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While often regarded as a subset of metabolomics, lipidomics can better be considered as
a field in its own right. While the total number of lipid species in biology may not exceed the
number of metabolites, they can be modified chemically and biochemically leading to an
enormous diversity of derivatives, many of which retain the lipophilic properties of lipids
and thus expand the lipidome greatly. Oxidative modification by radical oxygen species,
either enzymatically or chemically, is one of the major mechanisms involved, although
attack by non-radical oxidants also occurs. The modified lipids typically contain more
oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and
nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a
succinct overview of the types of species formed, the reactive compounds involved and
the specific molecular sites that they react with, and the biochemical or chemical
mechanisms involved. In many cases, these modifications reduce the stability of the
lipid, and breakdown products are formed, which themselves have interesting properties
such as the ability to react with other biomolecules. Publications on the biological effects of
modified lipids are growing rapidly, supporting the concept that some of these
biomolecules have potential signaling and regulatory effects. The question therefore
arises whether modified lipids represent an “epilipidome”, analogous to the epigenetic
modifications that can control gene expression.

Keywords: phospholipids (PL), oxidation, nitration, oxysterols (cholesterol oxidation products), free radicals,
hypochlorous acid (HOCl)
INTRODUCTION

The oxidation of lipids and lipid-like substances has been known for centuries, and has been widely
regarded as an undesirable effect: in foods, lipid oxidation leads to the development of rancidity and
acrid flavors, while in materials such as rubber it causes loss of elasticity and perishing (1). In
biology, where lipids have important structural, nutritional, and signaling roles, the adventitious,
radical oxidation of lipids in cells and tissues was for many years also be regarded as a detrimental
process, for example disrupting cell membranes and causing cytotoxicity (Figure 1A) (2, 3). On the
other hand, in the 1950s the structure of prostaglandins was elucidated and found to result from
peroxidation of arachidonic acid [reviewed by (4)]; subsequently, thromboxanes and leukotrienes
were also realized to be derived from hydroperoxyeicosatetraenoates (HPETEs) (5).
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Spickett Formation of Oxidized Lipids
These enzymatically generated non-esterified lipid products
were recognized as important signalling molecules in the
cardiovascular and immune systems, and therefore as important
therapeutic targets (6). Consequently, there was much interest in
their enzymatic production by cyclooxygenases, lipoxygenases,
and cytochrome P450-dependent enzymes (7), a topic that
continues to be of interest and is reviewed elsewhere in this issue.
Later, the non-enzymatic formation of analogous compounds
(F2-isoprostanes) was discovered (8) and, in parallel, evidence
began to emerge that non-enzymatic oxidation products of fatty
acids esterified in phospholipids also had biological activities (9).
While initial studies reported detrimental effects in atherosclerosis,
soon it was noted that some of these compounds were able to block
immune receptors and prevent damaging immune responses, e.g.
in sepsis (10).Theyears from2000onwardswitnessedan explosion
in the identification of non-enzymatic lipid modifications and
resulting biological effects. A wide variety of additional oxidation
product families were identified, including isolevuglandins,
nitrated and halogenated fatty acids or phospholipids, oxysterols
and halogenated sterols, as well as the discovery of resolvins (11)
and maresins (12) from oxidation products of the omega-3 fatty
acids eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA)
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and docosahexaenoic acid (DHA). Inmost cases, a strong driver in
their discovery has been the elucidation of biological signalling
effects and, as the field has evolved, it has become clear that certain
modified lipid species have beneficial effects in specific
circumstances; in many cases, we also have an understanding
of the mechanisms involved. Thus, oxidatively modified lipids
are now well-established as mediators of biological processes (2,
13–16).
CHEMICAL PROPERTIES OF LIPIDS THAT
ENABLE MODIFICATIONS

Lipids are a hugely diverse chemical group, but the
lipid species most prevalent in biological systems, and especially
in mammalian cells, are free fatty acids, ceramides, phospholipids
(including phosphatidylglycerols and sphingomyelin), mono-, di-
and tri-acylglycerols, and sterols. The lipid structure determines
the nature and likelihood of oxidative modifications to it, but
reactive oxidizing compounds also demonstrate different
specificities (17). The chemical moieties most typically
susceptible to oxidative attack and modifications are shown in
A

B

FIGURE 1 | History and basics of lipid oxidation. (A) Diagrammatic timeline of research into lipid oxidation identifying key discoveries and concepts. (B) Major site
sites of attack in phospholipids and types of reaction that can occur there, using 1-(1-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanolamine as an
example. Other phospholipids containing these or analogous chemical groups show similar susceptibility.
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Spickett Formation of Oxidized Lipids
Figure 1B. In general, these are electron-dense regions of the
molecules (double bonds), or ones where the bonds are polarized
and can be broken with lower energy input.

The site of attack that leads to the widest range of
modifications and oxidation products is the fatty acyl chain.
Although fully saturated hydrocarbon chains can be attacked by
high energy oxidants, e.g. ozone and triplet oxygen, higher
numbers of double bonds increase the susceptibility to radical
attack, as hydrogen atoms can more easily be abstracted from
bis-allylic carbon atoms (17). On the other hand, mono-
unsaturated fatty acyl chains react readily with non-radical
oxidants, such as hypochlorous acid (18). In sphingomyelins,
the sphingosine moiety appears to be the main site of
modification, at least by hydroxyl radicals, reflecting the
presence of a C-C double bond (19). Likewise, in cholesterol
the mono-unsaturated B ring is readily oxidized, although
enzymatic oxidation of the tail also occurs (20–22).

In phospholipids, fatty acyl chains are connected to the glycerol
backbone by 3 different types of bond: ester bonds, ether bonds (in
alkanyl phospholipids), or vinyl ether bonds (in alkenyl
phospholipids, also called plasmalogens). The ether or vinyl ether
bonds occur mostly commonly at the SN-1 position of the glycerol.
The ester bonds are most common biologically and can be
hydrolyzed enzymatically, for example by phospholipase A1 or
A2, which results in formation of lysophospholipids. These have
altered biological properties and can be considered as biological
mediators. In contrast, vinyl ether bonds are susceptible to attack by
radicals (23) and electrophilic oxidants (24), forming oxidant-
dependent products. Phospholipid headgroups containing an
amine group can also undergo oxidation, although the quaternary
ammonium structure of phosphocholine is resistant; changes in
headgroup structure are likely to impact significantly on the
phospholipid function within the cell membrane (25, 26).
TYPES OF LIPID MODIFICATIONS

The variety of sites of modification in lipids present the basis for
the large range of products that can be formed (27), but this is
expanded by the type of oxidant that causes the modification and
the stability or otherwise of the initial product. This aspect will be
explored in the following sections to illustrate the potential for
diversity in modified lipids. Figure 2 provides an overview of the
key types of products.

Peroxidation of Fatty Acyl Chains Caused
by Free Radical Attack
Whether enzymatic or non-enzymatic lipid modification is
considered, radical attack leads to the widest range of products,
largely because of the unstable nature of the initial oxidation
products, their potential for rearrangement, and subsequent
breakdown or fragmentation. For hydrocarbon chains, radical
attack involves the abstraction of a hydrogen to form a carbon-
centered radical, and leads to formation of a peroxide by
incorporation of molecular oxygen (28). The potential for
rearrangement at carbon radical stage depends on the degree
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and nature of unsaturation in the local area; for example,
whether it is a conjugated system.

Hydrogen abstraction at bis-allylic carbons is favored, although
it can also occur at allylic sites. This makes polyunsaturated fatty
acyl chains such as linoleate (1 bis-allylic carbon); linolenate acid
(2 bis-allylic carbons), arachidonate (3 bis-allylic carbons),
eicosapentenoate (4 bis-allylic carbons), and docosahexenoate (5
bis-allylic carbons) increasingly susceptible to peroxidation, which
can occur at multiple sites (3, 17). As the extent of modification by
oxygen increases, the complexity of the oxidation product set
increases, and their stability decreases. The initial product is a
peroxyl radical, which can either react intramolecularly to form an
endoperoxide in which the molecule retains an unpaired electron,
or it can abstract a hydrogen from an adjacent molecule to form a
hydroperoxide, concomitantly initiating the chain reaction of
lipid peroxidation.

Endoperoxide formation is central in the formation of a
number of bioactive oxidized lipid families, including the
isoprostanes (29). Rearrangement of the endoperoxide results
in formation of 5-membered ring structures, such as
cyclopentenone rings, which are present in isoprostanes and
their enzymatic analogues prostaglandins (30). Alternatively, the
hydrocarbon chain can be cleaved to form the highly reactive
compounds isolevuglandins, which are di-aldehydes (31, 32).
Similar reactions also result in formation of the lipid oxidation
breakdown product malondialdehyde.

In contrast, the hydroperoxides are relatively stable, and can be
detected in biological samples following organic extraction and
storage at -20°C or lower (33). Hydroperoxides can be reduced
through the action of phospholipid-dependent glutathione
peroxidase (GPx4), which converts the hydroperoxide to an
alcohol (34, 35), although a mechanism for removing the –OH
moiety to regenerate the hydrocarbon chain is not currently
known. Hydroperoxides can also be converted to epoxides
through homolytic cleavage of the hydroperoxide to form an
alkoxyl radical, which attacks the adjacent carbon atom (36).

Either peroxyl radical, endoperoxides, or hydroperoxides can
undergo intra-molecular reactions leading to the fragmentation of
the carbon chain, which usually generates an aldehyde at one or
both sides of the cleavage site. This process is responsible for the
formation of a variety of lipid peroxidation breakdown products, of
which the best-known example is 4-hydroxynonenal, in parallel
with the corresponding chain-shortened phospholipid (37). These
products can subsequently be metabolized by enzymes of the
aldoketoreductase (AKR) and aldehyde dehydrogenase families,
involving either reduction to alcohols or oxidation to carboxylic
acids (38–40), thus generating further product diversity. An idea of
the extent of the possible diversity can be obtained by considering
that addition of two molecular oxygens to arachidonate can yield a
family of 64 F2-isoprostanes, when stereoisomers are included (41).
Moreover, fragmentation of oxidized phospholipids can yield
multiple breakdown products, and analysis is challenging as ones
from different parent lipids may be isomeric or isobaric, as observed
by liquid chromatography tandem mass spectrometry (42).

Analogous reactions can also take place on cholesterol and
sphingolipid chains. Radical oxidation of cholesterol yields a
December 2020 | Volume 11 | Article 602771
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Spickett Formation of Oxidized Lipids
family of oxysterols modified on the B-ring, including 7-
hydroxycholesterol, 7-keto cholesterol, 5-hydroperoxycholesterol,
5,6-epoxycholesterol and cholestane-3,5,6- triol (43). In contrast,
enzymatic oxidation catalyzed by cytochrome P450 enzymes (e.g.
CYP27A1, CYP46A1) tends to hydroxylate the saturated
hydrocarbon tail, although 7a-hydroxycholesterol is formed by
CYP7A1 (20). Carotenoids contain conjugated polyunsaturated
chains and are also highly susceptible to oxidative attack; carotene
Frontiers in Endocrinology | www.frontiersin.org 4
oxidation products reported include cyclized hydroxy- and keto-
containing as well as aldehydes resulting from chain cleavage (44,
45). Oxidation of sphingosylphosphorylcholine has been observed
to form hydroxyl and keto derivatives on the sphingosine
chain (19).

The ability of radicals to initiate hydrogen abstraction varies.
Hydroxyl radical (OH•) is one of the most reactive radicals
formed in biological systems, and readily causes lipid
FIGURE 2 | Types of oxidative modifications on fatty acyl chains. The products are organized according to section of the article (numbered), showing the wide
variety of chemical structures possible. These chemical moieties can occur on esterified or non-esterified fatty acyl chains, or cholesterol, and for each generic
structure many distinct compounds (isomers and stereoisomers) may exist—for example, 64 in the case of isoprostanes—as well as analogous compounds from
starting lipids with different chain length and unsaturation.
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Spickett Formation of Oxidized Lipids
peroxidation (46). In contrast, superoxide, a radical produced by
certain NADPH oxidases, is relatively poor at initiating lipid
peroxidation, and hydrogen peroxide is unable to do this in the
absence of transition metal ions that support Fenton chemistry
to generate hydroxyl radicals (17); transition metals such as
copper, manganese and iron readily undergo one-electron
(radical) reactions. Similarly, the non-radical anion
peroxynitrite (ONOO-) does not cause hydrogen abstraction
directly, although it is reactive and can be converted to
nitrogen-containing radicals such as nitrogen dioxide that do,
and also reacts with carbon dioxide to form carbonate radicals
(CO−·

3 ) that enhance peroxidation (47). Although a radical, nitric
oxide (NO) is a better reductant than oxidant in biological
systems (48). Radical nitrogen species can also be generated by
the neutrophil enzyme myeloperoxidase; as well as its
conventional non-radical product hypochlorous acid, it is able
to oxidize nitric oxide to form the radical NO2, and can also
oxidize other compounds, for example tyrosine to yield tyrosyl
radicals (49, 50). Oxygen itself is a di-radical and can initiate the
direct peroxidation of dry lipid monolayers in vitro (auto-
oxidation), but this process may not be biologically relevant as
the oxygen concentration in cell membranes is much lower
than air.

Modification of Fatty Acyl Chains by
Radical Nitrogen Species
As well causing peroxidation, reactive nitrogen radicals can also
cause nitration and nitroxidation of unsaturated fatty acyl
chains, and the resulting nitrated lipids have important
biological functions, for example as anti-inflammatory agents
and stress signaling molecules in both animals and plants (51–
53). The formation of nitrogen-containing oxidized lipid
derivatives was first documented in the mid-1990s (54) and
was rapidly followed by further mechanistic studies of nitration
reactions (55). Radical-initiated nitration can occur by two
distinct mechanisms. The first requires hydrogen abstraction
by a radical followed by addition of NO2 at the carbon-centred
radical, in a mechanism analogous to lipid peroxidation. Under
acidic conditions, peroxynitrite is converted to peroxynitrous
acid (ONOOH), which decomposes to form OH• and NO2; thus
hydroxyl radical initiates the hydrogen abstraction followed by
addition of NO2 to nitrate the hydrocarbon chain, forming a
nitro-lipid (51, 56). The radical NO• could also undergo a radical
condensation with the carbon-centred radical, which would
result in lipid nitrosylation. NO2 can also react directly with
one of the carbons in the double bond to form a nitroalkane
radical, and if the NO2 concentration is high a second nitration
can occur to yield a di-nitro species. Subsequent loss of nitrous
acid (HNO2) leads to nitro-alkenes, and substitution with water
can form nitrohydroxy lipids (51). As with oxidation products
resulting from free radical attack, the molecular rearrangements
of nitro-lipids allow a wide variety of positional and
stereochemical isomers to be formed, for example on
phosphatidylserine (57), cardiolipin (58), phosphatidylcholine,
and phosphatidylethanolamine (59). Nitrated fatty acids have
been detected in human plasma, suggesting that they are
Frontiers in Endocrinology | www.frontiersin.org 5
biologically relevant lipid products (60). Nitration of
unsaturated fatty acids can also occur by non-radical
electrophilic substitutions, as described in the following section.

Electrophilic Attack by Non-Radical
Species
Unsaturated fatty acids and fatty acyl chains of phospholipids
can be oxidatively modified in a non-radical manner via
electrophilic addition of oxidants to double bonds. For
example, addition of the reactive nitronium ion (NO+

2 ), usually
from a polarized nitronium carrier such as nitronium
hexafluorophosphate, generates nitroalkenes (51), although it is
not clear that such a mechanism is biologically relevant. In
contrast, electrophilic addition of hypohalous acids to
unsaturated lipids is better established, with more evidence for
its occurrence in vivo. Hypohalous acids include hypochlorous
acid (HOCl), hypobromous acid (HOBr), and hypoiodous acid
(HOI) and are produced mainly by phagocytes (18). The main
source of HOCl is the neutrophil enzyme myeloperoxidase; this
enzyme has a higher Km for bromide than chloride, but the
higher biological chloride levels mean that HOCl is the major
product (61, 62). Eosinophil peroxidase is a related enzyme that
is highly selective for HOBr production (61).

Hypohalous acids can add across double bonds in
unsaturated fatty acyl chains to form halohydrins: the products
on mono-unsaturated chains (e.g. mono-chlorohydrins) are
fairly stable, but reaction with poly-unsaturated chains leads to
a large number of products through rearrangement by loss of
water or loss of chlorine, with the possibility of further reactions
in the presence of high concentrations of HOCl (7).
Chlorohydrins of fatty acids (adjacent hydroxy and chloro
groups) have been detected in clinical conditions such as acute
pancreatitis and sepsis (63, 64). Hypohalites can also attack vinyl
ether bonds in plasmalogen phosholipids, which causes cleavage
to form a lysophospholipid and releases an a-halo-fatty aldehyde
(24, 65). This contrasts with radical attack of plasmalogens,
which yields fatty aldehydes (23). It has most commonly been
reported for HOCl, and a-chloro hexadecanal and a-chloro
octadecanal have been detected in plasma of patients with
cardiovascular disease (66) and sepsis (67, 68), but bromo-fatty
aldehydes can also be formed (69). HOCl can react with the
double bond in cholesterol to form 5-chloro-6-hydroxy-
cholesterol and its isomer (70); these were reported in cell
membranes (71) and subsequently myeloperoxidase-derived
chlorine was reported to form a family of chlorinated sterols
(72). HOCl can react with b-carotene and shows overlap in the
products formed by free radical cleavage (73). Thus although the
variety of halogenated products is less than that from radical
oxidation, it still adds substantially to the modified lipid family.

Modifications of Phospholipid Headgroups
Although attention tends to focus on hydrocarbon chain
oxidation, amine-containing phospholipid head groups can be
attacked both by radicals and electrophilic oxidants. The
photooxidation of phosphatidylethanolamines (PE) has been
demonstrated to cause loss of ethanolamine to form
December 2020 | Volume 11 | Article 602771
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phosphatidic acid; interestingly, glycation by reaction with the
amine enhanced the propensity for oxidation and led to oxidative
cleavages in the glucose unit (Figure 2) (74, 75). The
ethanolamine head group can also be modified by reaction with
isolevuglandins (76), illustrating the complexity of effects of
phospholipid oxidation, and such products have been detected
in cells (77). Radical oxidation of phosphatidylserine (PS)
typically yields glycero-3-phosphoacetic acid (GPAA) via oxidative
deamination (78, 79), whereas glycero-3-phosphoacetaldehyde
and glycero-3-phosphonitrile were observed following reaction
with HOCl (80). These modifications are important as the head
groups play key roles in membrane structure and function, as well
as cell signaling.
DISCUSSION

It is clear that oxidative modifications of lipids are legion,
resulting a substantial expansion in the variety and properties
of lipids. Many of the oxidized, nitrated, and chlorinated
products show altered biological activities, including toxicity,
altered proliferation, differentiation, pro-inflammatory, anti-
inflammatory and barrier protective effects, via diverse
signalling pathways to affect gene expression or other
regulatory processes. In this sense, the modifications offer a
chemical/biochemical mechanism to alter cell behaviour in
both beneficial and deleterious ways, and to some extent meet
the concept of an epilipidome. There is a close analogy to the
recent shift in thinking on “reactive oxygen species (ROS)” as
potentially beneficial signalling compounds, rather than agents
Frontiers in Endocrinology | www.frontiersin.org 6
of destruction (81, 82). On the other hand, the modifications
underlying epigenetics are reversible and enzyme-catalyzed,
offering clear evidence that they are a regulatory process. The
recent concept of epi-proteomics also depends on the principle
of reversibility: many post-translational modifications are
enzymatically controlled and reversible, e.g. phosphorylation,
and histone acetylation (83, 84). In contrast, the same cannot be
said of lipid oxidation. While some enzymes are specific for lipid
oxidation products, such as GPx4, aldoketo reductases and
aldehydes dehydrogenases, these constitute metabolism rather
than direct reversibility. On this basis, the epilipidome would
function in the sense of a metabolic loop, involving formation
and degradation via distinct pathways. It is also worth bearing in
mind that reactive lipid oxidation products exert at least some of
their effects via covalent interactions with proteins in the form of
post-translational modification known as lipoxidation, and these
reactions are chemically reversible (85). In view of the wide
variety of cellular effects reported for modified lipids, as well as
its role in ferroptosis (86, 87) and inflammatory diseases (88), it
is important to continue to explore their potential as an
epilipidome, including aspects of reversibility and enzyme
interaction. This will require development of new technologies
to handle the large datasets of modified lipids that form the
epilipidome (89).
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