted on poles [3]. However, the deflection pole technique 

requires access underneath the arches that might require road closures, and is impractical where 

bridges cross tall valleys or rivers. In addition, local behaviour of cracks is typically monitored with 

cement tell-tales. Deflection pole and tell-tale monitoring are well established techniques, which 

nevertheless demand time consuming site inspections and are not suitable for continuous monitoring 

of a large number of bridges. Furthermore, these monitoring data offer limited insight into the 

complex deterioration mechanisms involved. 

   

Fig. 1. Left – The Marsh Lane Viaduct, Leeds, UK. Right – An AE sensor monitors a bending crack that 

propagates in the arch barrel. 

In an effort to address these challenges, Alexakis et al. [4] developed a multi-sensing system to 

monitor degradation of masonry railway bridges. The system monitors distributed dynamic strain with 

a network of fibre Bragg grating sensors, material damage with acoustic emission (AE) sensors and 

bridge dynamic response with low noise accelerometers. The motivation for this work was the need 

to assess the long-term structural performance of the Marsh Lane Railway Bridge, shown in Fig. 1-left, 

which is a Victorian brick masonry viaduct in the UK, located near the East entrance of Leeds Railway 

Station. Statistical analysis of fibre Bragg grating strain and temperature data over a period of two 

years after the repair, 2016-2018, combined with a train classification algorithm, showed high 

sensitivity in detection of dynamic strain changes due to cyclic temperature variations and material 

degradation [5, 6].  
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AE sensors were then installed in 2018 to evaluate the rate of damage at critical locations. For 

instance, Fig.1-right shows one of these locations monitored by an AE sensor, where a bending crack 

propagates in the arch barrel. Bending and shear cracks of varying width due to mixed in-plane and 

out-of-plane dynamic response mechanisms of the piers and arch barrels are extensive in the bridge. 

The reader is referred to previous works of the authors for a detailed description of the bridge damage 

[4-6].  

Apart from monitoring changes in the cracking rate of severely damaged areas, like the one in Fig.1-

right, AE sensors also provide the potential for early detection of progressive material damage due to, 

for example, gradually increasing cyclic train loading, before the damage manifests itself in observable 

increases in dynamic displacement. However, as will be discussed in the next section, there is limited 

literature that describes the bending and shear behaviour of brick masonry based on AE under cycling 

loading.  

In an effort to correlate long term AE monitoring data with the current structural state and 

deterioration rate, this paper presents an experimental study for the structural assessment of brick 

masonry with the aid of AE sensors. An in-house AE sensing system was developed for this 

experimental study, similar to the one installed in the Marsh Lane Bridge, allowing direct comparison 

with field monitoring data. The paper presents results from two unreinforced brick masonry beams 

subjected to horizontal compressive force and gradually increasing cycling bending loading until 

collapse. The loading combination of axial compression in addition to shear and bending was selected 

to be a similar loading condition to what a section of an arch bridge barrel might experience due to 

both self-weight and train loading. 

During the tests, different modes of damage were activated, including bond failure, brick and mortar 

crushing, diagonal shear failure and joint sliding. The paper presents the evolution of AE signal features 

at different damage levels and results from a statistical approach, the b-value analysis, which is based 

on the magnitude distribution of AE events. The study evaluates the behaviour of masonry at different 

performance states that are associated with micro-cracking (low damage state) and extensive micro- 

and macro-cracking (high damage state) and identifies intermediate (transition) states associated with 

temporary increases of macro-cracking events. Based on the results, the paper discusses the use of 

AE sensors to develop early warning structural alert systems and to evaluate the life cycle structural 

performance of masonry infrastructure. 

 

2. Infrastructure monitoring with Acoustic Emission (AE) sensors 

Acoustic emission (AE) is the phenomenon where transient elastic waves are generated by rapid 

release of energy from localised sources within the material [7]. Typically these sources are sudden 

irreversible changes in the internal structure of the material such as cracking [8]. AE sensors are 

piezoelectric sensors used to detect elastic waves, which have small amplitude (in the order of nm) 

and high frequency (in the order of 10 kHz to over 1 MHz), requiring data acquisition systems with 

high sampling rates. 

AE is a passive non-destructive testing method, suitable for continuous infrastructure monitoring. AE 

sensors have been widely used in the field of SHM for leakage detection in high-pressure containers 

and pipelines [9] and damage detection in steel and concrete structures [10]. AE monitoring is also 

used to study the behaviour of rock [11] and soil [12].  

For concrete bridges, industry applications are mainly limited to detection of wire breaking in 

suspension/cable stay and post-tensioned concrete bridges. A wire breaking radiates a high energy 

acoustic wave, which results in a distinguishable signal. Cables are one-dimension structures with low 

signal attenuation, which facilitates the detection and localisation of damage with the use of simple 
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algorithms. However, recent advances in data acquisition and data processing have shown that this is 

a small fraction of potential AE applications, which may also include damage severity assessment, 

three-dimensional source location and source discrimination [10]. 

The directness of AE for wire break detection made it a popular SHM approach for suspension bridges 

and pre-stressed concrete bridges, whereas, field applications for masonry bridges have been limited 

[6, 13, 14, 15]. Reasons for limited use include high signal attenuation in masonry and the 

heterogeneity of the material, which can make damage localisation challenging [16, 17].  

Masonry railway bridges suffer from fatigue. Fatigue deterioration of masonry has been studied 

experimentally with small-scale specimens under compressive or diagonal (shear) cyclic loading [15, 

18, 19]. Before these experimental studies that use a uniaxial load approach, Melbourne and Tomor 

[20] researched multi-ring arches under point cyclic loading. While this experimental work was the 

first to monitor acoustic emissions in masonry subjected to combined bending and shear, the absence 

of superstructure or backfill and the low arch thrust resulted in early formation of hinging and ring 

separation collapse mechanisms. As a result, the progressive AE behaviour of masonry under biaxial 

stress state could not be measured. The current paper studies the AE behaviour of masonry specimens 

under progressive damage due to biaxial loading, including the combined effect of compression, shear 

and bending that arch sections experience during train loading.  

 

3. Experimental setup 

3.1. Materials and specimens 

This study presents the AE behaviour of two brick masonry specimens under gradually increasing cyclic 

loading. Fig. 2 shows one of the specimens on the test rig before testing. Fig. 3 is a schematic 

representation of the test setup. The length of the specimen in the longitudinal direction is 1110 mm. 

The height and the width of the specimen coincide with the length and the width of the bricks, which 

are 215 mm and 102.5 mm respectively. The thickness of the bricks is 65 mm and the thickness of the 

joints is approximately 7.5 mm. A cut-off saw was used to reduce the thickness of two bricks at 1/4 of 

the span, so the specimen could fit in the load frame with the central joint directly below the applied 

vertical load. Initial cracking was expected at the central joint, which was selected for detailed AE 

monitoring. The 16 bricks are numbered from left to right as shown in Fig. 3 below the specimen.  

Masonry railway bridges in the UK are typically built of solid clay bricks. Solid clay bricks were selected 

in this study with a gross dry density of 2310 kg/m3. The bricks are classified according to BS EN 771-1 

European Standards for clay masonry units as “Engineering B”, with minimum compressive strength 

75 MPa and maximum water absorption 7%. For the two specimens presented in this study, a ready 

mixed sand cement mortar of category M5 was used, with a minimum compressive strength 5 MPa at 

28 days, according to BS EN 998-2:2010. A 10mm-thick layer of mortar at the bottom of the specimen 

was required to align the bricks during the preparation of the specimen. The specimens were left to 

mature for 28 days. 

Although commercially available bricks and mortar were used in this study, which resulted in masonry 

specimens of higher strength compared to historic masonry of ageing infrastructure, this paper aims 

to identify general patterns in the acoustic emission behaviour of masonry under progressive damage 

due to train loading. Conducting a parametric experimental investigation to compare the acoustic 

emission behaviour of masonry with varying mechanical parameters is of interest for future research. 

3.2. Test set-up 

The tests were performed at the Structures Laboratory of the Department of Engineering, University 

of Cambridge, UK. The load frame is shown in Fig. 2. A servo hydraulic actuator was fixed at the centre 
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of the frame. The vertical displacement was measured with a laser transducer mounted on the 

actuator, whereas the applied load was measured with a 100 kN load cell at the bottom end of the 

actuator. The vertical load was applied to the specimen through steel roller bearings, shown in Fig. 3, 

to equalise the load between the two central bricks. Steel roller bearings were also used as end-

supports of the masonry specimen.  

 

Fig. 2. Test set-up for gradually increasing cyclic load on masonry specimens. 

 

Fig. 3. Schematic representation of the front side of the masonry specimens showing the location of the 

sensors. 
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This study focuses on the progressive damage in masonry due to cyclic train loading. The arch barrels 

in the Marsh Lane Viaduct (Fig. 1-left) have cracks that develop both in the longitudinal and transverse 

direction of the bridge [4, 5], which is the result of dynamic response mechanisms in both directions, 

as discussed in [21]. Fibre Bragg grating sensors, which measure surface strain in 1m-wide areas, 

indicate a typical fluctuation of the dynamic strain in the order of ±50 με when typical passenger trains 

cross the bridge [6]. Note that positive values correspond to relative tensile strain, Δε, whereas 

negative to relative compressive strain. The train speed over the bridge is typically in the range of 30-

55 km/h (8.3-15.3 m/s), whereas a typical axle distance of passenger trains ranges from 9 to 16m. As 

a result, the train loading causes a dominant dynamic response of the bridge in the frequency range 

of 0.5-1.5Hz.  

In this study, there was an effort to create a similar stress condition and crack behaviour and monitor 

the evolution of AE events as damage progresses. The approximately 1m-long masonry specimens 

may represent arch sections in the longitudinal direction of the bridge, or sections of the barrel vault 

in the transverse direction. In either case, these sections are well confined inside the body of the arch, 

providing constraints that resist the opening of the crack. In the transverse direction this is enhanced 

with the presence of steel ties [4, 5, 21]. In the longitudinal direction, the arch sections are under 

compression due to the arch thrust. A representative value of the compressive stress in the Marsh 

Lane arch due to backfill is estimated to be around 0.5 MPa. 

Based on the above, the two ends of the masonry specimens were confined between an array of steel 

plates, as shown in Figs 2 and 3. Fig. 3 (top-left) shows the plan view of the steel plates. The plates are 

bolted on the strong floor through slots that allow them to move only in the specimen’s longitudinal 

direction. This force (and displacement) in this horizontal direction is controlled by hydraulic jacks. 

Before the application of the vertical load, the masonry panels were pre-compressed with a 10 kN 

horizontal load. This results in compressive stresses of approximately 0.5 MPa, which is the 

representative stress of the Marsh Lane arches. After the application of the horizontal force, the 

hydraulic jacks were locked in place to prevent any movement in the horizontal direction.  

The selected vertical load history is shown in Fig. 4. The force is applied downwards. The actuator was 

operated in force-control to more realistically simulate train loading. The vertical load, Fv, can be 

represented as the sum of a static component, Fvs, and a dynamic component, Fvd: 

𝐹𝑣 = 𝐹𝑣𝑠 + 𝐹𝑣𝑑 (1) 
The static component, Fvs, is gradually increased in steps of 2 kN. The dynamic component, Fvd, is an 

additional sinusoidal load from 0 to 2 kN, as shown in Fig. 4. In every step of Fvs, 1000 load cycles are 

performed. The frequency of the dynamic load is 1 Hz, which is a representative value for the dynamic 

response of the bridge caused by the train loading. The process is repeated in each step until collapse 

occurs. The 2kN load step increase of Fvs and the 2kN peak-to-peak amplitude of Fvd were selected 

during a calibration test of the actuator, where an identical masonry specimen was used. During the 

calibration test, a 2kN dynamic load was causing strains close to ±50 με, which is the representative 

value measured in the bridge with fibre Bragg grating sensors at the central bottom fibres of the 

uncracked masonry.  

The motivation to study the acoustic emission behaviour of masonry at multiple damage levels arises 

from the big variety of crack widths observed in Marsh Lane Bridge, ranging from hairline to 2cm-wide 

cracks. In other areas of the bridge, crushing of bricks is observed due to high concentration of 

compressive stresses. Clearly, there has been a significant redistribution of stresses during the long 

deformation history of the structure.  

The selection to limit the cycles to 1000 per load step was due to limitations of the available loading 

system, which could not be left running unattended. By using the 2kN static load step increase it took 
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approximately 8 hours (one working shift) to complete each test. High-cycle fatigue testing is of 

interest for future research. 

 

 

Fig. 4. Representation of the vertical load history. 

3.3. Monitoring system 

Fig. 3 presents schematically the front side of the masonry beam, together with the location of the 

sensors. Four MISTRAS R6α general purpose AE sensors were used, with 60 kHz resonant frequency 

and 35-100 kHz operating frequency range. The signals were amplified at 40 dB by using general 

purpose voltage preamplifiers. Three sensors, AE1-AE3, shown in Fig. 3 with black, red and green 

circles, are distributed along the central joint, to monitor the propagation of the middle crack. Two 

sensors are installed at the left of the central joint and one at the right. Having sensors at both sides 

of the joint, where a discontinuity is expected to form as the crack propagates, permits to monitor 

cracking events on both sides. In this central area of the beam, bending-induced damage is expected 

to dominate as the load increases. The fourth sensor, AE4, shown in Fig. 3 with a blue circle, was 

installed two bricks away from the central joint, to better capture shear cracking events that are 

expected to occur away from the center. 

Fig. 5 presents an AE event recorded during the tests. The signal, which was amplified with a gain of 

40 dB, is shown in Volts. Fig. 5 shows some basic parameters (features) of an AE waveform, such as 

the amplitude of the signal, the duration of the event (or duration of a hit) and the rise time. The total 

number of times the signal exceeds a threshold level above the signal noise is the Number of Counts 

(also reported as RDC—ring-down counts). These parameters can be related to material deterioration 

and damage severity. 

The selection of the data logging method defines the data processing approach to be used, which can 

be divided in two categories [22, 23]; the parameter-based (or feature-based) approach and the signal-

based (or waveform-based) approach. In the first case, only signal features are stored. This approach 

considerably reduces the amount of data and is suitable for long-term monitoring of large-scale 

structures. In the second case, the whole signal is stored, allowing more detailed post-processing 

analysis with the use of waveform processing algorithms. This approach requires sufficient storage 

space and computational power due to the high sampling rate, which is usually on the order of MHz 

per sensors.  
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Fig. 5. AE waveform parameters. 

An in-house Data Acquisition (DAQ) system similar to the one installed in the Marsh Lane Viaduct (Fig. 

1) was developed for this study, which can operate in both parameter-based and signal-based modes. 

A National Instruments real-time embedded industrial controller was used for the four AE sensors, 

offering up to 1 MHz sampling rate per channel. The maximum voltage that the system can record is 

10 V, which corresponds to 100 dB. The core operations are performed in the FPGA (Field-

programmable gate array) chip of the controller. LabVIEW FPGA was used to configure the chip for 

the system triggering, for processing the signals and buffering the data to the host PC. More 

specifically, the triggering threshold was set at 40 dB, slightly above the signal noise (see also Fig. 5). 

FPGA signal processing included baseline correction and logging peaks and counts of signals above the 

40 dB threshold. This data is sufficient to partially reconstruct the signal waveform, while considerably 

reducing the required data storage. The controller is able to buffer both the signal waveform and 

features (peaks and counts) in segments of 1 sec after triggering. For the long-term monitoring of 

Marsh Lane Bridge, the feature-based mode is selected, whereas during the laboratory tests both 

modes were used simultaneously.  

Silicone grease was used to couple the AE sensors to the masonry surface. Hsu-Nielsen Pencil-Lead 

Break tests were performed to verify the sensors coupling and determine the AE signal attenuation of 

the specimens. Fig. 6 shows the amplitude of signals of the central sensor AE2 from the 1st specimen, 

produced by 10 pencil-lead breaks at the center of consecutive bricks away from the sensor, and in 

particular, from brick #9 to #16 (see also Fig. 3). Fig. 6 also offers three alternative signal attenuation 

curves based on linear regression, exponential regression, which is commonly found in literature, and 

cubic regression, which appears to better represent the test data. The wave propagation velocity along 

the longitudinal direction was measured to be 3306 m/s. 

The 48 small grey dots in Fig. 3 show the location of LED targets of a triple-camera dynamic tracking 

measurement system. The system tracks the space coordinates of the LED targets. The camera was 

placed at 3m distance from the front side of the specimen, and the resolution achieved was 10 μm. 

The sampling rate was 1 kHz. Each brick, apart from the two thinner at the 1/4 of the span, has at least 

two targets to monitor its in-plane movement and to approximate the rigid body motion (rotation and 

displacement) after large displacements between bricks have occurred. The bricks at the center of the 

span, where more damage is expected, are densely monitored.  

The back side of the specimen is clear of sensors, in order to conduct Digital Image Correlation (DIC) 

analysis. It is noted that, during the masonry construction, a formwork was used to align the back side 
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of the specimen’s bricks. After maturing of masonry, the formwork was removed, leaving mortar 

stains on the bricks. The back side of the brick surfaces was rough, and as a result, the stains created 

a speckle pattern, which was used for the DIC. For this analysis, a digital camera was used to take 

photos with dimensions of 5472 x 3648 pixels at 72 dpi, every 20 seconds.    

 

Fig. 6. AE signal attenuation. 

 

4. Results 

4.1. Description of damage propagation 

 

Fig. 7. Force-displacement diagram for the two specimens. 

This section presents results from two unreinforced brick masonry beams, named from now on as 

specimen #1 and specimen #2, subjected to horizontal compressive force and gradually increasing 

cycling bending loading until collapse. Fig. 7 compares the central deflection of specimen #1, shown 
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with a red line, with the central deflection of specimen #2, shown with a blue line. The selection of 

the number of load cycles as the main vertical axis at the left hand side instead of the load step, Fvs, 

which is shown at the right hand side, is deliberate. The horizontal grid lines, which follow the marks 

of the main vertical axis on the left, define the beginning and end of each load step. This is critical for 

the interpretation of the results that follow. The marks of the secondary vertical axis on the right are 

intentionally located between the horizontal grid lines. Critical damage events that correspond to 

sudden increases in central deflection are numbered in the diagram. These events mark changes in 

damage modes and structural behaviour, as discussed below. Collapse occurred at 50 kN and 48 kN 

for specimens #1 and #2, respectively.  

4.1.1. Specimen #1 

Fig. 8 presents images of the back side of specimen #1 at zero vertical load (Fig. 8a) and right after the 

major events A1, B1 and C1 (Figs. 8b-d), together with DIC displacement vectors showing the 

deformation history from one state to the following. 15 vectors are shown per brick. The head of the 

vectors is indicated with red colour. For clarity, the size of the vectors is scaled up by a factor of 3. 

Fig. 9a plots the absolute displacement of the actuator (central deflection), together with selective 

relative distances of LED sensors, shown in Fig. 3. In particular, “x27-x24” corresponds to the change 

in the horizontal distance between LEDs #24 and #27, to monitor the crack opening of the mid-span 

joint between bricks #8-9; “y11-y15” corresponds to the change in the vertical distance between LEDs 

#11 and #15, to track vertical sliding and shear failure in the region of bricks #5-#7; and “y45-y41” 

corresponds to the change in the vertical distance between LEDs #41 and #45, to track vertical sliding 

and shear failure in the region of bricks #14-#16. Fig. 9b is similar to Fig. 9a, except that relative 

displacements, rather than absolute displacements, are presented for each load step. Below, a 

detailed description of the damage propagation in specimen #1 is offered.  

 

Fig. 8. (a) Back side of specimen #1 with bricks numbering. (b) Photo after event A1 with DIC displacement 

vectors from 0 to 14000 cycles. (c) Photo after event B1 with DIC from 14001 to 16000 cycles. (d) Photo after 

collapse C1 with DIC from 16001 to the end of test. 
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Fig. 9. Left column—Specimen #1: (a) Displacement history of central deflection and distance change between selective LED targets; 

(b) same as (a), but showing relative displacement for each load step;  (c) cumulative AE energy; (d) peak AE signal amplitude per 

second (top) and quadratic regression curve (bottom). Right column—Specimen #2: (e-h) description as per (a-d). 
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- Before event A1 (Fvs=0-28 kN): The gradually increasing bending moment at the centre of the 

specimen resulted in a gradual propagation of a bond failure crack between brick #8 and the #8-9 

mortar joint. The crack started to be visible at Fvs=8 kN at the bottom of the mid-section and gradually 

propagated upwards, as shown in the centre of Fig. 8b. The specimen behaves as a 3-hinge mechanism 

with compressive stress concertation at the top in the mid-span and the bottom in the supports. 

- Event A1 (Fvs=28 kN): High compressive stress at the top of the mid-span, combined with shear at the 

quarter span, resulted in sudden crushing of the top of brick #6 with simultaneous sliding in joint #5-

6, as shown in Fig. 8b. 

- Event B1 (Fvs=32 kN): A similar damage mechanism as Event A1 occurred (see Fig. 8c). Now the top 

of the neighbouring brick #7 crushed, with simultaneous sliding in joint #6-7, and the bottom of brick 

#15 crushed, with simultaneous sliding in joint #14-15. In addition, mortar crushing is now visible at 

the top of joints #7-8, #8-9 and #9-10.  

- Collapse C1 (Fvs=50 kN): A sudden shear failure occurred in the region between brick #11 and #15 

(see Fig. 8d). Deterioration in this region became visible after load step Fvs=36 kN. In particular, 

compressive cracking started to form at the top of brick #11 and further developed at the bottom of 

brick #15. This mechanism continued until event C1, where the bottom of brick #15 crushed, with 

simultaneous sliding in joint #14-15, as shown in Fig. 8d. After C1, the specimen couldn’t sustain any 

more load and the test was terminated. 

The above major events, A1, B1 and C1, are easily distinguishable in Figs. 9a and 9b. The corresponding 

load steps are shown with grey shaded areas. Fig. 9a shows that, macroscopically, the deflection is 

linear with the vertical load up to A1. The same holds for the “x27-x24” mid-span crack opening. The 

linear trend in “y11-y15” and “y45-y41” is explained by the gradual rotation of the two half-spans of 

the specimen due to the 3-hinge mechanism. The jumps in the diagram at A1, B1, and C1, are due to 

the joint sliding discussed before.  

Fig. 9b compares the relative displacements that occurred during the different load steps. In principle, 

the specimen deforms faster during the first cycles at each load step, while the deformation rate 

gradually drops as the number of cycles increases, unless a sudden shear damage event happens. Local 

shear failure happened suddenly during the tests, either at the beginning (e.g. A1) or during the load 

step (e.g. B1, C1). This result highlights that by only using sensing or surveying technologies that 

measure strain or displacement, it is hard to predict when brittle shear failure will occur. 

4.1.2. Specimen #2 

Fig. 10 corresponds to Fig. 8, but now showing specimen #2 after major events A2-E2. Note that some 

wild vectors occur in this last image, Fig. 10f (collapse state), where surface spalling or cracking 

prevents a few points from being correctly tracked.   

Figs. 9e and 9f are similar to Figs. 9a and 9b, but correspond to specimen #2. “x27-x18” corresponds 

to the change in the horizontal distance between LEDs #18 and #27 and monitors the crack opening 

of the mid-span joint #8-9 and the neighbouring joint #7-8; “y04-y08” corresponds to the change in 

the vertical distance between LEDs #4 and #8 to track vertical sliding and shear failure in the region of 

bricks #1-#3; and “y12-y19” corresponds to the change in the vertical distance between LEDs #12 and 

#19, to track vertical sliding and shear failure in the region of bricks #6-#8. Below, a detailed 

description of the damage propagation in specimen #2 is offered. 

- Before event A2 (Fvs=0-16 kN): A bond failure crack between brick #9 and the #8-9 mortar joint 

gradually develops upwards. The crack started to be visible at the 8kN load step at the bottom of the 

mid-section joint, similar to specimen #1. 
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Fig. 10. (a) Back side of specimen #2 with bricks numbering. (b) Photo after event A2 with DIC displacement 

vectors from 0 to 8000 cycles. (c) Photo after event B2 with DIC from 8001 to 17000 cycles. (d) Photo after 

event C2 with DIC from 17001 to 18000 cycles. (e) Photo after event D2 with DIC from 18001 to 20000 cycles. 

(f) Photo after collapse E2 with DIC from 20001 to the end of test. 

- Event A2 (Fvs=16 kN): Crushing of mortar at the top of joint #7-8, resulted in joint sliding between 

bricks #7 and #8. A bond failure bending crack appears in joint #7-8 at the bottom, corresponding to 

closing of the neighbouring mid-span crack in joint #8-9, which was previously developed. 

- Event B2 (Fvs=34 kN): Sudden local shear failure occurs in the region of the bricks #6-#8. The top of 

brick #7 and bottom of brick #6 crushed. A bond failure due to bending appears at the top of joint #15-

16. Fig. 10c shows the two bond failure bending cracks in joints #7-8 and #8-9 that were gradually 

developing during the previous load steps. 

- Event C2 (Fvs=36 kN): Crushing at the bottom of bricks #2 and #3 is followed by a sudden sliding failure 

in the joint between the two bricks. Bending cracks at joints #7-8, #8-9, #15-16 continue to open, as 

shown in Fig. 10d. Figs. 10c and 10d show that a mixed mechanism has been developed, with the #1-

#8 brick region suffering from shear, and the #9-#16 brick region forming a two-hinge mechanism.  
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- Event D2 (Fvs=40 kN): Another jump downwards of the specimen occurs (see Fig. 10e). The jump is 

less sadden, compared to the other events. The same mixed mechanism further develops and bending 

cracks further open. 

- Collapse E2 (Fvs=48 kN): Extensive brick crushing in the area between bricks #3 and #8 due to shear 

suddenly occurs. The specimen can no longer sustain load and the test is terminated.  

The above major events, A2- E2, are easily distinguishable in Figs. 9e and 9f. Similarly to Fig. 9b, Fig. 9f 

shows that the specimen deforms faster during the first cycles at each load step, while the 

deformation rate gradually drops as the number of cycles increases, unless a sudden shear damage 

event occurs. Local shear failure again happened suddenly during the tests, either at the beginning 

(e.g. B2 and E2) or during the load step (e.g. C2). Instead of a sharp jump, the gradual deterioration of 

D2 is reflected in the smooth curve in Fig. 9f. As in the first specimen, it would have been difficult to 

predict brittle shear failure by relying only on strain or displacement monitoring. 

4.2. AE Feature-based analysis 

The in-house AE system developed in this study for field infrastructure monitoring and lab testing can 

perform feature-based AE analysis. This typically includes the study of the evolution of signal features 

such as (i) the number of counts, (ii) the energy, and (iii) the amplitude of the signals. For (i), the 

number of counts for each 1-second data segment are directly calculated in the FPGA of the DAQ 

system through LabVIEW programming. For (ii), the peaks of the signal, also retrieved directly from 

the DAQ, are used to calculate the signal energy per second, which is defined as the area under the 

waveform envelope and above the noise threshold. The units are V-s (Voltage multiplied by second). 

(i) and (ii) are typically presented in the form of cumulative plots. For (iii), the maximum signal 

amplitude among all events contained in the 1-second segment is expressed in the decibel scale. The 

voltage signals are converted in the decibel scale by using the following equation:  

𝑑𝐵𝐴𝐸 = 20 log10 (
𝑉

𝑉𝑜
) − 𝐺𝑝 

(2) 

where, V is the amplitude of the preamplified signal or output of the system expressed in microvolts, 

Vo is the reference voltage equal to 1 μV, and Gp is the preamplifier gain equal to 40 dB. 

In the results that follow, the evolution of cumulative energy and amplitude of AE signals is presented. 

The analysis based on cumulative number of counts offered very similar patterns to cumulative energy 

and is omitted for the sake of brevity. 

4.2.1. Specimen #1 

Fig. 9c presents the cumulative energy for specimen #1 of the four AE sensors, AE1-AE4, shown in Fig. 

3, for each load step. The plot presents similarities in shape with the relative displacement plot of Fig. 

9b, showing that, in principle, increase in deformation is accompanied by increase in acoustic 

emissions. Fig. 9d-top presents the peak signal amplitude per second for the four AE sensors, while 

Fig. 9d-bottom presents the best fit quadratic regression curves that correspond to Fig. 9d-top for 

each load step, with the exception of the load steps from 0 to 8000 cycles, where the small number 

and distribution of the AE events did not permit to construct the curves. 

One may observe two main stages in Fig. 9c. The first stage is before the A1/B1 shear failure, from 0 

to 13000 cycles, which is characterised by low AE activity. The results of the low activity stage are 

offered separately in the enlarged scale plot inside the figure. The A1/B1 shear failure marks a 

transition phase, where the specimen enters in the second main stage with significant AE activity until 

collapse. A more detailed description of these stages is offered below: 

- Low AE activity stage (before A1/B1): During this stage, the only visible crack is the bond failure crack 

in the mid-span joint that propagates upwards. Clearly, the bond failure crack generates significantly 
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less AE compared to other damage modes that occurred later in the test. The intact specimen 

generated more AE energy and counts in the first load step (from 0 to 1000 cycles), compared to the 

later load steps of this stage, as shown in the enlarged scale plot. In the first load step, 0-1000 cycles, 

the sensors closer to the compression zone, AE1 (black line), is more active compared to the AE2 (red 

line) in the mid-height and the AE3 (green line) in the tensile zone. The AE4 (blue line), which is further 

away from the mid-span joint, is less active. The same holds for all load steps in this stage. Fig. 9d-top 

shows that the AE event frequency and amplitude is higher in the first cycles of each new load step, 

and also increases as Fvs increases. The AE activity is clearly building up before the A1 event, as shown 

in Figs. 9c-d, especially from 7000 to 13000 cycles. Interestingly, the relative displacement plot in Fig. 

9b shows a relatively constant behaviour for all load steps before the A1 event, without offering any 

warning indication. In contrary, the AE sensors were picking up change in the cracking rate before the 

A1 brittle failure. Lastly, the shape of the quadratic regression curves in each load step of Fig. 9d-

bottom show that in the load steps after the 8000 cycle and before A1, the AE event amplitude doesn’t 

drop constantly, but after a number of cycles the amplitude increases again, indicating material 

fatigue. 

- Transition (A1/B1): The shear local failures, A1 and B1, are brittle failure events that generated 

considerably more AE energy compared to the previous load steps, as shown clearly in the 

corresponding shaded areas of Fig. 9c. Figs. 8b and 8c show that the top of bricks #6 and #7 crushed 

in the compression zone, in the vicinity of sensor AE1, which explains why this sensor has recorded 

more AE energy.  

- High AE activity stage (after A1/B1): As discussed in Fig. 8c and 8d, after B1 and before collapse C1 

the region between bricks #11 and #15 suffers from gradually increasing shear. The sensor AE4 (blue 

line) which was the least active in the previous steps, is now recording more AE activity, as shown in 

Fig. 9c. This is because the AE4 sensor is the closest one to the #11-15 brick region. This type of failure 

mode, diagonal shear failure, generates significant AE activity. From 16001 to 20000 cycles, the AE 

activity is building up, together with the deformation of the specimen, shown in Fig. 9b. From 20001 

to 23000 the specimen has been converted to a 3-hinge mechanism and its stability is relying mostly 

on the compression strength of the hinges. This offers a stable behaviour during these cycles, though 

with continued emissions throughout the load cycle, demonstrating continued fatigue damage with 

cycling. One load step before collapse, from 23001 to 24000 cycles, the deformation becomes 

comparable again with cycles 19001 to 20000, as shown in Fig. 9b. However, there is unprecedented 

AE activity shown in Fig. 9c, which is a warning for the C1 collapse that follows. The final shear failure 

which resulted in the total collapse, generated even more acoustic emissions. Fig. 9d shows that 

during the high AE activity stage, the frequency and the amplitude of AE events is gradually increasing 

with the increase of Fvs.     

4.2.2. Specimen #2 

Figs. 9g and 9h are the equivalent to Figs. 9c and 9d, but for specimen #2. As in specimen #1, two main 

stages can be observed; a low AE activity stage, from 0 to 7000 cycles, followed by a high AE activity 

stage. The A2 event marks the transition between the two stages. The transition happens earlier in 

the second specimen, than the first specimen. Another difference is that after the transition into the 

high AE activity stage, there are multiple major shear events that happen before the final collapse in 

the second specimen, whereas in the first specimen the next major shear event led to collapse. A more 

detailed description of the performance stages of specimen #2 is offered below: 

- Low AE activity stage (before A2): As in specimen #1, during this stage, the only visible crack is the 

bond failure crack in the mid-span joint that propagates upwards, which generates significantly less 

AE compared to other damage modes that occurred later in the test. The A2 event happens due to an 

early unexpected crushing of mortar at the top of joint #7-8, which subsequently resulted in joint 
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sliding between bricks #7 and #8 (see also Fig. 10b). For this damage mode, there was a slight increase 

of the AE energy before A2 as shown in the enlarged scale plots in Fig. 9g. 

- Transition (A2): Sliding failure of joint #7-8 after the mortar crushing at the top of the joint generated 

significant increase in the AE energy, as shown in Fig. 9g, marking the transition into the high AE 

activity stage. The relative deformation plot of Fig. 9f shows a sharp jump right after 7001 cycle due 

to the joint sliding, and then the typical decrease in the deformation rate follows. Sensor AE1, which 

is the nearest sensor in the central compression zone, is the most active, as shown in Figs. 9g and 9h-

bottom.   

- High AE activity stage (after A2): Fig. 9f shows that after the A2 jump, during the 8001-9000 cycles, 

there is an intense gradual deformation of the specimen downwards. No brittle failure occurs in this 

load step, but there is a significant AE activity recorded by the sensors, as shown in Fig. 9g. Both 

deformation and AE activity drops in the following load steps until cycle 13000, showing that although 

there is still notable AE activity, indicating continued fatigue damage throughout the cycling at each 

load step, the specimen enters into a relatively stable condition. This is due to the well confined hinge 

mechanism that gradually develops. Interestingly, Fig. 9f doesn’t show any notable increase in the 

deformation rate from cycle 13001 to 16000, before the next major event, B2, which is a sudden local 

shear deformation with simultaneous crushing of bricks #6 and #7. However, Fig. 9g show that the AE 

activity builds up before the B2/C2 brittle failure events, offering a clear warning.  

Subsequently, event D2 is not a result of a new type of damage and does not exhibit brittle behaviour, 

but represents a gradual degradation of the existing mechanism during cycling. D2 resulted in the 

highest AE cumulative energy release. After the D2 event, the deformation rate of the specimen 

becomes significantly larger as it approaches the collapse E2. Enduring this process, note that AE4 

(blue line) remains the least active sensor. As explained in the previous section, the region of bricks 

#1-#8 suffers more from shear than the other half of the beam (bricks #9-#16) where AE4 is located. 

In other words, sensor AE4 is on the opposite side of the beam from the region where extensive shear 

deterioration takes place. The opposite happened in specimen #1, where AE4 was the most active 

during the higher load steps. 

4.3. b-value analysis 

To analyse AE signals, several authors have used the analogy between seismic and AE event 

magnitude-frequency distribution [24-25, 10]. For AE analysis, the following modified Gutenberg–

Richter equation [26] is used: 

log10𝑁 = 𝑎 − 𝑏 (
𝐴𝑑𝐵
20

) 
(3) 

where N is the number of AE events with amplitude higher than AdB. Plotting the frequency-amplitude 

distribution with AdB in the x-axis and log10N in the y-axis, the distribution is expressed with the least 

square linear regression curve (a straight line), where a is the log10N value when the curve intersects 

the y-axis and –b/20 is the slope of the curve.  

An example is given in Fig. 11, which plots the AE events distribution of specimen #1 during cycles 

6001-7000 (lower curves), which are characterised by low AE activity, and 13001-14000 (upper 

curves), when the first shear damage event, A1, occurred. In the analysis, the amplitude takes discrete 

values in steps of 5 dB. Amplitudes greater than 40 dB are considered, which is the predefined 

threshold above the signal noise, and below 100 dB, which is the capacity limit of the DAQ system. 

In principle, the b-value is large when the slope of the distribution line is relatively steep, meaning that 

the frequency of low-amplitude events dominate over the high-amplitude events, as shown by the 

lower curves in Fig. 11. As the population of high-amplitude events increases compared to low-

amplitude events, the slope becomes shallower and the b-value drops, as shown by the upper curves 
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in Fig.11. Changes in b-value can be associated with damage severity and change in structural 

performance state as deterioration progresses. 

 

  

Fig. 11. Frequency-amplitude distribution diagram of the specimen #1 AE events during cycles 6001-7000 

(Fvs=14 kN) and 13001-14000 (Fvs=28 kN) 

 

This paper discusses three alternative approaches to calculate the b-value based on Eq. (3). The first 

approach is to follow the common practise of calculating the b-value for every n number of events 

[25, 27]. A frequently reported value is n=100, which is adopted in this study. This is an attractive 

selection for tests that generate a relative small number of AE events, such as monotonic 

compression/tension tests. Cyclic/fatigue loading tests however, which more realistically simulate 

train and traffic loading, generate a larger number of AE events. The second and third approach, 

proposed in this study, calculate the b-value on much larger event populations, which better highlight 

the severe damage events of the tests, as will be discussed below. The second approach is similar to 

the first, but calculates the b-value over all the events per load step. The third approach is not based 

on the amplitude distribution of events, like the first and second, but on the distribution of all peaks 

of the signal per load step. In other words, in Eq. (3), N is the number of all signal peaks with amplitude 

greater than AdB. This last approach doesn’t require an AE event recognition algorithm and can be 

applied directly on streaming raw data.  

4.3.1. Specimen #1 

Fig. 12a plots the evolution of the b-value per 100 events for specimen #1 for the four AE sensors. Fig. 

12a-bottom presents the mean value and standard deviation for each load step, whereas the 

population of 100-events per load step is offered in Fig. 12a-top. It is noted that there is no significant 

variation of the standard deviation as the load step and population of events increase. The behaviour 

of the b-value in the low AE activity stage (before A1) can be related to the cumulative energy enlarged 

plots in Fig. 9c. At the beginning of the stage, the energy is decreasing to reach a minimum at around 

the 7000 cycles and then rises again before the A1 event. The b-value shows a reversed behaviour, 

reaching a maximum when the AE activity is minimum. During the A1 and B1 shear local failures, the 

b-value reaches a minimum, marking the transition into the high AE activity stage. Near the collapse 

state, the b-value starts to drop again slightly. 
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Fig. 12. Left column—Specimen #1: b-value (a) per 100 events, (b) for all events per load step, (c) for all peaks per load step. 

Right column—Specimen #2: (d-f) description as per (a-c). 
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Fig. 12b plots the b-value considering all the events per load step (one b-value per load step). The plot 

shows similar trends as in Fig. 12a, with the difference that the major events A1, B1 and C1 are better 

marked, with the b-value reaching a minimum. That means that these brittle local failure events are 

accompanied by a considerable increase of the number of the high-amplitude events in relation to the 

low-amplitude events. Between B1 and C1 the b-value increases again, although there is a significant 

number of high-amplitude events as shown in Fig 9d-top. This is because after the A1/B1 transition, 

the high AE activity stage is characterised by an increase in the number of both low-amplitude and 

high-amplitude events.  

Fig. 12c plots the b-value based on the distribution of all peaks per load step (one b-value per load 

step). The main trends are similar to Fig. 12b, marking again clearly when severe damages that are 

critical for the change in the structural behaviour of the specimen are taking place. Note that this 

approach is based on the signal peaks retrieved from the featured-based mode of the in-house DAQ 

system, without the need to use an event detection post-processing algorithm on continuous 

waveform data. 

4.3.2. Specimen #2 

Fig. 12d is the corresponding Fig. 12a for specimen #2 and presents the evolution of the b-value per 

100 events. The b-value clearly marks the A2 transition from the low AE activity stage to the high AE 

activity stage. With this approach, there is no significant change in b-value for the intermediate B2, C2 

and E2 events of the high AE activity stage. Fig. 12d shows that AE sensors closer to active regions, 

such as AE1, give lower b-values compared to sensors away from active regions, such as AE4.  

Figs. 12e and 12f are the corresponding Figs. 12b and 12c for specimen #2 and present the b-value 

based on the number of events and peaks, respectively. Both approaches mark all the severe events. 

A slight difference appears in the event D2, which is highlighted more in the analysis based on events. 

Note that the D2 was not a brittle failure event and appears less severe in the analysis based on the 

number of peaks. As in Fig. 12d, Figs. 12e and 12f show that sensors in more active areas offer lower 

b-values. 

The b-value trends presented in Fig. 12 for both specimens are comparable to results reported in 

literature for physical testing of brittle materials [28]. For concrete beams, a b-value close to or below 

1 has been associated with macro-cracking formation, while larger values have been associated with 

micro-cracking dominance [25]. Multiple b-value drops during concrete beam bending tests under 

gradually increasing loading have been reported in [29] and have been associated with unstable crack 

growth. 

 

5. Discussion and future work 

Combined deformation and cracking monitoring may enhance the ability of engineers to develop real-

time structural alert systems and assess the structural performance of ageing infrastructure.  

At an early damage state, opening of cracks in tensile zones due to bending is a gradual phenomenon. 

AE sensors are able to detect micro-cracking activity (which corresponds to cycles 0 to 4000 for both 

specimens) before the initiation of visible cracks, with the condition that the AE sensors are located 

near the area of interest. Displacement or strain sensors, such as LVDTs or fibre optics can easily 

capture this gradual phenomenon. However, as deterioration progresses, damage modes such as 

mortar or brick crushing, joint sliding or diagonal shear are brittle failures which may not be 

accompanied by a pre-event increase of the deformation rate. This study shows that in most cases 

there is a clear pre-event increase of the cracking rate which can be monitored with the aid of simple 
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feature-based AE algorithms. This type of analysis is computationally cheap and can be easily 

implemented using real-time data for long-term monitoring applications. As a result, AE monitoring, 

enhanced with displacement or strain information, can serve as a method for the development of real-

time structural alert systems for ageing infrastructure, spanning all potential structural performance 

levels that the structure might experience throughout its life, from low damage state to near collapse 

state. 

Furthermore, severity assessment analysis based on an AE amplitude distribution parameter, such as 

the b-value, combined with common featured-based analysis, may contribute to identifying different 

structural performance states. For instance, this paper shows that the low damage stage with 

dominant micro-cracking behaviour has low AE activity and a high b-value. The high damage stage that 

is associated with extensive micro- and macro-cracking has both high AE activity and b-value. The 

transition stage, where macro-cracking events temporarily become more dominant in relation to 

micro-cracking events, is characterised by medium or high AE activity and a low b-value. These findings 

are summarised in Table 1, which presents an indicative example of structural performance 

assessment based on AE results.  

 

Table 1. Indicative example of a high-level structural performance characterisation 

Structural 
performance 
state 

Low Damage / 
Micro-cracking 

Transition / 
Macro-cracking 

High Damage / 
Extensive Micro- 
and Macro-cracking 

AE activity 
(counts, energy 
and amplitude) 

Low Medium/High High 

b-value High Low High 

 

The current work explores the possibility to use routine feature-based analysis combined with 

economic and versatile infrastructure monitoring systems, which are easily expandable to support 

multi-sensing remote monitoring, in order to better understand the overall structural performance of 

masonry under cyclic loading and gradual deterioration. This work aims to leverage rapid asset 

management tools for ageing infrastructure networks. Damage localisation and source discrimination 

algorithms for masonry (see for instance Livitsanos et al. [30]), and advanced statistics, have an 

important role to play for asset management. This is part of ongoing and future research. Exploring 

the benefits of multi-sensing information is also appealing for future current research. Apart from the 

benefit of combining AE with deformation monitoring (e.g. fibre optic sensing) discussed previously, 

the combined use of transducers of varying frequency ranges, for instance the use of high-sensitivity 

accelerometers to capture lower frequency vibrations together with AE sensors, may contribute to 

the structural performance assessment and indication of impending failure, as was shown by Schiavi 

et al. [31]. Finally, extension of this experimental investigation to study the AE behaviour of masonry 

with different mechanical characteristics, environmental effects, and the effect of high-cycle fatigue 

loading, is also of interest for future research. 

 

6. Conclusions 

This paper studies the AE behaviour of two masonry specimens under progressive damage due to a 

biaxial stress state and cyclic loading. The specimens experienced a combination of compression, 

shear and bending, similar to what arch bridge sections experience during train loading. An in-house 
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AE sensing system was developed for this study, which can operate in both feature-based and 

waveform-based modes.  

Feature-based AE analysis shows that the two specimens experienced two main damage stages. In the 

first stage there was a gradual propagation of joint bond failures due to bending. AE sensors were able 

to capture micro-cracking activity before cracks became visible. This stage was characterised by a 

relatively low AE energy release. The second stage was characterised by high AE activity with the 

generation of a considerably larger number of micro- and macro-cracking events. For both specimens, 

the transition into this second, high-damage stage happened after brittle local failures due to the 

combined action of shear and compression. Feature-based AE analysis captured a pre-event increase 

of cracking rate before brittle local failure occurred, which was not necessarily accompanied by an 

increase in the deformation rate. This indicates that combining displacement or strain monitoring with 

AE monitoring could enable the development of early warning structural alert systems covering a wide 

range of damage modes.  

When local brittle failure occurs, the number of high amplitude AE signals temporarily dominate over 

the number of low amplitude signals. The paper compares three different approaches of the b-value 

statistical method to describe this behaviour, by performing an analysis (i) for every n number of AE 

events (classic approach), (ii) for all events per load step and (iii) for all peaks per load step. The three 

approaches present comparable results. Approaches (ii) and (iii), proposed in this study, showed more 

consistency in detecting the major brittle events that occurred during the tests. Furthermore, the third 

approach (iii) is based on signal features (peaks) directly retrieved from the DAQ’s feature-based 

mode, reducing the computational cost and facilitating real-time processing. 

To this end, the paper presents an example of how these findings can be used for identifying different 

structural performance stages of ageing infrastructure. 
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