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A stochastic fatigue damage model is proposed to track entire damage process of 
viscoelastic materials.

Abstract

Fatigue damage of engineering materials severely affects the serviceability of their 

structures. It is impracticable to accurately predict fatigue damage process of 

engineering materials due to the variability of material properties, microstructure 

heterogeneity and others. This study aims to track the entire fatigue damage process by 

coupling the variability into a fatigue damage mechanism for engineering materials. A 

typical viscoelastic material, asphalt binder, widely used in pavement engineering is 

selected for investigation in this study. The pseudo J-integral Paris' law model and 

probability theory are combined to establish a stochastic fatigue damage model for 

viscoelastic asphalt materials. Results show that the damage density can be determined 

by an apparent shear modulus and true shear modulus. The damage evolution rate is a 

function of material parameters (Paris’ law coefficients), apparent shear modulus, 

apparent shear strain amplitude and apparent phase angle. Then, a cumulative 

distribution function of loading time (TCDF) and damage density exceedance 

probability (DDEP) are derived and experimentally verified. Next, a stochastic fatigue 

damage model is proposed, which can track the entire fatigue damage process for 

viscoelastic materials, and it depends on the damage density, material parameters and 

variability parameters. The variability of minor damage can be used to predict the 

variability of severe damage based on the stochastic fatigue damage model.

Keywords: Stochastic fatigue damage; viscoelastic materials; pseudo J-integral Paris' 

law; probability.
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1 Introduction

Fatigue damage of many engineering materials (such as asphalt materials in road 

engineering, aluminum alloy materials in aerospace and so on) is generally caused by 

cyclic loading. It makes the serviceability of their structures deteriorate with time. A 

representative viscoelastic material, asphalt binder, widely used in road engineering is 

selected for investigation in this study. Fatigue damage of asphalt pavements is closely 

related to the cohesive failure within the asphalt binder. It is of great significance to 

characterize and understand the fatigue behavior of the asphalt binder for evaluating 

the service life of asphalt pavements. Therefore, some indicators and fatigue damage 

models have been proposed to characterize the fatigue behavior for the asphalt binder, 

which can be generally classified as: (1) empirical indicators; (2) dissipated energy 

indicators; and (3) mechanical fatigue damage models. 

Many empirical and dissipated energy indicators were proposed to characterize 

the fatigue failure for the asphalt binder. On one hand, some empirical indicators were 

utilized as fatigue failure criterion, such as a 50% loss of stiffness [1] and pseudo-

stiffness [2], a peak of phase angle [3]. Besides, a fatigue factor |G*|·sinδ (|G*| is shear 

modulus and δ is phase angle) was established to quantify the fatigue resistance of 

asphalt binders [4]. On the other hand, several dissipated energy indicators were 

proposed to reflect the fatigue behavior of asphalt binders based on mechanical 

principles and material properties, which contain a dissipated energy ratio (DER) [5], 

[6], [7] and the ratio of dissipated energy change (RDEC) [8], [9], [10]. 

From the perspective of mechanical fatigue damage models, the entire fatigue 

damage process of the asphalt binder was studied. Hintz and Bahia [11], Shan et al. [12] 
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proposed the crack length model for asphalt binders to characterize the entire fatigue 

damage process under a rotational shear fatigue load. However, it is imprecise to use a 

linear viscoelastic constitutive equation at undamaged state to derive crack length at 

damage stage. Hence, a damage mechanics-based crack length model has been 

formulated to analyze the fatigue cracking for asphalt binders [13] [14].

These indicators and fatigue damage models promote understanding of the fatigue 

damage process of asphalt binders. However, all the indicators and fatigue damage 

models aforementioned are deterministic. In other words, the mean values of test results 

are taken to quantify the fatigue behavior of the materials. As a matter of fact, the 

variability associated with material properties, microstructure heterogeneity and others 

cause the uncertainty of fatigue damage process for many engineering materials [15], 

[16], [17], [18]. If these deterministic fatigue indicators and fatigue damage models are 

applied in structures made up of such materials, the estimation bias will lead to 

unintended consequences. Therefore, some probabilistic fatigue damage models have 

been proposed to characterize the scatter of the fatigue damage data for some 

engineering materials, which contain phenomenological probabilistic fatigue damage 

model and mechanical probabilistic fatigue damage model.

 In the phenomenological probabilistic damage models, the mean value and 

standard deviation are predicted by fitting crack growth test data [19]. In addition, 

Kozin and Bogdanof [20], [21] established a B-model based on the mathematical 

concept of Markov chains, which can obtain the stochastic characteristics of fatigue 

cracking damage in the service life. It has become a popular method for solving 

probabilistic fatigue cracking damage problems due to the simplicity of the model. 

However, fatigue damage mechanisms are neglected in these phenomenological 

probabilistic damage models. 

To overcome this limitations, some mechanics-based probabilistic fatigue damage 

models were proposed based on fatigue damage mechanism of the materials. A 

representative model was Yang and Manning’s stochastic fatigue crack growth model 
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[22]. The model was established by adding a random variable into the Paris’ law 

equation which can characterize the fatigue damage mechanism. Some researchers 

focused on studying the statistical variability of damage evolution by this model [23], 

[24], [25], [26]. 

However, these mechanical fatigue damage models only apply to non-viscous 

materials. For the viscoelastic materials, large-scale yielding of fatigue crack growth 

occurs when performing a fatigue load to materials. Hence, Yang and Manning’s 

stochastic fatigue crack growth model related to the stress intensity factor is limited. A 

probabilistic viscoelastic continuum damage model was employed to analyze the 

variability of asphalt materials [27], [28], [29]. Nevertheless, only the probability 

distribution curve of fatigue life was analyzed, and stochastic damage analysis for the 

entire fatigue damage process was not implemented and tracked.

As a result, coupling the variability into fatigue damage mechanism to track the 

entire fatigue damage process for viscoelastic materials is of more practical significance. 

To better overcome the limitation above-mentioned, it is necessary to fundamentally 

investigate the stochastic fatigue damage process of viscoelastic materials. Hence, the 

objective of this work is to develop a stochastic fatigue damage model which can track 

the entire fatigue damage process of viscoelastic materials based on a mechanistic 

method and probability theory. Typical asphalt binders are tested and analyzed to 

illustrate the method as well as the results.

This study is organized as follows. First, materials and laboratory tests are 

elaborated. Second, a shear stress and shear stress model are established and an energy-

based mechanistic (EBM) approach is utilized to derive a deterministic fatigue damage 

model for the asphalt binder. Besides, the variability of fatigue damage evolution of the 

asphalt binders is analyzed. Then, a random variable is added into the deterministic 

fatigue damage model to randomize the model and model parameters are estimated 

based on a maximum likelihood estimation approach. Next, a cumulative distribution 

function of loading time (TCDF) and damage density exceedance probability (DDEP) 
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are calculated and verified. In addition, a stochastic damage model coupled variability 

into fatigue damage mechanism is determined for the asphalt binder. Finally, a 

summary section concludes this study with the main results. 

2 Materials and Laboratory Tests

2.1 Materials

A typical viscoelastic material, asphalt binder commonly used in road engineering, was 

selected in this study. Basic indicators (penetration, softening point and ductility) of the 

asphalt binder were tested by specification methods [30]. These test results of all the 

basic indicators and properties are shown in the Table 1. It indicates that the basic 

indicators and properties meet the technical requirement in the specification [30].

Materials Properties Units Requirements Results
Penetration at 25℃ 0.1mm 40-60 56

Softening point ℃ ≥60 88.4
Asphalt 
binder

Ductility at 15℃ cm ≥20 36.5

Table 1. Basic indicators and properties of the asphalt binder

2.2. Equipment and Sample Preparation

The Discovery Hybrid Rheometer (DHR) from TA Instruments was used to perform 

tests for asphalt binders in this study. An 8-mm diameter parallel plate was employed. 

Therefore, the size of the asphalt binder sample was 8mm in diameter. An equipment 

and sample preparation of the test are shown in Fig. 1. The sample preparation consists 

of the following steps:

(1) Make asphalt binder samples: heat the asphalt binders in the oven until it flows, 

and pour the hot asphalt binders into the silicon rubber mould. Then, cooling it to 

the room temperature. An asphalt binder sample is shown in Fig. 1.

(2) Place the asphalt binder sample in the instrument: the sample was removed by 

bending the rubber mould and adhered it to the lower parallel plate of the 

instrument by gently pressing the top surface of the sample. This step was to avoid 

adhesive failure between the asphalt binder and the parallel plate during the test.
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(3) Set test parameters: set up a trim gap (2050μm), target gap (2000μm), test type, 

temperature and loading time, etc. It's worth mentioning that the extra 50μm 

between the trim gap and target gap can ensure that a proper lateral bulge is formed 

at the outside edge of the asphalt binder sample in the next step.

(4) Trim the asphalt binder sample: press a trim button of the instrument, the gap 

between upper parallel plate and lower parallel plate would go to the trim gap. Then, 

rock the rotating lever, and a heated trimming tool was used to trim the extra asphalt 

binder. It makes the outside diameter of the asphalt binder sample equal the outer 

diameter of the plates. The trim gap is presented in Fig. 1.

(5) Complete the sample preparation: when the trimming process was finished, the 

upper parallel plate was lowered to the target gap as shown in Fig. 1. In addition, 

to avoid uneven temperature distribution throughout the entire asphalt binder 

sample, the sample was heated to the target testing temperature and kept for 5 min. 

At this point, the preparation of the sample was completed.

Fig. 1. Equipment and sample preparation of the test

Target gapTrim gap

Asphalt binder

Upper parallel plate

Lower parallel plate

8 m
m

2 m
m

Mould DHR
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2.3 Test Methods

When the sample preparation was completed, time sweep tests were performed. 

Applying a sinusoidal loading to the asphalt binder sample, the maximum shear strain 

amplitude was formed at the edge of cylindrical specimen. Thirty repetitive time sweep 

tests are performed for the asphalt binders. All of time sweep tests were conducted at 4% 

of oscillation shear strain amplitude, at the temperature of 25°C and the loading 

frequency of 10 Hz. Shear moduli and phase angles cab be obtained in time sweep tests, 

which are particularly important to characterize the fatigue damage evolution of the 

asphalt binder. Fig. 2 shows typical relationship between the shear moduli/phase angles 

of the asphalt binder and loading time at 4%, 25°C and 10 Hz. It is found that the shear 

modulus decreases with the loading time. The phase angle increases to the peak and 

then decreases with the loading time, and it fluctuates at the later loading stage. These 

observation results of the shear modulus and phase angle are caused by fatigue damage 

process of the asphalt binder sample. 
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Fig. 2. Typical relationship between the shear moduli/phase angles of the asphalt 

binder and loading time of 4%, 25°C and 10 Hz

3.  Establishment of Deterministic Fatigue Damage Model for Asphalt Binders

To obtain the stochastic fatigue damage model reflecting the fatigue damage 

Phase angle

Shear modulus
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mechanism and variability of asphalt binders, the deterministic fatigue damage model 

should be established first. This section contains the following three aspects:

(1) Formulate the shear strain and shear stress models for asphalt binders;

(2) Establish the deterministic fatigue damage model for asphalt binders; and

(3) Analyze the variability for fatigue damage results calculated by the 

deterministic fatigue damage model.

3.1 Formulation of Shear Strain and Shear Stress Model for Asphalt Binders 

When performing the time sweep test, edge cracks of a cylindrical asphalt binder 

specimen will generate and gradually expand to the loading center with the loading time. 

For the cylindrical asphalt binder sample in the test, the intact material (exclude the 

invalid volume caused by crack growth) is called intact asphalt binder, and the entire 

material including cracks is called apparent asphalt binder. The shear strain, shear stress, 

torque and energy dissipation of the intact asphalt binder are certainly different from 

those in the apparent asphalt binder. In this study, these mechanical variables in the 

intact asphalt binder are called “true shear stress”, “true shear strain”, “true torque” and 

“true energy”. Correspondingly, those in the apparent asphalt binder are defined as the 

“apparent shear strain”, “apparent shear strain”, “apparent torque” and “apparent 

energy”, respectively. 

First, the shear strain and shear stress of the apparent asphalt binder and the intact 

asphalt binder are formulated. Fig. 3 presents distribution of shear strain/shear stress in 

the intact asphalt binder and the apparent asphalt binder. It is worth mentioning that the 

shear stress and shear strain are constant function in z direction,  direction and 

increase linearly in r direction when performing a strain-controlled rotational load.
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Fig. 3. Distribution of shear strain/shear stress in the intact asphalt binder and the 

apparent asphalt binder when performing a strain-controlled rotational load

Therefore, the apparent shear strain at any position in the apparent asphalt binder can 

be expressed by:

       (1)           0
0 0 0 0, , sin sin , sin

A
A A A A

A

rt r t r t r t t r t
h r

       

where  is the apparent shear strain at loading time t ( ) and  ,A t r  0 0 2 /t t t    

a given radius r ( ); ,  are apparent shear strain 0 Ar r   0 0,
A t r  0 0 ,A At r

amplitude at loading time t0 with a given radius r and apparent radius , respectively; Ar

 is loading frequency;  is amplitude of apparent rotational angle; and h is height  0
A

of the asphalt binder specimen. 

The apparent shear stress at any position in the apparent asphalt binder can be modeled 
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as below:

         (2)         0 0 0 0, , sin , sinA A A A A A
A

rt r t r t t r t
r

         

in which  is the apparent shear stress at the loading time t and a given radius  ,A t r

r; ,  are apparent shear stress amplitude at the loading time t0 with  0 0,A t r  0 0 ,A At r

a given radius r and apparent radius , respectively; and  is apparent phase angle.Ar A

The apparent shear modulus of the apparent asphalt binder can be calculated by:

                          (3)
 
 

0 0

0 0

,
,

A
A

A

t r
G

t r



 

Similarly, the true shear strain at any position in the intact asphalt binder is expressed 

by:

       (4)           0
0 0 0 0, , sin sin , sin

T
T T T T

A

rt r t r t r t t r t
h r

       

where  is the true shear strain at the loading time t and a given radius r  ,T t r

( ); ,  are true shear strain amplitude at the loading time 0 Tr r   0 0,
T t r  0 0 ,T Tt r

t0 for a given radius r and true radius , respectively; and  is amplitude of true Tr 0
T

rotational angle.

The true shear stress at any position in the intact asphalt binder is formulated as follows:

         (5)         0 0 0 0, , sin , sinT T T T T T
A

rt r t r t t r t
r

         

in which  is the true shear stress; ,  are true shear stress  ,T t r  0 0,T t r  0 0 ,T Tt r

amplitude at the loading time t0 for a given radius r and true radius , respectively; Tr

and  is true phase angle.T

The true shear modulus of the intact asphalt binder can be calculated by:

                          (6)
 
 

0 0

0 0

,
,

T
T

T

t r
G

t r



 

The apparent shear strain, apparent shear stress, true shear strain and true shear stress 

(detailed derivation of the true shear strain and stress are shown in Appendix A) at any 
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position and any loading time can be obtained. Taking the apparent strain, apparent 

stress at a given radius rA, and the true strain, true stress at a given radius rT in a loading 

cycle as an example, which is shown in Fig. 4. Two observations can be obtained: (1) 

the true shear stress amplitude is larger than the apparent shear stress amplitude; and 

(2) the true shear strain amplitude is smaller than the apparent shear strain amplitude. 

This is because the apparent shear modulus decreases with the loading time and the true 

shear modulus does not change with the loading time when performing the time sweep 

test.
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Fig. 4. Apparent strain, apparent stress at a given radius rA and true strain, true stress 

at a given radius rT in a loading cycle

3.2 Establishment of Deterministic Fatigue Damage Model for Asphalt Binders

An EBM approach were proposed to determine the evolution of damage or healing of 

asphalt mixtures [31], [32], [33], [34], [35]. In this study, the EBM approach can be 

applied to determine a damage evolution model for asphalt binders. A torque 

equilibrium principle and two energy balance principles are listed as follows [36][37]:

                         (7)   0 0
A TT t T t

                         (8)   0 0
A TDSE t DSE t
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                       (9)   0 0
A TRSE t RSE t

where TA(t0) is total apparent torque at the loading time t0; TT (t0) is total true torque at 

the loading time t0; DSEA(t0) is total apparent dissipated strain energy at the loading 

time t0; DSET(t0) is total true dissipated strain energy at the loading time t0; RSEA(t0) is 

total apparent recoverable strain energy at the loading time t0; and RSET(t0) is total true 

recoverable strain energy at the loading time t0.
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Fig. 5. Energy hysteresis loop of the asphalt binder when performing a strain-

controlled shear load 

Fig. 5 presents energy hysteresis loop of the asphalt binder when performing a strain-

controlled shear load. It consists of four hysteretic loops: (1) apparent shear stress vs. 

apparent shear strain; (2) apparent shear stress vs. apparent shear pseudo strain; (3) true 

shear stress vs. true shear strain; and (4) true shear stress vs. true shear pseudo strain. 

DSEA stands for the apparent dissipated strain energy at any position in the apparent 

asphalt binder (an area of hysteresis loop (1)); RSEA is the apparent recoverable strain 
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energy at any position in the apparent asphalt binder (an area of two parts filled with 

horizontal lines in Fig. 5); DPSEA is apparent dissipated pseudo strain energy at any 

position in the apparent asphalt binder (an area of hysteresis loop (2)); DSET is the true 

dissipated strain energy at any position in the intact asphalt binder (an area of hysteresis 

loop (3)); RSET stands for the true recoverable strain energy at any position in the intact 

asphalt binder (an area of two parts filled with diagonal lines in Fig. 5). 

However, the two energy balance principles (Eqs. (8) and (9)) just apply to a total 

energy in the entire volume of the asphalt binder. Therefore, the total energy items 

should be determined first. For the apparent asphalt binder, the DSEA(t0) can obtained 

as below:

              (10)     0

0

2 /

0 , ,
A

tA A A

t
V

DSE t t r d t r dV
 

 
     

where VA is the entire volume of the apparent asphalt binder sample.

The RSEA(t0) is calculated by:

        (11)       
0 0

0 0

/ 2 /

0 / 2 /
, ,

A A
A

t tA A A

t t
V

RSE t t r d t r dV
   

     
 

 

   

      

Similarly, for the intact asphalt binder, the DSET (t0) is calculated as follows:

              (12)     0

0

2 /

0 , ,
T

tT T T

t
V

DSE t t r d t r dV
 

 
     

where VT is the entire volume of the intact asphalt binder sample.

The RSET (t0) can be determined by the following equation:

        (13)       
0 0

0 0

/ 2 /

0 / 2 /
, ,

T T
T

t tT T T

t t
V

RSE t t r d t r dV
   

     
 

 

   

      

The TA (t0) is calculated as below:

                   (14)    2
0 00

, 2
ArA AT t t r r dr  

Similarly, the TT (t0) can be determined by:

                   (15)    2
0 00

, 2
TrT TT t t r r dr  

Substitute Eqs. (14), (15) into Eq (7), damage density of the asphalt binder can be 
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defined and calculated by the following expression (detailed derivation is shown in the 

Appendix A):

                     (16)
 
 

2 *

2 *
1 1

T A

TA

r G

Gr





   

where  is the damage density of the asphalt binder. In this study, the damage density 

represents the proportion of failure area to total area of the asphalt binder sample when 

performing a strain-controlled shear load.

A pseudo J-integral Paris’ law model for fatigue cracking in asphalt mixtures and 

pavements was proposed [38], [39]. In this study, the pseudo J-integral Paris’ law model 

is used to formulate the deterministic damage evolution rate for asphalt binders, which 

is shown as below [38], [39]:

                          (17) n
R

d A J
dt




where A and n are Paris’s law coefficients associated with damage evolution rate, which 

are intrinsic parameters of the material;  is pseudo J-integral, which can be RJ

calculated by:

       (18)
 

 
 

 
 

 
0 0 0 00 0

/

/ /

t tA A
A

R c c c

DPSE t dt DPSE t dt t DPSE t
J

S S t S t

             
    

 

in which DPSEA(t) is the total dissipated pseudo strain energy at loading time t of the 

asphalt binder; Sc is crack area of the asphalt binder, which is calculated by:

                  (19)
 

 
2

2
A

c
A

rS r
t t t

  
     

  

The DPSEA(t) at any loading time t can be calculated as follows:

              (20)     
2 /

, ,
A

tA A A
Rt

V

DPSE t t r d t r dV
 

 
     

in which  is apparent pseudo strain at the loading time t and a given radius r. ,A
R t r

Substitute Eq. (18), Eq. (19), Eq. (20) into Eq. (17), damage evolution rate of the asphalt 
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binder can be determined (detailed derivation is given in Appendix B). The expression 

of the damage evolution rate can be obtained as below:

           (21)   
/( 1)

21/( 1) *
0

1 , sin
2

n n

n A A A A A
NLVE

d A h G t r
dt
    



       

in which  is apparent phase angle at a critical nonlinear viscoelastic point of A
NLVE

the asphalt binder.

Finally, substitute Eq. (16) into Eq. (21), the deterministic damage evolution rate 

model can be defined by the following expression:

                         (22) ,
bAd a f

dt
     

where ; ;       2*
0

1, , 1 sin
2

A T A A A A
NLVEf h G t r          1 1na A 

. , , , a, b, h are constants and  are variables  / 1b n n  *TG  0 ,A At r A
NLVE ,A 

in . ,Af  

3.3 Analysis of Variability for Fatigue Damage Results

Substituting the time sweep test data into Eq. (16) and Eq. (21), the damage density and 

damage evolution rate of the asphalt binder can be obtained as shown in Fig. 6. Four 

observations can be obtained: (1) the damage density increases and damage evolution 

rate decreases with the increase of loading time (in Fig. 6a); (2) the damage evolution 

rate decreases with the increase of damage density (in Fig. 6b); (3) the damage density 

of all asphalt binder samples fluctuates in a certain range at a fixed loading time, or 

loading time of all asphalt binder samples fluctuates in a certain range at a fixed damage 

density (in Fig. 6a); and (4) the variability of damage density in asphalt binder samples 

(indicated by the red distribution) decreases over time, and the variability of loading 

time at a fixed damage density (indicated by blue distribution) increases over time (in 

Fig. 6a). 
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Fig. 6. Calculation results of the damage density and damage evolution rate among 

different asphalt binder samples

The reason for the observation (1) and (2) is that the energy dissipation increases with 

the loading time which makes damage density increases, and the energy dissipation 

increase rate decreases with the loading time which makes damage evolution rate 

decreases when performing a shear strain-controlled time sweep test. The similar cyclic 

Different color lines represent 
damage density of different 
samples

Different color lines represent damage 
evolution rate of different samples
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energy-dissipation behavior has been analyzed in metals [40][41]. For the observation 

(3), it is caused by many different uncertainties, such as simplified assumptions made 

for internal damage process, material properties, microstructure heterogeneity and 

others. The reason for the observation (4) is that the damage evolution rate gradually 

slows down with the increase of loading time. Hence, the damage density and damage 

evolution rate of all asphalt binder samples have a similar evolution trend but not 

exactly same under the same loading condition (the same oscillation shear strain level, 

temperature, loading frequency). In other words, the results of damage density and 

damage evolution rate among different asphalt binder samples exhibit the 

characteristics of variability even under the same loading condition.

However, the damage density (Eq. (16)) and damage evolution rate (Eq. (21)) 

established in section 3.2 are deterministic models, which means that the uncertainties 

are not considered. To overcome this problem, the probability analysis is introduced 

first. Fig. 7 presents sketch of the probability distribution of the damage density and the 

corresponding loading time. The area “NPM” represents the probability of the damage 

density  less than a given damage density , which is defined as .  t    P t 

The area “LPQ” represents the probability of the loading time  larger than a  t 

given loading time t, which is defined as .  and  are the   P t t   t  t 

abscissa and ordinate of point P in Fig. 7, which represents any damage density and the 

corresponding loading time after a time sweep test, respectively. Due to the non-

decreasing nature of the process of the damage density, and    P t    P t t 

have the relationship as follows [23]: 

                     (23)     P t t P t    
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Fig. 6. Sketch of the probability distribution of the damage density and the loading 

time

4 Determination of Stochastic Fatigue Damage Model for Asphalt Binders

According to the analysis results above, the variability of fatigue damage does exist. To 

add the variability into the deterministic fatigue damage model, the stochastic fatigue 

damage model can be proposed for the asphalt binder in this section. This section 

contains the following three aspects:

(1) Add a random variable into the deterministic damage evolution rate model to 

randomize the model;

(2) Estimate model parameters based on the maximum likelihood estimation; and 

(3) Determine the stochastic damage model coupling variability and fatigue 

damage mechanism for the asphalt binder.

4.1 Randomization of the Deterministic Damage Evolution Rate Model

First, a random variable X(t) is added into the deterministic damage evolution rate 

model (Eq. (22)), which is presented as follows [42]:

                      (24)   ,
bAd X t a f

dt
     

Mathematical transformation is made for Eq. (24), which yields:
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                (25)   ln ln ln ln ,AdX t a b f
dt
       

Assume that the random variable  obeys a normal distribution, hence,    lnY t X t

the random variable X(t) obeys a logarithmic normal distribution. The relationship of 

mathematical expectation of Y(t) and X(t) is shown as follows:

                       (26) 2exp /2X Y Y   

where  is mathematical expectation of Y(t);  is variance of Y(t);  is Y 2
Y X

mathematical expectation of X(t).

The relationship between the variance of Y(t) and X(t) is obtained as below:

               (27)    2 2 2exp 2 exp 1X Y Y Y     

in which  is the variance of X(t).2
X

In addition, Yang and Manning suggested that  of X(t) is equal to 1.0 [22]. X

Substitute  into Eq. (26) and Eq. (27),  can be calculated by the 1.0X  2
Y

following expression:

                         (28) 2 2ln 1Y X  

Combine Eq. (26) with Eq. (28), the expression of is obtained as below:Y

                        (29) 2 2ln 1 /2Y X   

Then, perform an integration for Eq. (24), which yields:

                   (30)
 

    

0 0,

t t

bA

d X t dt
a f

 

 


  
 

The random variable  is assumed as a logarithmic normal   

0

t
W X t dt


 

distribution. In this way, the random variable  obeys the normal distribution. lnZ W

According to the relationship of the logarithmic normal distribution and the 

corresponding normal distribution, the variance of Z(t) can be represented by 

mathematical expectation and variance of W(t), the expression is presented as below:
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                         (31) 2 2 2ln / 1Z W W   

where  is variance of Z(t);  is mathematical expectation of W(t);  is 2
Z W 2

W

variance of W(t).

The mathematical expectation of Z(t) also can be represented by  and , W 2
W

which gives:

                     (32) 2 2ln / / 1Z W W W       

in which  is mathematical expectation of Z(t).Z

In addition, to obtain  and , the key is calculating  and , and the 2
Z Z W 2

W

mathematical expectation  can be determined as follows: W

             (33)   
0 0

x t t x

W Xdx X t dt X t dxdt t 
 

     
The variance of random variable Z(t) can be calculated as below:

                 (34)    2
1 2 1 20 0

,
t t

Z Cov X t X t dt dt   
where  is an auto-covariance.    1 2,Cov X t X t

From the physical standpoint, the auto-covariance function of the damage evolution 

rate should decrease as the difference between two time t1 and t2 increases. The general 

auto-covariance function of the following form is assumed for the random process X(t) 

[42]:

                (35)      2
1 2 2 1, expXCov X t X t t t   

where  indicates a measure of the correlation time for X(t) and will be called 1 

“correlation time” hereafter for simplicity.

The value of the correlation time  is used to match the probability distribution in 1 

the following section. Finally, substitute Eq. (35) to Eq. (34) and carry out the 

integration, which yields:

                          (36)2 2 2
W X  
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in which . exp( ) 1 /2t t     

4.2 Estimation of Model Parameters

To determine the stochastic damage model, it is necessary to solve three model 

parameters a, b and  first. In this study, a maximum likelihood estimation 2
X

approach is performed to solve these model parameters. The probability density 

function of the random variable X(t) is presented as below:

          (37) 
   2 21 exp ln / 2 0

2
0 0

X X
X

x x
f x x

x

 


       
 

A likelihood function of the test data is given by:

   (38)      22 2
1 2

1

1, , , , ; , , exp ln / 2
2

M

i M X i X X
i i X

L x x x x a b x
x

  
 

   

where  is likelihood function;  are  2
1 2, , , , ; , ,i M XL x x x x a b   1 2, , , ,i Mx x x x 

sample of the random variable X(t).

The model parameters a, b and  can be obtained by numerically maximizing the 2
X

logarithm of Eq. (38). Take the logarithm of both sides of Eq. (38), which gives:

  (39)      22 2
1 2

1

1ln , , ; , , ln exp ln / 2
2

M

M X i X X
i i X

L x x x a b x
x

  
 

 
   

 


According to test data of any sample i and Eq. (25), the following equation can be 

obtained:

                 (40) ln ln ln ln ,Ai
i i i

dx a b f
dt
       

Then, substitute Eq. (40) into Eq. (39), and perform the partial derivative of the 

parameter a. Set the partial derivatives to zero, which gives: 

         (41)  2

1 1

1ln ln , ln 0
M M

A i
i i X X

i i

dba f
M M dt

   
 

          
 

Perform the partial derivative of the parameter b and set it to zero, yielding:
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    (42)   2

1

1 ln , ln ln ln , 0
M

A Ai
i i X i i X

i

df a b f
M dt

     


                


Similarly, take the partial derivative of the variance , giving:2
X

           (43) 
2

2

1

1 ln ln ln , 0
M

Ai
X i i X

i

d a b f
M dt

   


         


Then, combine Eq. (41), Eq. (42) with Eq. (43), the expression of the parameter b can 

be calculated by: 

      (44)
   

   
1 1 1

2
2

1 1

1 1 1ln , ln ln , ln

1 1ln , ln ,

M M M
A Ai i

i i i i
i i i

M M
A A

i i i i
i i

d df f
M M dt M dtb

f f
M M

    

   

  

 

      


         

  

 

The parameter a can be determined by the following mono basic quadratic equation:

    (45)

 

   

 

2

1 1

2
2 2

1 1 1

1 1

2 2ln ln 1 ln ln ,

1 2ln ln , ln , ln

1 ln ln , 0

M M
Ai

i i
i i

M M M
A Ai i

i i i i
i i i
M M

Ai
i i

i i

d ba a f
M dt M

d db bf f
M dt M M dt

d b f
M dt M

  

    

  

 

  

 

       

        

    

 

  

 

Finally, the variance of random variable X(t) can be obtained:2
X

        (46) 2

1 1

1ln ln , ln 0
M M

A i
X i i X

i i

dba f
M M dt

   
 

          
 

Calculated results of the parameters a, b and the variance  of the random variable 2
X

X(t) are shown in Fig. 8. It is found that parameters a, b and  become stable with 2
X

the increase of the number of samples. It indicates that the stability and reliability of 

model parameters determined by the maximum likelihood estimation approach can be 

improved by increasing of the number of samples. The change trend of the parameters 

a, b and the variance  is similar, which shows the estimation error caused by the 2
X

number of samples is consistent for any estimated parameter.
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Fig. 8. Calculated results of parameters a, b and the variance  of the random 2
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variable X(t)

4.3 Establishment of Stochastic Damage Model

Since the random variable  obeys the normal distribution, a cumulative lnZ W

distribution function of loading time (TCDF) can be determined by the following 

expression:

                (47)       ln /Z ZP t t t t t       

where  is defined as the TCDF;  is cumulative distribution function   P t t   

of the standard normal distribution;  is mean value of the loading time at a given t

mean value of the damage density ;  is mathematical expectation of random   Z t

variable of Z(t) at any loading time;  is variance of random variable of Z(t) at  Z t

any loading time.

Next, combine Eq. (23) with Eq. (47), the DDEP can be obtained as below:

  (48)             1 1 ln /Z ZP t = P t t P t t t t t               

where  is defined as the DDEP.  P t 

If the two functions ,  and the mean value of the loading time  are  Z t  Z t t
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obtained, the TCDF (Eq. (47)) and the DDEP (Eq. (48)) will be determined. The 

specific procedure to establish a stochastic damage model is elaborated below step by 

step. 

Step 1: Formulate ,  and  Z t  Z t t

Substitute Eq. (38), Eq. (41) into Eq. (37).  can be calculated by: Z t

           (49)     2 2 2 21ln ln / exp ln 1 1 1
2Z Xt t t               

Then, the variance  can be determined as below: Z t

            (50)   2 2 2 2ln / exp ln 1 1 1Z Xt t              

Next, there is a one-to-one correspondence between the damage density  and the 

loading time  in the deterministic damage model. When the damage density  is t 

fixed, the corresponding loading time  can be calculated, and vice versa. The t

expression of the loading time  is shown as below:t

           (51)
     

1 2

0

1 1

, 1 2 sin

b

b bA A A
NLVE

dt
a f a b

 

   


    

       


Fig. 9 presents comparison between the test data and calculated result of the mean value 

of the loading time at different damage densities. It indicates that the calculated results 

match the test data well. In addition, the mean value of the loading time increases with 

the increase of damage density and the growth rate increases with the increase of the 

damage density. That is because longer loading time is required to produce the energy 

to promote the same increase of damage density when performing a shear-controlled 

test.
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Fig. 9. Comparison between the test data and calculated results of the mean value of 

the loading time at different damage density values

Step 2: Determine Cumulative Distribution Function of Loading Time and Damage 

Density Exceedance Probability

If the  is determined by the correlation time ,  and  will be  1   Z t  2
Z t

obtained based on Eqs. (49) and (50). Hence, the correlation time  is critical for 1 

determining the TCDF and DDEP. There are two extreme cases discussed as examples 

[23]:

(1) when the correlation time  is approaches to zero, the  can be determined by:1  

                 (52)
 

 1 10 0

1
lim lim 0

2 1

t

t

t e

e t



 



 



 


 

 

In this case, the damage evolution of the asphalt binder is a lognormal white noise 

random process. In this case, there is no statistical dispersion for the damage evolution, 

which is the least conservative case.

(2) when the correlation time  is approaches to infinite, the  can be calculated 1  

by:
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          (53)
  

1 1

2 2 3 3

0

2 1 / 2 1
lim lim

t t t t
t

 

    


  

    
 

Under the circumstances, the variability of the damage evolution of the asphalt binder 

is the greatest, which is the most conservative case.

In this study, the TCDF and DDEP are determined by different correlation time between 

these two extreme examples. Fig. 10a and 10b present that the TCDF and DDEP are 

calculated by some different correlation times (106,103,102,101,10-1,10-6). The TCDF 

and DDEP gradually flatten out with increase of the correlation time. The TCDF and 

DDEP are close to a no statistical dispersion process when the correlation time is small 

(10-6). The variability of the TCDF and DDEP are larger when the correlation time is 

106. They are consistent with the analysis of Eq. (52) and Eq. (53).

Next, an appropriate correlation time is adapted to match the TCDF and DDEP with 

the discrete test results. Fig. 10c and 10d show that the matching curve between test 

results and the TCDF and DDEP. Besides, Fig. 10e and 10f show the comparison 

between test results and the TCDF at different damage density (30%, 40% 50%, 60%, 

70%, 80%) and the DDEP at different loading time (1000s, 2000s, 3000s, 4000s, 5000s), 

respectively. It can be seen from Fig. 10e and 10f that the TCDF and DDEP match the 

test results well. The TCDF increases with increase of the loading time at a given 

damage density, and the variability of damage density decreases with increase of the 

loading time, while the change trend of the DDEP is opposite. These analysis results 

are consistent with the variability of the damage density shown in Fig. 6a.



28

0.00

0.20

0.40

0.60

0.80

1.00

0 1500 3000 4500 6000

1/ς=1000000
1/ς=1000
1/ς=100
1/ς=10
1/ς=0.1
1/ς=0.000001

Load time (s)

T
C

D
F

a. TCDF at different correlation time

0.00

0.20

0.40

0.60

0.80

1.00

0% 20% 40% 60% 80% 100%

1/ς=1000000
1/ς=1000
1/ς=100
1/ς=10
1/ς=0.1
1/ς=0.000001

Damage density

D
D

E
P

b. DDEP at different correlation time



29

0.00

0.20

0.40

0.60

0.80

1.00

0 1000 2000 3000 4000 5000 6000

1/ς=10000
1/ς=1000
1/ς=100
1/ς=10
1/ς=0.000001
Test results

Loading time (s)

T
C

D
F

c. Matching curve between test results and the TCDF 

0.00

0.20

0.40

0.60

0.80

1.00

0% 20% 40% 60% 80% 100%

1/ς=10000
1/ς=1000
1/ς=100
1/ς=10
1/ς=0.000001
Test results

Damage density

D
D

E
P

d. Matching curve between test results and the DDEP



30

0.00

0.20

0.40

0.60

0.80

1.00

0 1500 3000 4500 6000

CDF_30% Test results_30%
CDF_40% Test results_40%
CDF_50% Test results_50%
CDF_60% Test results_60%
CDF_70% Test results_70%
CDF_80% Test results_80%

Loading time (s)

T
C

D
F

e. Comparison between test results and the TCDF at different damage density

0.00

0.20

0.40

0.60

0.80

1.00

0% 20% 40% 60% 80% 100%

DDEP_1000s Test results_1000s
DDEP_2000s Test results_2000s
DDEP_3000s Test results_3000s
DDEP_4000s Test results_4000s
DDEP_5000s Test results_5000s

Damage density

D
D

E
P

f. Comparison between test results and the DDEP at different loading time

Fig. 10. Cumulative distribution function of loading time (TCDF) and damage density 



31

exceedance probability (DDEP) of the asphalt binder

Step 3: Establish stochastic damage model

All of the correlation time parameters determined in Step 2 are plotted in Fig. 11. It is 

found that there is a linear relationship between the correlation time and the 1 

damage density. The linear relation can be expressed by the following equation:

                         (54)1
1 2k k   

where k1 and k2 are fitting coefficients.
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Fig. 11. Relationship between the correlation time and the damage density

Substitute Eqs. (47), (48), (49), (50), (51) into Eq. (54), the stochastic damage model 

of the asphalt binder can be expressed by:

               (55)     2
1 2, , , , ,XP t t f a b k k    

              (56)     2
1 21 , , , , ,XP t f a b k k      

in which  is a function of . The variables   2
1 2, , , , ,Xf a b k k  2

1 2, , , , ,Xa b k k  ,a b

are the material parameters which is depend on the material and  are the 2
1 2, ,X k k

variability parameters associate with uncertainty of the damage process.
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Therefore, if a correlation time  at any damage density is given, the variability of 1 

the entire damage evolution process of the asphalt binder could be determined based on 

Eqs. (55) and (56). In other words, the variability of minor damage of the asphalt binder 

can be used to predict the variability of severe damage. 

5. Conclusions

To address the challenge of coupling the variability and fatigue damage mechanism, a 

stochastic damage model is proposed to track the variability of the entire fatigue 

damage process for the viscoelastic materials. A representative viscoelastic material, 

the asphalt binder, is selected for investigation in this study. The main findings of this 

study are listed as follows:

 Damage density which represents the proportion of the failure area to the total area 

of the asphalt binder sample can be determined by the apparent shear modulus and 

true shear modulus. Damage evolution rate of the asphalt binder is a function of 

material properties, apparent shear modulus, apparent shear strain amplitude and 

apparent phase angle.

 Cumulative distribution function of loading time (TCDF) and damage density 

exceedance probability (DDEP) of the asphalt binder are determined and 

experimentally verified. The TCDF increases with the loading time at a given 

damage density, and the variability of damage density decreases with the loading 

time, while the trend of the DDEP is opposite.

 A stochastic damage model coupled variability and fatigue damage mechanism for 

the asphalt binder is established and proven to be a function of the damage density, 

material parameters and variability parameters. 

 The variability of the entire damage process of the asphalt binder can be determined 

by a correlation time at any damage density. Therefore, the variability of a minor 

damage of the asphalt binder can be used to predict the variability of a severe 

damage based on the stochastic damage model.
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Appendix A. Derivation of Damage Density, True Shear Stress and Shear Strain

The expression of Eq. (10) can be derived as follows:
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The expression of Eq. (11) can be derived as below:
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(A.2)

Similarly, the expression of Eqs. (12) and (13) can be obtained:

          (A.3)         22
0 0 0 0 0

1 , , sin
2

T T T T T T TDSE t h r t r t r   

 (A.4)           2 3
0 0 0 0 0

1 1 sin 2 cos , ,
2 2 2

T T T T T T T T TRSE t h r t r t r          
 

Substitute Eq. (A.1), Eq. (A.3) into Eq. (7), which gives:
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      (A.5)
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Combine Eq. (A.2), Eq. (A.3), Eq. (8) and Eq. (9), and give the following form:

    (A.6)
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Based on the torque balance Eq. (7), Eq. (14) and Eq. (15), the following expression 

can be obtained:

             (A.7)       3 3

0 0 0 0
1 1, ,
2 2

A A A T T Tt r r t r r   

Combine Eq. (A.5), Eq. (A.6) with Eq. (A.7), the true radius rT for the asphalt binder 

sample can be solved as below:

                        (A.8)
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Therefore, the damage density (Eq. (16)) can be obtained:
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Substitute Eqs. (A.8) into Eqs. (A.7), the following expression is given:
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Then, the true shear stress amplitude can be solved by:

                   (A.11)   
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Finally, substitute Eq. (A.11) into Eq. (A.3), the true shear strain amplitude is 

determined by:
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Appendix B. Derivation of Eq. (21)
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DPSEA(t) can be calculated as follows:

              (B.1)     
2 /

, ,
A

tA A A
Rt

V

DPSE t t r d t r dV
 

 
     

Based on Schapery’s elastic–viscoelastic correspondence principle, the apparent 

pseudo shear strain  can be defined as follows [43]: ,A
R t r
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where  is measured apparent shear strain at loading time  and at any  ,A r  

position;  is a time variable of integration;  is apparent relaxation   AG t 

modulus at time ;  is reference modulus. t  A
RG

Substitute Eq. (1) into Eq. (B.2), which gives:
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(B.3)

in which  is apparent shear strain amplitude at a given radius r and a given  0 ,A r 

loading time .

Let  , then, , and when , Eq. (B.3) can be t   t      0, , , 0t t  

rearranged as below:
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According to the relationship between storage modulus  and loss modulus  AG 

 of the shear complex modulus, give the following expression: AG 
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in which  is apparent shear modulus at a nonlinear viscoelastic point;  is 
NLVE

AG A
NLVE

apparent phase angle at the nonlinear viscoelastic point.

Therefore, the pseudo shear strain  can be expressed by: ,A
R t r
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When performing a strain-controlled rotational shear load, the apparent shear strain 

amplitude is constant. Therefore, . If the apparent shear modulus    0 0, ,A At r t r   

 at the nonlinear viscoelastic point as a reference modulus,  will be 
NLVE

AG  ,A
R t r

expressed as below:
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Then, substitute Eq. (B.8) into Eq. (B.1), the  can be calculated as follows:  ADPSE t
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where  is apparent shear stress at a given radius rA and a given loading time  0 ,A At r

t.

Combine Eq. (B.9), Eq. (18) and Eq. (19), the following equation can be obtained:
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Then, substitute Eq. (B.10) into Eq. (17), and gives the following equation:
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Finally, substitute Eq. (3) into Eq. (B.11), the Eq. (21) can be obtained:
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