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Abstract.

Objective: The novelty of this study consists of the exploration of multiple new

approaches of data pre-processing of brainwave signals, wherein statistical features

are extracted and then formatted as visual images based on the order in which

dimensionality reduction algorithms select them. This data is then treated as visual

input for 2D and 3D CNNs which then further extract ’features of features’.

Approach: Statistical features derived from three electroencephalography datasets

are presented in visual space and processed in 2D and 3D space as pixels and voxels

respectively. Three datasets are benchmarked, mental attention states and emotional

valences from the four TP9, AF7, AF8 and TP10 10-20 electrodes and an eye state

data from 64 electrodes. 729 features are selected through three methods of selection in

order to form 27x27 images and 9x9x9 cubes from the same datasets. CNNs engineered

for the 2D and 3D preprocessing representations learn to convolve useful graphical

features from the data.

Main results: A 70/30 split method shows that the strongest methods for

classification accuracy of feature selection are One Rule for attention state and Relative

Entropy for emotional state both in 2D. In the eye state dataset 3D space is best,

selected by Symmetrical Uncertainty. Finally, 10-fold cross validation is used to train

best topologies. Final best 10-fold results are 97.03% for attention state (2D CNN),

98.4% for Emotional State (3D CNN), and 97.96% for Eye State (3D CNN).

Significance: The findings of the framework presented by this work show that CNNs

can successfully convolve useful features from a set of pre-computed statistical temporal

features from raw EEG waves. The high performance of K-fold validated algorithms

argue that the features learnt by the CNNs hold useful knowledge for classification in

addition to the pre-computed features.
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Classification of EEG Signals represented in 2D and 3D 2

1. Introduction

Recent advances in consumer facing technologies have enabled machines to have non-

human skills. Inputs which once mirrored one’s natural senses such as vision and sound

have been expanded beyond the natural realms [1]. An important example of this is

the growing consumerist availability of the field of electroencephalography (EEG) [2,3];

the detection of thoughts, actions, and feelings from the human brain. To engineer

such technologies, researchers must consider the actual format of the data itself as

input to the machine or deep learning models, which subsequently develop the ability to

distinguish between these nominal thought patterns. Usually, this is either statistically

1-Dimensional or temporally 2-Dimensional since there is an extra consideration of time

and sequence. Due to the availability of resources in the modern day, a more enabled area

of research into a new formatting technique is graphical representation, i.e., presenting

the 1-Dimensional mathematical descriptors of waves in multiple spatial dimensions

in order to form an image or model in 3D space. This format of data can then be

further represented by feature maps from convolutional operations. With preliminary

success of the approach, a deeper understanding must be sought in order to distinguish

in which spatial dimension brainwave signals are most apt for interpretation. With the

classical method of raw wave data being used as input to a CNN in mind, dimensionality

reduction is especially difficult given the often blackbox-like nature of a CNNs internal

feature extraction processes [4]. In this work, we extract statistical temporal features

from the waves which serve as input to the CNN, which allows for direct control of input

complexity since dimensionality reduction can be used to choose the best n features

within the set with the task in mind. Reduction of a CNN topology, whether that be

network depth or layer width, gives less control over which features are and are not

computed. Given the technique of feature extraction as input to the CNN, and thus the

aforementioned direct control of input complexity, reduction of CNN complexity reduces

the number of ’features of features’ computed; that is, all the chosen input attributes

are retained.

The remainder of this report is structured as follows. Firstly, the remainder of

this section outlines the scientific contributions of this work. In Section 2, technical

background and related scientific works are presented and discussed. Following the

background and related works, Section 3 then provides details of the methodology of

the experiments performed during this study. Section 4 then reports the results of

the experiments, along with comparison to related state-of-the-art scientific knowledge.

Finally, Section 6 provides an outline for suggestions of future work and presents the

final notes and conclusions from the study.

1.1. Scientific Contributions

In this work, an experimental framework is presented in which evolutionary optimisation

of neural network hyperparameters is applied in conjunction with a visual data pre-

processing technique preliminarily explored in a previous work. During the previous
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Classification of EEG Signals represented in 2D and 3D 3

study [5], a 2D CNN was succesfully applied to a 2D image representation of EEG

features with a dimensionality reduction algorithm on a 4-channel EEG dataset. In this

work, we explore visual data reshaping in 2 and 3 dimensions in order to form pixel

image and voxel cube representations of statistical features extracted from electrical

brain activity, through which 2D and 3D CNN convolve ’features of features’. In

addition, we also explore multiple methods of dimensionality reduction and describe

their relationships to both the general classification ability of the model as well

as the reshaping technique. In comparison to previous works on both attention

(concentrating/relaxed) and emotional (positive/negative), many of the techniques

explored in this study produce competitive results. Finally, the application to other

EEG devices is shown by the application of the method to an open-source dataset. We

apply the three 2D and 3D approaches to classification to a 64-channel EEG dataset

acquired from an OpenBCI device, which achieves 97.96% 10-fold mean classification

accuracy on a difficult binary problem (Eyes open/closed), arguing that the approach is

dynamically applicable to BCI devices of higher resolution and for problems other than

the frontal lobe activity classification in the first two experiments. This both suggests

some future work with other devices, as well as collaboration between research fields in

order to build on and improve the framework further.

2. Background and Related Works

In this section, the technical philosophies of the related Scientific fields are outlined, as

well as important works that are related to the experiments carried out throughout this

paper.

2.1. Electroencephalography

Electroencephalography is the process of using electrodes applied to the cranium in order

to measure electrical signals produced by the brain [6,7] due to the nervous oscillations

caused by certain hormonal balances such as serotonin, dopamine and noradrenaline.

Electrodes can be placed invasively or subdurally under the skull and directly on to the

brain itself [8]. Other electrodes are able to read bioelectrical signals from on the surface

of the head and are thus less invasive; via either Electro-Gel wet electrodes or simply

placed dry electrodes [9]. The signal strength of the raw electrical data is recorded

sequentially, producing what is known as a ’brainwave’.

The Muse EEG headband is comprised of four dry electrodes placed on the TP9,

AF7, AF8 and TP10 placements. Muse operates an on-board artefact separation

algorithm in order to remove the noise from the recorded data [10]. The muse streams

over Bluetooth Low Energy (BLE) at around 220Hz, which we reduce to 150Hz in

order to make sure that all data collected is uniform. Muse has been used in various

Brain-computer interface projects since its introduction in May 2014. They have been
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Classification of EEG Signals represented in 2D and 3D 4

particularly effective for use in neuroscientific research projects, since the data is of

relatively high quality and yet the device is both low-cost and easy to use since it

operates dry electrodes. This was shown through an exploration into Bayesian binary

classification [11]. Sentiment analysis via brainwave patterns has been performed in

a process of regression in order to predict a user’s level of enjoyment of a performed

task [12,13]. The works were shown to be effective for the classification of enjoyment of a

mobile phone application. The Muse produces bipolar readings from the four electrodes

with the AFz placement as a reference. According to the technical specifications‡, the

signals are oversampled and then downsampled to yield a the output, and the sampling

has a 2uV (RMS) noise. The noise is suppressed via the Driven-Right-Leg/Reference

feedback configuration using the AFz sensor. A Notch filter of 50Hz is applied to the

raw waves since the experiment was performed in the United Kingdom.

Attention state classification is a widely explored problem for statistical, machine

and deep learning classification [14,15]. Common Spatial Patterns (CSP) benchmarked

at 93.5% accuracy in attention state classification experiments, suggesting it is pos-

sibly one of the strongest state-of-the-art methods [16]. Researchers have found that

binary classification is often the easiest problem for EEG classification, with Deep Belief

Networks (DBN) and Multilayer Perceptron (MLP) neural networks being particularly

effective [17–19]. The best current state-of-the-art benchmark for classification of emo-

tive EEG data achieves scores of around 95% classification accuracy of three states, via

the Fisher’s Discriminant Analysis approach [20]. The study noted the importance of

the prevention of noise through introducing non-physical tasks as stimuli rather than

those that may produce strong electromyographic signals. Stimuli to evoke emotions for

EEG-based studies are often found to be best with music [21] and film [22,23].

OpenBCI, used in the 64-channel extension of this study, is an open-source

Brain-computer interface device, which has the ability to interface with standard

Electroencephalographic [24], Electromyographic [25], and Electrocardiographic [26]

electrodes. OpenBCI with selected electrodes has seen 95% classification accuracy of

sleep states when discriminative features are considered by a Random Forest model

in the end-to-end system Light-weight In-ear BioSensing (LIBS) [27]. In this study,

OpenBCI data is used to detect eye state, that is, whether or not the subject has

opened or closed their eyes. In addition to the obvious nature of muscular activity

around the eyes, according to Brodmann’s Areas, the visual cortex is also an indicator

of visual stimuli [28, 29], and thus a higher resolution EEG is recommended for full

detection. In [30], researchers achieved an accuracy of 81.2% of the aforementioned

states through a Gaussian Support Vector Machine trained on data acquired from 14

EEG electrodes. It was suggested that with this high accuracy, the system could be

potentially used in the automatic switching of autonomous vehicle states from manual

driving to autonomous, in order to prevent a fatigue-related accident. A related work

‡ Additional technical detail on the Muse can be found at http://developer.choosemuse.com/hardware-

firmware/hardware-specification
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Classification of EEG Signals represented in 2D and 3D 5

found that K-Star clustering enabled much higher classification accuracies of these states

to around 97% [31], but it must be noted that only one subject was considered and thus

generalisation and further use beyond the subject would be considered difficult when

generalisation works are considered [32, 33]; in this study, ten subjects are considered.

In a similar dataset as seen in this work, researchers found that K-Nearest Neighbour

classification (where k = 3) could produce a classification accuracy of 84.05% [34]. In

the classification problem of the states of eyes open and closed (a binary classification

problem), a recent work found that statistical classification via 7-nearest neighbours of

the data following temporal feature extraction achieved a mean accuracy of 77.92% [35].

The study extracted thirteen temporal features and found that wave kurtosis was a

strong indicator for the autonomous inference of the two states.

2.1.1. Statistical Extraction of EEG for Deep Machine Learning Due to the temporal

nature of the EEG waves, single point measures rarely harbor any useful classification

accuracy and thus make weak datasets. In this work, statistical features are

extracted through a sliding time-window approach [5, 36, 37] (https://github.com/

jordan-bird/eeg-feature-generation). The EEG signal is divided into a sequence

of windows of length one second, with consecutive windows overlapping by 0.5 seconds,

e.g., [(0s− 1s), [0.5s− 1.5s), [1s− 2s), . . . ]). Each time window is further halved and

quartered, which are used to extract additional features.

In this work the following statistical features were generated for each time

window via the process that can be observed in Algorithm 1 as in the previous

aforementioned works, where yk = [yk1, . . . , ykN ], within which K are vectors of paired

observations [5, 36,37]:

• Considering the full time window:

– The sample mean and sample standard deviation of each signal [38]:

ȳk =
1

N

N∑
i=1

yki (1)

sy =

√∑n
i=1(yi − ȳk)2

n− 1
(2)

– The sample skewness and sample kurtosis of each signal [39]:

g1,k =

∑N
i=1 (yki − ȳk)3

Ns3k
, (3)

g2,k =

∑N
i=1 (yki − ȳk)4

Ns4k
− 3. (4)

.

– The maximum and minimum value of each signal.
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Classification of EEG Signals represented in 2D and 3D 6

Result: Features extracted from raw data for every wt

User defined the size of the sliding window wt = 1s;

Input: raw wave data;

Initialisation of variables init = 1, wt = 0;

while getting sequence of raw data from sensor (> 1min) do

if init then

prev lag = 0;

post lag = 1;

end

init = 0;

;

for each slide window (wt − prev lag) to (wt + post lag) do

Compute mean of all wt values y1, y2, y3...yn; ȳk = 1
N

∑N
i=1 yki ;

;

Compute asymmetry and peakedness by 3rd and 4th order moments skewness and

kurtosis g1,k =
∑N

i=1(yki−ȳk)3

Ns3k
and g2,k =

∑N
i=1(yki−ȳk)4

Ns4k
− 3 ;

;

Compute the max and min value of each signal wt
max = max(wt) and

wt
min = min(wt) ;

;

Compute sample variances K ×K matrix S of each signal Compute sample

covariances of all signal pairs, sk` = 1
N−1

∑N
i=1 (yki − ȳk) (y`i − ȳ`) ;

∀ k, ` ∈ [1,K];

;

Compute Eigenvalues of the covariance matrix S, λ solutions to:

det (S− λIK) = 0, where IK is the K ×K identity matrix, and det(·) is the

determinant of a matrix;

;

Compute the upper triangular elements of the matrix logarithm of the covariance

matrix S, where the matrix exponential for S is defined via Taylor expansion

eB = IK +
∑∞

n=1
Sn

n! , then B ∈ CK×K is a matrix logarithm of S;

;

Compute magnitude of frequency components of each signal via Fast Fourier

Transform (FFT), magFFT(wt);

;

Get the frequency values of the ten most energetic components of the FFT, for each

signal, getFFT(wt, 10);

end

wt = wt + 1s;

prev lag = 0.5s; post lag = 1.5s;

Output Features Fwt extracted within the current wt

end

Algorithm 1: Algorithm to extract features from raw biological signals.
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Classification of EEG Signals represented in 2D and 3D 7

– The sample variances K × K matrix S of each signal, plus the sample

covariances of all signal pairs [38]:

sk` =
1

N − 1

N∑
i=1

(yki − ȳk) (y`i − ȳ`) ;

∀ k, ` ∈ [1, K]

(5)

– The eigenvalues of the covariance matrix [40] S, which are the λ solutions to:

det (S− λIK) = 0 (6)

where IK is the K × K identity matrix, and det(·) is the determinant of a

matrix.

– The upper triangular elements of the matrix logarithm of the covariance

matrix [41,42] of the covariance matrix S: where the matrix exponential for S

is defined via Taylor expansion,

eB = IK +
∞∑
n=1

Sn

n!
, (7)

then B ∈ CK×K is a matrix logarithm of S.:

– The magnitude of the frequency components of each signal, obtained using a

Fast Fourier Transform (FFT).

– The frequency values of the ten most energetic components of the FFT, for

each signal.

• With the above in mind, the following are calculated in regards to the 0.5s windows:

– The change in the sample means and in the sample standard deviations between

the first and second half-windows, for all signals.

– The change in the maximum and minimum values between the first and second

half-windows, for all signals.

• And finally, for the 0.25s windows:

– The sample mean of each each quarter-window, plus all paired differences of

sample means between the quarter-windows, for all signals.

– The maximum (minimum) values of each quarter-window, plus all paired

differences of maximum (minimum) values between the quarter-windows, for

all signals.

Additionally, each data object is also given the features calculated in the previous

window, bar those that would be identical. This allows for further temporal

consideration. This data then follows the below process of attribute selection in order to

reduce the number of attributes to one that can be reshaped into squares and cubes, in

order to form the objects for the CNN to process. Note that not all features are specific

to EEG, given that the algorithm is a general purpose feature extraction process for
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Classification of EEG Signals represented in 2D and 3D 8

temporal wave data. Due to this, it is thus important to perform feature selection in

order to isolate generated features that are useful for the specific problem in mind -

in this case, features from this large set that may be useful for an EEG classification

problem.

2.2. Attribute Selection

Attribute selection, or dimensionality reduction, is the process of reducing the dataset

by features in order to simplify the learning process. Importantly, it is the focus of

discarding weaker elements in order to simplify the process but at the smallest cost of

classification ability [43–45]. In neural networks, for an example, large input datasets

greatly increase the number of hyperparameters to be tuned by the optimisation algo-

rithms and thus the computational resources required [46]. The three methods of feature

selection chosen due to the findings of literature review are One Rule, Kullback-Leibler

Divergence, and Symmetrical Uncertainty.

One Rule feature selection is the scoring of an attribute based on how well it

can be branched to classify data based on the singular attribute [47]. Kullback-Leibler

Divergence, or Relative Entropy, is the measure of how a feature set’s probability

distribution differs from another [48,49]. Finally, Symmetrical Uncertainty is the rating

of attribute classification ability based on a mutual dependence, or lack thereof [50].

2.3. CNN and Visual Space Learning

Convolutional Neural Networks (CNN) are a form of Artificial Neural Network (ANN)

which perform autonomous feature extraction from attributes based on their spatial

positioning [51]. To perform this, data is convolved in order to form new maps from the

original data, of which the connections to an interpretation Multilayer Perceptron (MLP)

are considered parameters for loss-reducing optimisation [52]. The spatially-aware focus

of pooling is inspired by the operations of the biological photo-receptors [53, 54]. The

size of the window for this is known as the ’kernel’ and is a manual hyperparameter set

pre-training, as well as the layers of convolutional operations themselves.

Visual Space learning, is the process of projecting data as a matrix and convolving

with the above methods, but on unconventional graphical data formatted as such. Vi-

sual space learning in EEG is a relatively new approach, with most simply considering

signal strengths interpolated where the centroid is relative to the electrode placement

location [55, 56]. Recently, the static statistical descriptions of brainwaves have been

found to be extremely effective when formed as an image and convolved to feature

maps [5]. The preliminary method of graphical 2D Euclidean Space representations of

brainwave signals is to be expanded further in these studies.
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Classification of EEG Signals represented in 2D and 3D 9

2.4. Evolutionary Topology Search

Result: Array of best solutions at final generation

initialise Random solutions ;

for Random solutions : rs do

test accuracy of rs ;

set accuracy of rs ;

end

set solutions = Random Solutions;

while Simulating do

for Solutions : s do

parent2 = roulette selected Solution;

child = breed(s, parent2);

test accuracy of child ;

set accuracy of child ;

end

Sort Solutions best to worst;

for Solutions : s do

if s index > population size then

delete s;

end

end

increase maxPopulation by growth factor;

increase maxNeurons by growth factor;

end

Return Solutions ;
Algorithm 2: Evolutionary Algorithm for ANN optimisation [57].

Deep Evolutionary Multilayer Perceptron, or DEvoMLP is an approach to hyper-

heuristically optimising a Neural Network topology through evolutionary computation

[57, 58]. Networks are treated as individual organisms in the process where their

classification ability dictates their fitness metric, thus it is a single-objective algorithm.

The pseudocode for the algorithm is given in Algorithm 2. The process to combine

two networks follows the aforementioned work, where the depth of the hidden layers

is decided by selecting one of the two parents at random or mutation at a 5% chance.

Then, for each layer, the number of neurons is decided by selecting the nth layer of

either parent at random (provided both parent networks have an nth layer), again a 5%

mutation chance dictates a random mutation resulting in the number of neurons being

a random number between 1 and maxNeurons. To give an example of a process within

the algorithm, a neural network i, 64, 32, 16, o (where i are the input neurons, and o are

the output neurons) which has three hidden layers of neurons (64, 32, 16) and a second
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EEG Signals

Extraction Selection Reshape

n-dimensional data

Benchmark
OptimisationFinal Model

Feature Engineering Processes

Deep Learning and Optimisation Processes

Figure 1. Overview of the Methodology. EEG Signals are Processed into 2D or 3D

data Benchmarked by a 2D or 3D CNN. Three Different Attribute Selection Processes

are Explored. Finally, the Best Models have their Interpretation Topologies Optimised

Heuristically for a Final Best Result.

neural network i, 100, 10, o are chosen as the two candidates to breed and create a neural

net offspring. If, in this example, parent 2 is chosen to provide depth to the offspring,

then the offspring topology would be i, x, y, o, and neuron counts x and y now need

to be chosen. Layer x may be chosen from parent 1 and y from parent 2, creating an

offspring neural network topology i, 64, 10, o which has two hidden layers of 64 and 10

neurons respectively. Layers x and y could have both been chosen from parent 1 which

would result in the offspring i, 64, 32, o since it had the hidden depth of 2 from parent 2.

Indeed, the breeding process can, and does, produce an offspring that is identical to one

of the parents. Since we already know this fitness value, a random solution is generated

instead.

Thus, after simulation, the goal of the DEvo algorithm is to derive a more effective

neural network topology for the given dataset. The algorithm is implemented due to

neural network hyperparameter tuning being a non-polynomial problem [59]. It is,

of course, extremely complex; a ten population roulette breeding simulation executed

for ten generations would produce 120 neural networks to be trained, since eleven are

produced every generation. Resource usage is extreme for the simulation, but the final

result gives a network topology apt for the given data, and can this finding can thus be

used in other experiments.

3. Method

In this section, the method of these experiments are described. A diagram of

the process described in this study can be seen in Fig. 1. Two datasets for

the experiment are sourced from a previous study [36] which made use of the

aforementioned Muse headband (TP9, AF7, AF8, TP10), see Section 2 for technical

detail. Firstly, the ’attention state’ dataset (https://www.kaggle.com/birdy654/

eeg-brainwave-dataset-mental-state), which is collected from four subjects; two
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Classification of EEG Signals represented in 2D and 3D 11

Table 1. Class labels for the data belonging to the three datasets

Dataset No. Classes Labels

Concentration State 3 Relaxed, Neutral, Concentrating

Emotional State 3 Negative, Neutral, Positive

Eye State 2 Closed, Open

male, two female, at an age range of 20-24. The subjects under stimuli were either

relaxed, concentrating, or from lack of stimuli, neutral. Three minutes per state are

recorded for each subject, giving a total of thirty-six minutes of EEG brainwave data.

The concentrating class is stimulated by the ’shell game’ wherein the subjects must

concentrate to follow the movement of a ball hidden under one of three cups which

are switched around. The relaxed state is induced with classical music and is recorded

several moments after the exercise begins, and the neutral state is finally recorded free

of any stimuli.

In the second experiment, the ’Emotional State’ dataset (https://www.kaggle.

com/birdy654/eeg-brainwave-dataset-feeling-emotions) is acquired. To gather

this data, six minutes of EEG data are recorded from two subjects of ages 21 and 22.

negative or positive emotions are evoked via film-clip stimuli, and finally a stimulus-

free ’neutral’ class of EEG data is also recorded. Similarly to dataset 1, this gives a

total of thirty-six minutes of EEG brainwave data equally belonging to one of the three

classes. Unlike the first and third datasets, this experiment focuses on classification

of a more limited subject-set given that there are only two subjects involved. There

were three film clips that were intended to evoke a positive emotional response; La

La Land from Summit Entertainment, Slow Life from BioQuest Studios, and Funny

Dogs from MashupZone. Likewise, there were three clips that were intended to evoke

a negative emotional response; Marley and Me from Twentieth Century Fox, Up from

Walt Disney Pictures, and My Girl from Imagine Entertainment. Note that different

forms of positive and negative valence are collected - for the positive, an upbeat musical

and dance number, clips of marine life performing feats of nature, and clips of dogs

performing interesting and funny activities. For the negative emotion-evoking film clips,

these dealt with the final moments spent with a beloved pet, the loss of a loved one

after a long marriage, and finally a child attempting to grasp the concept of death. Also

note that subjects involved knew that the negative clips were from movies, and this may

have impacted the data.

With the subject-limited dataset (emotions) and relatively less limited dataset

(concentration), a third dataset is explored in order to benchmark the algorithms

when a large subject-set is considered. The dataset is sourced from a BCI2000 EEG

device [60–62]. This data describes a multitude of tasks performed by 109 subjects for

one to three minutes with 64 EEG electrodes. A random subset of 10 people is taken

due to the computational complexity requirements, thus the experiments are focused on

datasets of 2, 4, and 10 subjects in order to further compare performance. In this work,
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Classification of EEG Signals represented in 2D and 3D 12

each subject had their EEG data recorded for 2 minutes (two 1 minute sessions) for each

class. Thus, in total, a dataset was formed of 40 minutes in length - 20 minutes for each

class, made up from ten individuals. Classes are reduced from the large set to a binary

classification problem, due to the findings of literature review into the behaviours of

binary classification in Brain-machine Interaction. The classes chosen are ”Eyes Open”

and ”Eyes Closed”, since these two tasks require no physical movement from the subjects

and thus noise from EMG interference is minimal. Table 1 gives detail on the number

of classes in the dataset as well as their class labels.

Mathematical temporal features are subsequently extracted via the aforementioned

method in Section 2.

As of the time of writing, the first two datasets (which were collected by the authors

for previous works) have not been used in experiments by other authors while the third,

from the ML repository, is popular in several recent publications. The aforementioned

concentrating and emotional EEG datasets have been explored on the Kaggle cloud

computing platform by other data scientists, but results remain unpublished as of yet

within academic works.

Firstly, a reduction of dimensionality of the datasets is performed. The chosen

number of attributes is 729; this is due to 729 being a square and a cube number and

thus therefore being directly comparable in both 2D and 3D space. 729 features thus

are reformatted into a square of 27x27 features for 2-dimensional space classification,

as well as a cube of 9x9x9 features for 3-dimensional space classification. Each of the

attributes in descending rank of their values assigned by the feature ranking algorithms

are given as the order (see Future Work for plans to improve on this as a combinatorial

optimisation problem), to which each row of the image is filled from left to right, top to

bottom. This process is repeated for the 3D process for 9x9 squares which are repeated

9 times to produce the third axis. Alternatives of 64 and 1000 are discarded; firstly, 64

in previous work has been shown to be a relatively weak set of attributes, and larger

datasets outperformed such a number by far. Secondly, 1,000 in preliminary exploration

showed numerous weak attributes selected. Reduced data is then normalised between

values of 0 to 255 in order to correlate to a pixel’s brightness value for an image. Note

that the CNN for learning will further normalise these values to the range of 0 to 1 by

dividing them by 255. The order of the visual data is dictated by the dimensionality

reduction algorithms from left to right, with the most useful feature selected by the

algorithm in the upper left and the least useful in the lower right (and front to back

for 3D). The CNN then extracts ’features of features’ by convolving over this reshaped

data.

Secondly, with the reduced data reshaped to both squares and cubes, classification

is performed by Convolutional Neural Networks operating in 2D and 3D space. In the

previous study [5], as in this work, the order of attributes represented visually are se-

lected by the feature selection algorithms. Scoring is applied by each algorithm and

attributes are sorted in descending order, and this is then reshaped into 27× 27 square
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Classification of EEG Signals represented in 2D and 3D 13

Table 2. Pre-optimisation Network Architecture for Preliminary Experiments [5]

Layer Output Params

Conv2d (ReLu) (0, 14, 14, 32) 320

Conv2d (ReLu) (0, 12, 12, 64) 18496

Max Pooling (0, 6, 6, 64) 0

Dropout (0.25) (0, 6, 6, 64) 0

Flatten (0, 2304) 0

Dense (ReLu) (0, 512) 1180160

Dropout (0.5) (0, 512) 0

Dense (Softmax) (0, 3) 1539

or 9 × 9 × 9 cube. Visual representation, thus, is performed in three different ways,

dependent on the scores applied by the three feature selection methods in this study.

This is discussed as a point for further exploration in the Future Work section of this

study.

In this stage, topology of networks is simply selected based on the findings of previ-

ous experiments (see Section 2). Preliminary hyperparameters from previous work are

given as a layer of 32 filters from a kernel of length and width of 3, followed by a layer of

64 filters from a kernel of the same dimensions, a dropout of 0.25 before the outputs are

flattened and interpreted by a layer of 512 ReLu neurons. These kernels are to be ex-

tended into a third dimension matching the length and width of the windows for the 3D

experiments. A generalised view of the network pre-optimisation can be seen in Table 2.

The selected methods of feature selection were those observed in previous

experiments as strong algorithms for EEG classification. These are Kullback-Leibler

Divergence (Information Gain), One Rule, and Symmetrical Uncertainty. Model

training takes place on an NVidia GTX980Ti Graphical Processing Unit, with its

implementation in TensorFlow. All models are trained via a 70/30 training/test split

for 100 epochs, with a batch size of 64. The loss metric of the models is defined as

categorical cross-entropy:

CE = −
M∑
c=1

yo,c log(po,c), (8)

where M is the number of class labels (3 or 2 in these cases), y is a binary indication of

a correct prediction (1 or 0), and p is the predicted probability of observation o of class

c. The entropy of each class within the testing split is calculated and added for a final,

overall result. In this case, this is the entropy of the three classes of attention state -

relaxed, neutral, and concentrating. Complexity of training when considering epochs,

examples, no. features, no. neurons is O(n2), computational cost is variable based on

the hardware used (e.g. if parallelisation is possible) and software (e.g. the method

in which the version of the libraries use), times to execute are noted via the hardware
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Classification of EEG Signals represented in 2D and 3D 14

Figure 2. Thirty Samples of attention state EEG Data Displayed as 27x27 Images.

Row one shows Relaxed Data, Two shows Neutral Data, and the Third Row Shows

Concentrating Data.

Figure 3. Three attention state Samples Rendered as 9x9x9 Cubes of Voxels.

Leftmost Cube is Relaxed, Centre is Neutral, and Rightmost Cube represents

Concentrating Data.

Figure 4. Thirty Samples of Emotional State EEG Data Displayed as 27x27 Images.

Row one shows Negative Valence Data, Two shows Neutral Data, and the Third Row

Shows Positive Valence Data.

Figure 5. Three Emotional State Samples Rendered as 9x9x9 Cubes of Voxels.

Leftmost Cube is Negative Valence, Centre is Neutral, and Rightmost Cube represents

Positive Valence Data.

given above on a clean operating system; the evolutionary topology search for the smaller

datasets executed for approximately an hour, whereas the larger dataset took one day

for the search algorithm to complete. In terms of the final CNN training process, the

smaller datasets need only several minutes for the CNN to train since convergence for

this data was relatively fast, but the larger dataset was observed to take 24 minutes to

finish training. For unseen data prediction, a forward pass has the complexity of O(n).

Samples of visually rendered attention states can be seen in Figures 2 and 3. The
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Classification of EEG Signals represented in 2D and 3D 15

examples in these figures show how the data looks when rendered as square images for

the 2D CNN and as cubes of voxels for input to the 3D CNN. Note that within the cubes,

a large difference between relaxed and the other two states can be observed where it

seemingly contains lower values (denoted by lighter shades of grey). In comparison to the

2D representations, it is visually more difficult to discern between the classes, which may

also be the case for the CNN when encountering these two forms of data as input. Firstly,

figure 2 shows thirty samples of attention state data as 27x27 images whereas figure 3

shows the topmost layer of 9x9x9 cubes rendered for each state. Likewise, examples of

the emotions dataset reshaped within 2D and 3D space can be seen in Figures 4 and

5. This process is followed for each and every data point in the set respectively for

either a 2D or 3D Convolutional Neural Network. Following this, the DEvo algorithm

as described in Section 2.4 is executed upon the best 2D and 3D combinations of models

in order to explore the possibility of a better architecture. A population size of 10 are

simulated for 10 generations. Hyperparameter limits are introduced as a maximum

of 5 hidden layers of up to 4096 neurons each. Networks train for 100 epochs. The

goal of optimisation are the interpretation layers that exist after the CNN operations.

Following this, the best sets of hyperparameters for each dataset are used in further

experiments. During these experiments, the networks are retrained but rather than the

70/30 train/test split used previously, the value of k = 10 is selected. Hyperparameters

for each 2D and 3D network are those that were observed to be best in the previous

heuristic search, this is performed due to the intense resource usage that a heuristic

search of a problem space when k-fold cross validation is considered (and would thus

be impossible). These experiments are performed due to the risk of overfitting during

hyperparameter optimisation when a train/test split is used, due to hyperparameters

possibly being overfit to the 30% of testing data, even though a dropout rate of 0.5 is

implemented.

Following the experiments on K-Fold Cross Validation, the trained models are then

applied to further unseen data through Leave One Subject Out Cross Validation. This is

performed by training the model on all the data except for one subject (n−1), and then

attempting to predict the class labels of the data collected from the remaining individual

in order to examine the extent of cross-subject generalisation. This is performed for all

subjects, individual results are considered as well as an overall mean and standard

deviation of the set of results attained via the validation process.

The final step of the method of this experiment is to compare and contrast with

related studies that use these same datasets.

4. Results

4.1. Attention state Classification

Feature Selection Firstly, attribute selection for the attention state dataset is per-

formed. Overviews of these processes can be seen in Table 3. Selection via Information
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Classification of EEG Signals represented in 2D and 3D 16

Table 3. Datasets Produced by Three Attribute Selection Techniques for the attention

state Dataset, with their Minimum and Maximum Kullback-Leibler Divergence Values

of the 729 Attributes Selected

Selector Max KBD Min KBD

Kullback-Leibler Divergence 1.225 0.278

One Rule 0.621 0.206

Symmetrical Uncertainty 1.225 0.233

Table 4. Benchmark Scores of the Pre-optimised 2D CNN on the attention state

Selected Attribute Datasets

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 91.29 0.91 0.91 0.91

One Rule 93.89 0.94 0.94 0.94

Symmetrical Uncertainty 85.06 0.85 0.85 0.85

Table 5. Benchmark Scores of the Pre-optimised 3D CNN on the attention state

Selected Attribute Datasets

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 91.52 0.92 0.92 0.92

One Rule 93.62 0.94 0.94 0.94

Symmetrical Uncertainty 85.2 0.85 0.85 0.85

gain selected the attribute with the highest KBD, with a value of 1.225, its minimum

KBD was also the highest at 0.278. Interestingly, the OneRule approach selected much

lower KBDs of maximum 0.621 and minimum 0.206 values. The Symmetrical Uncer-

tainty dataset was relatively similar to KBD in terms of maximum and minimum selected

values.

Classification The classification abilities of the 2D CNN can be seen in Table 4.

The strongest 2D CNN was that applied to the One Rule dataset, achieving 93.89%

classification ability.

The classification abilities of the 3D CNN can be seen in Table 5. The strongest 3D

CNN was that applied to the One Rule dataset, which achieved 93.62% classification

ability.

In comparison, results show that the 2D CNN was slightly superior with an overall

score of 93.89% as opposed to a similar score achieved by the 3D CNN benchmarking in

at 93.62%. Both superior results came from the dataset generated by One Rule selection,

even though its individual selections were much lower in terms of their relative entropy

when compared to the other two selections, which were much more difficult to classify.
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Table 6. Datasets Produced by Three Attribute Selection Techniques for the

Emotional State Dataset, with their Minimum and Maximum Kullback-Leibler

Divergence Values of the 729 Attributes Selected

Dataset Max KBD Min KBD

Kullback-Leibler Divergence 1.058 0.56

One Rule 0.364 0.107

Symmetrical Uncertainty 0.364 0.168

Table 7. Benchmark Scores of the Pre-optimised 2D CNN on the Emotional State

Selected Attribute Datasets

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 98.22 0.98 0.98 0.98

One Rule 97.28 0.97 0.97 0.97

Symmetrical Uncertainty 97.12 0.97 0.97 0.97

Table 8. Benchmark Scores of the Pre-optimised 3D CNN on the Emotional State

Selected Attribute Datasets

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 97.28 0.97 0.97 0.97

One Rule 96.97 0.97 0.97 0.97

Symmetrical Uncertainty 97.12 0.97 0.97 0.97

4.2. Emotional State Classification

Feature Selection Table 6 shows the range of relative entropy for the results feature

selection algorithms on the emotional state dataset. Similarly to the attention state

dataset, the KBD selection technique had much higher values in its selection, also as

previously seen, the One Rule selector preferred smaller KBD attributes. Unlike the

previous attribute selection process though, was that the Symmetrical Uncertainty this

time bares far more similarity to the One Rule process whereas in the attention state

experiment it closely followed that of the KBD process.

Table 7 shows the results for the 2D CNN on the datasets generated for emotional

state. The best model was that of which was trained on the KBD dataset, achieving a

very high accuracy of 98.22%.

Classification Table 8 shows the results for the 3D CNN when trained on datasets of

selected attributes for the emotional state dataset. The best model was trained on the

KBD dataset of features, which achieved 97.28% classification accuracy.

In comparison, the most superior method of data formatting for emotional state

EEG dataset is in two dimensions, but very scarcely with a small difference of 0.94%.

Unlike the attention state experiment, the best data in both instances on this experiment

seemed to be those selected by their relative entropy. 2D One Rule and 3D relative
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Figure 6. Twenty Samples of Eye State EEG Data Displayed as 27x27 Images. Row

one shows Eyes Open, Row Two shows Eyes Closed.

Figure 7. Two Eye State EEG Samples Rendered as 9x9x9 Cubes of Voxels. Left

Cube is Eyes Open and Right is Eyes Closed.

Table 9. Attribute Selection and the Relative Entropy of the Set for the Eye State

Dataset

Selector Max KBD Min KBD

Kullback-Leibler Divergence 0.349 0.102

One Rule 0.349 0.025

Symmetrical Uncertainty 0.349 0.0597

entropy achieved the same score, likewise the 2D and 3D Symmetrical Uncertainty

experiments also achieved the same score.

4.3. Extension to 64 EEG Channels

For an extended final experiment, the processes successfully explored in this article are

applied to a dataset of a differing nature. The whole process is carried out in the given

order. Details of the dataset and experimental process can be found in Section 3.

Figures 6 and 7 show samples of eye state data in both 2D and 3D. Table 9 shows

the attribute selection processes and the relative entropy of the gathered sets. As could

be logically conjectured, all of the feature selectors found much worth (0.349) in the log

covariance matrix of the Afz electrode, located in the centre of the forehead. Closely

following this in second place for all feature selectors (0.3174) was the log covariance

matrix of the Af4 electrode, placed to the right of the Afz electrode. Interestingly, as well

as this data which is arguably electromyographical in origin, many features generated

from the activities of Occipital electrodes O1, Oz and O2 were considered useful for

classification, these electrodes are place around the area of the brain that receives and

processes visual information from the retinae, the visual cortex. With this in mind,

it is logical to conjecture that such a task will produce strong binary classification

accuracies since feature selection has favoured areas around the eyes themselves and the

cortex within which visual signals are processed.
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Table 10. Benchmark Scores of the Pre-optimised 2D and 3D CNN on the Eye State

Selected Attribute Datasets

Dims Dataset Acc. (%) Prec. Rec. F1

2D

Kullback-Leibler Divergence 97.03 0.97 0.97 0.97

One Rule 95.34 0.95 0.95 0.95

Symmetrical Uncertainty 96.89 0.97 0.97 0.97

3D

Kullback-Leibler Divergence 96.05 0.96 0.96 0.96

One Rule 94.49 0.95 0.95 0.95

Symmetrical Uncertainty 97.46 0.97 0.97 0.97
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Figure 8. Evolutionary Improvement of DEvoCNN for the attention state

Classification Problem

Table 10 shows the comparison of results for the 2D and 3D CNNs on the Eye State

dataset. As would be expected, very high classification accuracies are considered since

the eyes and visual cortex both feature in the 64-channel OpenBCI EEG. Unlike the

prior experiments, the 3D CNN on a raster cube prevails over its 2D counterpart when

Symmetrical Uncertainty is used for feature selection at a score of 97.46% classification

accuracy. As observed previously, other than this one model, all 2D models outperform

the 3D alternative.

4.4. Hyperheuristic Optimisation of Interpretation Topology

In this section, the best networks for the three datasets are evolutionarily optimised in

an attempt to improve their abilities through augmentation of interpretation network

structure and topology, the dense layers following the CNN. Figures 8, 9, and 10 show

the evolutionary simulations for the improvement of the interpretation of networks for
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Figure 9. Evolutionary Search of Network Topologies for the Emotional State

Classification Problem
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Figure 10. Evolutionary Search of Network Topologies for the Eye State Classification

Problem

Attention, Emotional, and Eye State datasets respectively. For the deep hidden layers

following the CNN structure detailed in 2, the main findings were as follows:

• Attention state: The best network was found to be a 2D CNN with three hidden

interpretation layers (2705, 3856, 547), which achieved 96.1% accuracy. The mean

accuracy scored by 2D CNNs was 96%. These outperformed the best 3D network

with 5 interpretation layers (3393, 935, 2517, 697, 3257) which scored 95.15%, with

a mean performance of 95.02%.
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Table 11. Benchmark Scores of the Pre and Post-optimised 2D and 3D CNN on all

Datasets (70/30 split Validation). Model gives Network and Best Observed Feature

Extraction Method. (Other ML metrics omitted and given in previous tables for

readability)

Experiment Model Accuracy (%)

Attention State

2D CNN, Rule Based 93.89

3D CNN, Rule Based 93.62

2D DEvoCNN, Rule Based 96.1

3D DEvoCNN, Rule Based 95.15

Emotional State

2D CNN, KLD 98.22

3D CNN, KLD 97.28

2D DEvoCNN, KLD 98.59

3D DEvoCNN, KLD 98.43

Eye State

2D CNN, KLD 97.03

3D CNN, Symm. Uncertainty 97.46

2D DEvoCNN, KLD 98.02

3D DEvoCNN, Symm. Uncertainty 98.3

• Emotional State: The best network was found to be a 2D CNN with two hidden

interpretation layers (165, 396), which achieved 98.59% accuracy. The mean

accuracy scored by 2D CNNs was 98.41%. Close to this was the best 3D network

with 1 interpretation layer (476) which scored 98.43%, with a mean performance of

98.07%.

• Eye State: The best network was found to be a 3D CNN with three

hidden interpretation layers (400, 2038, 1773) which achieved 98.31% classification

accuracy. The mean accuracy scored by 3D CNNs was 98.16%. The best 2D

network was 98.02%, with a mean performance of 97.88%.

Table 11 shows the overall results gained by the four methods applied to the three

datasets, from the findings of the two previous experiments. The best results for 2D and

3D CNNs are taken forward in the following section in order to perform cross validation.

It can be observed that the DEvoCNN approach slightly improved on all networks, but

the findings in the first experiment carry over in that the best dimensional-awareness

remain so even after evolutionary optimisation.

Figures 11, 12 and 13 show the confusion matrices for the concentration, emotions,

and eye state unseen data respectively. Most errors in the concentration dataset arise

from relaxed data being misclassified as neutral data which was also observed to occur

vice versa, albeit limitedly. The small number of mistakes from the emotions dataset

occurred when misclassifying negative as positive and vice versa, the neutral class was

classifed perfectly. In the eye state dataset, eyes closed were the most misclassified data

at 0.97 to 0.03.
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Figure 11. Normalised confusion matrix for the unseen concentration data.
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Figure 12. Normalised confusion matrix for the unseen emotions data.
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Figure 13. Normalised confusion matrix for the unseen eye state data.

Table 12. Final Benchmark Scores of the Post-optimised Best 2D and 3D CNN on

all Datasets via K-fold cross validation.

Experiment Model Acc. (%) Std. Prec. Rec. F1

Attention State
2D CNN 97.03 1.09 0.97 0.97 0.97

3D CNN 95.87 0.82 0.96 0.96 0.96

Emotional State
2D CNN 98.09 0.55 0.98 0.98 0.98

3D CNN 98.4 0.53 0.98 0.98 0.98

Eye State
2D CNN 97.33 0.79 0.97 0.97 0.97

3D CNN 97.96 0.44 0.98 0.98 0.98

4.5. K-fold Cross Validation of Selected Hyper-parameters

In this section, the best sets of hyperparameters for each dataset are used in further

experiments where each model is benchmarked through 10-fold cross validation.

Table 12 shows the mean accuracy of networks when training via 10-fold cross

validation. As was alluded to through the simpler data split experiments, the best

models for the first two datasets were found when the data was arranged as a 2-

Dimensional grid of pixels whereas the best model for the eye state dataset was in

3D with both a higher accuracy and lower standard deviation of per-fold accuracies.

Standard deviation was relatively low between folds, all below 1% except for the 2D

CNN attention state model which has a standard deviation of 1.09%.
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Table 13. Leave one Subject Out (Unseen Data) for the Concentration State Dataset

Subject left out 1 2 3 4 Mean Std.

Accuracy (%) 84.33 86.27 81.91 89.66 85.54 0.03

Table 14. Leave one Subject Out (Unseen Data) for the Emotions Dataset

Subject left out 1 2 Mean Std.

Accuracy (%) 91.18 84.71 87.95 0.03

Table 15. Leave one Subject Out (Unseen Data) for the Eye State Dataset (individual

109 subjects removed for readability purposes)

Subject left out Mean Std.

Accuracy (%) 83.8 3.44

Table 16. Comparison of the best concentration dataset model (2D CNN) to other

models

Model Acc. (%) Std. Prec. Rec. F1

2D CNN 97.03 1.09 0.97 0.97 0.97

Extreme Gradient Boosting 93.62 0.01 0.94 0.94 0.94

Random Forest 91.64 0.02 0.92 0.92 0.92

KNN(10) 86.03 0.03 0.87 0.86 0.86

Decision Tree 84.65 0.02 0.85 0.85 0.85

AdaBoost Long Short-Term Memory [58] 84.44 0.02 0.85 0.85 0.85

Long Short-Term Memory [58] 83.84 0.03 0.84 0.84 0.84

Deep Neural Network [58] 79.81 0.02 0.8 0.8 0.8

Linear Discriminant Analysis 79.44 0.02 0.81 0.79 0.8

Support Vector Classifier 77.46 0.02 0.78 0.78 0.77

Quadratic Discriminant Analysis 74.27 0.02 0.74 0.74 0.73

Naive Bayes 52.18 0.03 0.53 0.52 0.47

4.6. Leave One Subject Out Validation of Selected Hyperparameters

Tables 13, 14 and 15 show the leave one subject out results for each of the three datasets

with the best CNN model. The model is trained on all subjects except for one, and

classifies the data belonging to that left out subject.

5. Discussion

Tables 16, 17 and 18 show comparisons of the best models found in this study to

other machine learning models. Although the top mean scores were noted to be the

CNNs found in this study, their deviance is relatively high. In some cases such as in

the emotions and eye state datasets for example, the CNN only slightly outperforms a

Random Forest which is far less computationally expensive to execute in comparison.
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Table 17. Comparison of the best emotions dataset model (3D CNN) to other

statistical models

Model Acc. (%) Std. Prec. Rec. F1

3D CNN 98.4 0.53 0.98 0.98 0.98

Extreme Gradient Boosting 98.38 0.01 0.98 0.98 0.98

Random Forest 98.36 0.01 0.98 0.98 0.98

AdaBoost Long Short-Term Memory [58] 97.06 0.01 0.97 0.97 0.97

Long Short-Term Memory [58] 96.86 0.01 0.97 0.97 0.97

Deep Neural Network [58] 96.11 0.02 0.96 0.96 0.96

Decision Tree 94.98 0.02 0.95 0.95 0.95

Linear Discriminant Analysis 93.9 0.02 0.94 0.94 0.94

KNN(10) 92.64 0.01 0.93 0.93 0.93

Support Vector Classifier 92.03 0.01 0.93 0.92 0.92

Quadratic Discriminant Analysis 77.35 0.11 0.82 0.78 0.77

Naive Bayes 65.24 0.04 0.65 0.65 0.63

Table 18. Comparison of the best eye state dataset model (3D CNN) to other

statistical models

Model Acc. (%) Std. Prec. Rec. F1

3D CNN 97.96 0.44 0.98 0.98 0.98

AdaBoost Long Short-Term Memory 97.87 0.04 0.98 0.98 0.98

Long Short-Term Memory 97.87 0.04 0.98 0.98 0.98

Extreme Gradient Boosting 97.95 0.01 0.98 0.98 0.98

Deep Neural Network 97.91 0.01 0.98 0.98 0.98

Random Forest 97.9 0.01 0.98 0.98 0.98

KNN(10) 94.82 0.01 0.95 0.95 0.95

Linear Discriminant Analysis 94.32 0.01 0.94 0.94 0.94

Support Vector Classifier 92.75 0.02 0.93 0.93 0.93

Decision Tree 90.79 0.02 0.91 0.91 0.91

Quadratic Discriminant Analysis 83.12 0.02 0.84 0.83 0.83

Naive Bayes 66.61 0.03 0.7 0.67 0.65

It is also worth noting that the CNN, for these datasets, seemingly outperforms Long

Short Term Memory Networks and Multilayer Perceptrons.

6. Conclusion and Future Works

As discussed at the start of this paper, 729 features were selected in order to directly

compare 2D and 3D visual space for EEG classification, since 729 can be used to make

both a perfect square and cube. Experiments show the superiority of the 2-Dimensional

approach and there are of course many more numbers within the bounds of the attribute

set that make only a perfect square, 1273 to be exact. If cube comparison is discarded,

image size should be explored in order to explore whether there is a better set of results

totalling either more or fewer than the 729 chosen. The feature extraction for the

64-channel dataset produces 23,488 attributes and thus further studies into this can
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attempt to compare different sized images and cubes due to the abundance of features.

Furthermore, the method of reshaping to 2D and 3D through order of their feature

selection scores was performed in a relatively simple fashion for purposes of preliminary

exploration. In future studies, due to the success found in this work, the method of

reshaping and ordering of the attributes within the shape will be studied considering the

reshape method an additional network hyperparameter. This presents a combinatorial

optimisation problem that should be further explored and solved in order to present

more scientifically sound methods for reshaping. In addition, in future, it would be

useful to explore other methods of feature extraction using the CNN model. In this

work, we compare our approach to statistical models which also have the features as

input - it is well documented in the field that features must be extracted from the raw

signals when non-temporal learning methods are to be performed [63–65]. Otherwise,

low classification accuracies are often encountered and thus models with little use that

cannot classify unseen data. Although this would not be possible with the raw signal

domain, the raw signals may be more useful for convolutional neural networks to learn

from in future benchmarking experiments. Another limitation of this study is that

unseen data was restricted to both holdout test sets and unseen subjects, in future a

further dataset should be collected in order to enable testing on a larger amount of

unseen data.

In this work, models were explored with a train/test split and finally benchmarked

with k-fold cross validation. Ron Kohavi [66] argued that data splits are usually inferior

to k-fold cross-validation, which is further inferior to leave one out cross-validation where

a model is trained for each and every data point (k = datapoints). Since this would

require the availability of an extensive amount of computational resources before this

experiment, it is now feasible to take the best models in this work ahead and attempt

leave-one-out cross validation. As previously described, the main limitation of this

study is the method of reshaping, three methods were explored which were dictated

by the score metrics of three different dimensionality reduction techniques. In future,

a combinatorial optimisation algorithm could be used with CNN classification metrics

as a function fitness to optimise. Future work could specifically explore the affects of

reshaping on CNNs operating in different numbers of spatial dimensions and thus then

how this may be useful for future tasks. The techniques were applied generally to four

and 64-channel EEG recordings, thus applied to datasets of much different width (given

that temporal techniques are extracted from each electrode), and future would could

explore if differing successful techniques could be applied with either a task or electrode

count in mind. Datasets with larger numbers of subjects and leave-one-subject-out

testing could also be explored in future works in order to discern whether these models

improve the ability of unseen subject classification or whether calibration is required.

To finally conclude, initially, nine preliminary deep learning experiments were

carried out twice for three EEG datasets. Three in 2-Dimensional space and three in

3-Dimensional space and compared. In cases of attention and emotional state, the 2D

CNN outperformed the 3D CNN when rule-based and entropy-based feature selection

Page 26 of 30AUTHOR SUBMITTED MANUSCRIPT - JNE-103905.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Classification of EEG Signals represented in 2D and 3D 27

is performed respectively. On the other hand, for eye state with a 64-channel EEG, the

3D CNN produced the best accuracy when feature were selected via their Symmetrical

Uncertainty. The best 2D and 3D models for each were then taken forward for topology

optimisation, and finally, to prevent overfitting, said topologies were validated using 10-

fold cross validation. Final results show that the data preprocessing methods first shown

retained their best overall score, but all were improved upon after topology optimisation

and subsequent k-fold cross validation.
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